Join the discussion @ p2p.wrox.com @ Wrox Programmer to Programmer™

Professional

XMPP

Programming with JavaScript” and jQuery

Jack Moffitt

Programmer to Programmer”

Get more out of
Wrox.com

Interact Join the Community

Take an active role online by participating in our Sign up for our free monthly newsletter at
P2P forums @ p2p.wrox.com newsletter.wrox.com

Wrox Online Library Browse

Hundreds of our books are available online Ready for more Wrox? We have books and

through Books24x7.com e-books available on .NET, SQL Server, Java,

XML, Visual Basic, C#/ C++, and much more!

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble!

Contact Us.

We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

PROFESSIONAL
XMPP PROGRAMMING
WITH JAVASCRIPT AND JQUERY

INTRODUGCTION . . ottt it iit ittt ittt ittt enneenseneeneennsansennens Xix
» PARTI XMPP PROTOCOL AND ARCHITECTURE

CHAPTER 1 Gettingto Know XMPP 3
CHAPTER 2 Designing XMPP Applications. 23
» PARTII THE APPLICATIONS

CHAPTER 3 Saying Hello: The First Application........ i, 39
CHAPTER 4 Exploring the XMPP Protocol: A Debugging Console............... 63
CHAPTER5 Microblogging in Real Time: An IdenticaClient.................... 87
CHAPTER 6 Talking with Friends: One-on-One Chat 103
CHAPTER 7 Exploring Services: Service Discovery and Browsing.............. 145
CHAPTER 8 Group Chatting: A Multi-User ChatClient........................ 165
CHAPTER 9 Publishing and Subscribing: A Shared Sketch Pad Introduction. 203
CHAPTER 10 Writing with Friends: A Collaborative Text Editor.................. 251
CHAPTER 11 Playing Games: Head to Head Tic-Tac-Toe....................... 299
» PART Il ADVANCED TOPICS

CHAPTER 12 Getting Attached: BootstrappingBOSH 377
CHAPTER 13 Deploying XMPP Applications. i, 387
CHAPTER 14 Writing Strophe Plug-ins.o e 401
APPENDIX A Getting Started with jJQuery. i 419
APPENDIX B Setting Up a BOSH Connection Manager........................ 429
IND X, . ottt ittt ittt ittt ttt ittt etneeneeneenssensenseneennsansennens 441

PROFESSIONAL

XMPP Programming with
JavaScript® and jQuery

PROFESSIONAL

XMPP Programming with
JavaScript® and jQuery

Jack Moffitt

WILEY
Wiley Publishing, Inc.

Professional XMPP Programming with JavaScript® and jQuery

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-54071-8

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009900000

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. JavaScript is a registered trademark of Sun Microsystems, Inc. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

Dedicated to my wife Kimberly and our son
Jasper, whose loves, hugs, and smiles make

every day the best day ever.

CREDITS

EXECUTIVE EDITOR VICE PRESIDENT AND

Carol Long EXECUTIVE GROUP PUBLISHER
Richard Swadley

PROJECT EDITOR

Ed Connor VICE PRESIDENT AND EXECUTIVE PUBLISHER
Barry Pruett

TECHNICAL EDITOR

Dave Cridland ASSOCIATE PUBLISHER
Jim Minatel

PRODUCTION EDITOR

Kathleen Wisor PROJECT COORDINATOR, COVER
Lynsey Stanford

COPY EDITOR
Kim Cofer COMPOSITOR

Craig Johnson, Happenstance Type-O-Rama
EDITORIAL DIRECTOR
Robyn B. Siesky PROOFREADER

Carrie Hunter, Word One
EDITORIAL MANAGER
Mary Beth Wakefield INDEXER

Robert Swanson
MARKETING MANAGER
David Mayhew COVER DESIGNER

Michael E. Trent
PRODUCTION MANAGER
Tim Tate COVER IMAGE

© Punchstock/Glowimages

ABOUT THE AUTHOR

JACK MOFFITT is a hacker and entrepreneur based in Albuquerque, New
Mexico. He has founded several startups built on XMPP technology includ-
ing Chesspark, a real-time, multi-user gaming platform, and Collecta, a
real-time search engine for the Web. He has started and contributed to
numerous XMPP related open source and free software projects including the
Strophe XMPP client libraries, the Punjab XMPP connection manager, the
Palaver multi-user chat component, the Speeqe group chat application. He
also has served several terms on both the XSF Board of Directors and the
XSF Council. Previous to his XMPP work, he created the Icecast streaming media server, managed
the Ogg, Vorbis, and Theora codec projects, and co-founded the Xiph.org Foundation, a standards
organization for royalty-free multimedia technologies for the Internet. He is passionate about free
software and open source, open standards, and Internet technology. His favorite programming lan-
guages include JavaScript, Erlang, and Python. You can find him at http: //metajack. im, blogging
about start-ups and code, as @metajack on Twitter and Identica, or often spreading the word of
XMPP at technology conferences.

ACKNOWLEDGMENTS

WE ALL STAND ON THE SHOULDERS OF GIANTS, and I am fortunate to have stood on many friendly
ones throughout my career and while writing this book. Thanks to Carol Long and Ed Connor for
the encouragement, handholding, reminders, and patience that every author needs. Thanks also to
Jason Salas who not only encouraged me on this project but made the appropriate introductions.
Thanks also to Dave Cridland for his work ensuring the technical quality of this book and his tire-
less humor. I’'m hugely indebted to Peter Saint-Andre, patron saint of XMPP, and the rest of the
XMPP Standards Foundation members for their advice, criticism, and friendship over the years.
Finally, the biggest thanks of all to my wife; not only did she encourage me in this project and put up
with my long hours and absence, she also worked hard as my first reader and made many helpful
suggestions to the text.

CONTENTS

INTRODUCTION XIX
CHAPTER 1: GETTING TO KNOW XMPP 3
What Is XMPP? 4
A Brief History of XMPP 5
The XMPP Network 6
Servers 6
Clients 7
Components 7
Plug-ins 8
XMPP Addressing 8
XMPP Stanzas 9
Common Attributes 10
Presence Stanzas 11
Message Stanzas 13

IQ Stanzas 15
Error Stanzas 17
The Connection Life Cycle 18
Connection 18
Stream Set Up 19
Authentication 20
Disconnection 20
Summary 20
CHAPTER 2: DESIGNING XMPP APPLICATIONS 23
Learning from Others 24
XMPP versus HTTP 27
Advantages of XMPP 28
Disadvantages of XMPP 29
Bridging XMPP and the Web 30
Long Polling 30
Managing the Connection 31
Making JavaScript Speak XMPP 32

CONTENTS

Making XMPP Applications 33
The Browser Platform 33
Basic Infrastructure 33
Protocol Design 34

Summary 36

CHAPTER 3: SAYING HELLO: THE FIRST APPLICATION 39

Application Preview 40

Hello Design 40

Preparing the Way 41
jQuery and jQuery Ul 42
Strophe 42
fIXHR 43
XMPP Accounts 43

Starting Your First Application 43
User Interface 43
Application Code 45

Making Connections 47
The Connection Life Cycle 47
Creating a Connection 48
Connecting Hello 49
Running the Application 53

Creating Stanzas 53
Strophe Builders 54
Saying Hello 56

Handling Events 57
Adding and Removing Handlers 57
Stanza Matching 57
Stanza Handler Functions 58
Handling Responses in Hello 59

More Hellos 62

Summary 62

CHAPTER 4: EXPLORING THE XMPP PROTOCOL:
A DEBUGGING CONSOLE 63

Application Preview 64

Peek Design 64

xii

CONTENTS

Building the Console 65
User Interface 66
Displaying Traffic 68
Making XML Pretty 7
Dealing with XML Input 74
Making Input Easier 76

Exploring XMPP 81
Controlling Presence 81
Probing Versions 81
Dealing with Errors 82

Better Debugging 85

Summary 85

CHAPTER 5: MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT 87

Application Preview 88
Arthur Design 88
Microblogging with Identica 89
Creating Your Account 90
Turning on XMPP 90
Building Arthur 20
Getting Started o1
Receiving Messages 93
XHTML-IM 94
Adding XHTML-IM to Arthur 95
Sending Messages 96
Offline Messages 97
Creating a Better Microblogger 101
Summary 102
CHAPTER 6: TALKING WITH FRIENDS: ONE-ON-ONE CHAT 103
Application Preview 104
Gab Design 104
Presence 105
Messages 105
Chat Area 105
Roster Area 106

Making the Interface 106

xiii

CONTENTS

Xiv

Building the Roster 109
Requesting Rosters m
Handling IQs 113
Updating Presence Status 114
Adding New Contacts 116
Responding to Roster Changes 17
Dealing with Subscription Requests 119

Building the Chats 122
Working with Tabs 122
Creating New Chats 123
Sending Messages 124

Best Practices for Instant Messaging 127
Understanding Message Routing 127
Addressing Messages Better 127

Adding Activity Notifications 130
Understanding Chat States 130
Sending Notifications 131
Receiving Notifications 132

Final Touches 133

Gabbing More 143

Summary 143

CHAPTER 7: EXPLORING SERVICES: SERVICE DISCOVERY
AND BROWSING 145

Application Preview 146

Dig Design 146

Finding Information 147
Disco#info Queries 147
Disco#items Queries 148
Disco Nodes 149

Creating Dig 149
Initial Disco Queries 153
Browsing the Disco Tree 155

Digging into Services 160
Finding a Proxy Server 161
Discovering Features 162
Looking for a Chat 162

Discovering More 163

Summary 163

CONTENTS

CHAPTER 8: GROUP CHATTING: A MULTI-USER CHAT CLIENT 165
Application Preview 166
Groupie Design 167
Public Speaking 167

Group Chat Services 167
Entering and Leaving a Room 168
Sending and Receiving Messages 171
Anonymity 171
Creating Rooms 172
Understanding Roles and Affiliations 173
Building the Interface 175
Joining the Room 179
Dealing with Presence and Messages 183
Handling Room Messages 183
Tracking Presence Changes 185
Chat History 186
Keeping It Private 187
Describing Actions 190
Managing the Room 191
Changing Topics 191
Dealing with Troublemakers 192
Recruiting Help 194
Improving Groupie 201
Summary 201

CHAPTER 9: PUBLISHING AND SUBSCRIBING:

A SHARED SKETCH PAD INTRODUCTION 203
SketchCast Preview 204
SketchCast Design 205

Everything Is Pubsub 205
Presenter’s Flow 205
Audience’s Flow 206
Filling Out Forms 206
What Is The Data Forms Extension? 206
Form Elements, Fields, and Types 207

Standardized Form Fields

210

XV

CONTENTS

XVi

Working with Pubsub Nodes 21
Creating Nodes 21
Configuring Nodes 213
Pubsub Events 215
Publishing to a Node 215
Subscribing and Unsubscribing 216
Retrieving Subscriptions 218
Retrieving Items 219
Subscription Management 221

Broadcasting Sketches Using Pubsub 222
Building the Interface 222
Sketching with Canvas 225
Logging In and Making Nodes 228
Publishing and Receiving Sketch Events 234

Summary 249

CHAPTER 10: WRITING WITH FRIENDS:

A COLLABORATIVE TEXT EDITOR 251
Application Preview 252
NetPad Design 252
Operational Transformation 253

Basic Principles 253
Details of the Algorithm 255
Implementation 256

Extending the XMPP Protocol 267
Ignoring the Unknown 267
XML Namespaces 268
Extended Elements 268
Extended Attributes 270
Contributing Extensions 271

Designing the Protocol 271
Testing for Support 272
Requesting and Controlling Sessions 272
Editing Operations 273

Building the Editor 274
The Initial Skeleton 274
Starting Editing Sessions 278
Chatting About Work 284
Making Edits 287

Expanding NetPad 298

Summary 298

CONTENTS

CHAPTER 11: PLAYING GAMES: HEAD TO HEAD TIC-TAC-TOE 299
Application Preview 300
Toetem Design 301
Designing the Game Protocol 302

Keeping Track of Users 303
Managing Players 304
Managing Games 305
Playing and Watching the Game 308
Getting Started on Toetem 31
Implementing Sessions and the Waiting List 317
Referee Version One 317
Toetem Client Version One 322
Implementing Game Management 325
Referee Version Two 325
Toetem Client Version Two 334
Implementing the Game Logic 338
The Tic-Tac-Toe Library 338
Referee Version Three 343
Toetem Client Version Three 345
Making the Game More Fun 372
Summary 373

CHAPTER 12: GETTING ATTACHED: BOOTSTRAPPING BOSH 377

Session Attachment 378
The Mechanics of Sessions 378
Use Cases 379

Automatic Logins with Session Attachment 380
Creating the Django Project 381

Summary 385

CHAPTER 13: DEPLOYING XMPP APPLICATIONS 387

Growing Horizontally 387
Multiple Connection Managers 388
Clustering XMPP Servers 391
Spreading Out Components 392
Federating Internally 393
Becoming a Server 393

xvii

CONTENTS

Growing Vertically 394
Reducing Latency 394
Minimizing XML Serialization 397
Optimizing DOM Operations 398

Summary 399

CHAPTER 14: WRITING STROPHE PLUG-INS 401

Using Plug-ins 402
Loading Plug-ins 402
Accessing Plug-in Functionality 402

Building Plug-ins 403

Creating a Roster Plug-in 404
Storing Contacts 405
Getting and Maintaining the Roster 407
Manipulating the Roster 41

Taking the Plug-in for a Spin 412
Improving the Roster Plug-in 417

Summary 417

Appendix A: Getting Started with jQuery 419

Appendix B: Setting Up a BOSH Connection Manager 429

INDEX

xviii

441

INTRODUCTION

XMPP POWERS A WIDE RANGE OF APPLICATIONS including instant messaging, multi-user chat, voice
and video conferencing, collaborative spaces, real-time gaming, data synchronization, and even
search. Although XMPP started its life as an open, standardized alternative to proprietary instant
messaging systems like ICQ and AOL Instant Messenger, it has matured into an extremely robust
protocol for all kinds of exciting creations.

Facebook uses XMPP technology as part of its chat system. Google uses XMPP to power Google
Talk and its exciting new Google Wave protocol. Collecta has built a real-time search engine
based extensively on XMPP’s publish-subscribe system. Several web browsers are experimenting
with XMPP as the basis of their synchronization and sharing systems. Dozens of other companies
have XMPP-enabled their web applications to provide enhanced user experiences and real-time
interaction.

The core of XMPP is the exchange of small, structured chunks of information. Like HTTP, XMPP
is a client-server protocol, but it differs from HTTP by allowing either side to send data to the other
asynchronously. XMPP connections are long lived, and data is pushed instead of pulled.

Because of XMPP’s differences, it provides an excellent companion protocol to HTTP. XMPP-powered
web applications are to AJAX what AJAX was to the static web site; they are the next level of interactiv-
ity and dynamism. Where JavaScript and dynamic HTML have brought desktop application features to
the web browser, XMPP brings new communications possibilities to the Web.

XMPP has many common social web features built in, due to its instant messaging heritage.
Contact lists and subscriptions create social graphs, presence updates help users keep track of who

is doing what, and private messaging makes communication among users trivial. XMPP also has
nearly 300 extensions, providing a broad and useful range of tools on which to build sophisticated
applications. With only a handful of these, along with the core protocol, amazing things can be built

This book teaches you to harness the promise of XMPP in your own applications, enabling you to
build applications that are social, collaborative, real time, or all of the above. You will develop a
series of increasingly sophisticated XMPP applications, starting from “Hello, World!” and finishing
with a collaborative text editor, a shared sketch pad, and a real-time, multi-player game. By the end,
you will have all the tools you need to build the next generation of applications using XMPP or to
add new real-time, push, or social features to your current applications.

WHO THIS BOOK IS FOR

This book is written for developers interested in making XMPP applications. You need not have
any previous experience with XMPP, although it will certainly be helpful if you do. The book starts
from the assumption that you’ve heard great things about XMPP and are looking to dive right in.

INTRODUCTION

The JavaScript language is used to develop all the applications in the book because it is an easy lan-
guage to understand, is familiar to a large number of programmers, and comes on every computer
with a web browser. Even though this book uses JavaScript, all the concepts and applications could
be developed in any language; most of the “hard parts” are not related to the programming language,
the libraries used, or the web browser. You do not need to be a JavaScript expert to understand and
work with the code in this book.

It is assumed that you understand the basic front-end web technologies, CSS and HTML. If you’ve
ever written a little HTML from scratch and changed a few CSS styling properties, you should be
fine.

This book also makes use of two libraries, jQuery and Strophe. It is helpful if you have used
jQuery before, but if you haven’t, a short primer is included in Appendix A. The Strophe library is
explained fully as the applications are developed.

WHAT THIS BOOK COVERS

XX

The XMPP protocol and its extensions cover a lot of ground. This book focuses on the pieces of
XMPP in wide use. The following topics receive much attention:

XMPP’s instant messaging features like rosters, presence and subscriptions, and private chats
XMPP stanzas, stanza errors, and client protocol syntax and semantics

Extending XMPP stanzas

Service discovery (XEP-0030)

Data Forms (XEP-0004)

Multi-User Chat (XEP-0045)

Publish-Subscribe (XEP-0060)

Y Y Y VY VY VY'Y

Although these topics are all approached from the client side, almost all of it is equally applicable to
XMPP bots or server components and plug-ins.

The book also covers XMPP programming related topics such as application design, event handling,
and combining simple protocol elements into a greater whole. Along the way, a few web programming
topics are also discussed such as the Canvas API.

XMPP is now more than 10 years old and quite mature. This book covers the 1.0 version of the core
protocol. The XMPP protocol parts of this book should work unchanged in future versions of the pro-
tocol, just as HTTP 1.0 clients can easily communicate with HTTP 1.1 servers.

XMPP has many extensions and several of these are also covered. For the most part, the book con-
centrates on extensions that are in a stable, mature state. For each extension used, the document
number is always given, and if in doubt, you can always check the latest version of the extension to
see if it has been changed or superseded.

INTRODUCTION

The book was written with the 1.3 series versions of jQuery and the 1.7 series versions of jQuery UL.
These libraries generally remain backward compatible to a large degree. Version 1.0 of the Strophe
library is used, but future 1.X versions should also work fine.

HOW THIS BOOK IS STRUCTURED

This book is primarily organized as a walkthrough tutorial of a series of example XMPP applica-
tions. Each application increases in difficulty and teaches you one or more useful parts of the XMPP
protocol and its extensions. These applications are stripped down for clarity, but they are examples
of the kinds of applications XMPP developers create every day.

This book is divided into three parts.

The first part is an introduction to the XMPP protocol, its uses, and XMPP application design.
Chapter 1 covers the use cases for XMPP, the history of the protocol, and its component parts. Chapter 2
explains when XMPP is a good choice for the job and goes into detail about how XMPP applica-
tions work, particularly for the Web.

The second part is the meat of the book and contains nine XMPP applications that solve a variety of
problems. Each application is more complex than the last and builds on the concepts of the previous
ones. Chapter 3 starts with a simple “Hello, World!” type example, and by Chapter 11 you build a
real-time, multi-player game.

The last part covers a few advanced but important topics. Chapter 12 discusses attached sessions, a
useful trick for security, optimization, and persistence. Chapter 13 goes into detail about how best
to deploy and scale XMPP-based applications. Chapter 14 explains how to use Strophe’s plug-in sys-
tem and how to create your own plug-ins.

WHAT YOU NEED TO USE THIS BOOK

This book makes use of web technologies and therefore requires almost no special tools. You can
use, build, and run the applications in this book on virtually any platform. The libraries needed for
the applications are explained in Chapter 3, and most can be used without downloading any code.

You will need some way to serve web pages such as a local web server or a hosting account some-
where. If you don’t have these readily available, you can use the Tape program to serve the files; Tape
is a simple web server and is explained in Appendix B. It is an unfortunate requirement of browser
security policy that you can’t easily run these applications directly from your local file system.

You will need an XMPP account (or multiple accounts in some cases if you want to test the code

by yourself) to run the applications. You can avail yourself of any of the public XMPP servers for
this purpose, although you will need to ensure that the server has support for publish-subscribe and
multi-user chat; most do. You can also download and run your own XMPP server instead, although
this is not covered in the book.

XXi

INTRODUCTION

Chapter 12 requires some server-side assistance. The example uses the Python programming lan-
guage along with the Django framework to provide this. This chapter is an advanced topic and is
not needed for the normal applications in the book.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotien information that is
directly relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and
placed in italics like this.

As for styles in the text:

>

>
>
>

We highlight new terms and important words when we introduce them.
We show keyboard strokes like this: Ctrl+A.
We show file names, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use boldface highlighting to emphasize code that is of particularly
importance in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. All of the source code used in this
book is available for download at http: //www.wrox.com. Once at the site, simply locate the book’s
title (either by using the Search box or by using one of the title lists) and click the Download Code
link on the book’s detail page to obtain all the source code for the book.

XXii

INTRODUCTION

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-0-470-54071-8.

Once you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and at the same time you will be helping us provide even
higher quality information.

To find the errata page for this book, go to http: //www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors. A com-
plete book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

xxiii

INTRODUCTION

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post
your own messages, You must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXiv

PART |
XMPP Protocol and Architecture

» CHAPTER 1: Getting to Know XMPP

» CHAPTER 2: Designing XMPP Applications

Getting to Know XMPP

WHAT’S IN THIS CHAPTER?

» The history of XMPP
» XMPP networks and connections

> XMPP’s three building block stanzas

The eXtensible Messaging and Presence Protocol (XMPP) is, at its most basic level, a protocol
for moving small, structured pieces of data between two places. From this humble basis, it has
been used to build large-scale instant messaging systems, Internet gaming platforms, search
engines, collaboration spaces, and voice and video conferencing systems. More unique appli-
cations appear every day, further demonstrating how versatile and powerful XMPP can be.

XMPP is made of a few small building blocks, and on top of these primitives many larger
constructions have been made. Within XMPP are systems for building publish-subscribe ser-
vices, multi-user chat, form retrieval and processing, service discovery, real-time data transfer,
privacy control, and remote procedure calls. Often, XMPP programmers create their own,
unique constructions that are fitted exactly for the problem at hand.

Most social media constructs that have propelled web sites like Facebook, MySpace, and
Twitter into the forefront are also baked into XMPP. Within XMPP, you’ll find rosters full of
contacts that create a social graph with directed or undirected edges. Presence notifications are
sent automatically when contacts come online and go offline, and private and public messages
are the bread and butter application of XMPP systems. Developers will sometimes choose
XMPP as the underlying technology layer simply because it gives them many social features
for free, leaving them to concentrate on the unique pieces of their application.

The possibilities are vast, but before you can begin, you need to know about XMPP’s different
pieces and how they fit together into a cohesive whole.

4 | CHAPTER1 GETTING TO KNOW XMPP

WHAT IS XMPP?

XMPP, like all protocols, defines a format for moving data between two or more communicating
entities. In XMPP’s case, the entities are normally a client and a server, although it also allows for
peer-to-peer communication between two servers or two clients. Many X MPP servers exist on the
Internet, accessible to all, and form a federated network of interconnected systems.

Data exchanged over XMPP is in XML, giving the communication a rich, extensible structure.
Many modern protocols forgo the bandwidth savings of a binary encoding for the more practical
feature of being human readable and therefore easily debugged. XMPP’s choice to piggyback on
XML means that it can take advantage of the large amount of knowledge and supporting software
for dealing with XML.

One major feature XMPP gets by using XML is XMUL’s extensibility. It is extremely easy to add new
features to the protocol that are both backward and forward compatible. This extensibility is put to
great use in the more than 200 protocol extensions registered with the XMPP Standards Foundation
and has provided developers with a rich and practically unlimited set of tools.

XML is known primarily as a document format, but in XMPP, XML data is organized as a pair
of streams, one stream for each direction of communication. Each XML stream consists of an
opening element, followed by XMPP stanzas and other top-level elements, and then a closing ele-
ment. Each XMPP stanza is a first-level child element of the stream with all its descendent elements
and attributes. At the end of an XMPP connection, the two streams form a pair of valid XML
documents.

XMPP stanzas make up the core part of the protocol, and XMPP applications are concerned with
sending and responding to various kinds of stanzas. Stanzas may contain information about other
entities’ availability on the network, personal messages similar to e-mail, or structured communica-
tion intended for computer processing. An example stanza is shown here:

<message to='elizabeth@longbourn.lit'
from='darcy@pemberley.lit/dance'
type='chat'>
<body>What think you of books?</body>
</message>

In a typical client-server XMPP session, a stanza such as this one from Elizabeth to Mr. Darcy will
travel from Elizabeth’s client to her server. Her server will notice that it is addressed to an entity on a
remote server and will establish an XMPP connection with the remote server and forward the message
there. This communication between servers resembles the e-mail network, but unlike e-mail servers,
XMPP servers always communicate directly with each other and not through intermediate servers.

This direct communication eliminates some common vectors for spam and unauthorized messages.
This is just one of the many ways in which XMPP is designed for security. It also supports encrypted
communications between endpoints through use of Transport Layer Security (TLS) and strong
authentication mechanisms via Simple Authentication and Security Layers (SASL).

XMPP is designed for the exchange of small bits of information, not large blobs of binary data. XMPP
can, however, be used to negotiate and set up out-of-band or in-band transports, which can move
large blocks from point to point. For these kinds of transfers, XMPP functions as a signaling layer.

A Brief History of XMPP | 5

The focus on small, structured bits of data gives the XMPP protocol extremely low latency and
makes it extremely useful for real-time applications. These applications, which include collaborative
spaces, games, and synchronization, are driving XMPP’s growth in popularity as developers experi-
ment with the real-time Web.

You will see how easy it is to make real-time web applications through this book’s examples. By the
end of the book you should have a thorough understanding of why so many people are excited about
XMPP’s power and promise.

A BRIEF HISTORY OF XMPP

The XMPP protocol is now more than 10 years old, and it has come a long way from its humble begin-
nings. Much of XMPP’s design is due to the environment in which XMPP was created, and the history
of XMPP provides an interesting case study in how open protocols foster adoption and innovation.

In 1996, Mirabilis released ICQ, which popularized rapid, personal communication among Internet
users. Its use spread rapidly, and before long other companies were releasing similar products. In
1997, AOL launched AOL Instant Messenger. Yahoo followed suit in 1998 with Yahoo Pager (even-
tually renamed Yahoo Messenger), and in 1999 Microsoft finally joined the competition with MSN
Messenger (now Windows Live Messenger).

Each of these instant messaging applications was tied to a proprietary protocol and network run

by the companies that made them. Users of ICQ could not talk to Yahoo users and vice versa. It
became common for users to run more than one of these applications to be able to talk to all of their
contacts because no single vendor claimed 100% market share.

It didn’t take long before developers desired to write their own clients for these proprietary IM net-
works. Some wished to make multiprotocol clients that could unite two or more of the IM networks,
and others wanted to bring these applications to operating systems other than Microsoft Windows
and Apple’s Mac OS. These developers ran into many roadblocks; they had to reverse-engineer
undocumented protocols, and the IM networks aggressively changed the protocol to thwart third-
party developers.

It was in this climate that the idea for an open, decentralized IM network and protocol was born.

Jeremie Miller announced the Jabber project in January of 1999. Jabber was a decentralized instant
messaging protocol based on XML and a server implementation called jabberd. A community
immediately formed around the protocol and implementations spawning more clients and more
ideas. By May of 2000, the core protocols were stabilized and jabberd reached a production release.

The Jabber Software Foundation (JSF) was founded in 2001 to coordinate the efforts around the
Jabber protocol and its implementations. By late 2002, the JSF had submitted the core protocol spec-
ifications to the IETF process, and an IETF working group was formed. In October 2004, this stan-
dards process produced improved versions of the Jabber protocols, renamed XMPP, documented as
RFCs 3920, 3921, 3922, and 3923.

During the protocol’s early life, developers continued to expand its possibilities by submitting
protocol extensions to the JSF. These extensions were called Jabber Extension Proposals (JEPs).

6 | CHAPTER1 GETTING TO KNOW XMPP

Eventually the JSF and the extensions followed the naming change from Jabber to XMPP and
became the XMPP Standards Foundation (XSF) and XMPP Extension Proposals (XEPs).

By 2005, large-scale deployments of XMPP technology were well underway, highlighted by the
launch of Google Talk, Google’s own XMPP-based IM service.

Today, the XMPP ecosystem is quite large. Nearly 300 extensions have been accepted as XEPs, and
dozens of client and server implementations have been created — both commercial and open source.
Software developers of virtually any programming language can find a library to speed their X MPP
application development efforts.

XMPP applications started out very IM-centric, reflecting its origins, but developers have found X MPP
to be quite capable for a number of applications that weren’t originally foreseen including search
engines and synchronization software. This utility is a testament to the power of an open system and
open standardization process.

Most recently, the IETF has formed a new XMPP working group to prepare the next versions of

the XMPP specifications, incorporating all the knowledge gained since the original RFCs were pub-
lished. XMPP continues to be refined and extended so that application developers and Internet users
will always have an open, decentralized communications protocol.

THE XMPP NETWORK

Any XMPP network is composed of a number of actors. These actors can be categorized as servers,
clients, components, and server plug-ins. An XMPP developer will write code to create or modify
one of these types of actors. Each actor has its place on the XMPP network’s stage.

Servers

XMPP servers, or more accurately, XMPP entities speaking the server-to-server protocol or the server
end of the client-to-server protocol, are the circulatory system of any XMPP network. A server’s job
is to route stanzas, whether they are internal from one user to another or from a local user to a user
on a remote server.

The set of XMPP servers that can mutually communicate forms an XMPP network. The set of public
XMPP servers forms the global, federated XMPP network. If a server does not speak the server-to-
server protocol, it becomes an island, unable to communicate with external servers.

An XMPP server will usually allow users to connect to it. It is, however, also possible to write appli-
cations or services that speak the server-to-server protocol directly in order to improve efficiency by
eliminating routing overhead.

Anyone can run an XMPP server, and full-featured servers are available for nearly every platform.
Ejabberd, Openfire, and Tigase are three popular open source choices that will work on Windows,
Mac OS X, or Linux systems. Several commercial XMPP servers are available as well, including

M-Link and Jabber XCP.

The XMPP Network | 7

Clients

The majority of XMPP entities are clients, which connect to XMPP servers via the client-to-server
protocol. Many of these entities are human-driven, traditional IM users, but there are also auto-
mated services running as bofs.

Clients must authenticate to an XMPP server somewhere. The server routes all stanzas the client
sends to the appropriate destination. The server also manages several aspects of the clients’ sessions,
including their roster and their bare address, which you see more of shortly.

All of the applications in this book are written as client applications. This is typically the starting
point of most XMPP development. For applications without a user focus or with demanding needs,
it is often preferable to create a different kind of entity, such as a server component.

Components

Clients are not the only things that may connect to XMPP servers; most servers also support exter-
nal server components. These components augment the behavior of the server by adding some new
service. These components have their own identity and address within the server, but run externally
and communicate over a component protocol.

The component protocol (defined in XEP-0114) enables developers to create server extensions

in a server-agnostic way. Any component using the protocol can run on any server that speaks
the component protocol (assuming it doesn’t use some special feature specific to a particular
server). A multi-user chat service is a typical example of something that is often implemented as a
component.

Components also authenticate to the server, but this authentication is simpler than the full SASL
authentication for clients. Typically authentication is done with a simple password.

Each component becomes a separately addressable entity within the server and appears to the out-
side world as a sub-server. XMPP servers do not manage anything beyond basic stanza routing on
behalf of connected components. This allows great freedom to component developers to do things
exactly as they want, but places greater responsibility on them when they need functionality such as
rosters and presence management.

The server also allows a component to internally route or manage stanzas for itself. A component
can therefore create separately addressable pieces to be used as rooms, users, or whatever the devel-
oper requires. This is something that a client session cannot do and can be used to create really
elegant services.

Finally, because components do not have resources managed for them, services that operate with
many users or with a high amount of traffic can manage their own resources in a way that makes
sense for their purpose. Developers often create services as client bots, only to discover later that the
server’s roster management capabilities often do not scale well to thousands upon thousands of con-
tacts. Components can manage rosters, if they have them at all, in whichever way makes sense for
the task and scale required.

8 | CHAPTER1 GETTING TO KNOW XMPP

Plug-ins

Many XMPP servers can also be extended via plug-ins. These plug-ins are usually written in the
same programming language as the server itself and run inside the server’s processes. Their purpose
overlaps to a large degree with external components, but plug-ins may also access internal server
data structures and change core server behavior.

The virtually limitless abilities afforded to server plug-ins come with a cost; plug-ins are not portable
between different servers. A different server may be written in a completely different language, and
its internal data structures may differ radically. This cost aside, plug-ins are sometimes the only way
to get a particular job done.

Plug-ins have reduced overhead compared to components because they do not need to communicate
over a network socket. They also need not parse or serialize XML and can, instead, work directly
with internal server representations of stanzas. This can lead to much needed performance improve-
ments when the application must scale.

XMPP ADDRESSING

Every entity on an XMPP network will have one or more addresses, or JIDs. JIDs (short for jabber
identifiers) can take a variety of forms, but they normally look just like e-mail addresses. darcye
pemberley.lit and elizabeth@longbourn.lit are two examples of JIDs.

Each JID is made up of up to three pieces, the local part, the domain, and the resource. The domain
portion is always required, but the other two pieces are optional, depending on their context.

The domain is the resolvable DNS name of the entity — a server, component, or plug-in. A JID con-
sisting of just a domain is valid and addresses a server. Stanzas addressed to a domain are handled
by the server itself and potentially routed to a component or plug-in.

The local part usually identifies a particular user at a domain. It appears at the beginning of a JID,
before the domain, and it is separated from the rest of the JID by the @ character, just like the local
part of an e-mail address. The local part can also be used to identify other objects; a multi-user chat
service will expose each room as a JID where the local part references the room.

A JID’s resource part most often identifies a particular XMPP connection of a client. For XMPP
clients, each connection is assigned a resource. If Mr. Darcy, whose JID is darcy@pemberley.1lit,
is connected both from his study and his library, his connections will be addressable as darcye
pemberley.lit/study and darcy@pemberley.lit/library. Like the local part, a resource can
be used to identify other things; on a multi-user chat service, the resource part of the JID is used to
identify a particular user of a chat room.

JIDs are divided into two categories, bare JIDs and full J[IDs. The full JID is always the most spe-
cific address for a particular entity, and the bare JID is simply the full JID with any resource part
removed. For example, if a client’s full JID is darcy@pemberley.lit/library, its bare JID would
be darcy@pemberley.1lit. In some cases, the bare JID and the full JID are the same, such as when
addressing a server or a specific multi-user chat room.

XMPP Stanzas | 9

Bare JIDs for clients are somewhat special, because the server itself will handle stanzas addressed
to a client’s bare JID. For example, a message sent to a client’s bare JID will be forwarded to one or
more connected resources of the user, or if the user is offline, stored for later delivery. Stanzas sent
to full JIDs, however, are usually routed directly to the client’s connection for that resource. You
can think of bare JIDs as addressing the user’s account as opposed to addressing one of the user’s
connected clients.

XMPP STANZAS

Work is accomplished in XMPP by the sending and receiving of XMPP stanzas over an XMPP stream.
Three basic stanzas make up the core XMPP toolset. These stanzas are <presence>, <message>, and
<ig>. Each type of stanza has its place and purpose, and by composing the right kinds of quantities
of these stanzas, sophisticated behaviors can be achieved.

Remember that an XMPP stream is a set of two XML documents, one for each direction of
communication. These documents have a root <stream: stream> element. The children of this
<stream:stream> element consist of routable stanzas and stream related top-level children.

Each stanza is an XML element, including its children. The end points of XMPP communication
process input and generate output on a stanza-by-stanza basis. The following example shows a
simplified and short XMPP session:

<stream:stream>
<ig type='get'>
<query xmlns='jabber:iqg:roster'/>
</ig>

<presence/>

<message to='darcy@pemberley.lit'
from='elizabaeth@longbourn.lit/ballroom’
type='chat'>
<body>I cannot talk of books in a ball-room; my head is always full of
something else.</body>
</message>

<presence type='unavailable'/>
</stream:stream>

In this example, Elizabeth created an XMPP stream by sending the opening <stream: stream>

tag. With the stream open, she sent her first stanza, an <ig> element. This <ig> element requested
Elizabeth’s roster, the list of all her stored contacts. Next, she notified the server that she was online
and available with a <presence> stanza. After noticing that Mr. Darcy was online, she sent him
a short <message> stanza, thwarting his attempt at small talk. Finally, Elizabeth sent another
<presence> stanza to inform the server she was unavailable and closed the <stream: stream> ele-
ment, ending the session.

You have now seen an example of each kind of XMPP stanza in action. Each of these is explained in
more detail, but first, you should learn about what properties they all share.

10 | CHAPTER1 GETTING TO KNOW XMPP

Common Attributes

All three stanzas support a set of common attributes. Whether they are attributes of <presence>,
<message>, Or <ig> elements, the following attributes all mean the same thing.

from

to

Stanzas almost always have a from attribute. This attribute identifies the JID of the stanza’s origin.
Setting the from attribute on outgoing stanzas is not recommended; the server adds the correct from
attribute to all stanzas as they pass through, and if you set the from attribute incorrectly, the server
may reject your stanza altogether.

If the from attribute is missing on a received stanza in a client-to-server stream, this is interpreted
to mean that the stanza originated from the server itself. In the server-to-server protocol, a missing
from attribute is an error.

Note that the example stanzas in this book often include the from attribute. This is done for clarity
and disambiguation.

XMPP servers route your stanzas to the JID supplied in the to attribute. Similarly to the from attri-
bute, if the to attribute is missing in a client-to-server stream, the server assumes it is a message
intended for the server itself. It is recommended that you omit the to attribute when you address the
server itself.

If the JID specified in the to attribute is a user, the server potentially handles the stanza on the user’s
behalf. If the destination is a bare JID, the server handles the stanza. This behavior is different for the
three stanza types, and is explained alongside each type. If a full JID is specified as the destination,
the server routes the stanza directly to the user.

type

The type attribute specifies the specific kind of <presence>, <message>, or <ig> stanza. Each of
the three basic stanzas has several possible values for the type attribute, and these are explained
when each stanza is covered in detail.

All three stanzas may have their type attribute set to a value of error. This indicates that the stanza
is an error response to a received stanza of the same kind. You must not respond to a stanza with an
error type, to avoid feedback loops on the network.

Stanzas may be given an id attribute to aid in identifying responses. For <ig> stanzas, this attribute
is required, but for the other two it is optional. If a stanza is generated in reply to a stanza with an
id attribute, the reply stanza must contain an id attribute with the same value.

The id attribute needs to be unique enough that the stanza’s sender can use it to disambiguate
responses. Often, it is easiest just to make these unique in a given stream to avoid any ambiguity.

Reply stanzas for <message> and <presence> stanzas are generally limited to reporting errors. Reply
stanzas for <ig> can signal successful operations, acknowledge a command, or return requested

XMPP Stanzas | 11

data. In all these cases, the client uses the 1d attribute of the reply stanza to identify which request
stanza it is associated with. In cases where many stanzas of the same type are sent in a short time
frame, this capability is essential because the replies may be delivered out of order.

Presence Stanzas

The <presence> stanza controls and reports the availability of an entity. This availability can range
from simple online and offline to the more complex away and do not disturb. In addition, <presence>
stanzas are used to establish and terminate presence subscriptions to other entities.

In traditional instant messaging systems, presence notifications are the main source of traffic. To
enable instant communication, it is necessary to know when the other party is available to communi-
cate. When you send an e-mail, you have no idea if the recipient is currently checking and responding
to e-mail, but with instant messages and presence notifications, you know before the message is sent
if the recipient is around.

For applications in other domains, presence notifications can be used to signal similar kinds of infor-
mation. For example, some developers have written bots that set their presence to do not disturb
when they are too busy to accept more work. The basic online and offline states can let applications
know whether a service is currently functioning or down for maintenance.

Normal Presence Stanzas

A normal <presence> stanza contains no type attribute or a type attribute that has the value
unavailable or error. These stanzas set or indicate an entity’s presence or availability for
communication.

There is no available value for the type attribute because this is indicated instead by the lack of a
type attribute.

Users manipulate their own presence status by sending <presence> stanzas without a to attribute,
addressing the server directly. You’ve seen two short examples of this already, and these are included
along with some longer examples here:

<presence/>
<presence type='unavailable'/>

<presence>
<show>away</show>
<status>at the ball</status>
</presence>

<presence>
<status>touring the countryside</status>
<priority>10</priority>

</presence>

<presence>
<priority>10</priority>
</presence>

12

| CHAPTER1 GETTING TO KNOW XMPP

The first two stanzas set a user’s presence status to online or offline, respectively. These are also
typically the first and last presence stanzas sent during an X MPP session.

The next two examples both show extra presence information in the form of <show>, <status>,
and <priority> children.

The <show> element is used to communicate the nature of the user’s availability. The element is
named “show” because it requests that the recipient’s client use this information to update a visual
indicator of the sender’s presence. Only one <show> child is allowed in a <presence> stanza, and
this element may only contain the following possible values: away, chat, dnd, and xa. These values
communicate that a user is away, is interested in chatting, does not wish to be disturbed, or is away
for an extended period.

A <status> element is a human-readable string that the user can set to any value in order to com-
municate presence information. This string is generally displayed next to the contact’s name in the
recipient’s chat client.

Each connected resource of a user has a priority between —128 and 127. This priority is set to zero
by default, but can be manipulated by including a <priority> element in <presence> stanzas.
Users with multiple simultaneous connections may use this to indicate which resource should receive
chat messages addressed to their bare JID. The server will deliver such messages to the resource with
the highest priority. A negative priority has a special meaning; resources with a negative priority will
never have messages delivered to them that were addressed to the bare JID. Negative priorities are
extremely useful for automated applications that run on the same JID as a human is using for regu-
lar chat.

Extending Presence Stanzas

It is tempting for developers to want to extend <presence> stanzas to include more detailed infor-
mation such as the song the user is currently listening to or the person’s mood. Because <presence>
stanzas are broadcast to all contacts (even those that may not have an interest in the information)
and constitute a large share of the network traffic in the XMPP network, this practice is discouraged.
These kinds of extensions are handled by protocols that more tightly focus delivery of this extra
information.

Presence Subscriptions

The user’s server automatically broadcasts presence information to contacts that have a presence
subscription to the user. Similarly, users receive presence updates from all contacts for which they
have a presence subscription. Presence subscriptions are established and controlled by use of <pres-
ence> stanzas.

Unlike some social network and IM systems, presence subscriptions in XMPP are directional. If
Elizabeth has a subscription to Mr. Darcy’s presence information, this does not imply that Mr.
Darcy has a subscription to Elizabeth. If a bidirectional subscription is desired, a subscription must
be separately established in both directions. Bidirectional subscriptions are often the norm for
human communicators, but many services (and even some users) are interested in only one of the
directions.

XMPP Stanzas | 13

Presence subscription stanzas can be identified by a type attribute that has a value of subscribe,
unsubscribe, subscribed, or unsubscribed. The first two values request that a new presence sub-
scription be established or an existing subscription be removed, and the other two are the answers
to such requests.

The following example shows Elizabeth and Mr. Darcy establishing a mutual presence subscription:

<presence from='elizabeth@longbourn.lit/outside'
to='darcy@pemberley.lit'
type='subscribe' />

<presence from='darcy@pemberley.lit/library'
to="'elizabeth@longbourn.lit/outside’
type="'subscribed' />

<presence from='darcy@pemberley.lit/library'
to='elizabeth@longbourn.lit'
type='subscribe' />

<presence from='elizabeth@longbourn.lit/outside'
to='darcy@pemberley.lit/library"
type="'subscribed'/>

After this exchange of stanzas, both Elizabeth and Mr. Darcy will find each other in their rosters
and be notified of each other’s presence updates.

Chapter 6 explores a fairly traditional IM application with the ability to establish and remove sub-
scriptions as well as showing contacts’ presence statuses.

Directed Presence

The final kind of <presence> stanza is directed presence. A directed presence stanza is a normal
<presence> stanza addressed directly to another user or some other entity. These can be used to
communicate presence to entities that do not have a presence subscription, usually because the pres-
ence information is needed only temporarily.

One important feature of directed presence is that the recipient of the presence information is
automatically notified when the sender becomes unavailable even if the sender forgets to notify the
recipient explicitly. Services can use directed presence to establish temporary knowledge of a user’s
availability that won’t accidentally get out of date.

You see directed presence in action in Chapter 8 because it is quite important for multi-user chat.

Message Stanzas

As their name implies, <message> stanzas are used to send messages from one entity to another.
These messages may be simple chat messages that you are familiar with from other IM systems, but
they can also be used to transport any kind of structured information. For example, the SketchCast
application in Chapter 9 uses <message> stanzas to transport drawing instructions, and in Chapter 11
<message> stanzas are used to communicate game state and new game moves.

14

| CHAPTER1 GETTING TO KNOW XMPP

A <message> stanza is fire and forget; there is no built in reliability, similar to e-mail messages.
Once the message has been sent, the sender has no information on whether it was delivered or when
it was received. In some cases, such as when sending to a non-existent server, the sender may receive
an error stanza alerting them to the problem. Reliable delivery can be achieved by layering acknowl-
edgments into your application’s protocol (see Message Receipts in XEP-0184 for an example of this).

Here are some example <message> Stanzas:

<message from='bingley@netherfield.lit/drawing_room'
to="'darcy@pemberley.lit'
type='chat'>
<body>Come, Darcy, I must have you dance.</body>
<thread>4£d61b376£fbc4950b9433£031a5595ab</thread>
</message>

<message from='bennets@chat.meryton.lit/mrs.bennet'
to="'mr.bennet@longbourn.lit/study'
type="'groupchat'>
<body>We have had a most delightful evening, a most excellent ball.</body>
</message>

The first example shows a typical <message> stanza for a private chat, including a thread identifier. The
second example is a multi-user chat message that Mrs. Bennet has sent to the bennets@chat.meryton.lit
room, received by Mr. Bennet.

Message Types

Several different types of <message> stanzas exist. These types are indicated with the type attribute,
andthmzutﬂbutecarlhavethevahxichat,error,normal,groupchat,orheadline.SOHwthnesthe
message’s type is used to inform a user’s client how best to present the message, but some X MPP
extensions, multi-user chat being a prime example, use the type attribute to disambiguate context.

The type attribute of a <message> stanza is optional, but it is reccommended that applications pro-
vide one. Also, any reply <message> stanza should mirror the type attribute received. If no type
attribute is specified, the <message> stanza is interpreted as if it had a type attribute set to normal.

Messages of type chat are sent in the context of a one-to-one chat conversation. This type is
the most common in IM applications, which are primarily concerned with private, one-to-one
communication.

The error type is used in reply to a message that generated an error. These are commonly seen in
response to malformed addressing; sending a <message> stanza to a non-existent domain or user
results in a reply stanza with the type attribute set to error.

A <message> stanza with a type of normal has been sent outside the context of a one-to-one chat.
This type is rarely used in practice.

The groupchat type is used for messages sent from multi-user chats. It is used to disambiguate direct,
private messages from a multi-user chat participant from the broadcast messages that participant
sends to everyone in the room. A private message has the type attribute set to chat, whereas a mes-
sage sent to everyone in the room contains a type attribute set to groupchat.

XMPP Stanzas | 15

The last <message> stanza type is headline. These types of messages are used mostly by automated
services that do not expect or support replies. If automatically generated e-mail had a type attri-
bute, it would use a value of headline.

Message Contents

Though <message> stanzas are allowed to contain arbitrary extension elements, the <body> and
<thread> elements are the normal mechanisms provided for adding content to messages. Both of
these child elements are optional.

The <body> element contains the human-readable contents of the message. More than one <body>
element can be included as long as each of them contains a distinct xml : 1ang attribute, and this
allows for <message> stanzas to be sent with content in multiple languages.

Conversations, like e-mail, can form threads, where each message in a thread is related to the same
conversation. Threads are created by adding a <thread> element to a <message> stanza. The con-
tent of the <thread> element is some unique identifier that distinguishes the thread. A reply stanza
should contain the same <thread> element as the one it is a reply to.

In IM contexts, among others, there are a few commonly used extensions to the message contents.
XHTML-IM, defined in XEP-0071, is used to provide formatting, hyperlinking, and rich media in
messages. Chapter 5’s microblogging client, Arthur, uses XHTML-IM to provide enhanced message
bodies. Another extension, Chat State Notifications (XEP-0085), allows users to notify each other
of when they are composing a message or have gone idle. The Gab application in Chapter 6 uses
these notifications to provide a nice user experience when one party is typing for a long time; the
recipient will have some indication that the other party is still actively engaged in the conversation.

IQ Stanzas

The <ig> stanza stands for Info/Query and provides a request and response mechanism for XMPP
communication. It is very similar to the basic workings of the HTTP protocol, allowing both get
and set queries, similar to the GET and POST actions of HTTP.

Each <ig> stanza is required to have a response, and, as mentioned previously, the stanza’s required
id attribute is used to associate a response with the request that caused it. The <ig> stanza comes
in four flavors differentiated by the stanza’s type attribute. There are two types of <ig> stanza
requests, get and set, and two types of responses, result and error. Throughout the book these
are often abbreviated as IQ-get, [Q-set, [Q-result, and IQ-error.

Every IQ-get or IQ-set must receive a response 1Q-result or IQ-error. The following examples show

some common <ig> stanzas and their possible responses. Note that unlike <message> and <presence>
stanzas, which have defined children elements, <ig> stanzas typically contain only extension elements
relating to their function. Also, each pair of <ig> stanzas has a matching 14 attribute.

<iqg from='jane@longbourn.lit/garden'
type="'get'
id='rosterl'>
<query xmlns='jabber:iqg:roster'/>
</ig>

<ig to='jane@longbourn.lit/garden'

16 | CHAPTER1 GETTING TO KNOW XMPP

type='error'
id='rosterl'>
<query xmlns='jabber:iqg:roster'/>
<error type='cancel'>
<feature-not-implemented xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

Jane sent a malformed roster retrieval request to her server. The server replied with an error. Error
stanzas are covered in detail later.

<iqg from='jane@longbourn.lit/garden'
type="'get'
id='roster2'>
<query xmlns='jabber:iqg:roster'/>
</ig>

<ig to='jane@longbourn.lit/garden'
type='result'
id='roster2'>
<query xmlns='jabber:iqg:roster'>
<item jid='elizabeth@longbourn.lit' name='Elizabeth'/>
<item jid='bingley@netherfield.lit' name='Bingley'/>
</query>
</ig>

After resending a corrected request, the server replied to Jane with her small roster. You can see that
Elizabeth and Bingley are both in Jane’s contact list.

<iqg from='jane@longbourn.lit/garden'
type="'set'
id='roster3'>
<query xmlns='jabber:iqg:roster'>
<item jid='darcy@pemberley.lit' name='Mr. Darcy'/>
</query>
</ig>

<ig to='jane@longbourn.lit/garden'
type='result'
id='roster3'/>

Jane attempts to add Mr. Darcy to her roster, and the server indicates success with a blank

IQ-result. In the cases where the response is simply an acknowledgment of success, the IQ-result
stanza will often be empty.

The <ig> stanza is quite useful in any case where result data or simple acknowledgment is required.
Most XMPP extension protocols use a mix of <ig> and <message> stanzas to accomplish their goals.
The <ig> stanzas are used for things like configuration and state changes, whereas <message> stan-
zas are used for regular communication. In some cases <ig> stanzas are used for communication
because stanza acknowledgment can be used for rate limiting.

XMPP Stanzas | 17

Error Stanzas

All three of the XMPP stanzas have an error type, and the contents of each type of error stanza

are arranged in the same pattern. Error stanzas have a well-defined structure, often including the
contents of the original, offending stanza, the generic error information, and, optionally, an applica-
tion-specific error condition and information.

All error stanzas must have a type attribute set to error and one <error> child element. Many
error stanzas also include the original stanza’s contents, but this is not required and, in some cases,
not desirable.

The <error> child has a required type attribute of its own, which can be one of cancel, continue,
modify, auth, or wait. The cancel value signifies that the action should not be retried, because it
will always fail. A value of continue generally indicates a warning and is not frequently encoun-
tered. An error type of modi fy communicates that the data sent needs some change in order to be
accepted. An auth error informs the entity that the action should be retried after authenticating in
some way. Finally, the wait value reports that the server is temporarily having some problem, and
the original stanza should be resent unmodified after a short time.

An <error> child is also required to contain an error condition from a list of defined conditions
as a child element. It may also contain a <text> element giving further details about the error. An
application-specific error condition can also be specified in a child element of the <error> element
under its own namespace.

Table 1-1 lists the most common defined error conditions. For more information on these, please
refer to Section 3.9.2 of RFC 3920. Note that each of these condition elements must be under the
urn:ietf:params:xml:ns:xmpp-stanzas namespace.

TABLE 1-1: Common Defined Error Conditions

CONDITION ELEMENT DESCRIPTION

<bad-request/> The request was malformed or includes unexpected data.
<conflict/> Another resource or session exists with the same name.
<feature-not-implemented/> The feature requested is not implemented by the service.
<forbidden/> The client does not have authorization to make the request.
<internal-server-error/> The server had an undefined internal error that prevented it

from processing the request.

<item-not-found/> The item involved in the request does not exist. This error is
equivalent to the HTTP 404 error.

<recipient-unavailable/> The intended recipient is temporarily unavailable.
<remote-server-not-found/> The remote server does not exist or could not be reached.
<remote-server-timeout/> Communication with the remote server has been interrupted.

<service-unavailable/> The requested service is not provided.

18 | CHAPTER1 GETTING TO KNOW XMPP

The following example IQ-error stanza shows a fully constructed error response to a publish-subscribe
related <ig> stanza:
<iqg from='pubsub.pemberley.lit’
to='elizabeth@longbourn.lit/sitting_room'
type='error'
id='subscribel'>
<pubsub xmlns='http://jabber.org/protocol/pubsub’'>
<subscribe node='latest_books'
jid='elizabeth@longbourn.lit'/>
</pubsub>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<closed-node xmlns='http://jabber.org/protocol/pubsub#errors'/>
<text xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>
You must be on the whitelist to subscribe to this node.
</text>
</error>
</ig>

The error’s type is cancel, indicating that this action should not be retried and the condition
<not-allowed/> indicates the general failure. The <text /> child contains a description of the prob-
lem. Finally, the application condition element, <closed-node/>, gives the exact application error.

THE CONNECTION LIFE CYCLE

The three stanzas you’ve learned about can accomplish virtually any task in XMPP when combined
properly. However, sending stanzas usually requires an authenticated XMPP session be established.
This section describes the other portions of an XMPP connection’s life cycle — connection, stream
set up, authentication, and disconnection.

Connection

Before any stanzas are sent, an XMPP stream is necessary. Before an XMPP stream can exist, a con-
nection must be made to an XMPP server. XMPP includes some sophisticated support for establish-
ing connections to the right servers.

Typically clients and servers utilize the domain name system (DNS) to resolve a server’s domain name
into an address they can connect to. E-mail services in particular use mail exchange (MX) records to
provide a list of servers that handle mail for a given domain so that one well-known server address
does not have to handle every service. E-mail, being an early Internet application, got special treat-
ment in DNS. These days, service records (SRV) are used to provide a similar function for arbitrary
services.

The first thing an XMPP client or server does when connecting to another XMPP server is to query
the appropriate SRV record at the server’s domain. The response may include multiple SRV records,
which can be used to load balance connections across multiple servers.

If an appropriate SRV record cannot be found, the application tries to connect to the given domain
directly as a fallback. Most libraries also allow you to specify a server to connect to explicitly.

The Connection Life Cycle | 19

Stream Set Up

Once a connection is established to a given XMPP server, an XMPP stream is started. An XMPP
stream is opened by sending the opening <stream: stream> element to the server. The server responds
by sending the response stream’s opening <stream: stream> tag.

Once XMPP streams are open in both directions, elements can be sent back and forth. At this stage
of the connection life cycle, these elements will be related to the stream and the stream’s features.

The server first sends a <stream: features> element, which details all the supported features on
the XMPP stream. These mostly relate to encryption and authentication options that are available.
For example, the server will specify if encryption (TLS) is available and whether or not anonymous
logins are allowed.

You don’t normally need to know much detail about this stage of an XMPP connection as the many
libraries for XMPP development handle this work for you, but the following example shows a typical
exchange of <stream:stream> elements as well as the server’s feature list.

First, the client sends the opening element to the server:

<?xml version='1.0'?>

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
version='1.0"
to="'pemberley.lit'>

The server replies:

<?xml version='1.0'?>
<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
version='1.0"
from='pemberley.lit'
1id='893ca401£f5ff2ec29499984e9b7e8afc"
xml:lang='en'>
<stream: features>
<stream: features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
<compression xmlns='http://jabber.org/features/compress'>
<method>zlib</method>
</compression>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
</mechanisms>
</stream: features>

From this exchange, you know that the pemberley.org server supports TLS, stream compression via
zlib, and several authentication mechanisms.

The XMPP streams set up between two servers look identical except that the top-level namespace is
jabber: server instead of jabber:client.

20 | CHAPTER1 GETTING TO KNOW XMPP

Authentication

XMPP allows for Transport Layer Security (TLS) encryption, and most clients use this by default.
Once TLS support is advertised by the server, the client starts the TLS connection and upgrades the
current socket to an encrypted one without disconnecting. Once TLS encryption is established, a
new pair of XMPP streams is created.

Authentication in XMPP uses the Simple Authentication and Security Layers (SASL) protocol, and
depending on the server involved, can support a number of authentication mechanisms. Normally
servers provide plain text authentication and MDS5 digest-based authentication, but some servers
support authenticating via Kerberos or special tokens.

These same encryption and authentication technologies are also used in many other protocols —
e-mail and LDAP are two examples — and common libraries exist for supporting TLS and SASL that
can be used equally well for XMPP.

Once authentication is complete, a client must bind a resource for the connection and start a session.
If you are watching XMPP traffic on the wire, you will see <bind> and <session> elements — inside
<ig> stanzas — being sent to do these jobs. If the client does not provide a resource to bind, the
server chooses one for it, usually randomly. Also, the server may alter the user’s chosen resource
even if the client provides one.

When two servers connect to each other, the authentication steps are slightly different. The servers
exchange and verify TLS certificates, or the recipient server uses a dialback protocol to verify the
sender’s identity via DNS.

Disconnection

When users are done with their XMPP sessions, they terminate the sessions and disconnect. The
most polite way to terminate a session is to first send unavailable presence and then close the
<stream:stream> element.

By sending a final unavailable presence, the user’s contacts can be informed about the reasons for
the user’s departure. Closing the stream explicitly allows any in-flight stanzas to arrive safely.

A polite disconnection would look like this:

<presence type='unavailable'/>
</stream:stream>

The server then terminates its stream to the client.

SUMMARY

In this chapter, you met the XMPP protocol and learned about its history, use cases, addressing,
vocabulary, and the connection life cycle. You’ve also seen several example XMPP stanzas and
learned about the different entities composing an XMPP network.

Summary | 21

You should now understand:

>

Y Y VY \/

\

XMPP is an open, standardized protocol, originally developed to replace proprietary IM
networks.

The XMPP protocol is more than a decade old and quite mature.

XMPP is great for writing IM applications, but it also excels at any task that benefits from
exchanging structured messages.

Servers, clients, components, and plug-ins are all parts of XMPP networks and have their
special uses.

XMPP addresses, called JIDs, resemble e-mail addresses and decompose into three parts: the
local part, the domain, and the resource.

Full JIDs are the most specific addresses for an entity; for example, darcy@pemberley.lit/
library.

Bare JIDs are the same as full JIDs without the resource; for example, darcy@pemberley.lit.

Servers will handle stanzas to a client’s bare JID, potentially routing them to one or more
connected resources.

Stanzas addressed to a full JID are delivered directly to the given resource.
There are three stanzas in the main XMPP vocabulary: <message>, <presence>, and <ig>.
The <message> stanza is used for fire-and-forget messages between two entities.

<presence> stanzas communicate presence status changes and are used to manipulate pres-
ence subscriptions.

The <ig> stanza provides request-response semantics very similar to the GET and POST
operations of the HTTP protocol.

Every XMPP session has a life cycle consisting of several phases: connection, stream set up,
authentication, the session body, and disconnection.

The basic concepts and protocol syntax of XMPP are only once piece of the puzzle. You learn about
how to use these ideas to design XMPP applications in the next chapter.

Designing XMPP Applications

WHAT’S IN THIS CHAPTER?

» Differences between HTTP and XMPP
> Using BOSH to bridge XMPP and HTTP

> Application architecture and protocol design

No matter how wonderful any protocol appears, it can never be the best solution for every
problem. Many problems can be solved with XMPP that would be difficult in other proto-
cols, but even XMPP has its sweet spot, outside of which it often makes sense to use other
technologies. To make the best XMPP applications possible, you must first understand what
problems XMPP is good at, and how you can design your application to leverage XMPP to
its fullest.

XMPP’s sweet spot is real-time communication, collaboration, and data exchange. Where
other protocols pull data, XMPP pushes it, allowing more efficient notification and faster
responses to new information. XMPP has native support for social features found in many
of today’s most popular applications, making it easy for developers to add and build upon
people’s relationships and communication. The rich, extensible vocabulary of XML stanzas
provides a robust and varied set of tools for building many common patterns or composing
into your own protocols.

Although XMPP applications can be developed in many contexts, both on the backend and
the front-end, this book’s applications use the web browser as their environment and web
technologies as their implementation. Because web browsers don’t speak X MPP natively, only
HTTP, you will also discover how XMPP and HTTP be made to work together to create
amazing, interactive applications.

24 | CHAPTER 2 DESIGNING XMPP APPLICATIONS

LEARNING FROM OTHERS

It’s always nice to get a little inspiration before starting a project, and many great XMPP applications
out there provide inspiration and insight into what is possible. The following applications are just
scratching the surface of XMPP’s potential, but they serve as good examples of what you can do with
a little help from XMPP, even in the context of an existing application.

Just as XMPP started as a protocol for better instant messaging, the first application is an IM client.
Figure 2-1 shows a screenshot of the Adium client (http://adium.im) running on Mac OS X. This
client supports XMPP as well as a number of other IM protocols. Comparable clients exist for every
platform imaginable.

~

" y] i
ou have dnconnected T

metajack: fehear

camerd me- i L
metajack: @apacehobs More like the muscle memory kicking
In using the wrong client 3

e r
crmd'n: Back from an awesome #3fd Software Freedom Day,
with there were two of me 5o | could have caught the
remiining walks.

cmdin: Grabbing directions, g and a monkey before
getting back on the road, for #blandercon

demuxer: Inlcla @rodrigopala v optiones en

#ioftwarelibre #compiz #Hinux #sfd0s

daw: brews | may just uninstall and re-install Firefox...or
walt until there are some more updates. I'm not gaing to
worry about it

deostalls: @Professorklia shiw tonight at 9 at veggées mock
club. 21049 & state 51, chicago.

FIGURE 2-1

Google has made huge investments in XMPP technology. It started with the Google Talk service,
which it has improved over the years. Google Talk provides IM services to anyone with a Gmail
account, as well as to all its Google Apps for Domains customers. Google also did the initial work
on Jingle, the XMPP extension that enables voice and video conferencing. Its upcoming Wave pro-
tocol is an XMPP extension itself, and its cloud computing platform, AppEngine, is also XMPP
enabled. Figure 2-2 shows the Gmail client (http://gmail.com), which also includes a simple,
web-based IM client.

Learning from Others | 25

0 inbox - mtaackggeailiom - Gmall i
L MLt 99 it mail. gemsgie.com/ mai ia = Lifinbaoe [T

Omall Calerde Dotemenis Photos Feeder Sie YWeb mom *
matasckBomalloom | L | DMieg® | Samings | Dider warion | Hedp | Beoort G bug | Bign out

Graail b e SR

Composs Mall

Amhive Regoragan Delts Man g red | Mooy Lwenw | Mosscionsw Rafmeat
‘Gabeol: A, Mone, Rissd, Linread, Simeed, Lies o

Lhmones By o ! Ward 10 Pl upclatiss. from your avonts sites Try Googss Resader

Saarch, add, o ke Sadect: A1, Mone, Fiaac, Uirress, Starmt, Linsbaowd
Archie Ragorigam Desse Wamssresd | Moy Lsesy Mowscmesy Fefmn
= (Googe Dot Bim Hager - AN
& Wit b Mand Shottuts: © - tpen ¥y - echive © - compose | - oider K -r me by
Kim: whasts do you ward 53 go for
¥ou s curmnsty using 3530 M (S1%) of your T oo
This secount & opn i § obbar oeion af S P {174 5 BTN Lawi scoourt ooy A Rafve rd idaa. ol ofl this

sl e warvdord | jur ol i | baic HTML witing i making me gy

Video & mom »

FIGURE 2-2

With the advent of Twitter, the rise of microblogging is at hand, even in the corporate environment.
Services like Socialcast, Yammer, and Presently all offer private microblogging services to companies
to improve the companies’ internal communications. Because low-latency communication is quite
desirable, it is no surprise that many of these companies turn to XMPP as a solution. Figure 2-3
shows the Presently application (http://presentlyapp.com) allowing users to keep in touch with
their co-workers. Presently is using the Strophe library to handle XMPP communication, just like
the applications in this book. They also use XMPP to power their backend infrastructure.

XMPP is great at enabling communication and collaboration, supporting features like group chat
and file sharing. Drop.io (http://drop.1io) has turned XMPP’s multi-user chat rooms into rich,
collaborative spaces capable of sharing audio, video, chat, and images. Figure 2-4 shows an example
of one of these collaborative spaces in chat mode. The Strophe library also powers the Drop.io
application.

26 | CHAPTER2 DESIGNING XMPP APPLICATIONS

41 B - MRk = Jack Molery Moma PPy L

I Nl = !
nu | i Htpac)) metijsch. presantiyiog.com harme igh Laasling . X ' Coogle

e .1 Ee— oo
Metajack
Oeher Fands ~ Estisnal - Groigs - Poopie = Topes I
|
Laggad = s |
Shara With: = | Everyons - Rack Mot :
o o o
' e]
Update |
|
(7 e L mn v T s s T 140 o e |
|
I
Home Feed EEDEL | | Mrre |
Resalies :
Woarking on the boak Messages
‘ Tach FoMay {@jechl 1 mote g oes mrt Aeply | Bephy Preewiely | Debeds ansinn :
Custom Feeds sy |
@jack (Jack Moffitt) has just @ jained the networkd — = Crustn Custiorm P! :
‘ ! - Jres (Ll Qustinns L
brgents
Welcome to Present.ly| View the getting started guide for more info: T
‘ hitp:/fsupport. presentlyapp. comyTags/.
Aanauncamanl T Faruies 550 Quick Links
Mo ecatians Feest (RES]
Mo aGartion Settiags "
Dervioe Setnings .

FIGURE 2-3

Wow e FPastorsd Apps Dewsiopars W Upgrsds | Prembers Login in Menager

Admin | Senings

] Thee: g GRonE-Song-o] s soasd in T Srop
arns wong ol
—
0218 [1254
. The retn g-nofe-ale AT wan adde! & e drg

a nobte about xmpp

ETO0 L For COBEDOSRB0N
Goma[TTEY: hay averpons
GamsT 18 hary! Rave ou Bened 10 desne S0 it ifs srangs

The: ik mesaiBci-im win added m T drop

memgaciLim Tres biag has fom of islrmaton oo KMP7 =

HEr pour meage BETY (1ART QITLE R

I i

Corfemsnce (8 OaCES Eme

FIGURE 2-4

XMPP versus HTTP | 27

Strophe was actually born from the desire to create a web-based, multi-player game system on top
of XMPP. Finding no suitable implementations of XMPP over HTTP, my team set about creating one
on top of which to build our application. Today, Chesspark enables players from all around the world
to play chess with each other in real time, whether the games are slow and thoughtful or at lightning
speed. Without XMPP and Strophe, the work would have been immensely more challenging.
Figure 2-5 shows Chesspark (http://chesspark.com) in action.

& rrpe] fwesw crwess park. coem fplay

iy
=
:h.;'-pad: 1 l_l @ Avallasle *9 marajach 1569 My Chesspark | Preferences | Logout | Help
Mﬁﬁ (=] Game #11469122 - Rated Long Crazyhouse - robobishop vs. metajack
=
i
robeishun
** s
o 30:00 Ieft i garse
Wihits hid miresdd Mg =11
Blach hay moved dF-d4
whits hai moved MY =88 29:30 iet i game
Mack hat moved 7=16 .
White has mitseed Med =11 ” marjach
hgnii o Line
‘ Flip Board
| Srquest Draw
| Sequest Adjourn
I Sequest Aborr
- Baabgn Game
r Bilde Participans Chat Optians | Close Came
Paysrs
O mnnjaeh O rababishop come
Current score: 32 to 32
ey e
& Mew Chat With Friend & datddd Frignd
0 jack
.l-':a.-f *”
=]
FIGURE 2-5

XMPP VERSUS HTTP

Every project benefits when the right tools are chosen to complete it. Therefore, it is important to
know when XMPP best meets the needs of your application. You probably have some idea that
XMPP might better suit your needs or are interested in exploring the protocol’s possibilities. This

section attempts to point out where XMPP is most useful in comparison to the Web’s native pro-
tocol, HTTP.

28 | CHAPTER 2 DESIGNING XMPP APPLICATIONS

Advantages of XMPP
XMPP has the following advantages over HTTP, each of which are explored in detail:

> Enables pushing data, not just pulling
> Firewall friendly

> Strong authentication and security

>

Provides many out-of-the-box tools for solving a wide range of problems

Pushing Data

HTTP clients can only request data from a server. Unless the server is responding to a client request,
it cannot send data to the client. XMPP connections, on the other hand, are bidirectional. Either party
can send data to the other at any time, as long as the connection is open.

This ability to push data greatly expands the possibilities for web applications and protocol design.
Instead of inefficient polling for updates, applications can instead receive notifications when new
information is available. Not only does this result in many fewer requests, it also makes the latency
between the time new information is available and the time the client is aware of this information
nearly zero.

Pleasing Firewalls

Some web applications support the use of HTTP callbacks, where the web server makes requests to
another HTTP server in order to send data. This would be a handy feature to push data if it weren’t
for firewalls, network address translation (NAT), and other realities of the Internet. In practice it is
very hard to enable arbitrary connections to clients from the outside world.

XMPP connections are firewall and NAT friendly because the client initiates the connection on
which server-to-client communication takes place. Once a connection is established, the server can
push all the data it needs to the client, just as it can in the response to an HTTP request.

Improving Security

XMPP is built on top of TLS and SASL technologies, which provide robust encryption and security
for XMPP connections. Though HTTP uses SSL, the HTTP authentication mechanisms did not see
much implementation or use by developers. Instead, the Web is full of sites that have implemented
their own authentication schemes, often badly.

A Bigger Toolbox

HTTP is limited to simple request-response semantics and provides support for only a handful of
operations — GET, PUT, POST, DELETE, and so on. XMPP includes three different low-level tools,
<presence>, <message>, and <ig> stanzas, and almost 300 extensions that compose these tools
into sophisticated protocols.

XMPP versus HTTP | 29

It’s certainly possible to build many of the same constructs on top of HT TP, but protocol design is
non-trivial. The extensions and protocols of XMPP are robust and widely reviewed; comparable HTTP
extensions tend to be incompatible with each other, brittle, or primitive.

Many XMPP tools rely on and take advantage of the ability to push data. Any HTTP solution to
similar problems would need to re-invent much of XMPP.

Disadvantages of XMPP

Every protocol is a bag of both features and problems. In many cases XMPP is not the best tool for
the job or suffers from some limitation. XMPP’s drawbacks include:

> Stateful protocol

> Community and deployments are not as broad as HTTP
> More overhead than HTTP for simple chores
>

Specialized implementations still needed

Statefulness

HTTP is a stateless protocol; XMPP is stateful. Stateless protocols are easier to scale because each
server does not need to know the entire state in order to serve a request. This drawback of XMPP
is less onerous in practice because most non-trivial web applications make extensive use of cookies,
backend databases, and many other forms of stored state.

Many of the same tools used to scale HTTP-based applications can also be used to scale XMPP-based
ones, although the number and diversity of such tools is more limited, due to XMPP’s younger age and
lesser popularity.

Smaller Ecosystem

HTTP is nearly twice as old as XMPP, and as the foundation of the Web, has become extremely
popular and well understood. HTTP’s ecosystem is bigger than XMPP’s in almost every respect as a
result of this. There are more HTTP libraries, more HTTP servers, and more engineers who under-
stand HTTP than there are for nearly every other protocol in existence, including XMPP.

That said, the same situation exists for the C and Java programming languages compared to Python,
Ruby, Perl, Objective-C, and others. These less popular languages are no less capable of doing great
things, and often are a better solution to many tasks. Many companies find using the most powerful
tool gives them a competitive advantage over those companies using only the most popular tools.

Sometimes when developing XMPP applications you will come across a piece that is not implemented
well or in a different way than you require. It is generally very easy to build solutions to these prob-
lems, because the protocols and interactions are already defined and documented. It is also the case
that custom implementations of XMPP extensions, should they be required for your project, need not
implement the entire specification, only the parts they depend on.

30 | CHAPTER2 DESIGNING XMPP APPLICATIONS

More Overhead

XMPP is not optimized for short-lived sessions or simple requests. These are both areas where HTTP
is a clear winner. It takes some resources to set up, maintain, and destroy X MPP sessions. It is per-
fectly capable of serving static documents, but unless this is in a larger context where XMPP is used,
this use is outside of XMPP’s sweet spot.

For longer connections or more sophisticated interactions, the XMPP overhead is negligible compared
to an HTTP solution. Any HTTP solution would also need to support state, push notifications, and
the other features that make XMPP so interesting. HTTP-based solutions for similar problems are
starting to appear, but the XMPP ones tend to be more mature and more optimized.

Specialized Implementations

It used to be that the Apache web server was all anyone needed to build web applications. These days,
companies are building their own specialized systems to process web requests in order to eke out
performance improvements and lower response times.

XMPP is just entering its golden age of applications and development, and companies haven’t had as
much time to spend building specialized XMPP servers and libraries for specific needs. Most XMPP
servers are designed around traditional IM use cases, although many can be stripped down and put
to other uses.

Most of the time your application will not be so demanding as to need specialized implementations
to power it. Over time, the community of application developers pushing XMPP to its limits will
follow the HTTP community’s example and develop specialized tools focused on performance and
massive scale.

BRIDGING XMPP AND THE WEB

Even though several browsers are experimenting with features that use XMPP, none of the major
browsers currently provides built-in support for the XMPP protocol. However, by using some clever
programming and a little server-side help, you can tunnel XMPP sessions over HTTP connections
efficiently and effectively.

The technology that enables this efficient tunneling is called HTTP long polling. Coupled with a
simple HTTP-based management protocol and an XMPP connection manager, it is possible to bring
XMPP, and all its charms, into HTTP-speaking applications.

Long Polling

Early web pages that wanted to provide access to live, changing data used page refreshes at set inter-
vals. This blunt method works reasonably well when the data is constantly changing; for example,
many news sites use timed refreshes for live blogging major events.

Microsoft eventually released an API within Internet Explorer called XMLHttpRequest, which
allowed JavaScript code in web pages to make requests and process the data returned without
reloading the page. This API eventually found its way into all major browsers, and programmers

Bridging XMPP and the Web | 31

began to pick up and make use of this handy tool. This technique was eventually given the name
AJAX, for Asynchronous JavaScript and XML.

With AJAX, it is possible to update data without refreshing the entire page. This increase in efficiency
paid dividends, and nearly everything became more dynamic and responsive.

Even with AJAX, data was still being requested, or polled, at timed intervals. If you’ve ever worked
under an overbearing boss asking “is the software done yet?,” you have experienced polling. Though
servers cannot get annoyed or angry, they can be crippled if too many clients poll too fast; you get
less done if someone is constantly distracting you. However, to get quick updates, the polling interval
needs to be quite small; the lowest latency possible is the length of the polling interval.

Another issue with polling is that most poll requests do not receive new data. In order to see changes
within a reasonable time frame of when they occur, the polling interval must be quite short, but the
actual data may not change very often. Just as with your (hopefully fictional) overbearing employer,
the server’s answer to “is the software done yet?” is usually “not yet.”

Some clever folks discovered a neat trick to solve this problem. Instead of answering the request
immediately, they can hang on to it for some period of time if no new data is ready.

For example, if there is new data ready on the server, the server answers immediately. If there is not
new data, the server keeps the connection open, holding any reply. Once new data arrives, it finally
responds to the request. If no new data arrives after some period of time, the server can send back
an empty reply, so as not to hold too many open connections at once. Once a request is returned, the
client immediately sends a new one, and the whole process starts over.

Because each polling request is potentially open for a long period of time, this technique is called
long polling. It has many advantages over normal polling.

The client receives new data the moment it becomes available, because it always has at least one con-
nection open and waiting for an update from the server. By setting the length of the poll to something
high, the total number of requests the server has to handle remains reasonable, even though the
latency of the updates is minimized. Users see instant changes in data, and server operators don’t go
broke trying to scale out their systems; everybody wins.

The only real change is that instead of the client waiting to resend the request, the server waits until
it has something to say before it responds.

Multiple libraries and protocols have been designed to take advantage of long polling, but XMPP’s
is one of the oldest implementations. In XMPP, this bridge is called BOSH, for Bidirectional streams
Over Synchronous HTTP. You may also have heard of Comet or reverse HTTP, which are protocols
built on the same technique.

One drawback is that the server needs to be a little smarter in order to deal with these long polling
requests, and that is where a connection manager comes in.

Managing the Connection

XMPP connections live for arbitrarily long periods of time, but HTTP requests are quite short lived.
A connection manager maintains an XMPP connection for a third party and provides access to the
connection via the HTTP long polling technique.

32

| CHAPTER 2 DESIGNING XMPP APPLICATIONS

The browser and the connection manager communicate over HTTP using a simple protocol called
BOSH. Essentially, BOSH helps an HTTP client establish a new XMPP session, then transports
stanzas back and forth over HTTP wrapped in a special <body> element. It also provides some
security features to make sure that XMPP sessions can’t be easily hijacked. The connection manager
communicates with an XMPP server as if it were a normal client.

In this way, an HTTP application can control a real XMPP session. Because of the efficiency and
low latency afforded by the long polling technique, the end result performs quite well, rivaling
native connections.

It may seem like a lot of effort to get XMPP into a browser, but not only does this work well in
practice, it turns out this technique even has some advantages over direct XMPP connections:

> Interactions with the connection manager are request by request, which allows the client
to move from network to network. The managed connection stays available even if the end
user’s IP address changes several times.

> Because one failing request doesn’t terminate the managed connection, these managed sessions
are extremely robust and tolerant of temporary network failure.

> Because connection managers cache and resend data for a request, you don’t have to worry
about losing data when your connection is interrupted.

> HTTP is extremely firewall friendly, and because most connection managers run on stan-
dard HTTP ports, managed connections still work even in limited network environments
that don’t allow anything but HTTP.

These advantages make managed connections a perfect fit for some scenarios, even when direct
XMPP communication is possible.

Making JavaScript Speak XMPP

With HTTP long polling, you have the technology for low-latency data updates from a server.
Combining this with a connection manager gives you a way to send and receive XMPP data over a
series of HTTP requests. The last piece of the puzzle is making this easy to do from JavaScript, the
Web’s native programming language.

The Strophe library was created to make programming X MPP applications in JavaScript as easy as
in any other language, hiding all the gory details of the managed connection. As far as Strophe’s
users are concerned, it appears as if they are working with a native XMPP connection just as they
would in any other environment.

Long polling applications have some special requirements compared to normal AJAX applications.
Most AJAX libraries do very little error handling because the number of AJAX requests that fail is
a small percentage. Unfortunately for XMPP applications, any failed request can result in a huge
increase in latency and a tarnished user experience. For this reason, Strophe handles as many errors
as it can gracefully and uses early timeouts to detect problems before they would otherwise be
discovered.

Making XMPP Applications | 33

These features make Strophe quite reliable and high-performance, even in the face of unavoidable,
occasional errors. Strophe’s users have frequently reported their applications can live for days with-
out being disconnected.

MAKING XMPP APPLICATIONS

The XMPP protocol is a good choice for a variety of application domains, and you’ve seen some
technical details on how XMPP can be used from the Web. Now it’s time to learn a few details
about making XMPP applications before you embark on your first application in the next chapter.

The Browser Platform

The web browser is probably the most deployed and most used application platform that has
ever existed. Web browsers exist on every kind of computer and even many mobile phones, and
more importantly, the users of these devices tend to be very familiar with the browser and web
applications.

As more and more sophistication has been demanded of web applications, new technologies and
abstractions have been created to evolve the platform. XMPP brings yet another new set of tech-
nologies and abstractions, but with it comes enormous potential for real-time, interactive, and
collaborative applications. The rise of the social Web has given rise to social applications, and if
developers want to take more steps toward connecting the human race, technologies like XMPP
will help them do it.

For XMPP developers, targeting the web browser as a platform makes enormous sense. Web appli-
cations are cross-platform, easily deployable, and come with a large user base already familiar with
them. More than that, web technologies make heavy use of HTML, and it is often the case that
tools for manipulating HTML work very well on XML, and therefore, on XMPP.

One such tool, familiar to many web developers, is the jQuery library. jQuery makes many mun-
dane manipulations of HTML and CSS easy and fun. This power is also almost equally applicable
to XML data, because it shares a very similar structure. This book’s applications use jQuery to
process and manipulate both the user interface, a combination of HTML and CSS, and the incom-
ing XMPP data.

Web technologies have their warts, but from a practical standpoint, both web developers and XMPP
developers could scarcely ask for a better platform on which to create new and wonderful things.

Basic Infrastructure

Just as web applications often need a web server and an application server or framework, XMPP
applications require some basic infrastructure. An XMPP connection requires an X MPP server and,
often, an account on that server. An XMPP application also needs to communicate with a connection
manager, because browsers don’t yet speak X MPP natively. Finally, any services the application uses
will need to be provided by the XMPP server.

34 | CHAPTER2 DESIGNING XMPP APPLICATIONS

The XMPP server requirement is not a very difficult one. It is quite easy to download, install, and run
an XMPP server on nearly any platform, and there are several to choose from. You can also make use
of public XMPP servers that a user may already have an account on, although this depends on the
amount of data your application uses; many public XMPP servers are optimized for IM traffic and
will limit high-throughput clients.

Many users already have XMPP accounts, thanks to the efforts of Google, LiveJournal, forward-
thinking ISPs, and other large organizations. If you run your own server and require users to
register there, it is generally easy to programmatically create XMPP accounts from a normal web
application back end.

All the major XMPP servers come with built-in support for HT TP-managed connections, or BOSH
support. It is usually a matter of altering a configuration file slightly to turn this on, if it is not
enabled by default. If you want to allow users to connect to arbitrary X MPP servers, you will need
a standalone connection manager. Please see Appendix B for more information on using and config-
uring connection managers.

Each XMPP server supports a core set of functionality as well as a number of XMPP extensions.
Generally the extensions are documented at the XMPP server’s web site. Most servers support the
mature and popular extensions such as multi-user chat and publish-subscribe. If your application
makes use of XMPP extensions, be sure to check that your server supports these extensions.

Many XMPP applications can be realized without any special web application servers or other infra-
structure. The applications in this book are all self-contained and designed to be run on publicly
available XMPP servers. A connection manager is also provided for your development purposes, so
you need not set one up while you work through the applications in the book.

Protocol Design

Unless you are creating a new and better version of an existing X MPP service, like multi-user chat
or the traditional IM functions, you will probably be doing some protocol design to realize your
vision. XMPP provides a lot of tools to build on, and often the simple composition of these tools is
enough to satisfy the needs of most applications. The following guidelines have influenced the appli-
cations in this book and may help you in your own protocol designs.

Compose Existing Protocols

If your application can be implemented with the composition of existing protocol extensions, it is
often best to do so. With almost 300 such published extensions, there is usually a good starting
point available already.

Even if the particular extensions used do not have implementations, it is far easier to implement a

protocol than to design one from scratch. The extension’s authors have already been thinking about
the problem domain with enough gusto to drive them to document a solution. Furthermore, XMPP
extensions are a community effort, and your feedback will help improve the extension for everyone.

For a concrete example, consider the game developed in Chapter 11. One possible solution is to cre-
ate a new protocol for all game interaction. Instead, the application layers game semantics on top of

Making XMPP Applications | 35

multi-user chat rooms. This involves a small amount of protocol design to handle the game-specific
content, but reuses a large amount of work from a well-tested, existing extension.

Using protocol composition saves work, and it makes new protocols much easier to understand by
others. To understand your new protocol, they need only understand how the pieces fit together and
possibly a few small, new things.

Keep It Simple

Keeping it simple is excellent advice in nearly every domain, and it applies equally to XMPP proto-
col design. If you do have to create something completely new, try to do it as simply as possible.

Not only will your protocol be easier to understand, the lack of complexity will result in fewer
bugs and less development time. Usually a complex protocol is a sign that a simpler path has been
overlooked.

Many XMPP extensions are themselves extended later to address new use cases. It is not necessary,
nor is it desirable, to pack every feature that may be needed into the protocols at the beginning. In
fact, many of the more complex extensions end up getting split into a core part and several related
extensions once they get large.

Avoid Extending Presence

The <presence> stanza can often be the largest factor in a server’s traffic. Most <presence> stanza
extensions are not applicable to the general case. Instead of extending <presence> stanzas directly,
it is a best practice to make use of the Personal Eventing Protocol, or PEP, defined in XEP-0163,
which allows users to subscribe to the extra data they are interested in.

The PEP extension, along with Entity Capabilities (XEP-0114) and Service Discovery (XEP-0015),
make providing extended presence-type information efficient and opt-in.

Other stanzas do not require similar optimizations, because they are not normally broadcast to
many people at once.

Participate in the Community

The XMPP community contains numerous individuals with protocol design experience, and they
are generally quite friendly. You may also want to document and submit your new protocol as an
XMPP extension if you think it would be generally useful. Even if your extension is not intended to
be useful beyond your own applications, it can be very helpful to get the community’s feedback on
your designs.

Protocol design discussions normally take place on the standards list, which you can subscribe to by
visiting the discussions page at the XSF web site, http: //xmpp.org/about/discuss.shtml. Feel
free to ask questions, share your protocol ideas, and contribute to the discussion and feedback of
other protocols. The community always welcomes new members.

Should you want to submit your protocol as an official extension, you will want to document it
in the XEP format using the template and guidelines provided at the extension submission page,
http://xmpp.org/extensions/submit.shtml. New extensions will be considered by the XSF

36 | CHAPTER2 DESIGNING XMPP APPLICATIONS

Council for acceptance. The requirements for acceptance are simply that the extension be generally
useful and not already covered by existing work.

You can also join the XSF as a member; the XSF is an open organization, run by its membership.
Elections are held every quarter, and the XSF is always looking for new members, whether they are
developers or just enthusiasts. See the membership page, http: //xmpp.org/xsf/members/, for
more information.

SUMMARY

In this chapter, you learned why XMPP is often the best tool for the job and how it is different from
HTTP. You also discovered how XMPP can be made to work in the HTTP-only world of web browsers
and how XMPP applications are built.

Along the way, the following topics were covered:
> Inspiring examples of the XMPP applications of others
The pros and cons of XMPP versus HTTP
HTTP long polling
Managed XMPP connections (BOSH)
The Strophe library

Required infrastructure for XMPP applications

Y Y VY VY Y Y

How to design XMPP protocols

In the next chapter, you finally begin your XMPP development career by creating your first
application.

PART Il
The Applications

» CHAPTER 3: Saying Hello: The First Application

» CHAPTER 4: Exploring the XMPP Protocol: A Debugging Console
» CHAPTER 5: Microblogging in Real-Time: An Identica Client

» CHAPTER 6: Talking with Friends: One-on-One Chat

» CHAPTER 7: Exploring Services: Service Discovery and Browsing
» CHAPTER 8: Group Chatting: A Multi-User Chat Client

» CHAPTER 9: Publishing and Subscribing: A Shared Sketch Pad
Introduction

» CHAPTER 10: Writing with Friends: A Collaborative Text Editor

» CHAPTER 11: Playing Games: Head-to-Head Tic-Tac-Toe

Saying Hello:
The First Application

WHAT'’S IN THIS CHAPTER?

Creating and organizing an XMPP project
Making connections to XMPP servers
Building and manipulating XMPP stanzas
Sending data to the server

Handling XMPP events

Y Y Y Y Y

XMPP started as an open, federated protocol for instant messaging, but has become a power-
ful protocol for building many kinds of applications. The bulk of this book walks you through
building various interesting applications as you explore the XMPP protocol and its numerous
possibilities. These applications are all built with JavaScript, HTML, and CSS, and, though
simple, show off how easy it is to make powerful programs with X MPP.

The first application you write is the XMPP equivalent of the famous “Hello, World” example.
It sends a message to your XMPP server and displays the response. It sounds simple, and it is,
but there is a lot to cover with setting up the user interface, getting the required libraries, and
learning about the Strophe library.

By the end of this chapter, you’ll be ready to start building much more interesting applications. By
the end of the book, you’ll have built some compelling projects that would have been difficult
without XMPP.

This chapter may be one of the toughest in the book simply because it is filled with lots of
things that will be brand new.

The applications in this book assume some knowledge of the jQuery library. If you are not yet
familiar with jQuery, there is a brief tutorial in Appendix A.

40 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

APPLICATION PREVIEW

Before you start on each application, there will be a few preview
screenshots of what the final result will look like.

Connect to XMPP x

jo:

Figure 3-1 and Figure 3-2 show a glimpse into the future of
your XMPP programming career. These screenshots let you see
what the final application will look like, and they also provide a
reference point that you can compare your own work against.

Password:

The login dialog box shown in Figure 3-1 opens when the Connect
application first starts and accepts the user’s XMPP address e
and password. Once the application has sent a message to the FIGURE 3-1

server, the server’s response is displayed similarly to Figure 3-2.

Hello

Connection astablished.

Sending ping io jabber.org.

Received pong from senser in 4029ms,
Connection terminated,

FIGURE 3-2

The user interfaces are kept deliberately simple to let you concentrate on the XMPP protocol and the
JavaScript code.

HELLO DESIGN

Every application is composed of small pieces that fit together in a particular way. These pieces may
be user interface elements, XMPP protocol handlers, or implementations of a certain process. In each
chapter, you first learn about the various pieces involved in the chapter’s application and how they fit
together to form a cohesive whole.

The first application is called Hello, and you’ve already seen the two main visible pieces in Figure 3-1
and Figure 3-2: the login dialog box and the server response screen. There are a few pieces you can’t
see as well: the XMPP connection handling, XMPP stanza generation, and the event handling.

When a user first opens the application, they are presented with the login dialog box in order to enter
their XMPP username and password. When the user then clicks Connect, Hello must initiate a con-
nection to the XMPP server and authenticate the user.

Preparing the Way | 41

Once connected, Hello’s task is to send a simple stanza to the user’s server and wait for the server’s
reply. The Strophe library provides the ability to attach handlers to a connection in order to respond
to specific stanzas. You will see that these handlers make dealing with incoming requests and
responses very easy.

Finally, Hello displays a more human-readable version of the server’s reply and disconnects.

Hello is not an ambitious application, but as you see throughout the book, the same XMPP tools used
here are repeated in every application.

PREPARING THE WAY

Before you can get started writing code, you must first collect a few JavaScript libraries that you will
use to build the applications. You need the following pieces:

> jQuery: The jQuery library makes dealing with HTML and CSS a breeze, and it is also
extremely handy for manipulating XML, and therefore, XMPP stanzas.

> jQuery UL The jQuery Ul library provides some common user interface building blocks that
you will need, including dialog boxes and tabs.

> Strophe: The Strophe library makes writing XMPP client applications extremely simple and is
available in multiple programming languages. You’ll be using the JavaScript version of course!

> fIXHR: Strophe can make use of fIXHR, a Flash replacement for the standard XMLHttpRequest
API, to make dealing with JavaScript’s same origin policy easier. Normally, a JavaScript applica-
tion cannot talk to external servers, but with the help of Flash and fIXHR, Strophe can overcome
this restriction.

Additionally, if you do not already have an XMPP account on a public server, you need to create one.

SAME ORIGIN POLICY

JavaScript code runs in a sandboxed environment for security reasons. Though
web applications can load JavaScript code from anywhere, all the code must
restrict its communication to the server that hosts the web application. This
restriction is called the same origin policy.

In recent times, it has become common to find workarounds to this policy so
that more interesting applications can be built. Most web application librar-
ies, including jQuery, already provide some methods for making cross-domain
requests. Unfortunately, the normal workarounds for HTTP GET operations do
not work for XMPP, which must use HTTP POST instead.

This book uses the fIXHR library to enable cross-domain requests, but other
solutions are possible. The most common alternative is to use reverse HTTP
proxies to make the BOSH connection manager appear local to the application’s
home server. This alternative is discussed in Appendix B.

42

| CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

jQuery and jQuery Ul

The jQuery and jQuery Ul libraries are available from http: //jquery.com and http: //ui.jquery
.com respectively. The version used in the book’s examples is 1.3.2 for jQuery and 1.7.2 for jQuery
UL Later versions of these libraries should also work.

The jQuery libraries, like many JavaScript libraries, come in normal or minified versions. Either will
work, but during development, it is recommended that you use the normal version, because minified
JavaScript can hinder debugging.

Google has made many JavaScript libraries, including jQuery and jQuery UI, available via its AJAX
Library API. This means that you don’t even have to download the libraries if you are developing from
an Internet-connected computer; you can just link directly to the ones on Google’s super fast servers.

The sample code in this book uses the Google-hosted versions. To include jQuery, jQuery U, and
the UI theme CSS in your HTML, put the following lines in the <head> element:
<link rel='stylesheet' href='http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/th
emes/cupertino/jquery-ui.css'>
<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js'></script>
<script src='http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.js'>
</script>

If you want to use the minified versions of the libraries, you need only to change the js extension to

min.js.

If you have downloaded the libraries yourself and want to use local copies, the following lines
should work assuming that jQuery and jQuery Ul are installed in the scripts subdirectory of
your application and the jQuery UI themes are installed under styles/themes:

<link rel='stylesheet' href='styles/themes/cupertino/jquery-ui-1.7.2.custom.css'>

<script src='scripts/jquery-1.3.2.js'></script>
<script src='scripts/jquery-ui-1.7.2.custom.js'></script>

jQuery Ul comes with dozens of themes, and any of these themes can be used with the book’s appli-
cations. The example code and the screenshots both use the cupertino theme. You can browse all
the available themes at the jQuery UI web site and substitute your preferred one wherever you see
cupertino.

Strophe

You can find the Strophe library at http://code.stanziq.com/strophe. You’ll want to make
sure to download the latest version for JavaScript. Be sure not to accidentally download libstrophe,
which is a C library, unless of course you want to write some XMPP code in C.

Throughout the book, it is assumed that the strophe.js file, as well as any Strophe plug-in files,
are placed under the scripts directory. They can then be included in the HTML file with the fol-
lowing line:

<script src='scripts/strophe.js'></script>

Starting Your First Application | 43

fIXHR

The fIXHR library is located at http: //f1xhr. flensed. com. This library provides cross-domain
request support for Strophe and is enabled via a special Strophe plug-in. You will need at least
version 1.0.4 of fIXHR, but a later version should work just fine.

Once you’ve downloaded fIXHR and uncompressed it, you can place the contents of the
flensed-1.0/deploy directory into the scripts directory inside your application’s directory.

Enabling IXHR in your application is as easy as loading two additional JavaScript files:

<script src='scripts/f1XHR.js'></script>
<script src='scripts/strophe.flxhr.js'></script>

The first script, £1XHR. js, loads the fIXHR library. The second script is a special Strophe plug-in
that enables Strophe to use fIXHR for cross-domain requests.

XMPP Accounts

If you don’t already have an XMPP account, you can create one at one of the many public XMPP
servers. There is a long list of these public XMPP services at http: //xmpp.org/services/. The
jabber.org server is always a popular choice, and you can create an account there by visiting http: //

register.jabber.org.

Please note that if you have an existing X MPP account, most XMPP accounts are normally provided
for typical instant messaging use. Each server may have different sets of features enabled, so you
will need to make sure your server supports the features needed for the application you are building.
The jabber.org server supports all the functionality needed in this book, for example.

You should now have all the libraries you need to start building XMPP applications as well as an
XMPP account to use with these applications. It’s time to start building something!

STARTING YOUR FIRST APPLICATION

All the applications in this book consist of an HTML file, a CSS file, and one or more JavaScript
files in addition to the required libraries discussed in the previous section. The HTML and CSS files
make up the user interface of the application and include the dialog boxes used, the various controls
the user interacts with, and the styling information for making those elements attractive. The main
focus of your attention will be on the JavaScript files, which contain all the application’s code.

User Interface

Each chapter begins with the basic HTML and CSS layouts for the application. During a chapter, new
things may be added to these files, but for the most part, the initial HTML and CSS are also the final

versions.

44 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

For this first application, a more detailed explanation is provided for the HTML and CSS used, but
if you are already well versed in Web technologies, feel free to skim the code and skip to the next
section.

The HTML for the Hello application is shown in Listing 3-1.

In the <head> section, aside from the necessary libraries, it loads the hello.css and hello.js files,
which are the CSS styling and JavaScript code for the application.

Toward the end of the <body> section you will see the login dialog box. jQuery UI dialog boxes are cre-
ated from normal <div> elements by calling jQuery UD’s dialog () function on the specific <div> ele-
ment that you want to become a dialog box. Because the dialog box will be created, shown, and hidden
by JavaScript code, its <div> element is given the hidden class so that it appears only when needed.

The empty <div> with the id attribute of 1og is used to show the server’s response as well as status
updates as the application is running. This enables you to follow along with what is happening very
easily and see exactly what the code you are writing is doing.

‘) LISTING 3-1: hello.html

Available for <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
download on "http://www.w3.org/TR/htmld/strict.dtd">
<html>
<head>
<title>Hello - Chapter 3</title>

<link rel='stylesheet'href="http://ajax.googleapis.com/ajax/libs/j
queryui/1l.7.2/themes/cupertino/jquery-ui.css'>

<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jque
ry.js'></script>

<script src='http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jq
uery-ui.js'></script>

<script src='scripts/strophe.js'></script>

<script src='scripts/f1l1XHR.js'></script>

<script src='scripts/strophe.flxhr.js'></script>

<link rel='stylesheet' href='hello.css'>
<script src='hello.js'></script>

</head>

<body>
<hl>Hello</hl>

<div id='log'>
</div>

<!-- login dialog -->
<div id='login_dialog' class='hidden'>
<label>JID:</label><input type='text' id='jid'>
<label>Password:</label><input type='password' id='password'>
</div>
</body>
</html>

Starting Your First Application | 45

The CSS styles for Hello are shown in Listing 3-2. This file contains a few styles to make the appli-
cation prettier.

‘) LISTING 3-2: hello.css

Available for body {

download on . .
Wrox.com font-family: Helvetica;

hl {
text-align: center;

}

.hidden {
display: none;

}

#log {
padding: 10px;
}

With the HTML and CSS files covered, you can get started on the code.

Application Code

The JavaScript code in this book is structured into three basic sections. First, there is the applica-
tion’s namespace object, where all of the application’s state and functions are defined. Following the
namespace object is the document ready handler, which initializes the application once the browser is
ready. Finally come the custom event handlers, which handle internal events that are not triggered by
elements or user interactions.

Namespacing

The namespace object is used to avoid the use of global variables as much as possible. One can never
trust that every third-party library will keep to itself, but you can ensure a minimum of problems by
putting your own application state and global variables inside a single object, the namespace object.

Instead of defining your variables and functions like this:

var some_global = 0;
var another_global = true;

function my_adder (x, y) {
return x + y;

}

you can put the same code into a global MyNamespace object:

var MyNamespace = {
some_global: 0,

46 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

another_global: true,

my_adder: function (x, vy) {
return x + vy;
}
Y

The syntax used is slightly different, because each symbol becomes a property of the MyNamespace
object, which is defined as an object literal using the {} syntax. Now if another library also defines
some_global, your code will not be affected.

You can access the attributes of the namespace object just like any other object’s attributes. Writing
MyNamespace.some_global would access the some_global attribute, and Calling MyNamespace
.my_adder (1, 2) would return 3.

The only caveat to namespace objects is that you must take care that the last attribute does not have
a trailing comma. If you forget this little detail, the code will not load correctly in Internet Explorer.
The following code will fail:

var MyNamespace = {

some_global: 0,

Y

The comma after the 0 will signal to the interpreter that another attribute definition will follow,
but none exists. These extra commas are often allowed in other languages, and most browsers will
ignore them in JavaScript as well, but Internet Explorer is quite picky about this.

Document Ready Handler

The document ready event is fired as soon as the document object model (DOM) is available for use
by JavaScript code. This event fires before the entire page’s content is loaded, unlike the document
load event, which fires once all the CSS, scripts, and images are fetched and ready. It is generally
best to put initialization code here, because the DOM will be available, and the ready event is fired
early enough that the user won’t have to wait long for initialization to start.

The jQuery library makes it extremely easy to write functions that will be executed when the docu-
ment ready event is fired. You create a document ready event handler function using the jQuery’s
ready () method. The following code alerts the user as soon as the document ready event fires:

S (document) .ready (function () {
alert ("document ready");

1)

Notice that the initialization function doesn’t have a name, and the function is passed directly into
the ready () function. Functions like this are called anonymous functions, and they are quite common
when using callback-based libraries like jQuery and Strophe.

The applications in this book will often have some initialization code in the document ready handler
to do things like create dialog boxes and set up interaction event handlers. When the text says to add
something to the document ready handler, you can simply place the relevant code at the end of this
initialization function.

Making Connections | 47

Custom Event Handlers

The jQuery library makes it easy to create and use your own custom events. These custom events are
often used to make code easier to read and to reduce coupling between components. For example,
instead of placing all the code for connecting to an XMPP server inside the function that handles
the user’s click on the Connect button, you can have the click event handler trigger a custom event
called connect and place the connection code in the connect event handler.

Using custom events makes it easy to extend the code later without having to change the flow in
multiple locations. If more things needed to happen in response to the connect event just described,
you can simply add another handler for that event containing the new logic; there is no need to add
more complexity to the login dialog box’s code.

To fire custom events, you call:

$ (document) .trigger ('event_name', event_data);

The event’s name can be anything you want, although it is wise not to use the same names as nor-
mal DOM events like click and keypress. The event_data parameter can be set to anything you’d
like to pass to the event handler, or if you don’t need to pass anything extra, you can omit it entirely.

You create a handler for these events using bind ():

S (document) .bind('event_name', function (e, data) {
var event_data = data;

)

This sets up the function provided as a handler for the event_name event. The first parameter passed
is the event object, similar to the one that gets passed for normal DOM events. The second parameter
is the same event_data passed into trigger ().

You see shortly how namespace objects, the document ready handler, and custom event handlers
interact as you develop the initial code for Hello.

MAKING CONNECTIONS

Before Hello can send any data to the server, it must first establish a connection. You will need to
gather the XMPP credentials from the user and then use Strophe to connect to the XMPP server.
Once a connection is established, Strophe uses the credentials provided to authenticate and create a
session, allowing data to be sent and received over XMPP.

The Connection Life Cycle

XMPP connections are created, destroyed, and go through a number of phases during their lifetimes,
as discussed in Chapter 1. It is important to understand these phases, because the phase transitions
are generally where important application logic will be found. For example, if your application needs
to be connected to do anything useful, it will be waiting for the transition to the connected phase.

48 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

When you ask Strophe to connect to a server, you also provide it a callback function, which Strophe
invokes every time the connection phase changes. This allows your application to handle events like
the connection starting, authentication failing, or disconnection.

The full list of these phase changes or statuses is shown in Table 3-1. The status names correspond
to constants defined in the Strophe. Status object. For example, the CONNECTED status is Strophe
.Status.CONNECTED.

TABLE 3-1: Strophe Connection Statuses

STATUS DESCRIPTION
CONNECTING Strophe has started its attempt to make a connection to the XMPP server.
AUTHENTICATING The connection has been established, and Strophe is nhow attempting to

authenticate and create a session.

CONNECTED A session has been established, and user data may now flow freely.
DISCONNECTING Termination of the connection has started.

DISCONNECTED The connection is fully terminated.

CONNFAIL Strophe encountered a problem trying to establish the connection.
AUTHFAIL An error occurred during the authentication process.

A normal XMPP connection will progress through the first five phases, and your application will be
concerned mostly with CONNECTED and DT1SCONNECTED. Errors in the connection can be handled by
watching for the CONNFATL and AUTHFATL statuses. The -TNG statuses are not often used, except to
provide visible updates in the Ul so that users know what is happening while they wait.

Creating a Connection

XMPP connections are managed through the strophe.Connection object. In Chapter 2 you learned
that a BOSH connection manager provides the bridge between the worlds of HTTP and X MPP.
BOSH connection managers are exposed to HTTP clients as URLs, and the strophe.Connection
object you create needs to know about one of these URLs.

Many XMPP servers come with support for BOSH built in, and they typically expose the service

at http://example.com:5280/http-bind or http://example.com:5280/xmpp-httpbind. Some
BOSH connection managers can handle communications for arbitrary XMPP servers, but generally
the built-in connection managers can talk only to the server they run on.

For developing the applications in this book, you are free to use the BOSH connection manager at
http://bosh.metajack.im:5280/xmpp-httpbind. This BOSH connection manager is able to speak
to any public XMPP server. This server is provided specifically for readers of this book to use during
development to avoid everyone having to set up their own BOSH service.

Making Connections | 49

You can create a new Strophe.Connection object just as you would any other JavaScript object, by
using the new keyword:

var conn = new Strophe.Connection("http://bosh.metajack.im:5280/xmpp-httpbind") ;

Once you have a connection object, you can call connect () and disconnect () to start and end
communication with the server:

// starting a connection to example.com
conn.connect ("user@example.com", "mypassword", my_ callback) ;

// disconnecting
conn.disconnect () ;

The first two parameters to connect () are the JID and password to use to authenticate the session,

and the last parameter is the callback function discussed earlier. The callback function will be called

with a single parameter that is set to one of the statuses described in the previous section. A simple

callback function that disconnects once the connection reaches the CONNECTED phase is shown here:
function my_callback (status) {

if (status === Strophe.Status.CONNECTED) {
conn.disconnect () ;

Every time the connection changes its status, this callback function is executed. The my_callback()
function simply ignores any status but the CONNECTED status, and disconnects once the connection
has reached that status.

There’s not much work involved to start and stop connections. You can use this new knowledge to
implement the login dialog box for Hello.

Connecting Hello

To establish a connection, you must first gather the user’s credentials. The login dialog box exists for
this purpose, but it is initially hidden and needs to be created and shown. You can use jQuery UI’s
dialog () function to show and hide this dialog box and use custom events to start the connection
using Strophe.

The dialog () function is called on the elements that you want to convert into dialog boxes and
takes a list of properties defining how the dialog boxes should behave. Most of the properties used
won’t be fully explained here, but their functions are fairly obvious from their names. All the prop-
erties are fully explained in the jQuery UI documentation at http://ui.jquery.com/.

Create the hello. js file and add the following code to it:

‘) $ (document) .ready (function () {
S('#login_dialog') .dialog ({
Available for autoOpen: true,
d“mgtggnﬂ" draggable: false,
modal: true,
title: 'Connect to XMPP',

50 |

CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

J

buttons: {
"Connect": function () {
$ (document) .trigger ('connect', {
jid: s('#jid') .val()
password: $('#password').val()
1)

S ('#password') .val('"');
$(this) .dialog('close');

code snippet bello.js

The most important property is buttons, which defines the dialog box’s buttons and the actions

to take when those buttons are clicked. A single button is defined here called Connect. When the
Connect button is clicked, a custom event called connect is triggered, and the JID and password
are passed along to the event’s handlers. Once the event has triggered, the password field is cleared
and the dialog box is closed. When the function defined for the Connect button is executed, the
this object will be set to the dialog box’s main element, #login_dialog. You can wrap this with
jQuery to easily access the dialog box’s other methods, like close, as is done in the preceding code.

Next, you will need to create a handler for the connect event that creates a new Strophe.
Connection object and calls the connect () method. You will also need to provide a callback that
can respond to changes in the connection status.

Add the following custom event handlers to the document ready function you wrote earlier:

S (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (

Available for "http://bosh.metajack.im:5280/xmpp-httpbind") ;
dwmr:g:“ conn.connect (data.jid, data.password, function (status) {
if (status === Strophe.Status.CONNECTED) {
$ (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) . trigger ('disconnected') ;

1)
1)

S (document) .bind('connected', function () {
// nothing here yet
1)

S (document) .bind('disconnected', function () {
// nothing here yet
1)

code snippet bello.js

Making Connections | 51

J

The handler for the connect event creates a new connection object and calls connect () with a
callback function that merely triggers new custom events. The connected event is fired whenever
Strophe notifies the callback function of the CONNECTED status, and the disconnected event is fired
for the DISCONNECTED status.

The next two event handlers are bound to these new custom events but don’t yet do anything.

This connection event design is a pattern used throughout this book’s applications. The custom
events have made it trivial to separate out the various parts of the connection process, and you can
modify any of the handlers without affecting the others.

There is one last set of additions to make before you move on to the next section of Hello. The logging
area is used for notifying the user of what is happening as the application runs, so you should create a
function to write messages to this area and log whenever the connected and disconnected events are
triggered.

First, create a namespace object for Hello and add a connection property and the 1og () function.
The connection property will store the active connection object so that it can be accessed later. The
log () function simply updates the logging area with a message. The following code can go before
the document ready handler at the top of the file:

var Hello = {
connection: null,

Available for

download on
Wrox.com

J

log: function (msg) {
$('#log') .append("<p>" + msg + "</p>");
}
}i
code snippet bello.js

The connection property is initialized to nu11, but you’ll need to assign the created connection
object to it and set it back to nul1 when the connection is terminated. You should also add the log-
ging message to the connected event handler. The modified event handlers are shown here, with
their modified lines highlighted:

S (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection

Available for "http://bosh.metajack.im:5280/xmpp-httpbind") ;
dmg;”gg"':" conn.connect (data.jid, data.password, function (status) {
if (status === Strophe.Status.CONNECTED) {
$ (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) .trigger ('disconnected') ;

)

Hello.connection = conn;

)

$ (document) .bind('connected', function () {
// inform the user
Hello.log("Connection established.");

52 | CHAPTER3 SAYING HELLO: THE FIRST APPLICATION

1)

S (document) .bind('disconnected', function () {
Hello.log("Connection terminated.");
// remove dead connection object
Hello.connection = null;

1)

code snippet bello.js

Hello doesn’t do too much yet, but it should be ready for its first test run. If you need to verify that
all the code is in the right spot, the full hel1o. s file built so far is shown in Listing 3-3.

‘) LISTING 3-3: hello.js (initial version)

Available for ~ var Hello = {
dmgggglﬁn connection: null,
log: function (msg) {
$('#log') .append("<p>" + msg + "</p>");
}
i

$ (document) .ready (function () {
S('#login_dialog') .dialog({
autoOpen: true,
draggable: false,
modal: true,
title: 'Connect to XMPP',
buttons: {
"Connect": function () {
$ (document) . trigger ('connect', {
jid: s('#jid').val(),
password: $('#password').val()

1)

S ('#password') .val('');

$(this) .dialog('close');
1)

1)

S (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (
"http://bosh.metajack.im:5280/xmpp-httpbind") ;
conn.connect (data.jid, data.password, function (status) {
if (status === Strophe.Status.CONNECTED) {
S (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

Creating Stanzas | 53

$ (document) . trigger ('disconnected') ;

)

Hello.connection = conn;

)

$ (document) .bind('connected', function () {
// inform the user
Hello.log("Connection established.");

)

$ (document) .bind('disconnected', function () {
Hello.log("Connection terminated.");
// remove dead connection object
Hello.connection = null;

)

Running the Application

Because Hello is a web application consisting only of HTML, CSS, and JavaScript it is fairly easy
to run and test. Unfortunately, although the IXHR library allows you to do cross-domain requests
with no server setup, it doesn’t allow you to run applications from file:// URLs that make requests
to http:// URLs. This means you will need to use a web server to serve Hello over HTTP, and point
your browser to the http:// URL.

You don’t need anything fancy; any web server will work, and any cheap hosting service should work
fine as well. Simple-to-install web servers exist for every platform imaginable, and some operating
systems have them built in. You can also use the Tape program to serve the files; Tape is described in
Appendix B.

Once you have a web server running or have uploaded your code to your favorite web host, you can
point your browser to the URL for hello.html on that server and try to log in. You should see a log
message that says “Connection established.”

If something goes wrong, check your web browser’s error console to make sure the code is not
throwing an error you aren’t seeing. Also, make sure you have all the dependencies installed and in
the correct locations.

CREATING STANZAS

Building XMPP stanzas is one of the most important parts of writing an XMPP application. Even
if you can use plug-ins to handle most of your protocol work with XMPP, you will probably have
to create some of your own stanzas too. Strophe comes with some powerful stanza-building tools to
make this as painless as possible.

54 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

XMPP stanzas are just partial XML documents. You can certainly use the browser’s own DOM
manipulation functions to build stanzas, but the DOM API can be quite tedious, and varies slightly
from browser to browser. Strophe abstracts these APIs, in much the same way jQuery abstracts you
from the same APIs, so that you can focus on creating the stanzas you need without worrying about
all the details.

Strophe Builders

Constructing X MPP stanzas is the job of strophe.Builder objects. These objects were inspired by
jQuery and make building stanzas extremely fast and easy. Strophe then goes above and beyond by
providing several shortcut functions to accomplish common construction operations.

A builder is created with two parameters: an element name and a set of attributes. The first line of
the following code creates the stanza <presence/> and the second line creates the stanza <presence
to="'example.com'/>:

var presl = new Strophe.Builder ("presence");
var pres2 = new Strophe.Builder ("presence", {to: "example.com"});

Because building stanzas is such a common operation and typing “new Strophe.Builder” is rather
long, Strophe provides four global aliases for stanza creation: sbuild (), $msg (), $pres (), and $iq().
The code for these functions just creates Strophe.Builder objects exactly like the examples shown.
The function $build () takes the same two arguments as the constructor for Strophe.Builder. The
other three functions create <message/>, <presence/>, and <iq/> stanzas, respectively, and take an
optional argument of the desired attributes.

You can shorten the preceding code using either $build() or $pres (), although the latter is most
often used:

var presl = $build("presence");

var pres2 = S$build("presence", {to: "example.com"});
var pres3 = S$pres();

var presd = Spres({to: "example.com"});

Building more complex stanzas is accomplished via chaining function calls. Just like jQuery, Strophe’s
building shortcut methods return the builder object when they are called. Most of the methods on
the builder object, which you see shortly, also return the builder object. This means that you can
keep calling methods in a chain, just like in jQuery. Don’t worry if this sounds confusing; you will
see plenty of examples.

All the builder object’s methods have shortened names to save typing. The chainable methods that
return the builder object are ¢ (), cnode (), t (), attrs (), and up (). There are also two methods
that do not return the builder object, tostring() and tree().

The tostring () method serializes the stanza to text. This can be very handy for debugging pur-
poses. For example, $pres () .toString () returns the string “<presence/>”. The method tree ()
does a similar job, but returns the DOM element at the top of the stanza’s element tree. This isn’t
normally used, but if you need access to the DOM elements created inside a builder object, it is
there.

You add a new child element to the stanza with ¢ () and cnode (). The former takes the same param-
eters as $build () and appends a new child element to current element. The latter method does the

Creating Stanzas | 55

same job, but takes a single DOM element as input. Most of the time c () will be more than sufficient,
but occasionally cnode () is useful for copying or reusing already built pieces of stanzas.

Because these methods return the builder object, they can be easily chained:

var stanza = $build("foo").c("bar").c("baz");

Calling stanza.toString () would result in:

<foo><bar><baz/></bar></foo>

Each time you add a child, the current element in the builder changes to the new child. If you want
to create multiple children on the same element, you must walk back up the tree one level after call-
ing c (). You can do this with the up () method.

The up () method can be added to the previous example to build a slightly different stanza:

var stanza = S$build("foo").c("bar").up().c("baz");

The XML produced by this would be:

<foo><bar/><baz/></foo>

Text children are added with the t () method. Unlike the similar ¢ () method, t () does not change
the current element.

A typical XMPP message can be created with $msg () and the ¢ () and t () methods as in the follow-
ing example:

var message = Smsg({to: "darcy@pemberley.lit", type: "chat"})
.c("body") .t ("How do you do?");

The XML produced by this builder is:

<message to='darcy@pemberley.lit'
type="'chat'>
<body>How do you do?</body>
</message>

The last method of the builder object is attrs (), which takes an attribute set and uses it to augment
the current element’s attribute set. This is useful when partial stanzas are built by other pieces of
code and you need to add some final attributes before sending it across the connection. It’s not used
often, but it can be quite handy for abstracting stanza building functionality.

The following code shows several builders that are a little more elaborate as well as the stanzas they
produce:

var iq = $ig({to: "pemberley.lit", type: "get", id: "discol"})
.c("query", {xmlns: "http://jabber.org/protocol/disco#info"});

// produces:

//

// <iqg to='pemberley.lit'
// type='get'

56 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

// id='discol'>
// <query xmlns='http://jabber.org/protocol/disco#info' />
/] </ig>

var presence = S$Spres().c("show").t("away") .up()
.c("status") .t ("Off to Meryton");

// produces

//

// <presence>

// <show>away</show>

// <status>0ff to Meryton</status>
// </presence>

Saying Hello

The Hello application needs to send a stanza to the server to say “hello,” and you can do this by using
the Strophe builder functions. The “hello” stanza will be an 1Q-get stanza containing a ping request.

As soon as the connection is ready to accept data, the connection’s callback function is called with a
status of CONNECTED. This triggers the connected event and calls your attached handler. This is the
perfect place to send the ping request to the server.

The modified event handler is shown here:

J

Available for
download on
Wrox.com

$ (document) .bind('connected', function () {
// inform the user
Hello.log("Connection established.");

var domain = Strophe.getDomainFromJid(Hello.connection.jid);

Hello.send_ping(domain) ;
1)

code snippet hello.js
You need to add the send_ping () function to the Hello namespace object as well:
‘) send_ping: function (to) {
var ping = $ig({
Id\vailallhlt(a!for to: to,
ownload on .o "
Wrox.com pre. Iget ! . .
id: "pingl"}).c("ping", {xmlns: "urn:xmpp:ping"});
Hello.connection.send(ping) ;
} S
code snippet bello.js

Some new things are used here that you haven’t seen before. The send () method of the connec-

tion object sends a stanza to the server. The jid attribute of the connection object contains the full

JID associated with the connection. The Strophe object contains several methods to make deal-
ing with JIDs easier: getUserFromJid (), getDomainFromJid(), getResourceFromJid (), and
getBareJidFromJid ().

Handling Events | 57

The JID helper functions return various portions of the JID. The following code shows how these
functions are used and what they return:

Strophe.getUserFromJid ("darcy@pemberley.lit/library"); // "darcy"
Strophe.getDomainFromJid ("darcy@pemberley.lit/library"); // "pemberley.lit"
Strophe.getResourceFromJid ("darcy@pemberley.lit/library"); // "library"
Strophe.getBareJidFromJid ("darcy@pemberley.lit/library"); // "darcy@pemberley.lit"

Hello now sends a ping to the user’s server, but it does not yet do anything with the server’s
response. The last piece of the puzzle is handling incoming stanzas.

HANDLING EVENTS

Most XMPP applications are event driven. Some events are triggered by user interactions like click-
ing the mouse or pressing a key, and others are triggered by incoming stanzas. For example, when a
message is received the application handles it by displaying it to the user. Handling incoming stanzas
is probably the most important part of any XMPP application, and Strophe makes doing so quite
simple.

Adding and Removing Handlers

New stanza handlers can be added with addHandler () and removed with deleteHandler (). The
following code shows the basics of using these functions:

var ref = conn.addHandler (my_handler_function, null, "message");
// once the handler is no longer needed:
connection.deleteHandler (ref) ;

The addnandler () function returns a handler reference. This reference is only used for passing to
deleteHandler () to identify the specific handler to remove.

The deleteHandler () function is not often used since handler functions have a way of removing
themselves when they are no longer needed. In some cases, the knowledge of when to remove a han-
dler is not available within the handler, and deleteHandler () does the job in these situations.

Stanza Matching

The addHandler () function takes one or more parameters. The first parameter is the function that is
invoked when a matching stanza is received. The rest of the parameters are matching criteria. The full
list of these parameters is shown in this abbreviated function definition from the Strophe source code:

addHandler: function (handler, ns, name, type, id, from) {
// implementation omitted

If any of the criteria are null or undefined, any stanza will match. Otherwise, stanzas will match only
if they satisfy the criteria by string equality in a particular part of the stanza. The last four criteria —
name, type, id, and from — specify filters on the stanza’s element name and the type, id, and from
attributes. These four criteria are checked only on the top-level element, not on any of the element’s

58 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

descendants. The first criterion, ns, is slightly different, and it is checked for the top-level element as
well as its immediate children. You see why shortly.

The name criterion will almost always be nul1, to match any stanza, or one of message, presence,
or iq. The addHandler () example set up a handler that would be called for any <message> stanza
received.

The type, id, and from criteria match the main attributes of <message>, <presence> and <ig>
stanzas. You can use type to differentiate between regular chat messages and group chat messages
or to separate out IQ-result stanzas from [Q-error stanzas. The id criterion is often used to handle
replies to specific requests, like the IQ-result associated with a particular IQ-get request. Matching
on the from attribute limits the handler to dealing with messages that come from a specific JID. You
should use from with care, because you may not always know which resource another user or service
will use to communicate with you. A bare JID supplied as a from criterion will not match any full
JID; the match must be exact.

Matching on the ns (for namespace) criterion is mostly done with 1Q stanzas. IQ stanzas gener-
ally contain a single child element that is namespaced according to the type of function it serves.
For example, the ping stanza you sent earlier was an IQ-get stanza with a <ping/> child under the
urn:xmpp: ping namespace. Setting up a handler to catch all incoming ping requests could be done
with the following code:

conn.addHandler (my_ping_handler, "urn:xmpp:ping", "ig");

The function my_ping_handler () would be called anytime the connection received an IQ stanza
with a child under the urn:xmpp:ping namespace. It would get all of these stanzas, regardless of
their type, id, or from attributes, because those criteria were left unspecified.

Stanza Handler Functions

Whenever a matching stanza is found for a handler, the handler function is invoked and passed the
stanza as its argument. Unless the function returns true or some expression that evaluates to true,
the handler function will be removed once it finishes.

The following example stanza handler is called a one-shot handler, because it returns false. After
this handler is finished with the first stanza, it will be deleted and will not be called again unless it is
explicitly re-added by another call to addHandler ().

function my_ping_handler (iqg) {

// do something interesting
return false;

If the function doesn’t use the return statement at all, it returns undefined, which results in the
same outcome as returning false. If you find that your handlers stop working, be sure to check
their return value.

The next example shows a handler that returns true and is therefore able to process as many stan-
zas as are received. The handle_incoming_ping () function responds with a pong to some incom-
ing ping request.

Handling Events | 59

function handle_incoming_ping(iqg) {

// conn is assumed to be a global pointing to a valid

// Strophe.Connection object

var pong = $ig({to: $(iqg).attr('from'), type: "result", id: $(iq).attr('id')});
conn.send (pong) ;

return true;

Handling Responses in Hello

The last piece required for Hello is to handle the server’s reply to the ping request. You can use your
new knowledge of stanza handlers to implement this. As with most pings, it is interesting and fun to
measure how long it takes to receive a response, so you can add some timing code to Hello as well.

Typically, handlers should be added for responses before you send the initial requests. This helps
to avoid race conditions when the server generates a response so fast that the handler isn’t added in
time to catch it.

Modify the connected event handler to match the one shown here:

\) $ (document) .bind('connected', function () {

Available for
download on
Wrox.com

// inform the user
Hello.log("Connection established.");

Hello.connection.addHandler (Hello.handle_pong, null, "iq", null, "pingl");
var domain = Strophe.getDomainFromJid(Hello.connection.jid);

Hello.send_ping(domain) ;

code snippet hello.js
The send_ping () function also needs the following changes:
‘) send_ping: function (to) {
var ping = $iq({
(Ii\vailzllhlzlur to: to,
ownload on - "
Wrox.com .type. .get ! . .
id: "pingl"}).c("ping", {xmlns: "urn:xmpp:ping"});
Hello.log("Sending ping to " + to + ".");
Hello.start_time = (new Date()).getTime();
Hello.connection.send(ping) ;
} S
code snippet bello.js

The handler function is added before the code sends the stanza, and the time the request was sent is
kept in the start_time property of the Hello namespace object. This new version also adds another
message to the log so the user sees what is happening.

60 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

You’ll also need to add the new property and the handle_pong () function to the Hello namespace
object. These additions are shown in the following code:

\) start_time: null,

Available for handle_pong: function (iqg) {
"ﬂﬂgfﬁ&ﬂ" var elapsed = (new Date()).getTime() - Hello.start_time;

Hello.log("Received pong from server in " + elapsed + "ms");
Hello.connection.disconnect () ;

return false;

code snippet bello.js

With these final additions, Hello should be fully functional. Point your browser to hello.html

and give it a whirl! How fast is your server’s response? The final version of hello.js appears in
Listing 3-4.

‘) LISTING 3-4: hello.js (final)

Available for var Hello = {
download on .
Wrox.com connection: null,

start_time: null,

log: function (msg) {

$('#log') .append("<p>" + msg + "</p>");
Iy

send_ping: function (to) {
var ping = $ig({
to: to,
type: "get",
id: "pingl"}).c("ping", {xmlns: "urn:xmpp:ping"});

Hello.log("Sending ping to " + to + ".");
Hello.start_time = (new Date()).getTime();
Hello.connection.send(ping) ;

3,

handle_pong: function (iqg) {
var elapsed = (new Date()).getTime() - Hello.start_time;
Hello.log("Received pong from server in " + elapsed + "ms.");

Hello.connection.disconnect () ;
return false;
}i

S (document) .ready (function () {
S('#login_dialog') .dialog({

Handling Events | 61

autoOpen: true,

draggable: false,

modal: true,

title: 'Connect to XMPP',

buttons: {

"Connect": function () {
$ (document) . trigger ('connect', {

jid: $('#jid').val(),
password: $('#password').val()

)

$('#password') .val('');
$(this) .dialog('close');

)
)

S (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (
"http://bosh.metajack.im:5280/xmpp-httpbind") ;
conn.connect (data.jid, data.password, function (status) {

if (status === Strophe.Status.CONNECTED) {
$ (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) . trigger ('disconnected') ;

)

Hello.connection = conn;

)

$ (document) .bind('connected', function () {
// inform the user
Hello.log("Connection established.");

Hello.connection.addHandler (Hello.handle_pong,
null, "ig", null, "pingl");

var domain = Strophe.getDomainFromJid(Hello.connection.jid);

Hello.send_ping(domain) ;
)

$ (document) .bind('disconnected', function () {
Hello.log("Connection terminated.");

// remove dead connection object
Hello.connection = null;

2

62 | CHAPTER 3 SAYING HELLO: THE FIRST APPLICATION

MORE HELLOS

The best thing about simple applications is that they are the easiest to improve. Try adding the follow-
ing things to Hello:

> A single measurement is often not representative; modify Hello to do several pings and measure
the average response time.

> 1If you used a serial approach to the previous task, try a parallel one; if you already created a
parallel version, try making it run serially.

SUMMARY

Congratulations, you’ve now written your first Strophe application and quite possibly your first
XMPP application. As you’ve seen, using X MPP with Strophe and jQuery is pretty simple. You’ve
learned:

> How to get everything required for a Strophe-based XMPP application.
How to test and run XMPP applications.

How to make and terminate connections.

How to send data to the server.

How to handle incoming stanzas.

Y Y VY Y Y

How to use custom events in jQuery.

With the basics under your belt, you can move on to making your first useful XMPP application in
the next chapter.

Exploring the XMPP Protocol:
A Debugging Console

WHAT'’S IN THIS CHAPTER?

Hooking into Strophe’s logging facilities
Parsing XML
Manipulating your presence

Querying for software versions

Y Y Y Y Y

Dealing with XMPP errors

Developers have always enjoyed crafting and refining their tools. In your journey through XMPP
applications, you will need a tool to aid exploration and to inspect protocol traffic. Few web
developers could live without the view source command or the ability to easily craft URLs to
test functionality of remote sites. In the world of XMPP stanzas, such a tool would allow you to
inspect protocol traffic and easily create stanzas to send. You’ll build a protocol debugging console
named Peek over the course of this chapter, and, afterwards, you will use it to investigate a few
XMPP services and typical protocol situations.

Peek will be useful throughout this book. Whenever you encounter an example stanza, you
can load Peek, type in the stanza, and watch what happens in response. In this way, you can
play with various XMPP features even before you start building applications.

Many of the parts required to build Peek have already been introduced: establishing connec-

tions, sending stanzas, and setting up basic handlers for incoming traffic. However, Peek will
need some new features of Strophe, and once Peek is built, you’ll use it to explore a few new

XMPP concepts.

64 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

APPLICATION PREVIEW

The finished application — shown in Figure 4-1 — is reminiscent of color terminals and code editors
with fancy highlighting.

Peek

0125443022725158"

<quary xmlns="jabbariigiversion's
“rame>

=)

iw/iipux 2.6.18
fags

(Dot

FIGURE 4-1

The top area with the black background is where all the stanzas appear that were sent to or received
from the server. The input area below accepts either XML input or Strophe’s stanza building
commands.

PEEK DESIGN

The debugging console is one of the simplest things you can build with XMPP. Peek needs to be
able to send traffic and display traffic, but it doesn’t need any traffic processing logic beyond those
humble requirements. Making the user interface look nice constitutes the bulk of the work.

Every connection in Strophe has some special functions for hooking into the protocol data that is
being sent and received. These functions come in two forms: xm1TInput () and xmlouptut () for
structured traffic and rawInput () and rawoutput () for the actual character data. Normally these
functions do nothing, but Peek will override them to get a view of the data flowing in and out of the
connection.

When a connection is first established, Strophe sends and receives several stanzas behind the scenes
to handle authentication and session setup. The CONNECTED status is achieved only when a session

Building the Console | 65

has been successfully started. You’ll first handle traffic display so that you can see these setup stan-
zas as they happen.

The XMPP streams carry data in XML, but that XML is not formatted for display. In fact, most
XMPP servers, clients, and libraries will send XML that is stripped of unnecessary whitespace.
Stanzas viewed on the wire will look mostly like one giant string of text. Following is an example
stanza with pleasant formatting, followed by the same stanza as it would typically appear:

<message to='darcy@pemberley.lit/meryton'
from='bingley@netherfield.lit/meryton"
type="'chat'>
<body>Come, Darcy, I must have you dance. I hate to see you standing about by
yourself in this stupid manner. You had much better dance.</body>
</message>

<message to='darcy@pemberley.lit/meryton' from='bingley@netherfield.lit/meryton'
type='chat'><body>Come, Darcy, I must have you dance. I hate to see you standing
about by yourself in this stupid manner. You had much better dance.</body></mess
age>

For short stanzas this difference is not great, but for longer stanzas and within large groups of stan-
zas, the latter is almost unreadable.

You will be using xm1Tnput () and xmloutput () to get structured traffic, and then wrapping this in
HTML and CSS to display the traffic using syntax highlighting and extra whitespace. We won’t be
covering this display translation code in much detail because it is orthogonal to your objective, but
the code is easy to understand and modify if you’re curious.

With your console set up and receiving protocol traffic, your attentions will turn to handling
user input. You start by allowing the user to input XML stanzas by hand. Because Strophe only
accepts actual XML data for sending across the connection, you must parse this input text into
XML and then send it over the connection. You’ll use the web browser’s native XML parsing abili-
ties to accomplish this.

Typing out XML is fairly tedious, so you’ll add the ability for users to use Strophe’s own stanza
building commands like $msg (), $pres (), and $ig(). Peek will use JavaScript’s eval () to execute
this code.

If it sounds simple, it is. However, Peek will be extremely useful in experimenting with and debug-
ging your applications and the servers with which you interact.

BUILDING THE CONSOLE

Peek will use the same application structure as the Hello application from Chapter 3. You will first
need to create the user interface by building peek.html and peek.css, and then you’ll create the
application logic in JavaScript. The final source code is included at the end of the section in case you
get stuck.

66 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

User Interface

Peek’s user interface is extremely simple. It consists of an area to display the protocol traffic, a text
area input for the user to create outgoing stanzas, and a few buttons. A login dialog box is included
as well, but it is initially hidden just like in Chapter 3. These elements appear in the initial version of
the HTML code shown in Listing 4-1.

‘) LISTING 4-1: peek.html

Tﬂﬁmimr <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
aﬂg:gmgn "http://www.w3.0org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-type" content="text/html;charset=UTF-8" />

<title>Peek - Chapter 4</title>

<link rel='stylesheet' href='http://ajax.googleapis.com/ajax/1libs/j
queryui/l.7.2/themes/cupertino/jquery-ui.css'>

<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jque
ry.js'></script>

<script src='http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jq
uery-ui.js'></script>

<script src='scripts/strophe.js'></script>

<script src='scripts/fl1XHR.js'></script>

<script src='scripts/strophe.flxhr.js'></script>

<link rel='stylesheet' type='text/css' href='peek.css'>
<script type='text/javascript' src='peek.js'></script>
</head>
<body>
<hl>Peek</hl>

<div id='console'></div>
<textarea id='input' class='disabled'
disabled='disabled'></textarea>

<div id='buttonbar'>
<input id='send_button' type='submit' value='Send Data'
disabled='disabled' class='button'>
<input id='disconnect_button' type='submit' value='Disconnect'
disabled='disabled' class='button'>
</div>

<!-- login dialog -->
<div id='login_dialog' class='hidden'>
<label>JID:</label><input type='text' id='jid'>
<label>Password:</label><input type='password' id='password'>
</div>
</body>
</html>

Building the Console | 67

The initial CSS code appears in Listing 4-2. The only style that is not immediately obvious is
. incoming, which you will use to distinguish incoming traffic from outgoing in the console.

J

Available for
download on
Wrox.com

You add a few new styles to peek.css later in this section.

LISTING 4-2: peek.css

body {
font-family: Helvetica;

hl {
text-align: center;

#console {
padding: 10px;
height: 300px;
border: solid lpx #aaa;

background-color: #000;
color: feee;
font-family: monospace;

overflow: auto;

}

#input {
width: 100%;
height: 100px;
font-family: monospace;

}

.incoming {
background-color: #111;
}

textarea.disabled ({
background-color: #bbb;

#buttonbar {
margin: 10px;

}

#disconnect_button {
float: left;
width: 100px;

#send_button {
float: right;
width: 100px;

68 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

Displaying Traffic

Now that you’ve built a simple user interface, it is time to wire up the login dialog box and hook
into Strophe’s logging functions to make stanzas appear in the console.

First, you’ll need to create the login dialog box and have it open when the page loads. This can be

done in response to the document ready event just like you did in Chapter 3. Place the following code
into a file called peek. js:

‘) S (document) .ready (function () {
S('#login_dialog') .dialog({
Available for autoOpen: true,
dmg;‘fggn‘i“ draggable: false,
modal: true,
title: 'Connect to XMPP',
buttons: {
"Connect": function () {
$ (document) . trigger ('connect', {
jid: s('#jid').val(),
password: $('#password').val()

1)

S ('#password') .val('');
$(this) .dialog('close');

code snippet peek.js

jQuery UD’s dialog () function converts your <div> into a modal dialog box that opens automatically.
A Connect button is added that will fire the connect event and then close the dialog.

Add the following handler after the document ready handler:

‘) S (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (

Available for 'http://bosh.metajack.im:5280/xmpp-httpbind') ;
download on
Wrox.com .
conn.xmlInput = function (body) {

Peek.show traffic(body, 'incoming'):;
};
conn.xmlOutput = function (body) {
Peek.show traffic(body, 'outgoing'):;

}:
conn.connect (data.jid, data.password, function (status) {
if (status === Strophe.Status.CONNECTED) {
$ (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

S (document) . trigger ('disconnected') ;

Building the Console | 69

)
Peek.connection = conn;

)

code snippet peek.js

Much of this code you’ve seen before in Chapter 3. The highlighted lines are new, and they over-
write the blank, do-nothing default logging functions of the connection object with your own ver-
sions. Instead of pointing to two functions that would be almost identical, inline functions are used
that will call show_traffic () with the correct parameters.

Add the following implementation of the Peek object, including the show_traffic() and
xm12html () function, after the document ready handler:

‘) var Peek = {
connection: null,

Available for
download on

Wrox.com show_traffic: function (body, type) {

if (body.childNodes.length > 0) {
var console = $('#console').get(0);
var at_bottom = console.scrollTop >= console.scrollHeight -
console.clientHeight;;

$.each (body.childNodes, function () {

S ('#console') .append("<div class='" + type + "'>" +
Peek.xml2html (Strophe.serialize(this)) +
||</div>n) ;

)

if (at_bottom) {
console.scrollTop = console.scrollHeight;

b

xml2html: function (s) {
return s.replace(/&/g, "&")
.replace(/</g, "<")
.replace(/>/g, ">");

code snippet peek.js

The Peek object serves as a namespace container for all application code and state. This is good pro-
gramming practice, and isolates your code from other applications. Currently, the only application
state the application has is the connection variable.

Web browsers do not speak XMPP natively (at least not yet) so XMPP connections must be tunneled
through HTTP requests. A side effect of this tunneling is that stanzas are delivered in a <body>

70 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

wrapper, which contains some metadata about the request. The details of this tunneling, called BOSH,
are the subject of XEP-0124 and XEP-0206 and were touched on in Chapter 2. The show_traffic()
function ignores this <body> wrapper and deals with its children, which are the stanzas themselves.

Each stanza is converted from XML to text (this is referred to as serialization) using a new Strophe
function, Strophe.serialize (). The XML string produced by Strophe’s serialize () function
must first be escaped before insertion into the HTML document, or the XML elements will be
interpreted as HTML ones. The escaping is done by the xm12htm1 () function, which replaces the
special characters with their escaped versions. Then the text is appended to the console’s content as
a <div>. Incoming stanzas are given a CSS class of incoming, and outgoing stanzas receive the class
outgoing. These are typical uses of jQuery.

The console should scroll to the bottom when new data comes in, so the scrollTop attribute of the
element is set equal to its scrol1Height. However, it would be frustrating if it moved to the bottom
while you were scrolled up to read something at the top. The code checks to see if the console is cur-
rently all the way at the bottom before changing the scroll position. If the user is looking at some-
thing old, the window will not jump to the bottom when something new comes in. When the user
returns to the bottom, the auto-scrolling behavior will kick in again.

Finally, you should add some logic to make the Disconnect button functional. Once Peek is con-
nected, you’ll want to enable the Disconnect button, and when Peek disconnects, you’ll want to dis-
able the button. You can do this by binding the connected and disconnected events, which your
connection callback fires when those states are reported by Strophe. Add the following handlers at
the end of peek. js:

‘) $ (document) .bind('connected', function () {
S ('#disconnect_button') .removeAttr ('disabled') ;

Availablefor }) ;
download on
Wrox.com) \)
S (document) .bind('disconnected', function () {

S ('#disconnect_button').attr('disabled', 'disabled');
1)

code snippet peek.js

To make the button do something, you must handle its click event. Add the following code to the
document ready event handler:

‘) S ('#disconnect_button').click(function () {
Peek.connection.disconnect () ;

Availablefor ~ }) ;
download on
Wrox.com

code snippet peek.js

If you load the application in a web browser and log in to your favorite XMPP server, you’ll see the
stanzas that are sent during authentication appear in the console. The only problem is that they are
shown as long strings without any formatting. It’s time for you to make them prettier and easier
to read.

Building the Console | 71

Making XML Pretty

Looking at long strings of text gets old pretty fast, so you’ll want to reformat the XML to produce

a more pleasing and readable display. A typical way to do this is via indentation. Each child element
should appear indented under its parent, with its children similarly indented. Attributes can also

be indented so that they line up with all the other attributes, each on its own line. Finally, you can
assign different colors to all the different pieces: punctuation, tag names, attributes, attribute values,
and content.

First, youw’ll want to add some appropriate CSS styles for the transformation to use. Add the follow-
ing styles to peek.css:

J

Available for
download on
Wrox.com

.xml_punc { color: #888; }
.xml_tag { color: #e77; }
.xml_aname { color: #55d; }
.xml_avalue { color: #77f;
color: #aaa }

.xml_text {
.xml_levelO
.xml_levell
.xml_level2
.xml_level3
.xml_leveld
.xml_level5
.xml_level6
xml_level?7
.xml_level8
.xml_level9

e e e T T e T e N M e M e S

padding-left:
padding-left:
padding-left:
padding-left:
padding-left:
padding-left:
padding-left:
padding-left:
padding-left:
padding-left:

0; 1}
lem;
2em;
3em;
dem;
S5em;
6em;
Tem;
8em;
9em;

e e e e e e e o o

code snippet peek.css

Each level of children will be indented 1 em, up to nine levels of children. The other styles are
explained in Table 4-1.

TABLE 4-1: XML Styles

CSS CLASS
.xml_punc
.xml_tag
.xml_aname
.xml_avalue

.xml_text

USED FOR

Tag punctuation such as <, >, /, =

Element tag names

Attribute names

Attribute values

Text children of an element

72 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

Next, you’ll need to modify show_traffic() to use something besides Strophe.serialize() to
generate the representation. In the following code, Peek.pretty_xml () has replaced the old serial-
ization code on the highlighted line:

\) show_traffic: function (body, type) {
if (body.childNodes.length > 0) {
Available for var console = $('#console').get(0);
d&ﬂgrggﬁ“ var at_bottom = console.scrollTop >= console.scrollHeight -
console.clientHeight; ;

$.each (body.childNodes, function () {

S ('#console') .append("<div class='" + type + "'>" +
Peek.pretty xml(this) +
"</diV>") ;

code snippet peek.js

Finally, you’ll need to implement pretty xml (). The implementation in Listing 4-3 is recursive. First
it styles the opening tag and its attributes; then the function calls itself for each child tag; and finally,
it styles the closing tag. There are a few extra cases to handle the text children and empty tags as well.
Each line of the output is in its own <div> element, and the text children are in their own, potentially
multiline <div>.

You might wonder why the code puts all the strings, part by part, into an array instead of concat-
enating them all together with +. Using an array to hold parts of a larger string and then joining it
all together at once is a common optimization pattern in JavaScript. Because JavaScript strings are
immutable, a new string must be created when two strings are joined. Waiting until all the small
strings are created to do the final concatenation saves a lot of intermediate string creation work by
the interpreter. Similar string concatenation optimization patterns exist for other programming lan-
guages with immutable strings like Python and Java.

‘) LISTING 4-3: The pretty_xml() function in peek.js

Available for pretty xml: function (xml, level) ({
download on ar i s
Wrox.com var 1., Ji
var result = [];
if (!level) {
level = 0;

result.push("<div class='xml_level" + level + "'>");
result.push("<");
result.push("");

result.push (xml.tagName) ;

result.push("");

// attributes
var attrs = xml.attributes;

Building the Console | 73

var attr_lead = []

for (i = 0; i < xml.tagName.length + 1; i++) {
attr_lead.push(" ") ;

}

attr_lead = attr_lead.join("");

for (i = 0; 1 < attrs.length; i++) {
result.push(" ");
result.push(attrs[i] .nodeName) ;
result.push("='");
result.push("");
result.push(attrs[i] .nodeValue) ;
result.push ("'");

if (i !== attrs.length - 1) {
result.push("</div><div class='xml_level" + level + "'>");
result.push(attr_lead) ;

if (xml.childNodes.length === 0) {
result.push("/></div>");
} else {

result.push("></div>");

// children

$.each (xml.childNodes, function () {
if (this.nodeType === 1) {
result.push (Peek.pretty_xml (this, level + 1));
} else if (this.nodeType === 3) {

result.push("<div class='xml_text xml_level" +

(level + 1) + "'>");
result.push(this.nodevalue) ;
result.push("</div>");

)

result.push("<div class='xml xml_level" + level + "'>");
result.push("</") ;
result.push("");
result.push (xml.tagName) ;

result.push("");

result.push("></div>");

}

return result.join("");

If you load the Peek application again with these changes, you’ll see pretty XML output just like in
Figure 4-1 at the beginning of the chapter.

74 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

Dealing with XML Input

The console now shows beautiful, colorized XML stanzas, but unfortunately, once the initial
authentication and session setup is complete, there are no more stanzas to render. It’s time to add
user input to Peek so that you can interact with the console.

First, you’ll need to enable the input field and the Send button once the connection is ready to accept
stanzas. You already did this for the Disconnect button in the connected and disconnected event
handlers. Because both buttons have the button class, you can handle both buttons at the same
time. For the text area, you’ll also need to remove the disabled class, which was used to alter the
background color. The new handlers are shown here with the changed lines highlighted:

‘) S (document) .bind('connected', function () {
$('.button') .removeAttr('disabled');

Available for $ ('#input') .removeClass ('disabled') .removeAttr('disabled’);
download on 1) ;
Wrox.com !

$ (document) .bind('disconnected', function () {

$('.button').attr('disabled’', 'disabled’');
$('#input') .addClass('disabled') .attr('disabled', 'disabled’');
)

code snippet peek.js

The user can now type in XML in the text area whenever an established connection exists. You just
need to do something when the user clicks Send.

Strophe’s send () function only accepts valid XML DOM objects or Strophe.Builder objects. This
makes it difficult to send invalid XML over the XMPP connection. Sending invalid XML would
cause the server to terminate the connection immediately. Users can only input text, however, so
you must first create a function that parses text into XML. Fortunately, web browsers all come with
built-in XML parsers. Add the following text_to_xml () function to the Peek object:

‘) text_to_xml: function (text) {
var doc = null;
Available for if (window['DOMParser']) {
d&‘,’:g;“:gn(:“ var parser = new DOMParser () ;
doc = parser.parseFromString (text, 'text/xml');
} else if (window(['ActiveXObject']) {
var doc = new ActiveXObject ("MSXML2.DOMDocument") ;
doc.async = false;
doc.loadXML (text) ;
} else {
throw {
type: 'PeekError',
message: 'No DOMParser object found.'

}i

var elem = doc.documentElement;
if ($(elem).filter('parsererror').length > 0) {

Building the Console | 75

return null;

}

return elem;

code snippet peek.js

The text_to_xml () function creates an XML parser and parses the string. Internet Explorer 6 does
not have the bomparser class, so you must use an ActiveX object instead. Firefox, Safari, and Opera,
however, all implement DovpParser. The ActiveX object differs slightly from the poMparser API, but
for Peek’s needs, the changes required are very minor.

Some DoMParser objects will produce XML documents for invalid input, and these error documents
will have a top-level <parsererror> element. You must check for this so that you don’t accidentally
send these error documents as XMPP stanzas.

All that is left is to wire up the Send button to the text_to_xml () function and send the result. You
can add the following code to the document ready event handler to achieve this:

‘) S ('#send_button') .click(function () {
var xml = Peek.text_to_xml ($('#input').val());
(Ii\vailzllhlzlur if (xml) {
ownload on . .
Wrox.com Peek.connection.send (xml) ;

S('#input').val('"');

code snippet peek.js

Notice that you don’t need to add the XML to the console. Strophe automatically passes the stanza
to the xm1Tnput () and rawInput () logging functions, and these already take care of adding pretty
XML data to the console.

There is one last thing to do — handle input errors. Currently if the user types something invalid,
like <<presence/>, clicking Send does nothing. It would be nice to give the user some feedback.
jQuery makes it extremely easy to do this. The modified Send button click event handler animates
the background fading to red when an input error is detected:

‘) S ('#send_button') .click(function () {
var xml = Peek.text_to_xml ($('#input').val());
(Ii\vailzllhlzlur if (xml) {
ownload on . .
Wrox.com Peek.connection.send (xml) ;

S('#input').val('"');
} else {
$ ('#input') .animate ({backgroundColor: "#faa"}, 200);
}
)

code snippet peek.js

76 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

Now you must also reset the background color once the user starts to correct his mistake. You can use a
keypress event handler to do this. The following code should be added to the document ready handler:
‘) S('#input') .keypress (function () {

$(this) .css({backgroundColor: '#fff'});

Availablefor ~ }) ;
download on

Wrox.com T
code snippet peek.js

Peek is now a working XMPP debugger!

Making Input Easier

Typing out all the XML by hand can be a little tiresome. Strophe compensates for this by having

the easy-to-use Builder object and its helper functions, $msg (), $pres (), and $ig(). It’s easy to
extend Peek to allow users to input code as well as XML, making their life much easier if they know
a little JavaScript.

First, you must detect if the input is code or XML. The easiest way to do this is to look at the first
character. If it is <, then it looks a lot like XML; if it is ¢ it looks a lot like one of the three Builder
object helper functions. If the user’s input looks like code, you can use JavaScript’s eval () function
to execute it. You can replace the Send button click event handler with this new logic:

‘) $('#send_button').click (function () {
var input = $('#input').val();

Available for var error = false;
download on : :
Wrox.com if (input.length > ?) {

if (input[0] === '<') {
var xml = Peek.text_to_xml (input) ;
if (xml) {
Peek.connection.send (xml) ;
$('#input').val('"');
} else {
error = true;

}
} else if (input[0] === '$') {
try {

var builder = eval (input) ;
Peek.connection.send(builder) ;
S('#input').val('");

} catch (e) {
error = true;

}

} else {
error = true;

}

if (error) {
S('#input') .animate ({backgroundColor: "#faa"});

code snippet peek.js

Building the Console | 77

For the case where the first character is <, the logic is exactly the same. When the first character is
$, however, Peek evaluates the input as code, and if there are no errors, attempts to send this as a
stanza. If the code throws an exception (for example, if the code contains a syntax error or does not
produce a Builder object), an error is flagged.

Peek is now ready to help you explore the depths of XMPP. The completed peek. js file appears in
Listing 4-4.

‘) LISTING 4-4: peek.js (final)

Available for var Peek = {
download on .
Wrox.com connection: null,
show_traffic: function (body, type) {
if (body.childNodes.length > 0) {
var console = $('#console').get(0);
var at_bottom = console.scrollTop >= console.scrollHeight -
console.clientHeight;;

$.each (body.childNodes, function () {

S ('#console') .append("<div class='" + type + "'>" +
Peek.pretty_xml (this) +
"</diV>") ;

)

if (at_bottom) {
console.scrollTop = console.scrollHeight;

b

pretty_xml: function (xml, level) {
var i, 3j;
var result = [];
if (!level) {
level = 0;

result.push("<div class='xml_level" + level + "'>");
result.push("<");
result.push("");

result.push (xml.tagName) ;

result.push("");

// attributes

var attrs = xml.attributes;

var attr_lead = []

for (i = 0; i < xml.tagName.length + 1; i++) {
attr_lead.push(" ") ;

}

attr_lead = attr_lead.join("");

for (1 = 0; 1 < attrs.length; 1i++) {
continues

78 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

LISTING 4-4 (continued)

" <gspan class='xml_aname'>");

attrs[i] .nodeName) ;

"='");
"");
attrs[i].nodeValue) ;

"'") ;

result.push
result.push
result.push
result.push
result.push
result.push

if (i !== attrs.length - 1) {
result.push("</div><div class='xml_level" + level + "'>");
result.push(attr_lead) ;

}
}
if (xml.childNodes.length === 0) {
result.push("/></div>");
} else {
result.push("></div>") ;
// children
$.each(xml.childNodes, function () {
if (this.nodeType === 1) {
result.push (Peek.pretty_xml (this, level + 1));
} else if (this.nodeType === 3) {
result.push("<div class='xml_text xml_level" +
(level + 1) + "'>");
result.push(this.nodeValue) ;
result.push("</div>");
}
)i
result.push("<div class='xml xml_level" + level + "'>");
result.push("</");
result.push("");
result.push (xml.tagName) ;
result.push("");
result.push("></div>");
}

return result.join("");

I

text_to_xml: function (text) {
var doc = null;
if (window['DOMParser']) {
var parser = new DOMParser () ;
doc = parser.parseFromString (text, 'text/xml');
} else if (window]['ActiveXObject']) {
var doc = new ActiveXObject ("MSXML2.DOMDocument") ;
doc.async = false;
doc.loadXML (text) ;
} else {
throw {

Building the Console | 79

type: 'PeekError',

message: 'No DOMParser object found.'

Y

var elem = doc.documentElement;

if ($(elem).filter('parsererror').length > 0)

return null;

}

return elem;
}i

$ (document) .ready (function () {
$('#login_dialog') .dialog({
autoOpen: true,
draggable: false,
modal: true,
title: 'Connect to XMPP',
buttons: {
"Connect": function () {

S (document) . trigger ('connect', {
jid: $('#jid').val(),
password: $('#password').val()

)

S ('#password').val('"');
S (this).dialog('close');

)

$('#disconnect_button') .click(function () {
Peek.connection.disconnect () ;
)

$('#send_button').click(function () {
var input = $('#input').vall();
var error = false;
if (input.length > 0) {

if (input[0] === '<') {
var xml = Peek.text_to_xml (input) ;
if (xml) {

Peek.connection.send (xml) ;
S('#input').val('");

} else {
error = true;

}

} else if (input[0] === '$') {

try {
var builder = eval (input);
Peek.connection.send (builder) ;
S('#input').val('"');

} catch (e) {

{

continues

80 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

LISTING 4-4 (continued)

console.log(e);
error = true;
}
} else {
error = true;

if (error) {
S('#input') .animate ({backgroundColor: "#faa"});

}
1)
S('#input') .keypress (function () {

S (this) .css({backgroundColor: '#fff'});
1)

1)

$ (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (
"http://bosh.metajack.im:5280/xmpp-httpbind") ;

conn.xmlInput = function (body) {
Peek.show_traffic(body, 'incoming');

}i

conn.xmlOutput = function (body) {
Peek.show_traffic(body, 'outgoing');

I
conn.connect (data.jid, data.password, function (status) {
if (status === Strophe.Status.CONNECTED) ({
S (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {
$ (document) . trigger ('disconnected') ;
}
1)
Peek.connection = conn;
1)
$ (document) .bind('connected', function () {
$S('.button') .removeAttr ('disabled') ;
S ('#input') .removeClass('disabled') .removeAttr ('disabled’);
)i
$ (document) .bind ('disconnected', function () {

$('.button') .attr('disabled', 'disabled');
S('#input') .addClass('disabled') .attr('disabled', 'disabled');
1)

Exploring XMPP | 81

EXPLORING XMPP

Peek is quite useful at helping you investigate how something works or why something is not doing
what you expect. You can cut and paste the stanza building code from your application and see
exactly what the server’s response is. If you are unfamiliar with a particular protocol extension, you
can type in the examples to see how the server responds to various inputs.

This book is filled with examples that you can try out in Peek. Be sure to adjust the server names
and JIDs appropriately; the examples in this book use imaginary server domains and JIDs of fic-
tional characters. You see what happens if you try to use these made-up examples in the section
“Dealing with Errors.”

Controlling Presence

As you learned in Chapter 1, presence information and presence control are some of the basic features
of XMPP. Presence is also one of the simplest parts of the protocol.

Open up the Peek application, log in to your favorite XMPP server, type the following line, and
click Send:

<presence/>

This first <presence> element sent on an XMPP connection is called initial presence. Normally the
server will broadcast your presence to all the connected resources for your JID and all users sub-
scribed to your presence notifications. The initial presence will also cause the server to send presence
probes to all the users in your roster with whom you have a presence subscription. The initial pres-
ence enables the reception of incoming presence stanzas from your contacts.

If your roster is empty, you’ll only see a slightly modified version of your stanza reflected back at
you in response. If your roster has other people in it, you’ll likely receive presence notifications from
them almost immediately. As long as the server considers you online, you will continue to receive
presence updates from your contacts as their presence status changes.

Because you didn’t specify any attributes on the <presence> element, it signals to the server that
you are online. Try typing the following input into Peek to set your presence status to away:

Spres().c('show').t("away") .up().c('status').t("reading") ;

Probing Versions

Most XMPP clients, and even servers, support the Software Version extension (XEP-0092). This
simple extension asks an entity to report its software and version number. Servers and XMPP ser-
vices often use this protocol extension for gathering statistics, and you can use Peek to experiment
with requesting software versions.

82

| CHAPTER 4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

To request the software version of your server, send an IQ-get stanza with a <query> element using
the jabber:iq:version namespace. You can input either of the following into Peek to ask the
Jabber.org server what software it runs:

Sig({type: "get", id: "versionl", to: "jabber.org"})
.c("query", {xmlns: "jabber:ig:version"})

or

<ig type='get' id='versionl' to='jabber.org'><query xmlns='jabber:ig:version'/></iqg>

The server will respond with something similar to the following stanza. Because the Jabber.org
server software may have been upgraded by the time you read this book, the response you receive
may be different.

<ig xmlns='jabber:client'
from="'jabber.org!'
to='darcy@pemberley.lit/library"
id='versionl'
type='result'>
<query xmlns='jabber:iqg:version'>
<name>ejabberd</name>
<version>2.1.0-alpha</version>
<os>unix/linux 2.6.18</os>
</query>
</ig>

Try probing some of your contacts or other servers to see what software they use.

Dealing with Errors

Handling errors is an important part of any application. The XMPP protocol has a uniform error
reporting mechanism used by the core protocol and nearly every extension. IQ-error stanzas were
talked about in Chapter 1, but you can use Peek to investigate these and other error situations in
more detail.

1Q Stanza Errors

IQ-get and IQ-set stanzas that you send should always receive a reply of IQ-result or IQ-error. You
should try building some bad stanzas to see how different entities respond.

The Google Talk service at gmail.com does not support the Software Version extension discussed
earlier. Send gmail.com a request for its software version:

Sig({type: "get", id: "version2", to: "gmail.com"})
.c("query", {xmlns: "jabber:ig:version"})

The server should respond immediately with an error:

<ig from='gmail.com'
to='darcy@pemberley.lit/library"
id='versionl'
type='error'>

Exploring XMPP | 83

<query xmlns='jabber:iqg:version'/>
<error code='503"' type='cancel'>
<service-unavailable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

This IQ-error stanza contains the contents of your original request as the first child. Many error stanzas
you’ll receive will include the original request’s contents, although in some cases, this may be omitted if
the stanza is quite large or contains sensitive information. The <error> element is required, and it should
contain a <text> element and exactly one other child with the urn:ietf:params:xml:ns:xmpp-stanzas
namespace. The preceding error stanza did not contain a <text> child-it’s optional-but you see an
example of this in the next section. The latter type of child’s name tells you the kind of error that
happened. In this case it was service-unavailable. This is exactly the error that was expected,
because gmail.com does not support this extension.

Notice, also, that the <error> element’s type attribute is cancel. This means that you should not
try to continue this operation. Some errors will have type attributes of modi fy, which means that
your application should try again with the input corrected. Other error types are also possible and
include continue, auth, and wait. You can send the following stanza to a non-existent room on a
multi-user chat service to induce an error:

<ig type='get' to='bad-room-123@conference.jabber.org' id='infol'>
<query xmlns='http://jabber.org/protocol/disco#info' />
</ig>

You should receive a response similar to the following one. Note that the server has supplied a
human-readable <text> element as well as the normal error condition element.

<ig to='darcy@pemberley.lit/library'
from='bad-room-123@conference. jabber.org"'
id='infol"
type='error'>
<query xmlns='http://jabber.org/protocol/disco#info' />
<error code='404"'
type='cancel'>
<item-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<text xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>
Conference room does not exist
</text>
</error>
</ig>

The <error> element may also contain an application-specific error condition, which will have
a namespace specific to the service. You can find more information on the <error> element and
1Q-error stanzas in RFC 3920 section 9.3.

Message Stanza Errors

<message> stanzas can also result in errors, and these are structured very similarly to IQ-error stan-
zas. Just like IQ-error stanzas, <message> stanza errors will have a type attribute of error, usually
contain the original message, and also contain the same <error> elements.

84 | CHAPTER4 EXPLORING THE XMPP PROTOCOL: A DEBUGGING CONSOLE

One of the most common message errors is failed delivery to a user. For example, try sending a mes-
sage to a made-up user on a made-up server:

Smsg ({to: elizabeth@longbourn.lit', type: 'chat'}).c('body"')
.t ('What think you of books?')

Because the domain longbourn.lit does not exist, the server will respond with a message error like
the following:

<message to='darcy@pemberley.lit'
from='elizabeth@longbourn.lit'
type='error'>
<body>What think you of books?</body>
<error code='404"
type="'cancel'>
<remote-server-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

These kinds of delivery errors are quite common; users often mistype addresses or have contacts
that have changed servers.

Presence Stanza Errors

Like message errors, <presence> stanza errors generally occur when remote servers are unreachable
either because they don’t exist or some network link is offline. They occasionally crop up in other
places as well. Just like IQ-error and message errors, presence errors have a type attribute of error
and contain the <error> element.

Often you will see these as a result of server presence probes. Your XMPP server sends a probe

to all your contacts when you send initial presence, and if any of those contacts’ servers cannot be
reached, this generates a presence error that gets delivered to you. An example of this type of error
is included here:

<presence to=darcy@pemberley.lit/library’
from='elizabeth@longbourn.lit"
type='error'>
<error code='404"
type="'cancel'>
<remote-server-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

For some reason, the longbourn.lit server was not reachable by the pemberley.lit server where
Darcy’s XMPP account is, and a presence error is returned as a result of the presence probe.

Each type of stanza has a matching error stanza, and they all work the same way. The errors that
your application must pay attention to are dependent on the application and the significance of the
failure. For instance, clients usually ignore these presence errors because the state of the contact

Summary | 85

is the same from the user’s perspective whether the contact is on an unreachable server or offline.
However, presence errors received when trying to join a multi-user chat room (see Chapter 8) indicate
real problems that the user should be notified about.

BETTER DEBUGGING

Peek is already extremely useful, but it could be even better. Try adding some extra features:
> Make stanzas in the console foldable — clicking on an element hides and shows children.

> Often users will want to run the same commands again; add support for command history.

SUMMARY

In this chapter, you built an application to inspect protocol traffic and aid in exploration and debug-
ging of XMPP applications and services. Along the way you:

> Hooked into Strophe’s structured logging facilities
> Parsed XML input from the user

> Rendered XML as nicely formatted HTML

>

Evaluated user input as JavaScript code

Once Peek was built, it was used to explore some common pieces of the XMPP protocol:

> Manipulating your own presence information

> Retrieving software version information from other entities

> Dealing with various common stanza errors
Throughout the rest of the book, you should find Peek useful in diagnosing problems and exploring
the XMPP protocol.

In the next chapter, you build a simple messaging client for use with the Identi.ca microblogging
service.

Microblogging in Real Time:
An Identica Client

WHAT'’S IN THIS CHAPTER?

Using XMPP <message> stanzas
Using the Identica XMPP API

Improving messages with XHTML-IM

Y Y VY

Dealing with stored offline messages

Millions of users communicate with friends and the world on Twitter, Identica, Jaiku, and other
microblogging services. These services ask users to answer a simple question: “What are you
doing?” The resulting stream of users’ updates is very similar to a dynamic, global chat room,
where each user defines the room they see by the people they are interested in.

Like chat systems, microblogging systems typically have low latencies, facilitating real-time
communication among participants. Unfortunately, this low-latency channel is hampered by
traditional, high-latency user interfaces. Many power users of microblogging services interact
with these systems using third-party clients that make the experience faster.

One such service, Identica, has full support for XMPP clients. In this chapter, you build a real-
time microblogging client for the Identica system. You will start to see how XMPP-powered
web applications result in a more dynamic, low-latency, real-time experience.

In the previous two chapters, you learned the basics of the Strophe library and built a simple
application to facilitate experimentation and debugging. The fun stuff starts in this chapter, in
which you make useful software using XMPP that would be challenging to create using other
methods.

88

| CHAPTER5 MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT

APPLICATION PREVIEW

Updates on the Identica service are called dents. The application you build in this chapter is called
Arthur — a reference to Arthur Dent, the protagonist of The Hitchhiker’s Guide to the Galaxy.
Figure 5-1 shows Arthur in action.

Arthur

matajack: Sdealingwith That picture is scary, bul the music is nica 3
dealingwith: Hay éveryon in case you ddnt know | hawe this Tres recond out, produced by Salim Nouraliah hiipJdarseimiller bandeamp com
maiainck: | just notced B80ad is out of commission as well. Pamaps has siriking over the lack of avaiable puncliEation.

FIGURE 5-1

The input area appears at the top of the application. Users type and send their dents here. Below the
input area, incoming messages are displayed in reverse chronological order. These messages often
contain clickable links, because they are delivered in XHTML format.

ARTHUR DESIGN

Identica’s XMPP API uses XMPP <message> stanzas for interacting with the system. The user’s dents
are sent as messages to update@identi.ca, and the same address sends incoming updates from fol-
lowed users as they occur. This is exactly how normal one-to-one communication works in XMPP.

Although this API is a little clumsy for user actions aside from new dents, it does have the advantage
that any XMPP client can use it without modification. XMPP clients all support one-to-one chats
and are therefore capable of basic Identica integration.

Arthur mimics this basic one-to-one chat integration in a web application. Arthur’s requirements
are much simpler than a full chat client because it needs only to support chatting with a single
entity. Because the other end is a computer program, not a human, Arthur doesn’t need to support
things like typing notification or presence updates. On the other hand, because of the application’s
narrower focus, the resulting user experience should be a bit nicer because it is designed specifically
for microblogging.

Arthur will need to handle incoming messages from the Identica system and display them appropri-
ately. These messages also come with XHTML markup that can be used to improve their display
significantly. New dents from the user will need to be sent off to Identica as well. Finally, Arthur
must deal with messages that were sent while the user was offline.

Microblogging with Identica | 89

MICROBLOGGING WITH IDENTICA

Identica is one among many microblogging services, but it has some important properties that make
it one of the best to work with, not the least of which is its XMPP support. Though Twitter is the
most well known of these services, its early experiments with XMPP support were abandoned when
its priorities shifted mainly toward keeping the site available. Twitter is also a walled garden, which
is to say that it does not interoperate with other microblogging services.

Identica is the most well known system built on the StatusNet microblogging framework. StatusNet
is an open source, federated microblogging platform that anyone can run. In fact, StatusNet is more
than just open source; it is a Free Network Service (see http: //autonomo.us/2008/07/franklin-
street-statement/) — a service built on free software but with the added emphasis of giving users
control over their data.

Unlike Twitter and other walled garden microblogging services, StatusNet systems form a network
of microblogs that are capable of communicating with each other. This federation is very similar to
the XMPP network discussed in Chapter 1 or the network of Internet e-mail servers. Any StatusNet
site can receive and send updates to other microblogging sites using the Open Microblogging
Protocol (OMB).

OPEN MICROBLOGGING PROTOCOL OR OMB

The OMB protocol was created by Evan Prodromou to address the need for an
open, federated world of microblogging. Evan also leads the StatusNet project,
which is the most well known software that implements OMB.

The current version of OMB is 0.1 and you can find it at:
http://openmicroblogging.org/protocol/0.1/

OMB is currently only defined over HTTP transports, but many in the OMB
community are hoping to see an XMPP transport added in the next version. If you
are interested in participating or reading more about OMB, you can join the mail-
ing list or follow the OMB blog at the following URLs:

http://lists.openmicroblogging.org/mailman/listinfo/omb
http://openmicroblogging.org/

The philosophy of OMB and the StatusNet project match well with the philosophy of the Internet
in general. That many StatusNet sites, including Identica, have great support for XMPP is just an
added bonus. The XMPP support also makes it easy for you to build real-time applications on top
of StatusNet servers.

90 | CHAPTER5 MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT

Creating Your Account

If you don’t already have an Identica account, or an account on another XMPP-enabled StatusNet
service, you should create one now, because you will need it to test Arthur. Just visit Identica at
http://identi.ca (or your favorite XMPP-enabled StatusNet system) and sign up for an account.

My account is http://identi.ca/metajack if you are looking for someone to follow with your
new account.

Once you have your own account, you’ll need to set it up for XMPP notifications.

Turning on XMPP

To configure your Identica account for XMPP support, follow these steps:
1. On any Identica page, click the Connect link in the navigation bar at the top right of the page.
2. Select the IM tab.
3. Inthe IM Address field, type your Jabber ID and click Add.
4

. Make sure the Send Me Notices through Jabber/Gtalk option is enabled. You might also
want to enable Send Me Replies through Jabber/GTalk from People I’'m Not Subscribed To.

o

Click Save.

o

Identica will send a confirmation message to your XMPP account. Click the confirmation
link it provides to complete the setup.

Now your XMPP account should receive messages whenever someone you follow posts an update.

You can test that this is working by sending an update to 8ball. 8ball is an Identica bot that gener-
ates random yes or no responses to questions, just like the well known Magic 8-ball toys. Send 8ball
a message such as “@8ball Is it working?” Remember, if you didn’t enable replies from people you
aren’t subscribed to, you’ll need to subscribe to 8ball first by visiting http: //identi.ca/8ball and
clicking Subscribe.

If all is well, 8ball’s random response will appear in your chat client, and you’re ready to start build-
ing Arthur.

BUILDING ARTHUR

Identica has already started delivering notifications to your XMPP account. These are probably
appearing in your favorite chat client looking much like regular private chat messages from your
normal contacts. Your first goal is to write enough code that Arthur can connect to your XMPP
account, receive updates from Identica, and display them. With that accomplished, you can spend
some effort making the incoming messages prettier by using the XHTML-IM extension. Finally,
you will need to enable the users to send their updates to Identica.

Building Arthur | 91

Getting Started

The HTML and CSS needed follow the same pattern as the previous two chapters. The HTML is
shown in Listing 5-1 and the CSS is shown in Listing 5-2.

‘) LISTING 5-1: arthur.html

?mﬂ?mzhr <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
&ﬂgg&;" "http://www.w3.0org/TR/htmld/strict.dtd">
<html>
<head>
<meta http-equiv="Content-type" content="text/html;charset=UTF-8">

<title>Arthur - Chapter 5</title>

<link rel='stylesheet' href='http://ajax.googleapis.com/ajax/libs/j
queryui/l.7.2/themes/cupertino/jquery-ui.css'>

<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jque
ry.js'></script>

<script src='http://ajax.googleapis.com/ajax/libs/jqueryui/l1.7.2/3q
uery-ui.js'></script>

<script src='scripts/strophe.js'></script>

<script src='scripts/flXHR.js'></script>

<script src='scripts/strophe.flxhr.js'></script>

<link rel='stylesheet' type='text/css' href='arthur.css'>
<script type='text/javascript' src='arthur.js'></script>
</head>
<body>
<hl>Arthur</hl>

<textarea id='input' rows='3'></textarea>

<div id='counter'>140 chars left</div>
<div id='stream'>

</div>

<!-- login dialog -->
<div id='login_dialog' class='hidden'>
<label>JID:</label><input type='text' id='jid'>
<label>Password:</label><input type='password' id='password'>
</div>
</body>
</html>

‘) LISTING 5-2: arthur.css

Available for body {

download on , .
Wrox.com font-family: Helvetica;

hl {
text-align: center;
continues

92 | CHAPTERS5 MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT

LISTING 5-2 (continued)

}
#input {
width: 75%;
font-size: 16pt;
}

#counter {
width: 20%;
float: right;
padding: 25px;
font-size: 14pt;

color: #bbb;
}
.hidden {

display: none;
}

The UI consists of a text area for input along with a character counter. Like Twitter, Identica limits
updates to 140 characters. You’ll want to let users know how many characters they have left so they
don’t try and send too many. Below the input area is a <div>, which will be filled with incoming
updates. The hidden login dialog box is placed at the end.

Just as in the previous chapters, you’ll need to enable the login dialog box and set up the connection
flow events. Add the following code to a new file called arthur. js:

\) var Arthur = {
connection: null

Available for };
download on
Wrox.com \
$ (document) .ready (function () {

S('#login_dialog') .dialog({
autoOpen: true,
draggable: false,
modal: true,
title: 'Connect to XMPP',
buttons: {
"Connect": function () {
$ (document) . trigger ('connect', {
jid: s('#jid') .val(),
password: $('#password').val()
1)

'#password') .val('"');

$(
$(this) .dialog('close');

Building Arthur | 93

)
$ (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (

'http://bosh.metajack.im:5280/xmpp-httpbind') ;

conn.connect (data.jid, data.password, function (status) {

if (status === Strophe.Status.CONNECTED) {
$ (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) . trigger ('disconnected') ;

)

Arthur.connection = conn;

3

$ (document) .bind ('connected', function () {
// nothing here yet
)

$ (document) .bind('disconnected', function () {
// nothing here yet
)

code snippet arthur.js

Users of Arthur should now be able to log in to their XMPP accounts.

Receiving Messages

In Chapter 1 you learned that <message> stanzas are delivered to one or more resources based on
each resource’s availability and priority. Before Arthur will receive any messages from the server, it
must first send an initial <presence> stanza to mark itself as available. Once available, the resource
will begin to receive messages sent to the user’s bare JID, assuming it has the highest priority or hap-
pens to be the only connected resource, or to the full JID of Arthur’s connection.

Arthur is only interested in <message> stanzas, so you will want to set up a handler for them so that
they get delivered to the appropriate function for display. Be careful to set up your handler before
sending the initial presence, otherwise you may create a race condition where messages might go by
unnoticed between the time presence is sent and the handler is set up.

The following new lines in the connected event handler set up the message handler, send the initial
presence, and direct incoming messages to the handle_message () function, which will be imple-
mented shortly:

‘) $ (document) .bind('connected', function () {
Arthur.connection.addHandler (Arthur.handle message,

Available for null, "message", "chat");
download on . K
Wrox.com Arthur.connection.send($pres());

)

code snippet arthur.js

94 | CHAPTER5 MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT

The handler is set up to look for <message> stanzas with a type attribute of chat. As you learned
in Chapter 1, the chat type is used for normal, private messages in the XMPP protocol.

Now you must implement the handle_message () function. This function needs to extract the body
of the message and insert it at the top of the <div> used to display the updates. jQuery makes this
all too easy. Take care to check that the sender of the message is who you think they are, otherwise
you might show the wrong messages!

‘) handle_message: function (message) {

if ($(message).attr('from').match(/"update@Ridenti.ca/)) {
Available for var body = $(message).children('body') .text();
dmg;“ggn':“ $('#stream') .prepend("<div>" + body + "</div>");

return true;

code snippet arthur.js

The code uses children () to find only the <body> element that is an immediate child of the <mes-
sage> stanza. As you see shortly, Identica messages have an extra <body> element, and the code
needs to be more specific in this case to find the correct one.

Arthur should now be receiving updates and displaying them.

XHTML-IM

It didn’t take long for the XMPP community to get bored with plain text messages. XHTML-IM
(XEP-0071) was created to reuse XHTMUD’s existing formatting and inline CSS styling to make mes-
sages more structured as well as more visually pleasing. Many XMPP clients support sending and
receiving XHTML-IM messages, and XMPP services like Identica often use XHTML-IM to add
structure to message contents.

XHTML-IM is a stripped-down version of XHTMUL designed to be appropriate to the use case of
small chat messages. Embedded objects, scripts, style sheets, and content transformations are all
removed, leaving a basic set of markup and inline styles. Following is an example <message> stanza
using XHTML-IM. Notice that both a normal <body> element and an XHTML-IM namespaced
<html> element are provided, allowing for graceful fallback if XHTML-IM is unsupported.

<message from='bingley@netherfield.lit'
to="'jane@longbourn.lit"
type='chat'>
<body>I hope my dear friends will join me at Netherfield for a ball
this Tuesday.</body>
<html xmlns='http://jabber.org/protocol/xhtml-im'>
<p style='font-weight: bold'>I hope my dear friends will join me at Netherfield
for a ball this Tuesday.</p>
</html>
</message>

Building Arthur | 95

XMPP EXTENSION PROPOSALS OR XEPS

XMPP is defined in the IETF RFCs (Request for Comments documents) 3920 and
3921. These documents cover the basic semantics of XMPP streams, the workings
of XMPP federation, and the details on the main stanza types. Anything that is not
considered a core part of XMPP but is accepted as a generally useful addition is
documented in an XMPP Extension Proposal, or XEP.

Anyone can propose a new XEP by submitting it to the XMPP Standards Foundation
(XSF). The XSF Council reviews all new proposed XEPs and votes on whether to
accept them into the standardization process. Once accepted, XEPs are assigned
numbers and a status of experimental. Over time, as people refine and implement the
XEP, it may move to a status of draft and perhaps eventually to final. XEPs in draft
or final status are considered well reviewed and ready for wide implementation and
deployment. In some cases, XEPs become deprecated or historical when they are
superseded or fall out of general use.

Some XEPs are very tiny, like Software Version (XEP-0092), and a few are quite
large, like Publish-Subscribe (XEP-0060, which you see in detail in Chapter 9).
Over the first decade of XMPP’s existence nearly 300 XEPs were accepted, and
they cover a wide range of functionality from remote commands to publishing song
information. Each April 1st, the XSF even publishes a humorous XEP (my favorite
of these is XEP-0239).

Several important XEPs are covered throughout this book, and you can find the
full list of XEPs and their specifications at:

http://xmpp.org/extensions/

Adding XHTML-IM to Arthur

If you were to use Peek, the debugging console from the previous chapter, and inspect the incoming
messages from Identica, you would see that the service appends an XHTML-IM payload to each
update message. These structured payloads will turn usernames, hashtags, groups, and reply refer-
ences into clickable links. If users see an update in Arthur referencing someone they’ve never heard
of, they can easily click to find out more information.

Because Arthur is a web application, it is extremely easy to render the XHTML-IM message. You
can use jQuery’s contents () method to get all the XHTML children and then insert these into the
appropriate place. Since the application uses HTML DOM and the XMPP connection uses XML
DOM, you must use importNode () to transfer the elements between documents. Unfortunately, IE

96 | CHAPTERS5 MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT

doesn’t support importNode (), so for this browser you must use the xm1 property to get the raw
text. These changes are highlighted here in the modified handle_message ():

, handle_message: function (message) {

if (S (message).attr('from').match(/*update@identi.ca/)) {
Available for var body = $(message).find('html > body').contents();
download on
Wrox.com

var div = $("<div></div>");

body.each(function () {
if (document.importNode) {
$ (document . importNode (this, true)).appendTo(div);
} else {
// IE workaround
div.append(this.xml);

1)

div.prependTo("#stream");

return true;

code snippet arthur.js

Please note Arthur does not santize the XHTML it receives. It is possible that someone could inject
<script> elements and other unwanted things into the message body. If this were a real application,
you would want to make sure this possibility is accounted for.

Arthur should now be displaying nicely formatted HTML messages instead of plain text. All that is
left is to enable the users to send their own updates back to Identica.

Sending Messages

Sending messages to Identica is done via normal XMPP messages, as you might expect. You don’t
need to worry about sending XHTML-IM content or dealing with links in the message because the
Identica system will translate your input and link all of the appropriate items before delivering it to
your subscribers. Before you send the message, you should hook up the character counter so that
Arthur can give loquacious users some warning before Identica rejects their long messages.

Counting characters is trivial in JavaScript, because the string object supports the length property
just like arrays. The only challenge is when to measure the length of the text and then update the
counter.

Whenever someone types in an input field or text box, the browser triggers the keydown, keypress, and
keyup events in that order. The trouble is that the keypress event, which is the most obvious choice for
where to put the count logic, is triggered before the value of the input field is modified. When the first
keypress event is triggered, the value of the field will still be blank. Fortunately, the field is modified

before the keyup event is called, so you can place the appropriate logic there to update the counter.

Offline Messages | 97

You can add the following keyup event handler to the document ready function, right after the login
dialog box initialization code:

‘) S('#input') .keyup (function () {
var left = 140 - $(this).val().length;

Available for S ('#counter .count').text('' + left);
download on });
Wrox.com !

code snippet arthur.js

Now Arthur will update the input count while the user is typing.

Once the users are satisfied with their updates, they can hit Enter to submit them. To send these
events to Identica, you need only to wrap them in normal <message> stanzas to update@identi.ca.
This time, you will want to use the keypress event so that the Enter key is not part of the messages.
Add the following code to the document ready handler:

‘) S('#input') .keypress (function (ev) {

if (ev.which === 13) {
Available for ev.preventDefault () ;
download on
Wrox.com

var text = $(this).val();

S(this).val('');

var msg = Smsg({to: 'update@identi.ca', type: 'chat'})
.c('body') .t (text);

Arthur.connection.send (msg) ;

code snippet arthur.js

The event object passed into the handler contains a which attribute that holds the pressed key’s
ASCII code, and the code for the Enter key is 13. The handler uses preventDefault () to stop the
default handler from processing the Enter key, which would add it to the field’s value. The handler
then sends a <message> stanza to update@identi.ca.

You don’t have to worry about displaying the update to the user. Identica will notify the users of
their own updates as well, so a hyperlinked version of the update will appear in the stream all by
itself.

Arthur is now a fully functional microblogging client!

OFFLINE MESSAGES

Before you ship Arthur to your users, there is still one last feature to add — support for offline
messages.

Since the early days of XMPP (back then it was still called Jabber), servers have stored messages sent
to offline users for later delivery. This feature, though simple, is still not implemented on some pro-
prietary networks! Oddly, this feature wasn’t specified in an XEP for three years after XMPP was

98 | CHAPTER5 MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT

created. Delayed delivery was finally written down in XEP-0091, which was later replaced by the
current Delayed Delivery (XEP-0203).

The sender of a message doesn’t need to do anything special to support offline messages. If a mes-
sage is received for an offline user, a typical server will queue that message for when the user next
comes online. Little is required from the recipient as well. When the recipients of offline messages
next send initial presence, the server will deliver all pending offline messages to them. If no special
attention is paid to these messages, they will appear to have been sent just then, but on closer inspec-
tion, they contain extra metadata inserted by the server about when they were originally sent.

Take a look at the following example traffic. First, Jane sends her initial presence, informing the
server that she is now available. Next, the server delivers several messages to her; all but the final
message were sent before she came online.

JANE: <presence/>

SERVER: <message from='elizabeth@longbourn.lit/bedroom'

to="'jane@longbourn.lit/bedroom’
type='chat'>

<body>Miss Bingley sees that her brother is in love with you, and

wants himto marry Miss Darcy.</body>

<delay xmlns='urn:xmpp:delay’
from='longbourn.lit'
stamp='1809-09-22T12:44:137Z'>0ffline storage</delay>

</message>

<message from='elizabeth@longbourn.lit/bedroom'
to="'jane@longbourn.lit/bedroom'
type='chat'>
<body>She follows him to town in the hope of keeping him there, and tries
to persuade you that he does not care about you.</body>
<delay xmlns='urn:xmpp:delay’
from='longbourn.lit'
stamp='1809-09-22T12:44:247'>0ffline storage</delay>
</message>

<message from='elizabeth@longbourn.lit/bedroom'
to="'jane@longbourn.lit/bedroom’
type='chat'>
<body>No one who has ever seen you together, can doubt his
affection.</body>
</message>

Notice the extra <delay> element in the messages that were received while Jane was offline. These
extra elements are a delayed delivery marker and indicate that the messages have been delivered
some period of time after they were originally received. The stamp attribute indicates the time when
Jane’s server originally received the message.

You can indicate which messages in the stream happened while the user was offline by giving them a
special color in the user interface. You do this by assigning an extra CSS class in handle_message ()
when a <message> stanza is processed containing a <delay> element.

Offline Messages | 99

First, add the following CSS class to arthur.css:

\) .delayed {
color: #a99;

Available for }
download on
Wrox.com

code snippet arthur.css

Next, the following highlighted lines show the changes that need to be made to handle_message ():

‘) handle_message: function (message) {

if ($(message).attr('from').match(/"update@identi.ca/)) {
Available for var delayed = $(message).find('delay').length > 0;
dowwr:!("gglg“ var body = $(message).find('html > body').contents();

var div = $("<div></div>");

if (delayed) {
div.addClass('delayed');

}
body.each (function () {
if (document.importNode) {
$ (document . importNode (this, true)).appendTo (div) ;
} else {
// IE workaround
div.append(this.xml) ;
}
)

div.prependTo ('#stream');

return true;

code snippet arthur.js

Arthur will show the delayed messages in a pink color so that the users will know what they missed
while they were offline.

With that final feature, Arthur is ready for some real users. The final JavaScript code appears in
Listing 5-3.

J LISTING 5-3: arthur.js

Available for var Arthur = {
dmgkzg"‘:" connection: null,
handle_message: function (message) {
if ($(message).attr('from').match(/*update@identi.ca/)) {
continues

100 | CHAPTER5 MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT

LISTING 5-3 (continued)

var delayed = $(message).find('delay').length > 0;
var body = $(message).find('html > body').contents();

var div = $("<div></div>");

if (delayed) {
div.addClass('delayed') ;

}
body.each (function () {
if (document.importNode) {
$ (document . importNode (this, true)).appendTo (div) ;
} else {
// IE workaround
div.append (this.xml) ;
}
Y
div.prependTo ('#stream') ;
}
return true;
}
Y
$ (document) .ready (function () {

S('#login_dialog') .dialog({

autoOpen: true,

draggable: false,

modal: true,

title: 'Connect to XMPP',

buttons: {

"Connect": function () {
$ (document) . trigger ('connect', {

jid: s('#jid').val(),
password: $('#password').val()

1)
S ('#password') .val('');
$(this) .dialog('close');
}
}
1)
S('#input') .keyup (function () {
var left = 140 - $(this).val().length;
S ('#counter .count').text('' + left);
1)

S('#input') .keypress (function (ev) {
if (ev.which === 13) {

Creating a Better Microblogger | 101

ev.preventDefault () ;

var text = $(this).val();
S (this).val('');

var msg = Smsg({to: 'update@identi.ca', type: 'chat'})
.c('body') .t (text);
Arthur.connection.send (msg) ;

)
)

$ (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (

'http://bosh.metajack.im:5280/xmpp-httpbind"') ;

conn.connect (data.jid, data.password, function (status) {

if (status === Strophe.Status.CONNECTED) {
S (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) . trigger ('disconnected') ;
}
)

Arthur.connection = conn;

)

$ (document) .bind('connected', function () {
Arthur.connection.addHandler (Arthur.handle_message,
null, "message", "chat");

Arthur.connection.send(Spres());

)

$ (document) .bind('disconnected', function () {
// nothing here yet
)

CREATING A BETTER MICROBLOGGER

Identica’s XMPP API also supports many other functions — direct messages, favoriting, subscribing
to and unsubscribing from users, and viewing profile information. You can send the message “help”
to get a complete list of available commands.

Try adding the following to Arthur:
Show the current list of the user’s subscriptions.
> Translate user’s names into their real names by using information from their profile.

> Add a button next to each dent to allow users to mark it as a favorite.

102 | CHAPTERS5 MICROBLOGGING IN REAL TIME: AN IDENTICA CLIENT

SUMMARY

In this chapter, you moved beyond the basic setup of Strophe applications and beyond simply looking
at and crafting traffic in a debugger. You created a real-time microblogging client called Arthur, which
made keeping up with friends on Identica very easy.

In creating Arthur, you:

>

>
>
>
>

Learned about Identica, StatusNet, and the Open Microblogging standard.
Used the Identica XMPP API to interact with the microblogging service.
Created a <message> stanza handler to process incoming dents.

Added XHTML-IM support to the application.

Discovered offline messages and how to detect and deal with them.

Arthur is a very simple example of handling private, one-to-one chats with XMPP. In the next chapter
you extend these ideas to a general chat client focused on private messaging with multiple people. You
create an even more complex application for group chat in Chapter 8.

Talking with Friends:
One-on-One Chat

WHAT'’S IN THIS CHAPTER?

Presence subscriptions
Managing rosters and contacts
Message routing

Best practices for one-on-one communication

Y Y Y Y Y

Chat state notifications

For many years, XMPP was used primarily for its original purpose of instant messaging. The
other uses of the protocol, many of which you will see in upcoming chapters, were just the
experiments of a few creative hackers. Today, the instant messaging pieces aren’t as fashionable
as publish-subscribe, group chat, and collaborative applications, but the IM foundations of
XMPP remain extremely important.

Instant messaging systems are first class social networks. Each member has a social graph,
their roster, and can communicate and participate with others. These social tools are baked
into XMPP at a low level, and they make building social applications quite easy. Unlike many
popular social networks, the XMPP network is also federated, connecting many disparate
communities together.

Social and community aspects of applications are becoming increasingly important, and
therefore it is imperative that you gain an understanding of XMPP’s basic social tools. The
chat application in this chapter, called Gab, may not be on the cutting edge of software, but
its parts can be used to add important social features onto nearly any kind of application.
Indeed, many users will expect to see these features as they have grown accustomed to them
in other tools.

104 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

Instant messaging is the oldest use of XMPP, and in this chapter, you build your own basic mes-
saging application for chatting and keeping tabs on friends. Each feature will seem familiar if

you’ve ever used instant messaging applications before and forms a solid basis for developing social
software.

APPLICATION PREVIEW

The interface for this chapter’s application is quite a bit more complex than the ones you’ve built in
previous chapters. Figure 6-1 shows what the finished application will look like.

Gab

add contact... |I|; chat with... ||I| disconnact |

| Darcy | Jane « Darcy
<Elizabeth>|t is your turn to say something now, Mr. Darcy.

<Darcy>Do you talk by rule then, while you are dancing?
Barcy is ryping...

FIGURE 6-1

The chat area is located on the left side. Each chat appears in a separate tab in the interface, allow-
ing the user to keep track of many conversations at once. The roster appears on the right side and

shows the name and status for each of the user’s contacts. Just above these areas are buttons for
common functions.

This interface has a lot going on — multiple tabs, multiple controls, and multiple new pieces of the
XMPP protocol.

GAB DESIGN

Instant messaging in XMPP relies heavily on the use of the <message> and <presence> stanzas. A
<message> stanza is sent whenever a user communicates with another. You saw a basic example of
these stanzas in action in the previous chapter; the Identica API is just a computer program mimick-

ing a user. <presence> stanzas are sent whenever contacts come online, change status to away, or
go offline.

Gab Design | 105

These two stanzas go hand in hand. The <presence> stanza communicates a user’s availability for
chat. If a user is offline or away, it may not be the best time to attempt a conversation. An online user,
however, is probably happy to talk. Once a user has decided to communicate, <message> stanzas do
the work of moving pieces of the conversation between its participants.

Presence

XMPP’s designers were quite sensitive to privacy issues, so presence information is controlled
through subscriptions. In order for Elizabeth to receive presence updates from Wickham, she must
first subscribe to those updates. Furthermore, Wickham must approve her subscription request.

Presence subscriptions are asymmetric. If Elizabeth has a subscription to Wickham’s presence, it
does not necessarily mean that Wickham is subscribed to Elizabeth’s. In most cases, a user will send
a subscription request to someone, and automatically approve the subscription request coming from
that same person.

You see presence subscriptions in detail when you build Gab’s roster area functionality.

Messages

As you saw in the previous chapter, messages are usually quite simple. They do have some special
delivery semantics that you, as an XMPP programmer, must take into account. These semantics center
on addressing and whether a message is addressed to a contact’s bare JID (elizabeth@longbourn.lit) or
to a full JID (elizabeth@longbourn.lit/library).

Messages can also contain more than just the message’s text. They can carry formatting information
(as in the previous chapter’s use of XHTML-IM), metadata, or application-specific payloads. As you
see a little bit later, activity notifications sometimes appear in messages containing no message text
at all!

Gab has two major centers of functionality, the chat area and the roster area, as well as a button bar
for common functions. Each area deals with one type of stanza. The chat area handles the <message>
stanzas and the roster area handles <presences.

Chat Area

Gab must support chats with multiple contacts simultaneously. A tab for each chat creates separation
between all the conversations as well as making it easy for users to navigate to the one they want.

Each incoming message is stamped with the address of the person who sent it. Each tab handles the
incoming messages from a particular sender. An input area for outgoing messages appears at the
bottom of every tab.

New chat tabs are created when a new message is received from a contact who does not already have
an open tab. Tabs can also be created by pressing the New Chat With button in the action bar above
the chat area or by clicking a contact’s name in the roster area.

Each chat will need to display messages, status changes, and activity notifications for the associated user.

106 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

Roster Area

The roster area displays all the user’s contacts as well as their current presence status. This list should
be sorted so that the available contacts appear at the top of the list, followed by the ones who are
away. Offline contacts appear at the very bottom of the list.

Incoming presence information should update the roster area so that the user is always aware of the
latest status for each contact.

Clicking the New Contact button in the action bar adds new contacts to the roster and requests a
presence subscription. You must also handle the case when the new contact requests a subscription
to the user’s own presence so that the user can decide whether to approve or deny the subscription.

With the basic design laid out, it’s time to start working on Gab.

MAKING THE INTERFACE

The HTML for Gab’s interface appears in Listing 6-1. It contains the action bar, followed by the chat-
area <div> and the roster-area <div>. Below these are several dialog boxes that Gab needs — the
login dialog box you’ve seen in previous chapters, the contact dialog box for adding new contacts
to the roster, the chat dialog box for starting new chats, and the approval dialog box for handling
incoming presence subscription requests.

‘) LISTING 6-1: gab.html

Available for <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
daﬂggggﬁ" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-type" content="text/html;charset=UTF-8">

<title>Gab - Chapter 6</title>

<link rel='stylesheet' href='http://ajax.googleapis.com/ajax/libs/jqueryu
i/1.7.2/themes/cupertino/jquery-ui.css'>

<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js'>

</script>

<script src='http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-u
i.js'></script>

<script src='scripts/strophe.js'></script>

<script src='scripts/f1XHR.js'></script>

<script src='scripts/strophe.flxhr.js'></script>

<link rel='stylesheet' type='text/css' href='gab.css'>
<script type='text/javascript' src='gab.js'></script>
</head>
<body>

Making the Interface | 107

<hl>Gab</hl>

<div id='toolbar'>
add contact.. |\
chat with.. ||
disconnect
</div>

<div id='chat-area'>

</div>

<div id='roster-area'>

</div>

<!-- login dialog -->

<div id='login_dialog' class='hidden'>
<label>JID:</label><input type='text' id='jid'>
<label>Password:</label><input type='password' id='password'>

</div>

<!-- contact dialog -->

<div id='contact_dialog' class='hidden'>
<label>JID:</label><input type='text' id='contact-jid'>
<label>Name:</label><input type='text' id='contact-name'>

</div>

<!-- chat dialog -->

<div id='chat_dialog' class='hidden'>
<label>JID:</label><input type='text' id='chat-jid'>

</div>

<!-- approval dialog -->
<div id='approve_dialog' class='hidden'>
<p> has requested a subscription
to your presence. Approve or deny?</p>
</div>
</body>
</html>

The chat area contains a single element, which will become the tab bar. Each visible tab will
correspond to an <1i> child of this element containing the tab’s name. The contents of each tab will
be inserted as a <div> after the element. The jQuery Ul tabs () function will do the hard work
of converting this simple HTML structure into a fully functioning set of chat tabs.

The roster area starts off with an empty list as well. This list will be filled dynamically with roster
contacts once Gab has fetched this information from the server.

Listing 6-2 contains the CSS for Gab. The styling is very simple, but goes a long way to making
Gab’s interface visually appealing.

108 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

\) LISTING 6-2: gab.css

Available for body {

download on . .
Wrox.com font-family: Helvetica;

hl {
text-align: center;

}

.hidden {
display: none

.button ({
padding: 10px;
background-color: #ddd;
border: solid lpx #666;
font-weight: bold;

.button:hover {
background-color: #ddf;

}
#toolbar {
text-align: center;
margin-bottom: 15px;
}

#chat-area {
float: left;
width: 600px;
height: 300px;

.chat-messages {
height: 180px;
border-bottom: solid 2px #ddd;
overflow: auto;

}

#chat-area input {
margin-top: 10px;
width: 95%;

#roster-area {
float: right;
border-left: solid 2px #ddd;
padding: 10px;
width: 250px;
height: 300px;

Building the Roster | 109

.chat-name {
color: #c33;

.chat-message .me {
color: #33c;
}

.chat-event ({
font-style: italic;
font-size: 75%;

.roster-contact {
padding: 3px;

.roster-contact:hover {
background-color: #aaa;
color: white;

.roster-name {
font-size: 150%;

}

.online {
color: #3c3;

.away {
color: #c33;
}

.offline {
color: #ccc;

This interface’s layout and styling are relatively simple, but it doesn’t take much to have a big impact

with powerful tools like HTML and CSS.

Now that the interface is created, you should start hooking up the code for the roster area.

BUILDING THE ROSTER

XMPP chat clients generally perform the following actions when they start:

1. Connect and authenticate to the server.

2. Request the roster.

3. Send initial presence.

110 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

The last step causes the server to send presence probes to contacts for whom the user has a presence
subscription. These probes will result in a <presence> stanza being sent back to the user for each
contact that is online.

Gab will need to replicate this sequence of actions and handle the resulting roster data and presence
updates. First, you will hook up the login dialog box, just as you did in previous chapters, as well as
build the basic connection event handling. Create a file called gab. js and insert the following code,
which should be familiar from the previous chapters:

‘) var Gab = {
connection: null

Available for ~ };
download on

Wrox.com $ (document) .ready (function () {

S('#login_dialog') .dialog({

autoOpen: true,

draggable: false,

modal: true,

title: 'Connect to XMPP',

buttons: {

"Connect": function () {
$ (document) .trigger ('connect', {

jid: s('#jid') .val(),
password: $('#password').val()

1)

$('#password') .val('');

S (this) .dialog('close');
1)

)i

$ (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (

'http://bosh.metajack.im:5280/xmpp-httpbind') ;

conn.connect (data.jid, data.password, function (status) {

if (status === Strophe.Status.CONNECTED) {
$ (document) .trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) . trigger ('disconnected') ;

}

1)
Gab.connection = conn;
1)
$ (document) .bind('connected', function () {
// nothing here yet
1)
$ (document) .bind ('disconnected', function () {
// nothing here yet
)

code snippet gab.js

Building the Roster | 111

Once the user clicks the Connect button, the code starts connecting to the XMPP server.
Successful connections fire the connected event, and any disconnection (or connection failure)
fires disconnected.

Now you can request the roster in the connected event handler.

Requesting Rosters

Rosters are manipulated with IQ-get and IQ-set stanzas that contain a <query> element under the
jabber:iq:roster namespace. Rosters can be retrieved and contacts modified and deleted using
these simple stanzas. You see addition of new contacts soon, but for now, you can focus just on
retrieval.

The following stanza requests Elizabeth’s roster from her server:

<iqg from='elizabeth@longbourn.lit/library'
type="'get'
id='rosterl'>
<query xmlns='jabber:iqg:roster'/>
</ig>

Her server will reply with something similar to the following:

<ig to='elizabeth@longbourn.lit/library'
type='result'
id='rosterl'>
<query xmlns='jabber:iqg:roster'>
<item jid='darcy@pemberley.lit' name='Mr. Darcy' subscription='both'/>
<item jid='jane@longbourn.lit' name='Jane' subscription='both'/>
</query>
</ig>

This roster contains two contacts. The jid attribute is the address of the contact, and the name
attribute is a user-assignable nickname for the contact. The subscription attribute is set based
on the presence subscription status of the contact. It can have the value both if there is a subscrip-
tion in each direction, to if Elizabeth has a subscription but the other party does not, and from if
Elizabeth is not subscribed to the contact’s presence but the other user has a subscription to her
presence. Generally, the user will only want to see contacts in the roster for which the subscription
value is both or to.

Add the following JavaScript code to the connected event handler to retrieve the roster:

‘) $ (document) .bind('connected', function () {
var iq = $ig({type: 'get'}).c('query', {xmlns: 'jabber:iq:roster'});

Available for Gab.connection.sendIQ(iqg, Gab.on_roster);
download on });
Wrox.com !

code snippet gab.js

112 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

J

Next, add the implementation of on_roster () to the Gab object:

on_roster: function (iqg) {

$(iqg).find('item') .each(function () {
Available for var jid = $(this).attr('jid");
d&‘,’:g;oggn':“ var name = $(this).attr('name') || jid;

J

// transform jid into an id
var jid_id = Gab.jid_to_id(jid);

var contact = $("<1i id='" + jid_id + "'>" +
"<div class='roster-contact offline'>" +
"<div class='roster-name'>" +
name +
"</div><div class='roster-jid'>" +
jid +
"</div></div></1i>");

Gab.insert_contact (contact) ;

code snippet gab.js

You’ve probably noticed that there is a new Strophe library function in the preceding event
handler — send1q (). This function handles most of the common ways to deal with IQ stanzas, and
it is described more fully in the next section.

The on_roster () function traverses the roster items, each one in its own <item> element, and calls

insert_contact () with the appropriate HTML. To find the contact later, it is necessary to give its

element an id attribute. The code uses a slightly transformed version of the contact’s bare JID as the
id. The jid_to_id() function is shown here and should be added to the cab object:

jid_to_id: function (jid) {
return Strophe.getBareJidFromJid (jid)

Available for .replace("@", "-")
download on W w_wy .
Wrox.com .replace(".",)i

J

code snippet gab.js

The insert_contact () function is used to keep the contact list sorted correctly. The more available
a contact, the higher in the roster they will appear. If two contacts have the same availability then
they are sorted by their JID. The following implementations of insert_contact () and its helper
function presence_value () should be added to the Gcab object:

presence_value: function (elem) {

if (elem.hasClass('online')) {
Available for return 2;
download on } else if (elem.hasClass('away')) {

Wrox.com

return 1;

Building the Roster | 113

return 0;

b,

insert_contact: function (elem) {
var jid = elem.find('.roster-jid').text();
var pres = Gab.presence_value(elem.find('.roster-contact'));

var contacts = $('#roster-area 1i');

if (contacts.length > 0) {
var inserted = false;
contacts.each(function () {
var cmp_pres = Gab.presence_value (
S (this).find('.roster-contact'));
var cmp_jid = $(this).find('.roster-jid').text();

if (pres > cmp_pres) {
$S(this) .before(elem) ;
inserted = true;
return false;
} else {
if (jid < cmp_jid) {
S (this) .before(elem) ;
inserted = true;
return false;

)

if (!inserted) {
S ('#roster-area ul') .append(elem) ;

}
} else {
S('#roster-area ul') .append(elem) ;

code snippet gab.js

If you give Gab a spin in its current form, you should be able to log in to a server and see your roster
displayed and sorted.

Handling 1Qs

<ig> stanzas are special in XMPP in that they are the only stanzas required to have a response.
Every 1Q-get or 1Q-set stanza must receive a corresponding IQ-result or IQ-error stanza, just as any
GET or POST request must receive a response in the HTTP protocol. All <ig> stanzas must also
contain an id attribute that is unique enough to identify them within a session. The reason for this
is that the same id attribute will be used to tag the response so that the code knows to which IQ-get
or IQ-set stanza a particular IQ-result or IQ-error stanza corresponds.

114 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

Each time you send an IQ-get or IQ-set stanza, you usually want to handle the success and error
responses. This means that you must set up a stanza handler for each IQ-get or IQ-set you send.
Also, you’ll need to take care that your id attributes are unique so that incoming responses are not
ambiguous.

The send1g () function wraps all these requirements and the associated behavior in an easy-to-use
interface. Instead of creating a unique id value, setting up success and error handlers, and then
sending out the <ig> stanza, sendIQ () accepts an <ig> stanza, ensures it has a unique id, automat-
ically sets up handlers with the success and error callbacks you provide, and ensures the handlers
are properly cleaned up after your callbacks are executed.

Calls to send10 () look like this:

Connection.sendIQ(ig stanza, success_callback, error_callback);

The success and error callbacks are both optional. The success callback fires if an IQ-result is received,
and the error callback fires on an IQ-error. Both callbacks are passed a single parameter — the
response stanza.

In addition, sendIQ () accepts a timeout value as an optional fourth parameter. If a response to the
IQ-get or IQ-set stanza is not received within the timeout period, the error callback is automatically
triggered. This timeout can be very useful for making your code robust in the presence of network
or service errors that cause responses to be delayed or unsent.

sendIQ () makes dealing with IQ stanzas extremely easy, and you see a lot more of it in later
chapters.

Updating Presence Status

After the roster is retrieved, the code should send initial presence to kick off the presence probes and
presence updates from the user’s contacts. In order not to miss any updates, you should always set
up the appropriate handler before you send a stanza that will trigger events of interest. Modify the
on_roster () handler by adding the following highlighted code:

‘) on_roster: function (iqg) {
$(iqg) .find('item') .each(function () {

dAvaiIellbIt(aifor var jid = $(this).attr('jid");
ownload on - : . . i d.
Wrox aom var name = $(this).attr('name') || jid;

var jid_id = Gab.jid_to_id(jid);

var contact = $("<1i id='" + jid_id + "'>" +
"<div class='roster-contact offline'>" +
"<div class='roster-name'>" +
name +
"</div><div class='roster-jid'>" +
jid +
"</div></div></1i>");

Gab.insert_contact (contact) ;

Building the Roster | 115

)

// set up presence handler and send initial presence
Gab.connection.addHandler (Gab.on_presence, null, "presence");
Gab.connection.send($pres());

code snippet gab.js

Next, implement the on_presence () function to update the list of contacts accordingly. The follow-
ing code should be added to the cab object:

‘) on_presence: function (presence) {
var ptype = $(presence).attr('type');

Available for var from = $(presence).attr('from');
download on
Wrox.com X

if (ptype !== 'error') {

var contact = $('#roster-area li#' + Gab.jid_to_id(from))
.removeClass ("online")
.removeClass ("away")
.removeClass ("offline");

if (ptype === 'unavailable') {
contact.addClass ("offline");
} else {
var show = $(presence).find("show") .text();
if (show === "" || show === "chat") {
contact.addClass("online");
} else {

contact.addClass ("away") ;

}

var 1li = contact.parent();
1li.remove() ;
Gab.insert_contact(1li);

return true;

code snippet gab.js

The presence stanza handler simply updates the CSS class of the contact in the list, which causes the
browser to update the screen, and then removes the contact and reinserts it to keep the list correctly
ordered. The on_presence () handler uses the same jid_to_id() transformation as on_roster () to
find the correct element to modify.

Test out Gab by using it to log in to your favorite account. You should see your roster load and be
able to watch the colors change as your contacts come online, change status, and go offline.

116 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

Adding New Contacts

Gab already works well for seeing your current contacts, but you must also add functionality so that
users can create new ones. New contacts are created in two ways: users can click Add Contact and
enter in the contact’s information, or they can receive and accept a presence subscription from some-
one new.

First, you should set up the new contact dialog box and bind the c1ick event on the appropriate
button to open the dialog box. Add the following code to the document ready function:

‘) S ('#contact_dialog') .dialog ({

autoOpen: false,

Available for draggable: false,
download on .
Wrox.com mc?dal. true,
title: 'Add a Contact',
buttons: {
"Add": function () {

$ (document) . trigger ('contact_added', {
jid: $('#contact-jid').val(),
name: $('#contact-name').val()

1)

$('#contact-jid').val('"');
S ('#contact-name').val('"');
S (this) .dialog('close');

1)

’

S ('#new-contact') .click(function (ev) {
S ('#contact_dialog') .dialog('open')
1)

code snippet gab.js

The dialog box will fire the contact_added event when the user clicks the Add button. You’ll need
to handle this event to send the appropriate XML to the server to actually add the contact to the
user’s roster. The following handler should be added after the other document event bindings at the
end of gab. js:
‘) S (document) .bind('contact_added', function (ev, data) {
var ig = $ig({type: "set"}).c("query", {xmlns: "jabber:ig:roster"})

Available for .c("item", data);

download on ; ; .
Wrox.com Gab.connection.sendIQ(iq) ;

var subscribe = S$pres({to: data.jid, "type": "subscribe"});
Gab.connection.send (subscribe) ;

1)

code snippet gab.js

Building the Roster | 117

The contact_added event handler creates a roster add IQ-set stanza and sends it to the server. Then
it sends a presence stanza of type subscribe to the new contact to request a subscription to the con-
tact’s presence updates. Notice that there is no code to update the UI with the new roster state. Instead
of handling this here, you will create another handler, which will be notified when the user’s roster
state changes.

Responding to Roster Changes

Users may connect to their XMPP server multiple times, with each connection being assigned its
own resource (see Chapter 1 for more details on client resources). Any of these resources could make
changes to the roster. To keep every resource synchronized with respect to the roster, an XMPP
server will broadcast roster state changes to all connected resources.

Each connected resource will get notified of roster additions, deletions, and modifications, even the
ones the resource itself performed. Some actions, like requesting a presence subscription, may cause
the roster to change as a side effect. These changes will also be broadcast in the same manner.

Imagine that Jane has just used Gab’s new contact dialog box to add Bingley to her roster. Just like
the code you saw earlier, Jane’s client would send an 1Q-set like the one shown here:

<ig from='jane@longbourn.lit/sitting_room'
type="'set'
id='addl'>
<query xmlns='jabber:iqg:roster'>
<item jid='bingley@netherfield.lit' name='Mr. Bingley'/>
</query>
</ig>

Her server will respond with the IQ-result acknowledging her request:

<ig to='jane@longbourn.lit/sitting room' type='result' id='addl'/>

Her server will also broadcast out the roster state change in a very similar IQ-set stanza:

<ig to='jane@longbourn.lit/sitting_room'
type="'set'
id='changedl'>
<query xmlns='jabber:iqg:roster'>
<item jid='bingley@netherfield.lit' name='Mr. Bingley' subscription='none'/>
</query>
</ig>

The server’s reply may contain attributes that were unspecified in the original IQ-set from Jane, as
with the subscription attribute in the preceding code. Note that, just as with any other IQ stanza,
Jane must respond with an IQ-result or IQ-error stanza:

<ig type='result' id='changedl'/>

If Jane had been connected from multiple resources, each of those connections would have received
the same roster addition notification.

118 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

Because the server broadcasts state changes to all resources, many XMPP clients will wait for this
notification before updating the Ul This also has the advantage that the roster will not display an
inconsistent state; if the roster was updated immediately before the response was received, the Ul
might reflect the addition when the server has actually rejected the operation.

You can now add support for these roster state changes to Gab, which will not only show the modi-
fied roster to the user after they add a new contact, but also show any modifications, as they hap-
pen, from the user’s other resources. The following highlighted lines show the changes that you
must make to the connected event handler:

‘) $ (document) .bind('connected', function () {
var ig = $ig({type: 'get'}).c('query', {xmlns: 'jabber:ig:roster'});

Available for Gab.connection.sendIQ(ig, Gab.on_roster);

download on

Wrox.com .
Gab.connection.addHandler (Gab.on_ roster_changed,

"jabber:iqg:roster", "iq", "set");

code snippet gab.js

The on_roster_changed () function defined in the following code will also need to be added to the

Gab object:
‘) on_roster_changed: function (iqg) {
$(iqg).find('item') .each(function () {
Available for var sub = $(this).attr('subscription');
download on P13 : gy .
Wrox.com var jid = $(this).attr('jid');

var name

= $(this).attr('name') || jid;
var jid_id =

Gab.jid_to_id(jid);

if (sub === 'remove') {
// contact is being removed
$S('"#' + jid_id) .remove() ;

} else {

// contact is being added or modified

var contact_html = "<1i id='" + jid_id + "'>" +
"<div class='" +
($('#' + jid_id).attr('class') || "roster-contact offline") +
st
"<div class='roster-name'>" +
name +
"</div><div class='roster-jid'>" +
jid +

"</div></div></1i>";

if ($('#' + jid_id).length > 0) {

S('#' + jid_id) .replaceWith(contact_html) ;
} else {

Gab.insert_contact (contact_html) ;

Building the Roster | 119

)

return true;

code snippet gab.js

This handler is triggered anytime an IQ-set is received for a roster update. If the subscription attri-
bute of the <item> child is remove, the corresponding roster item is deleted. Otherwise a new roster
item is added or an old one replaced. You can find more information on roster manipulations in
Chapter 14.

Gab will now keep the roster’s state in sync with other clients, show presence updates from contacts,
and let users add new contacts.

Dealing with Subscription Requests

Roster additions may also happen as a result of new presence subscription requests being accepted
by the user. Recall that in an earlier example you saw Jane add Bingley as a contact. After adding
him to the roster, she would send a presence subscription request. Gab takes these same steps in the
contact_added event handler you saw earlier.

Jane’s subscription request to Bingley would appear as shown here:

<presence from='jane@longbourn.lit/sitting_room'
to='bingley@netherfield.lit"
type='subscribe' />

Bingley can approve or deny her request by replying with a presence stanza containing a type attri-
bute of subscribed or unsubscribed, respectively. His response, approving Jane’s subscription, is
shown here:

<presence from='bingley@netherfield.lit/parlor’
to='jane@longbourn.lit/sitting_room'
type="'subscribed'/>

If Bingley wanted to deny Jane’s subscription request, this stanza would have had a type of
unsubscribed.

If Bingley had not already had Jane as a contact in his roster, the server would immediately add Jane
and send him a roster update including the subscription state.

<ig to='bingley@netherfield.lit/parlour’
type="'set'
id='newcontactl'>
<query xmlns='jabber:iqg:roster'>
<item jid='elizabeth@longbourn.lit'
subscription="from'/>
</query>
</ig>

120 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

The subscription attribute has a value of from because Bingley does not yet have a subscription
to Jane’s presence. Normally, he would now request a subscription to her presence, and if Jane
approves the request, the final subscription state would be both.

The roster update handler you created earlier will also work for change notifications triggered by
approving a subscription request, but you must still handle the request itself. The following code
should be added to the document ready handler to enable the approval dialog box:

\) S ('#approve_dialog') .dialog ({
autoOpen: false,
Available for draggable: false,
dmg;‘fgg{g“ mgdal: true, o
title: 'Subscription Request',
buttons: {
"Deny": function () {
Gab.connection.send (S$pres ({
to: Gab.pending subscriber,
"type": "unsubscribed"}));
Gab.pending_subscriber = null;

$(this) .dialog('close');
},

"Approve": function () {
Gab.connection.send (Spres ({
to: Gab.pending_ subscriber,
"type": "subscribed"}));
Gab.pending_subscriber = null;
S(this) .dialog('close');

code snippet gab.js

The Approve and Deny buttons send a response <presence> stanza with a type attribute set to
either subscribed or unsubscribed, respectively. If the request is approved, the server generates a
roster modification; if the request is denied, the sender is notified of the rejection, and the roster will
not be changed.

Next, you must modify the presence handler you wrote earlier to handle incoming subscription
requests. The following highlighted lines show the needed modifications to the Gab object:

‘) pending subscriber: null,

Available for on_presence: function (presence) {
d&‘;:g;“:gnoln var ptype = $(presence).attr('type');
’ var from = $(presence).attr('from');

if (ptype === 'subscribe') {
// populate pending subscriber, the approve-jid span, and
// open the dialog
Gab.pending subscriber = from;

Building the Roster | 121

$ ('#approve-jid') .text (Strophe.getBareJidFromJid (from)) ;
$ ('#approve_dialog') .dialog('open');
} else if (ptype !== 'error') {
var contact = $('#roster-area 1i#' + Gab.jid_to_id(from))
.removeClass ("online")
.removeClass ("away")
.removeClass ("offline");

if (ptype === 'unavailable') {
contact.addClass ("offline");
} else {
var show = $(presence).find("show") .text();
if (show === "" || show === "chat") {
contact.addClass ("online") ;
} else {

contact.addClass ("away") ;

}
var 1li = contact.parent();

1i.remove();
Gab.insert_contact(1li);

return true;

code snippet gab.js

Note that the pending subscriber attribute has been added to the Gab object. This is used by
the new subscribe request handling code. When the on_presence () handler receives a subscribe
request, it just populates this attribute and prepares and opens the dialog box. The user’s action in

the dialog box determines which kind of response is generated.

Gab will now handle the incoming subscription requests, but generally when a request is approved the
user will want to send a complementary subscribe request so that the final subscription is bi-directional.
Modify the Approve button’s action to match the highlighted lines in the following code:

‘) "Approve": function () {
Gab.connection.send (Spres ({
Available for to: Gab.pending_subscriber,
download on " W : " .
Wrax.com type": "subscribed"}))

Gab.connection.send($pres ({
to: Gab.pending subscriber,
"type": "subscribe"}));

Gab.pending_subscriber = null;

code snippet gab.js

122 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

Now, whenever the user approves a subscription request, Gab will send a subscription request back.
Gab’s roster area is finished for the time being, and it’s time to do some work on the chat area.

BUILDING THE CHATS

Chatting is the heart of Gab, and all the action takes place in the chat area. You’ll be using jQuery
UD’s tab controls to make displaying and switching between multiple chats very easy. Each of the
chat tabs will represent a conversation with a particular contact, and each tab will also have an
input area for sending messages. A new chat tab will appear whenever a new message from a user
without an existing tab is received. Clicking a contact in the roster will either select an existing chat
tab or create a new one if one doesn’t already exist.

Before you begin on the code, you should review the basics of the jQuery UI tab control if you
haven’t seen it before.

Working with Tabs

jQuery UD’s tab control is quite powerful. It provides familiar tabbing functionality that you have
probably seen before in a variety of desktop and web applications. It imposes some specific con-
straints on element ids and structure, and it also has a lot of options.

The tabbed area contains a bar, which holds all of the labeled tabs. This bar appears as a ele-
ment in the HTML. The Gab application’s HTML already contains this element as you can see at
the beginning of the chapter in Listing 6-1. Each tab will have an <11i> child that contains its name
as a hyperlink with a special href attribute.

Following is an example of the HTML that is needed for a tabbed area containing two tabs:
<div id='tab-example'>

First Tab</1li>
Second Tab

<div id='tab-example-1'>
<p>This is the first tab. Neat!</p>
</div>

<div id='tab-example-2'>
<p>And here is the second tab.</p>
</div>
</div>

Each tab has an <1i> entry in the element as well as a corresponding <div> containing the
tab’s content. The href attribute and the <div> element’s id attribute must be the same except for
the leading # in the href attribute.

The tab area can be initialized with a call to tabs (). For example, to turn the preceding HTML
into a tab control, run:

S ('#tab-example') .tabs () ;

Building the Chats | 123

New tabs are added with the add subcommand of tabs (). You can add a new tab to the preceding

ones with:
S ('#tab-example') .tabs('add', '#tab-example-3', 'Third Tab');
S ('#tab-example-3') .html ("<p>Finally, a third tab!</p>");

You can also programmatically change the selected tab with the select subcommand. Switch to the
second tab with:

S('#tab-example') .tabs('select', '#tab-example-2');

Tabs support a number of other subcommands as well as various options that control their behavior.
Please refer to jQuery UD’s documentation if you’d like to explore the additional functionality.

You will put your new tabbing knowledge to use in the next section when you create some chat
windows.

Creating New Chats

The easiest place to start creating chats is by letting users click contacts in the roster to create or
select chat windows. Before you can implement these actions though, you must first initialize the
chat area. Add the following code to the document ready handler:

‘) $('#chat-area') .tabs().find('.ui-tabs-nav') .sortable({axis: 'x'});

gmmﬁ ':; code snippet gab.js

Wrox.com
The code initializes the chat area as a tabbed control and then makes the tabs sortable in the tab bar
using jQuery UD’s sortable () function. This allows the user to reorder the tabs after they are cre-
ated so that they appear exactly where the user prefers.

Now that you have a real tab area, you’ll need to respond to click events on the roster contacts. Up
to now, you’ve always used bind () or click () to set up event handlers, but now you’ll have to use
live(). Like bind (), 1ive () attaches a handler function to an event, but it will also do this for any
elements that are created after 1ive () is called. Because roster contacts are being added dynami-
cally, you must use 1ive () to ensure that any future roster contacts will still get the right event

handlers.

Place the following click event handler into Gab’s document ready handler:

‘) $('.roster-contact').live('click', function () {
var jid = $(this).find(".roster-jid").text();

Available for var name = $(this).find(".roster-name").text();
download on var jid_id = Gab.jid_to_id(jid);

if ($('#chat-' + jid_id).length > 0) {

S ('#chat-area') .tabs('select', '#chat-' + jid_id);
} else {
$S('#chat-area') .tabs('add', '#chat-' + jid_id, name);

$('#chat-' + jid_id) .append (
"<div class='chat-messages'></div>" +
"<input type='text' class='chat-input'>");

124 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

1)

}

$('#chat-' + jid_id).data('jid', jid);

$('#chat-' + jid_id + ' input').focus();

code snippet gab.js

This click handler first finds the JID and name of the contact. It determines if a chat tab already
exists for this contact, and if so, selects it. Otherwise, it creates a new chat tab for the contact and
initializes its content. Finally, the text input box is focused so that the user can start typing immedi-
ately. Notice that the jQuery data () function is used to stash the JID of the contact with the <div>
element. This JID will be needed by other code later.

These newly created chat tabs aren’t very interesting yet. You need to enable the user to send mes-
sages and update the content when new messages are received.

Sending Messages

You should send the user’s message whenever they hit the Enter key inside the input box. Once
again, you can use jQuery’s live event handlers to do this:

J

Available for
download on
Wrox.com

S('.roster-input').live('keypress', function (ev) {

if

(ev.which === 13) {
ev.preventDefault () ;

var body = $(this).val();
var jid = $(this).parent().data('jid');

Gab.connection.send ($Smsg ({
to: jid,
"type": "chat"
}).c('body') .t (body));

S (this) .parent().find('.chat-messages') .append (
"<div class='chat-message'><" +
"" +
Strophe.getNodeFromJid (Gab.connection.jid) +
">" +
body +
"</div>") ;

Gab.scroll_chat(Gab.jid _to_id(jid));

S(this).val('');

code snippet gab.js

Building the Chats | 125

First, the default action of adding the Enter key to the data is prevented. The text of the message and
the stashed JID are retrieved, and they are both used to construct the message that is sent. The text is
also echoed to the display, and the input box is cleared to make it ready for the user to enter new text.

Now, you must handle incoming messages so that their content can be placed in the appropriate tab.
The following highlighted lines show the required modifications to the connected event handler to
set up a new <message> stanza handler:

‘) $ (document) .bind('connected', function () {
var iq = $ig({type: 'get'}).c('query', {xmlns: 'jabber:iqg:roster'});

Available for Gab.connection.sendIQ(ig, Gab.on_roster);
download on

Wrox.com)
Gab.connection.addHandler (Gab.on_roster_changed,

"jabber:iqg:roster", "ig", "set");

Gab.connection.addHandler (Gab.on_message,
null, "message", "chat");

code snippet gab.js

Next, you must implement on_message () and its helper function scroll_chat () in the Gab object:

‘) on_message: function (message) {
var jid = Strophe.getBareJidFromJid($ (message) .attr('from'));

Available for var jid_id = Gab.jid_to_id(jid);
download on
Wrox.com . .

if ($('#chat-' + jid_id).length === 0) {

$('#chat-area') .tabs('add', '#chat-' + jid_id, jid);
$('#chat-' + jid_id) .append(
"<div class='chat-messages'></div>" +
"<input type='text' class='chat-input'>");
$('#chat-' + jid_id).data('jid', jid);
}

$('#chat-area') .tabs('select', '#chat-' + jid_id);
$('#chat-' + jid_id + ' input').focus();

var body = $(message).find("html > body");

if (body.length === 0) {
body = $(message).find('body');
if (body.length > 0) {
body = body.text ()
} else {
body = null;
}

} else {

126 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

body = body.contents();

var span = $("");
body.each (function () {
if (document.importNode) {
$ (document . importNode (this, true)) .appendTo (span) ;
} else {
// IE workaround
span.append (this.xml) ;

}
1)
body = span;
}
if (body) {
// add the new message
S('#chat-' + jid_id + ' .chat-messages') .append (
"<div class='chat-message'>" +
"<" +
Strophe.getNodeFromJid (jid) +
">" +
"</div>") ;
S('#chat-' + jid_id + ' .chat-message:last .chat-text')
.append (body) ;
Gab.scroll_chat (jid_id);
}

return true;

I

scroll_chat: function (jid_id) {
var div = $('#chat-' + jid_id + ' .chat-messages').get(0);
div.scrollTop = div.scrollHeight;

code snippet gab.js

The on_message () handler is slightly involved. First, it detects whether an existing chat tab is
available for this contact, and if not, creates one. Then it selects the tab and focuses the input box.
Once the tab has been properly displayed, it then extracts the body of the message (looking for
XHTML-IM payloads like you saw in Chapter 5), creates a new <div> element for the message,
and then appends the body. Finally, it returns true so that it will continue to be called for future
messages.

Gab is now a simple, but capable, instant messaging client. Take a few minutes to play around with
it and make sure it works as expected.

Best Practices for Instant Messaging | 127

BEST PRACTICES FOR INSTANT MESSAGING

Gab is currently a little too simple, and it doesn’t conform to the standard best practices for com-
munication. For example, outgoing messages are always sent to the bare JID of the user, even if a
full address is known for them. Messages need to be addressed with care because their delivery is
affected by a server’s routing rules.

Understanding Message Routing

XMPP <message> stanzas sent to connected clients are routed specially by XMPP servers. Particularly,
the server will do different things depending on whether the to attribute is a bare JID or a full JID.

Messages addressed to a user’s bare JID are delivered to the connected resource with the highest
priority. If multiple resources are tied for the highest priority, the server may choose to deliver the
message to all of them or choose the best one. How a server chooses the best resource for delivery is
server dependent. Most servers deliver messages to all tied resources, but you may encounter servers
that attempt to guess by estimating the most recently active resource.

Messages addressed to full JIDs are delivered only to that specific resource, or if that resource is
offline, potentially to offline storage until the user next comes online.

Because sending a message to a bare JID may result in multiple deliveries, it is best to address mes-
sages to the full JID as soon as you receive the full address of the other party.

For example, if you haven’t recently been communicating with a user, you should address a message
to their bare JID. Once they respond, you will know which resource they are using to talk to you,
and you can then use that destination to address future messages to them.

Users may go online and offline or away and back during a chat. Because they may want to receive
messages at a different location after these events, it is best to forget the full addresses of users
whenever their presence status changes. Once you have their first reply, you can again start address-
ing messages to the potentially new, full address.

Now that you have a better understanding of message routing, you can update Gab to do the right
thing when sending messages.

Addressing Messages Better

Changing Gab to address messages to full JIDs is very easy. The address to send messages to is
already stored in the chat tab’s <div> element, so all that is needed is to replace the bare JID stored
there with the user’s full JID. Of course, you only want to do this once you know the full address in
on_message (). Modify the following highlighted lines in your on_message () handler:

‘) on_message: function (message) {
var full jid = $(message).attr('from');

Available for var jid = Strophe.getBareJidFromJid(full_ jid);
dmiugg on var jid_id = Gab.jid_to_id(jid);
if ($('#chat-' + jid_id).length === 0) {

$('#chat-area') .tabs('add', '#chat-' + jid _id, jid);

128 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

$('#chat-' + jid_id).append(
"<div class='chat-messages'></div>" +
"<input type='text' class='chat-input'>");
}

$('#chat-' + jid_id).data('jid', full_jid);

$('#chat-area') .tabs('select', '#chat-' + jid_id);
$('#chat-' + jid_id + ' input').focus();

var body = $(message).find("html > body");

if (body.length === 0) {
body = $(message).find('body');
if (body.length > 0) {
body = body.text ()

} else {
body = null;
}
} else {

body = body.contents() ;

var span = $("");
body.each (function () {
if (document.importNode) {
$ (document . importNode (this, true)).appendTo (span) ;
} else {
// IE workaround
span.append (this.xml) ;

}
1)
body = span;
}
if (body) {
// add the new message
S('#chat-' + jid_id + ' .chat-messages') .append (
"<div class='chat-message'>" +
"<" +
Strophe.getNodeFromJid (jid) +
">" +
"</div>") ;
S('#chat-' + jid_id + ' .chat-message:last .chat-text')
.append (body) ;
Gab.scroll_chat (jid_id);
}

return true;

code snippet gab.js

Best Practices for Instant Messaging | 129

Whenever a message is received from a user, the JID data stashed in the <div> element for that user
is updated to the full address. Now all that remains is to switch back to the bare JID whenever a
user’s presence changes. Make the following highlighted changes to your on_presence () handler:

‘) on_presence: function (presence) {
var ptype = $(presence).attr('type');

Available for var from = $(presence).attr('from');
download on
Wrox.com \ ,

if (ptype === 'subscribe') {

// populate pending_subscriber, the approve-jid span, and
// open the dialog
Gab.pending_subscriber = from;
S ('#approve-jid') .text (Strophe.getBareJidFromJid (from)) ;
$ ('#approve_dialog') .dialog('open');
} else if (ptype !== 'error') {
var contact = $('#roster-area 1li#' + Gab.jid_to_id(from))
.removeClass("online")
.removeClass ("away")
.removeClass("offline");

if (ptype === 'unavailable') {
contact.addClass ("offline");
} else {
var show = $(presence).find("show") .text();
if (show === "" || show === "chat") {
contact.addClass ("online") ;
} else {

contact.addClass ("away") ;

}

var 1li = contact.parent();
1i.remove();
Gab.insert_contact(1li);

}

// reset addressing for user since their presence changed
var jid_id = Gab.jid _to_id(from);
$('#chat-' + jid_id).data('jid', Strophe.getBareJidFromJid(fom));

return true;
code snippet gab.js

Gab should now switch between full and bare addressing as the user’s presence changes and it learns
about their connected resources.

130

| CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

ADDING ACTIVITY NOTIFICATIONS

Many clients support sending and receiving activity notifications. These notifications inform the
opposite party when someone is typing, paying attention to the chat, or has left or closed the chat.
These events are all defined in Chat State Notifications (XEP-0085). To make Gab more user
friendly, you will add support for displaying and sending typing notifications.

Understanding Chat States

Following are the five defined chat states:

> Active: The user is paying attention to the chat.
Inactive: The user is not paying attention to the chat.
Composing: The user is typing a message for the chat.

>
>
> Paused: The user was typing, but has briefly stopped.
>

Gone: The user has closed or left the chat.

Each state can transition to one or more of the other states. For example, a user in the composing
state may move to paused or to active, and a user in the gone state can only move to active. You can
find the full list of state transitions in XEP-0085.

Some clients may not support activity notifications. Gab assumes that all clients will understand
these, which is not optimal, but shouldn’t cause any problems because elements that are not under-
stood will be ignored. In a real-world application, you would want to detect support for this feature
and disable sending the notifications to the other party if their client couldn’t process them. The
specification details several ways in which this detection can be done.

Notifications are communicated in <message> stanzas. Some states are communicated alongside the
message body, but some are sent in their own messages that do not contain bodies. The following
example stanzas show a user entering the composing state, and then sending the completed message
along with the transition to the active state:

<message from='darcy@pemberley.lit/rosings'
to="'elizabeth@longbourn.lit/hunsford'
type='chat'>
<composing xmlns='http://jabber.org/protocol/chatstates'/>
</message>

<message from='darcy@pemberley.lit/rosings'
to='elizabeth@longbourn.lit/hunsford"
type='chat'>
<body>In vain have I struggled. It will not do. My feelings will not be repressed.
You must allow me to tell you how ardently I admire and love you.</body>
<active xmlns='http://jabber.org/protocol/chatstates'/>
</message>

Darcy’s client first sends a notification to Elizabeth that he has begun typing. Several seconds later, a
normal message is received with the beginnings of his proposal along with a second notification that

Adding Activity Notifications | 131

he is paying attention to this chat. Elizabeth’s client can use these notifications to modify her display
appropriately.

Sending Notifications

Gab supports only the active and composing states. When the user starts typing, the composing
state is communicated to the intended recipient. Upon completion of the message, the active state is
sent. This is exactly the series of events shown in the previous example.

First, you should modify the keypress event handler of the chat tab input boxes to send the com-

posing notification. It will also need to append the active state notification once the message is sent.
The modified handler is shown here:

J

Available for
download on
Wrox.com

$('.chat-input').live('keypress', function (ev) {
var jid = $(this).parent().data('jid');

if (ev.which === 13) {
ev.preventDefault () ;

var body = $(this).val();

var message = $msg({to: jid,
"type": "chat"})
.¢c('body') .t (body) .up()
.c('active', {xmlns: "http://jabber.org/protocol/chatstates"});
Gab.connection.send(message) ;

$(this) .parent().find('.chat-messages') .append (
"<div class='chat-message'><" +
"<gspan class='chat-name me'>" +
Strophe.getNodeFromJid (Gab.connection.jid) +
">" +
body +
"</div>") ;

Gab.scroll_chat (Gab.jid_to_id(jid));

$S(this).val('');
$(this) .parent () .data('composing', false);
} else {
var composing = $(this).parent().data('composing');
if (!composing) {
var notify = $msg({to: jid, "type": "chat"})
.c('composing', {xmlns: "http://jabber.org/protocol/chatstates"});
Gab.connection.send(notify);

$(this) .parent () .data('composing', true);

code snippet gab.js

132 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

The user’s chat partner will now get typing notifications as the user starts typing. If you run Gab
and start a conversation with yourself in another client, you can see this in action.

Receiving Notifications

You’ll also want to add support to Gab for incoming typing notifications. You can do this by watch-
ing for the composing notification in incoming messages. Add the following highlighted code to the
on_message()handkn

J

Available for
download on
Wrox.com

on_message: function (message) {

var full_jid = $(message) .attr('from');
var jid = Strophe.getBaredidFromJid (full_jid);
var jid_id = Gab.jid_to_id(jid);

if ($('#chat-' + jid_id).length === 0) {
S ('#chat-area') .tabs('add', '#chat-' + jid_id, jid);
$('#chat-' + jid_id) .append (
"<div class='chat-messages'></div>" +
"<input type='text' class='chat-input'>");

}
$('#chat-' + jid_id).data('jid', full_jid);

$('#chat-area') .tabs('select', '#chat-' + jid_id);
$('#chat-' + jid_id + ' input').focus();

var composing = $(message).find('composing');
if (composing.length > 0) {
$('#chat-' + jid_id + ' .chat-messages').append(
"<div class='chat-event'>" +
Strophe.getNodeFromJid(jid) +
" is typing..</div>");

Gab.scroll_chat(jid_id);

}
if (body.length === 0) {
body = $(message).find('body');
if (body.length > 0) {
body = body.text ()
} else {
body = null;
}
} else {

body = body.contents() ;

var span = $("") ;
body.each (function () {
if (document.importNode) {
$ (document . importNode (this, true)).appendTo (span) ;
} else {
// IE workaround
span.append (this.xml) ;

Final Touches | 133

)

body = span;

if (body) {
// remove notifications since user is now active
$('#chat-' + jid_id + ' .chat-event').remove();

// add the new message

$('#chat-' + jid_id + ' .chat-messages') .append (
"<div class='chat-message'>" +
"<" +
Strophe.getNodeFromJid(jid) +
">" +
"</div>") ;

S ('#chat-' + jid_id + ' .chat-message:last .chat-text')
.append (body) ;

Gab.scroll_chat(jid_id);

return true;

code snippet gab.js

Every time the other party starts typing, Gab will now show a small message informing the user of
this activity. When the other party finally sends their message, the typing notification will disappear.

FINAL TOUCHES

You still have two small pieces left, the two other buttons in the toolbar.

The Disconnect button is quite simple. Add the following click event handler to the document ready
function:

‘) $('#disconnect') .click(function () {
Gab.connection.disconnect () ;

Availablefor }) ;
download on
Wrox.com

code snippet gab.js

You must also reset the Ul in the disconnected event handler. Make the highlighted changes to the
handler:

‘) $ (document) .bind('disconnected', function () {
Gab.connection = null;

Available for Gab.pending subscriber = null;

download on

Wrox.com
$ ('#roster-area ul').empty();

134 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

$ ('#chat-area ul').empty();
$ ('#chat-area div').remove();

$('#login_dialog') .dialog('open');
1)

code snippet gab.js

To implement the New Chat dialog box, you must first initialize the dialog box, and then bind the
button click to the dialog ('open') call. Add the following code to the document ready function to

do this:
‘) $ (' #chat_dialog').dialog ({
autoOpen: false,
Available for draggable: false,
d&‘,’:g;oggn':“ modal: true,
’ title: 'Start a Chat',
buttons: {
"Start": function () {
var jid = $('#chat-jid').val();
var jid_id = Gab.jid_to_id(jid);
S ('#chat-area') .tabs('add', '#chat-' + jid_id, jid);
$('#chat-' + jid_id) .append (
"<div class='chat-messages'></div>" +
"<input type='text' class='chat-input'>");
$('#chat-' + jid_id) .data('jid', jid);
S ('#chat-area') .tabs('select', '#chat-' + jid_id);
$('#chat-' + jid_id + ' input').focus();
S ('#chat-jid').val('');
S (this) .dialog('close');
}
}
1)
S ('#new-chat').click(function () {
S ('#chat_dialog') .dialog('open');
1)

code snippet gab.js

With these last additions, the application is complete. Gab has become more than just a simple chat
client with its support for notifications, sortable tabs, multiple chats, and the roster. The final version
of the code appears in Listing 6-3.

Final Touches | 135

‘) LISTING 6-3: gab.js

Available for var Gab = {
download on . .
Wrox.com connection: null,
jid_to_id: function (jid) {
return Strophe.getBareJidFromJid(jid)
.replace(“@" , n_n)
.replace(“ " , ||_||) ;
}

on_roster: function (iqg) {

$S(ig).find('item') .each(function () {
var jid = $(this).attr('jid");
var name = $(this).attr('name') || jid;

// transform jid into an id
var jid_id = Gab.jid_to_id(jid);

var contact = $("<1i id='" + jid_id + "'>" +
"<div class='roster-contact offline'>" +
"<div class='roster-name'>" +
name +
"</div><div class='roster-jid'>" +
jid +
"</div></div></1i>") ;

Gab.insert_contact (contact) ;
)

// set up presence handler and send initial presence
Gab.connection.addHandler (Gab.on_presence, null, "presence");
Gab.connection.send (Spres());

}
pending_subscriber: null,

on_presence: function (presence) ({
var ptype = $(presence).attr('type');
var from = $(presence).attr('from');
var jid_id = Gab.jid_to_id(from) ;

if (ptype === 'subscribe') {
// populate pending subscriber, the approve-jid span, and
// open the dialog
Gab.pending_subscriber = from;
S ('#approve-jid') .text (Strophe.getBareJidFromJid (from)) ;
$ ('#approve_dialog') .dialog('open');

} else if (ptype !== 'error') {

var contact = $('#roster-area 1li#' + jid_id + ' .roster-contact')

.removeClass ("online")
.removeClass ("away")
.removeClass ("offline");

if (ptype === 'unavailable') {
contact.addClass("offline");

continues

136 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

LISTING 6-3 (continued)

} else {
var show = $(presence).find("show") .text();
if (show === "" || show === "chat") {
contact.addClass ("online") ;
} else {

contact.addClass ("away") ;
}
}

var 1i = contact.parent();
li.remove();
Gab.insert_contact(1li);

}

// reset addressing for user since their presence changed
var jid_id = Gab.jid_to_id(from) ;
$('#chat-' + jid_id).data('jid', Strophe.getBareJidFromJid (from)) ;

return true;

Y,

on_roster_changed: function (iqg) {
S(iqg).find('item') .each(function () {
var sub = $(this).attr('subscription');
var jid = $(this).attr('jid");
var name = $(this).attr('name') || jid;
var jid_id = Gab.jid_to_id(jid);

if (sub === 'remove') {
// contact is being removed
S('#' + jid_id) .remove() ;

} else {

// contact is being added or modified

var contact_html = "<1i id='" + jid_id + "'>" +
"<div class='" +
($('#' + jid_id).attr('class') || "roster-contact offline") +
R
"<div class='roster-name'>" +
name +
"</div><div class='roster-jid'>" +
jid +
"</div></div></1i>";

if (S('#' + jid_id).length > 0) {

S('#' + jid_id) .replaceWith(contact_html) ;
} else {

Gab.insert_contact (contact_html) ;

}
1)

return true;

Final Touches | 137

b,

on_message: function (message) {
var full_jid = $(message).attr('from');
var jid = Strophe.getBareJidFromJid (full_jid);
var jid_id = Gab.jid_to_id(jid);

if ($('#chat-' + jid_id).length === 0) {
$('#chat-area') .tabs('add', '#chat-' + jid_id, 3jid);
$('#chat-' + jid_id) .append (
"<div class='chat-messages'></div>" +
"<input type='text' class='chat-input'>");

}
S('#chat-' + jid_id).data('jid', full_jid);

S('#chat-area') .tabs('select', '#chat-' + jid_id);
$('#chat-' + jid_id + ' input').focus();

var composing = $(message).find('composing');
if (composing.length > 0) {
$('#chat-' + jid_id + ' .chat-messages') .append (
"<div class='chat-event'>" +
Strophe.getNodeFromJid (jid) +
" is typing..</div>");

Gab.scroll_chat(jid_id);
}

var body = $(message).find("html > body");

if (body.length === 0) {
body = $(message).find('body"');
if (body.length > 0) {
body = body.text ()
} else {
body = null;
}
} else {
body = body.contents() ;

var span = $("");
body.each (function () {
if (document.importNode) {
$ (document . importNode (this, true)).appendTo (span) ;
} else {
// IE workaround
span.append (this.xml) ;

)

body = span;
}

if (body) {
// remove notifications since user is now active

continues

138 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

LISTING 6-3 (continued)

S('#chat-' + jid_id + ' .chat-event') .remove();

// add the new message

$('#chat-' + jid_id + ' .chat-messages') .append (
"<div class='chat-message'>" +
"<" +
Strophe.getNodeFromJid (jid) +
">" +
"</div>") ;

S ('#chat-' + jid_id + ' .chat-message:last .chat-text')
.append (body) ;

Gab.scroll_chat (jid_id);

return true;

}

scroll_chat: function (jid_id) {
var div = $('#chat-' + jid_id + ' .chat-messages').get(0);
div.scrollTop = div.scrollHeight;

},

presence_value: function (elem) {

if (elem.hasClass('online')) {
return 2;

} else if (elem.hasClass('away')) {
return 1;

}

return 0;

I

insert_contact: function (elem) {
var jid = elem.find('.roster-jid').text();
var pres = Gab.presence_value(elem.find('.roster-contact'));

var contacts = $('#roster-area 1i');

if (contacts.length > 0) {
var inserted = false;
contacts.each(function () {
var cmp_pres = Gab.presence_value (
$(this).find('.roster-contact'));
var cmp_jid = $(this).find('.roster-jid').text();

if (pres > cmp_pres) {
$(this) .before(elem) ;
inserted = true;
return false;

Final Touches | 139

} else {
if (jid < cmp_jid) {
$(this) .before(elem) ;
inserted = true;
return false;

)

if (!inserted) {
S ('#roster-area ul') .append(elem) ;
}
} else {
$('#roster-area ul') .append(elem) ;
}

Y

$ (document) .ready (function () {
S('#login_dialog') .dialog ({
autoOpen: true,
draggable: false,
modal: true,
title: 'Connect to XMPP',
buttons: {
"Connect": function () {
$ (document) . trigger ('connect', {
jid: $('#jid').val(),
password: $('#password').val()

)

S ('#password').val('");
$(this).dialog('close');

)

S ('#contact_dialog') .dialog ({
autoOpen: false,
draggable: false,
modal: true,
title: 'Add a Contact',
buttons: {
"Add": function () {
$ (document) . trigger ('contact_added',
jid: $('#contact-jid').val(),
name: $('#contact-name').val()

)

$('#contact-jid').val('"');
$('#contact-name').val('');

$(this) .dialog('close');

{

continues

140 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

LISTING 6-3 (continued)

1)

S ('#new-contact') .click(function (ev) {
S ('#contact_dialog') .dialog('open')

i

1)

S ('#approve_dialog') .dialog({
autoOpen: false,
draggable: false,
modal: true,
title: 'Subscription Request',
buttons: {
"Deny": function () {
Gab.connection.send (S$pres ({
to: Gab.pending_ subscriber,
"type": "unsubscribed"}));
Gab.pending_subscriber = null;

S (this) .dialog('close');
.,

"Approve": function () {
Gab.connection.send (Spres ({
to: Gab.pending_ subscriber,
"type": "subscribed"}));

Gab.connection.send (Spres ({
to: Gab.pending_ subscriber,
"type": "subscribe"}));

Gab.pending_subscriber = null;

$(this) .dialog('close');

1)
S ('#chat-area') .tabs().find('.ui-tabs-nav') .sortable({axis: 'x'});

S('.roster-contact').live('click', function () {
var jid = $(this).find(".roster-jid") .text();
var name = $(this).find(".roster-name").text();
var jid_id = Gab.jid_to_id(jid);
if ($('#chat-' + jid_id).length === 0) {

S ('#chat-area') .tabs('add', '#chat-' + jid_id, name);

$('#chat-' + jid_id) .append (

"<div class='chat-messages'></div>" +
"<input type='text' class='chat-input'>");
$('#chat-' + jid_id) .data('jid', jid);

Final Touches | 141

)

}

S ('#chat-area') .tabs('select', '#chat-' + jid_id);

$('#chat-' + jid_id + ' input').focus();

.chat-input') .live('keypress', function (ev) {

var jid = $(this).parent().data('jid');

if (ev.which === 13) {
ev.preventDefault () ;

var body = $(this).val();

var message = Smsg({to: jid,

n type" B n Chatll))
.c('body') .t (body) .up()
.c('active', {xmlns: "http://jabber.org/protocol/chatstates"});

Gab.connection.send (message) ;

$(this) .parent().find('.chat-messages') .append (

"<div class='chat-message'><" +

"<gspan class='chat-name me'>" +
Strophe.getNodeFromJid (Gab.connection.jid) +
">" +
body +

"</div>") ;

Gab.scroll_chat (Gab.jid_to_id(jid));

$S(this).val('');
$(this) .parent () .data('composing', false);
} else {

if

var composing = $(this).parent().data('composing');
{

(!composing)
var notify = Smsg({to: jid, "type": "chat"})

.c('composing', {xmlns: "http://jabber.org/protocol/chatstates"});
Gab.connection.send (notify) ;

S (this) .parent () .data('composing', true);

S ('#disconnect') .click(function () {
Gab.connection.disconnect () ;
Gab.connection = null;

3

$('#chat_dialog') .dialog({
autoOpen: false,
draggable: false,

modal: true,
title: 'Start a Chat',
buttons: {

"Start": function () {

continues

142 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

LISTING 6-3 (continued)

var jid = $('#chat-jid').val();
var jid_id = Gab.jid_to_id(jid);

"#chat-area') .tabs('add', '#chat-' + jid_id, jid);
"#chat-' + jid_id) .append(

"<div class='chat-messages'></div>" +

"<input type='text' class='chat-input'>");

$(
$(

$('#chat-' + jid_id) .data('jid', jid);

S ('#chat-area') .tabs('select', '#chat-' + jid_id);
$('#chat-' + jid_id + ' input').focus();
S ('#chat-jid').val('');

$(this).dialog('close');

}
}
1)
S ('#new-chat') .click(function () {
S ('#chat_dialog') .dialog('open');
1)

1)

$ (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (
'http://bosh.metajack.im:5280/xmpp-httpbind') ;

conn.connect (data.jid, data.password, function (status) {
if (status === Strophe.Status.CONNECTED) {
$ (document) .trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {
$ (document) . trigger ('disconnected') ;
}
1)
Gab.connection = conn;

1)

S (document) .bind('connected', function () {
var ig = $ig({type: 'get'}).c('query', {xmlns: 'jabber:iqg:roster'});
Gab.connection.sendIQ(iqg, Gab.on_roster);

Gab.connection.addHandler (Gab.on_roster_changed,
"jabber:ig:roster", "iqg", "set");

Gab.connection.addHandler (Gab.on_message,
null, "message", "chat");

)i

$ (document) .bind('disconnected', function () {

Summary | 143

Gab.connection = null;
Gab.pending_subscriber = null;

$('#roster-area ul') .empty();
$('#chat-area ul') .empty () ;
$('#chat-area div') .remove() ;

$S('#login_dialog') .dialog('open') ;
)

$ (document) .bind('contact_added', function (ev, data) {
var iqg = $Sig({type: "set"}).c("query", {xmlns: "jabber:ig:roster"})
.c("item", data);
Gab.connection.sendIQ(iq) ;

var subscribe = Spres({to: data.jid, "type": "subscribe"});
Gab.connection.send (subscribe) ;
)

GABBING MORE

Most chat clients you are probably familiar with have many more features than Gab. You could add
some of these to Gab to make it more competitive.

Try adding some of these simple features:
Add support for the other chat notification states like paused and gone.

Allow the user to use text based markup like Markdown or Textile to send rich XHTML-IM
messages.

> Using the Personal Eventing Protocol (XEP-0163), show the music that a user’s contacts are
listening to in the chat area; several other chat clients send such notifications.

SUMMARY

Instant messaging is the original XMPP application domain. By creating Gab, you’ve made a capable
IM client that can manage a roster and multiple chat sessions. Gab was quite a bit more complex than
the previous chapters’ applications, but by sticking with it you learned:

> How to get and process a roster
> How to deal with roster changes
> How to add and edit contacts
>

How to send and respond to presence subscription requests

144 | CHAPTER 6 TALKING WITH FRIENDS: ONE-ON-ONE CHAT

> How XMPP servers route messages
> About jQuery UD’s tab control

> How to send and interpret activity notifications for chats

The next chapter teaches you how to explore services and their features with X MPP service discovery.

Exploring Services:
Service Discovery and Browsing

WHAT'’S IN THIS CHAPTER?

The basics of service discovery

>
> Interpreting service discovery results
> Service discovery trees

>

How other XMPP extensions use service discovery

The federated world of XMPP servers and services is a big place, and it’s growing every day.
Early on, XMPP developers realized that they needed some way to find information about these
servers and which services they supported. The XMPP service discovery system was created to

fill this need.

Service discovery requests can be sent to nearly every X MPP-addressable entity on the network.
Applications can find out which entities are servers, publish-subscribe systems, and multi-user
chat services. Service information often includes the list of supported features so that application
code never has to guess what functionality is supported.

Most of the extension protocols to XMPP make use of service discovery, usually to commu-
nicate feature support. Some also rely on it for service browsing. Multi-user chat services, for
example, can be queried for what rooms exist, what settings are applied to a given room, and
even which users are present.

Service discovery is a simple but important piece of many XMPP protocols, and your own
applications will often need to use it in a variety of tasks. In the course of this chapter, you
build a service browser called Dig, which allows users to explore various XMPP services.

146 | CHAPTER7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

APPLICATION PREVIEW

The Dig application is similar to other directory browsing interfaces you may be familiar with, such
as Windows Explorer or Mac OS X’s Finder. Figure 7-1 shows what the final application will look like.

Dig
Dig!

oﬁﬂﬂfmmm ilmr.ﬂrg

= ImoredaysBcontarence jabber.on Identities;

» banda®conference,jabber. oy « Nase

= brighlB conleranca jabiber.org GC++ - ganeral discussion aboul the programming language
» paradaxEconlerence jabber.on Thie i

« minimalEconarence jatbar ong Cad focxt

= e++Bconlerence.jabberorg confanance

= C++Econiarance. jabberorgHAL Features:

« Be-gevelopers S confarence, jabber, oy

» meebomesbochalBSRE contarance, jaober.on L ey e
= Boftwarelibeecr @ conlerence. jabber.oeg * MUC_persishant

= motorScontarence. jabber, o : ﬁmmm

- esperastoEeondarence jabtarong = mw

= [Bwipa@conlerence jabberong

= Bpliedetm@ corfarance jabber.ong

= parman @ confeance jaboer g

= NMpifconierence jabbar.ong

FIGURE 7-1

On the left is the service tree for a given entity. The panel on the right displays information about
the selected item in the tree. The user can input the entity for which to query services at the top of the
application.

The tree shown in Figure 7-1 is just part of the service tree for jabber.org’s multi-user chat server at
conference.jabber.org.

DIG DESIGN

Dig must make two kinds of service discovery queries to an entity — disco#info and disco#items. The
hash character in their names is taken from their underlying namespace. A disco#info query returns
basic identity information and supported features for an entity. Disco#items queries enumerate an
entity’s children.

Finding Information | 147

Once users input an entity they want to view, both types of queries are run, and the results begin
to form a tree in the left pane. Clicking leaves of the tree results in further service discovery queries
and further expands the tree. Results from disco#info queries appear in the right information
pane, and disco#items query results are used to expand the tree.

The application’s Ul is quite simple, but the amount of information the user can learn about XMPP
servers and services is immense.

FINDING INFORMATION

Service discovery, defined in XEP-0030 and often called disco, consists of a hierarchy of informa-
tion relating to an entity or service and a pair of queries, disco#info and disco#items, to request
information and traverse the tree, respectively.

Disco#info Queries

Most XMPP entities you will interact with will respond to disco#info queries. Generally, these que-
ries are concerned with two kinds of information: identity and features. Identity information contains
the entity’s name and purpose, and some services may have multiple identities. Feature information

is useful to discover which particular features a service supports. For example, a publish-subscribe
service may report that it supports all the required and some of the optional features defined in the
Publish-Subscribe specification (XEP-0060) and that it also supports several other extensions.

Disco#info queries are extremely simple. They consist of an IQ-get stanza using the http://
jabber.org/protocols/disco#info namespace:

<ig to='pemberley.lit'
from='elizabeth@longbourn.lit/lambton'
type='get'
id='infol'>
<query xmlns='http://jabber.org/protocol/disco#info' />
</ig>

In this example query, Elizabeth is probing the pemberley.lit server for information. This server will
respond with a list of identities and features:

<iqg to='elizabeth@longbourn.lit/lambton'

from='pemberley.lit"'

type='result'

id="infol'>

<query xmlns='http://jabber.org/protocol/disco#info'>

<identity name='Pemberley XMPP Server'
category='server'
type="'im'/>

<feature var='http://jabber.org/protocol/disco#info'/>

<feature var='jabber:client'/>

<feature var='jabber:iqg:roster'/>

148 | CHAPTER 7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

<feature var='jabber:iqg:version'/>
<feature var='msgoffline'/>
</query>
</ig>

The pemberley.lit server reports its name and that it is an instant messaging service. It also enumer-
ates the features that the server supports, including disco#info support, standard XMPP client
support, support for roster commands, support for version queries, and support for the storage of
messages for offline users.

XMPP servers vary in their responses to disco#info queries, but the responses appear in the same
form. Typically, XMPP servers will support a wide range of features, and the list of identities and
features will both be much longer than those of the fictional pemberley.lit. Disco#info responses
are required to contain at least one identity and at least the disco#info feature.

Each <identity> element contains an optional name attribute as well as the required category and
type attributes. A list of standard category and type values is maintained by the X MPP registrar
and)Tnlaulﬁnditathttp://xmpp.org/registrar/disco—categories.html.Enﬂﬂesthatprovkk
multiple services at a single address return multiple <identity> elements, usually one per service.

The <feature> elements list the basic features the entity provides. The required var attribute con-
tains the feature’s identifier. These often correspond to namespaces used in various XMPP protocol
extensions, and the XMPP registrar maintains the list of registered features at http: //xmpp.org/
registrar/disco-features.html. In the previous example, all but the msgoffline feature used
the relevant namespaces as identifiers.

Applications can use this information to test what kind of services particular entities provide, or to
determine whether a particular service supports some specific feature. For example, not all confer-

ence servers support server-side logging of group chats. Those that do can advertise such support in
a <feature> element.

Disco#items Queries

Service discovery information is organized in the form of a tree. The disco#items query requests
the list of children for an entity. Some of these children will be other entities and some will be inter-
nal nodes. By continuing to do disco#items queries on each child, the entire service tree can be
expanded.

Requesting disco#items on an XMPP server returns the various server-side components that make
up the server, each as a separately addressable entity. For example, a publish-subscribe service would
return the list of top-level nodes, each of which may also have child nodes. Multi-user chat servers
answer disco#items queries by returning the list of chat rooms.

Disco#items queries are almost exactly the same as disco#info queries:

<ig to='pemberley.lit'
from='elizabeth@longbourn.lit/lambton'
type="'get'
id='itemsl'>
<query xmlns='http://jabber.org/protocol/disco#items'/>
</ig>

Creating Dig | 149

As you can see, only the last portion of the namespace has changed. The response from pemberley.lit
appears here:

<iqg to='elizabeth@longbourn.lit/lambton'
from='pemberley.lit'
type='result'
id='itemsl'>
<query xmlns='http://jabber.org/protocol/disco#items'>
<item jid='pubsub.pemberley.lit'
name="'The Pemberley Pubsub System'/>
<item jid='chat.pemberley.lit'
name="'The Pemberley Multi-User Chat System'/>
<item jid='pemberley.lit'
node='statistics'
name="'Pemberley Server Statistics'/>
</query>
</ig>

Each child item of the entity is represented by an <item> element in the response. The preceding
example shows three children, two of which are server components, and one of which is an internal
node. All of these items will respond to disco#info and disco#items queries as well.

Disco Nodes

Internal parts of the service tree are exposed as nodes. The disco#items query you saw in the last
section contained a statistics node as one of the pemberley.lit children. Disco nodes are address-
able by including a node attribute in the <query> element of the request:
<ig to='pemberley.lit'
from='elizabeth@longbourn.lit/lambton'
type="'get'
id='"info2'>
<query xmlns='http://jabber.org/protocol/disco#info’
node='statistics'/>
</ig>

The statistics node will respond with one or more <identity> elements and one or more
<feature> elements, just like any other entity. A disco#items query to the statistics node may
also reveal more child nodes.

Aside from the various error cases and other small details, these simple pieces are all there is to
service discovery. You have all the knowledge you need to start building Dig.

CREATING DIG

As with previous applications, you start building Dig by first creating its user interface. The
screenshot in Figure 7-1 shows the three main pieces: the service input control, the tree pane, and
the information pane. The HTML for Dig appears in Listing 7-1, and the CSS styles appear in
Listing 7-2.

150 | CHAPTER7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

‘) LISTING 7-1: dig.html

Available for <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
download on "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-type" content="text/html;charset=UTF-8">

<title>Dig - Chapter 7</title>

<link rel='stylesheet' href='http://ajax.googleapis.com/ajax/libs/jqueryu
i/1.7.2/themes/cupertino/jquery-ui.css'>

<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js'>

</script>

<script src='http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-u
i.js'></script>

<script src='scripts/strophe.js'></script>

<script src='scripts/f1l1XHR.js'></script>

<script src='scripts/strophe.flxhr.js'></script>

<link rel='stylesheet' type='text/css' href='dig.css'>
<script type='text/javascript' src='dig.js'></script>
</head>
<body>
<h1>Dig</hl>

<div id='input-bar'>

<input id='service' type='text'>

<input id='dig' type='button' value='Dig!' disabled='disabled'>
</div>

<div class='clear'></div>

<div class='left'>
<ul id='tree'>

</div>

<div class='right'>
<h2 id='selected-name'></h2>
<div id='disco-info'>
<h3>Identities:</h3>
<ul id='identity-list'>

<h3>Features:</h3>
<ul id='feature-list'>

</div>
</div>

<!-- login dialog -->
<div id='login_dialog' class='hidden'>

Creating Dig | 151

D

Available for
download on
Wrox.com

<label>JID:</label><input type='text' id='jid'>

<label>Password:</label><input type='password' id='password'>

</div>
</body>
</html>

LISTING 7-2: dig.css

body {
font-family: Helvetica;

hl {
text-align: center;

}

.hidden {
display: none

.left {
padding: 10px;
width: 400px;
float: left;

}

.right {
padding: 10px;
border-left: solid lpx black;
width: 500px;
float: right;
background-color: #eee;

.clear {
clear: both;
}

.item {
padding: 4px;

.selected {
background-color: #£ff6;
font-weight: bold;

}

#input-bar {
padding: 10px;
text-align: center;

continues

152 | CHAPTER7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

LISTING 7-2 (continued)

border-bottom: solid 2px black;

}
input {
font-size: 150%;
}
#tree ul {
line-height: 175%;
margin-left: 0;
padding-left: 10px;
}

The input control contains a text entry box and a button; the tree pane contains an empty unordered
list; and the information pane contains a section for the identities and one for the features. The styles
just make the default rendering of these various elements a little more visually pleasing. Selected
entities in the tree are highlighted in yellow and bold, and various UI elements have a little extra
whitespace or larger fonts.

Listing 7-3 contains the skeleton of the JavaScript code for Dig. You’ve seen all these elements before
in previous chapters, so they won’t be explained here.

‘) LISTING 7-3: dig.js (initial skeleton)

Availablefor var Dig = {

dﬂ‘ﬂﬂ;"g.‘,’,ﬁ“ connection: null,

’

$ (document) .ready (function () {
S('#login_dialog') .dialog({
autoOpen: true,
draggable: false,
modal: true,
title: 'Connect to XMPP',
buttons: {
"Connect": function () {
S (document) . trigger ('connect', {
jid: $('#jid').val(),
password: $('#password').val()

1)

S ('#password') .val('');
S (this) .dialog('close');

$ (document) .bind ('connect', function (ev, data) {

Creating Dig | 153

var conn = new Strophe.Connection (
'http://bosh.metajack.im:5280/xmpp-httpbind') ;
conn.connect (data.jid, data.password, function (status) {

if (status === Strophe.Status.CONNECTED) {
$ (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) . trigger ('disconnected') ;
}
});
Dig.connection = conn;

)

$ (document) .bind('connected', function () {
// nothing here yet
});

With these basics in place, you can start on the real meat of the application.

Initial Disco Queries

Once the user has input a JID into the text entry box and clicked Dig!, the code must send the initial
disco#info and disco#items queries to the designated service.

First, bind the click event for the Dig! button and send the two disco queries. The following code
should be placed in the document ready handler:

‘) $('#dig').click(function () {

var service = $('#service').val();
Available for $('#service').val('");
download on

Wrox.com . .
// set up disco info pane

$('#selected-name') .text (service);
$('#identity-list') .empty();
$('#feature-list') .empty () ;

// clear tree pane
$('#tree') .empty();

S('#tree') .append("" +
service +
"</1li>");

Dig.connection.sendIQ(
$ig({to: service, type: "get"}
.c("query", {xmlns:
"http://jabber.org/protocol/disco#info"}),
function (iqg) {
Dig.on_info(ig, $('.selected')[0]);
)

Dig.connection.sendIQ(
$ig({to: service, type: "get"}

154 | CHAPTER7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

.c("query", {xmlns:
"http://jabber.org/protocol/disco#items"}),
function (iqg) {
Dig.on_items(ig, $('.selected')[0]);
1)

code snippet dig.js

This code first gets the name of the service and clears the text entry box. Then the code clears the
information pane and creates the initial disco tree. Finally, it sends disco#info and disco#items
queries to the service.

Notice that the currently selected element is also passed to both on_info () and on_items (). This
extra information is passed so that the handlers know which branch of the tree the result is for.
Without this information, a user might see the results for one branch appear under another if the
user clicks on a different branch before a response to a query is received.

The on_info () and on_items () functions must now be implemented. The following code adds the
first of these functions to the Dig object:

\) on_info: function (ig, elem) {
// do nothing if the response is not for the selected branch

Available for
download on
Wrox.com

if ($('.selected').length > 0 &&
elem !== $('.selected')[0]) {
return;

}

S('#feature-list') .empty();
$(iqg) .find("feature") .each(function () {
S ('#feature-list').append("" +
S (this) .attr('var') +

"</1li>");
)i
S('#identity-list') .empty();
$(iqg).find("identity") .each(function () {
S('#identity-1list') .append("<dl><dt>Name</dt><dd>" +
($(this) .attr('name') || "none") +
"</dd><dt>Type</dt><dd>" +
($(this) .attr('type') || "none") +
"</dd><dt>Category</dt><dd>" +
($(this) .attr('category') || "none") +
"</dd></dl></1i>");

code snippet dig.js

Creating Dig | 155

The on_info () function simply takes each feature and each identity and formats them into
list elements. The little-used definition list (<d1> element) aids the formatting of each identity’s
properties.

The on_items () function is also quite simple:

‘) on_items: function (ig, elem) {
var items = $(iqg).find("item");
Available for if (items.length > 0) {

download on " "y .
Wrox.com $(elem) .parent () .append ("");

var list = $(elem) .parent().find("ul");

$(iqg).find("item") .each(function () {
var node = $(this).attr('node');
list.append("" +
$(this).attr("jid") +
(node ? ":" + node : "") +
"</1i>");

code snippet dig.js

If any <item> elements are returned, new items are added to the selected branch of the tree in the tree
pane. Notice that if the items point to disco nodes as opposed to JIDs, they are written as jid:node.
This isn’t the best way to display the information perhaps, but it will assist you later when you must
handle click events for items in the tree.

Finally, you need to enable the Dig! button in the connected event handler. Make the highlighted
changes to this event handler:

‘) $ (document) .bind('connected', function () {
$('#dig') .removeAttr('disabled');

Availablefor }) ;
download on
Wrox.com

code snippet dig.js

Running Dig in this state should allow you to see the top-level children and the basic information
about an entity. Next you need to add the ability to browse and expand the tree.

Browsing the Disco Tree

So far, Dig is not much use beyond obtaining a high-level view of a service. You need to extend it
to allow users to click various branches of the tree to change what information is displayed in the
information pane and expand the tree under the current branch.

156 | CHAPTER7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

Because the on_items () and on_info () functions are so general, the only thing you must add is a
handler for click events in the tree pane. Add the code handler to the document ready handler:

\) S('#tree .item').live('click', function () {

if ($(this).hasClass("selected")) {
Available for return;
download on }
Wrox.com

S(".selected") .removeClass ("selected") ;
$(this) .addClass ("selected") ;

var serv_node = $(this).text();
var service, node;
var 1dx = serv_node.indexOf (":");
if (idx < 0) {
service = serv_node;
node = null;
} else {
service = serv_node.slice(0, 1idx);
node = serv_node.slice(idx + 1);

var query_attrs;
if (node) {

query_attrs = { node: node };
} else {

query_attrs = {};

var elem = this;

query_attrs["xmlns"] = "http://jabber.org/protocol/disco#info";

Dig.connection.sendIQ (
$Sig({to: service, type: "get"})
.c("query", query_attrs),
function (iqg) {
Dig.on_info(ig, elem);

1)
if ($(".selected") .parent().find("ul").length === 0) {
query_attrs["xmlns"] = "http://jabber.org/protocol/disco#items";
(

Dig.connection.sendIQ
$ig({to: service, type: "get"})
.c("query", query_attrs),
function (iqg) {
Dig.on_items(ig, elem);

1)

code snippet dig.js

Creating Dig | 157

jQuery’s 1ive () function is used to bind an event handler to matching elements. Unlike using click ()
or bind () to do this, 1ive () enables the binding even on elements that are added dynamically after
the binding is created. You have used 1ive () before in Chapter 6.

The code first checks to see if the selected branch was clicked, and if so, returns. There is no need to
redo the queries in this case. If the branch that received the click is not selected, the old selection is
removed, and the clicked branch becomes selected.

The next block of code parses the text in the selected element to determine the service and
node for this branch’s tree item. Both of these pieces of information are needed to address the disco
queries.

Finally, a disco#info query is sent to the correct service and node, and if no disco#items query
was previously done for this part of the tree, a disco#items query is also sent. Because on_items ()
creates a sublist for the relevant tree branch, it is sufficient to check for a child element to deter-
mine if on_items () has already been executed. Both of the disco queries use the same on_items ()
and on_info () handlers you created previously.

Dig is complete and can now be used to explore the vast number of public XMPP services. The final
source code is shown in Listing 7-4. In the next section, you use Dig to browse a few well-known
services.

‘) LISTING 7-4: dig.js (final)

Available for var Dig = {
d\‘;\mtggnﬂ" connection: null,
on_items: function (ig, elem) {
var items = $(iqg).find("item");
if (items.length > 0) {
S (elem) .parent () .append ("");

var list = $(elem) .parent().find("ul");

$(iqg) .find("item") .each(function () {
var node = $(this).attr('node');
list.append("" +
$(this).attr("jid") +
(node ? ":" + node : "") +
"</1i>") ;

on_info: function (ig, elem) {
// do nothing if the response is not for the selected branch
if ($('.selected').length > 0 &&
elem !== $('.selected')[0]) {
return;

}

$('#feature-list') .empty () ;
continues

158 | CHAPTER 7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

LISTING 7-4 (continued)

S(iqg) .find("feature") .each(function () {
$('#feature-list') .append("" +
$(this).attr('var') +

"</1i>");
)i
$('#identity-list') .empty();
$(iqg).find("identity") .each(function () {
$('#identity-list') .append("<dl><dt>Name</dt><dd>" +
($(this) .attr('name') || "none") +
"</dd><dt>Type</dt><dd>" +
($(this) .attr('type') || "none") +
"</dd><dt>Category</dt><dd>" +
($(this) .attr('category') || "none") +
"</dd></dl></1i>");
1)
}
Y
$ (document) .ready (function () {
S('#login_dialog') .dialog({
autoOpen: true,
draggable: false,
modal: true,
title: 'Connect to XMPP',
buttons: {
"Connect": function () {
$ (document) . trigger ('connect', {
jid: s('#jid').val(),
password: $('#password').val()
)i
S ('#password') .val('');
$(this) .dialog('close');

1)

S('#dig') .click(function () {
var service = $('#service').val();
$('#service').val('");

// set up disco info pane

S ('#selected-name') .text (service) ;
S('#identity-list') .empty();
S('#feature-list') .empty();

// clear tree pane
$('#tree') .empty () ;

S('#tree') .append("" +

Creating Dig | 159

)

service +
"</1li>");

Dig.connection.sendIQ(
$ig({to: service, type: "get"}
.c("query", {xmlns:
"http://jabber.org/protocol/disco#info"}),
function (iqg) {
Dig.on_info(ig, $('.selected')[0]);
)

Dig.connection.sendIQ(
$ig({to: service, type: "get"}
.c("query", {xmlns:
"http://jabber.org/protocol/disco#items"}),
function (iqg) {
Dig.on_items(iqg, $('.selected')[0]);
});

S('#tree .item').live('click', function () {
if ($(this) .hasClass("selected")) {
return;

}

$(".selected") .removeClass ("selected") ;
$(this) .addClass ("selected");

var serv_node = $(this).text();
var service, node;
var idx = serv_node.indexOf (":");
if (idx < 0) |
service = serv_node;
node = null;
} else {
service = serv_node.slice(0, idx);
node = serv_node.slice(idx + 1);

var query_attrs;

if (node) {
query_attrs = { node: node };

} else {
query_attrs

{};
}

var elem = this;
query_attrs["xmlns"] = "http://jabber.org/protocol/disco#info";
Dig.connection.sendIQ(
Sig({to: service, type: "get"}
.c("query", query_attrs),
function (iqg) {

continues

160 | CHAPTER7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

LISTING 7-4 (continued)

Dig.on_info(ig, elem);

1)
if ($S(".selected") .parent().find("ul").length === 0) {
query_attrs["xmlns"] = "http://jabber.org/protocol/disco#items";
(

Dig.connection.sendIQ
$ig({to: service, type: "get"})
.c("query", query_attrs),
function (iq) {
Dig.on_items(ig, elem);
1)

1)
1)

S (document) .bind('connect', function (ev, data) {
var conn = new Strophe.Connection (

'http://bosh.metajack.im:5280/xmpp-httpbind') ;

conn.connect (data.jid, data.password, function (status) {

if (status === Strophe.Status.CONNECTED) {
$ (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {
S (document) . trigger ('disconnected') ;
}
1)
Dig.connection = conn;
1)
S (document) .bind('connected', function () {
S('#dig') .removeAttr ('disabled') ;
)i

DIGGING INTO SERVICES

Service discovery can provide a variety of useful functionality. Your applications might use or imple-
ment service discovery to:

> Determine support for a specific software feature.
> Use disco#items results to generate lists of resources such as public multi-user chat rooms.

> Crawl the disco tree to look for specific services like proprietary IM network gateways or
proxy services.

> Communicate metadata about your application to other entities making service discovery
requests.

Digging into Services | 161

Over the next sections, you will use Dig to accomplish similar tasks. You will try to find whether
the jabber.org server offers a proxy service, if the server supports registration, and what public chat
rooms you can join at its multi-user chat service.

Finding a Proxy Server

XMPP clients often support peer-to-peer file transfers between contacts. Due to network restrictions,
however, many peers are behind NATs (network address translators) or corporate firewalls. In these
cases, it is necessary for both sides to use a third-party proxy service to complete the transfer.

It may happen that neither party knows of a proxy service to use, but with service discovery brows-
ing, their client software can determine whether the users’ servers provide one. Normally, this check
would be done transparently to the end user, but here you use Dig to find an answer manually.

Open the Dig application in your web browser, type jabber.org into the text entry box, and click
Dig! You should see a result similar to the screenshot in Figure 7-2, although your result may be dif-
ferent if the jabber.org service has changed or upgraded any of its services.

Dig

= Jubber.ony jabber.org
@ mmarm;abbarm

o prowy.eu.jabber.ong Identities:

FIGURE 7-2

162 | CHAPTER7 EXPLORING SERVICES: SERVICE DISCOVERY AND BROWSING

You should see the promising proxy.eu.jabber.org item. Click it to obtain more information, and you
should see something similar to Figure 7-3 in the information pane.

An XMPP Bytestreams (see XEP-0065 for more information) proxy is exactly what is needed to
complete a peer-to-peer file transfer.

Normally, your application will search for a particular item by its type, category, or features, not by
its name. In this instance, human intuition short-circuited the search by inferring possible features
from the name of the service.

Note that the proxy.eu.jabber.org item does not have any children, so the tree is not expanded
underneath it.

Discovering Features

Some servers support account creation over X MPP. If your application depends on this feature, it is
wise to check whether the feature is supported by the XMPP server using service discovery.

If you have the Dig application open from the previous example, simply click the root item of the
tree, jabber.org. Otherwise, open the Dig application and browse to the disco tree for jabber.org.
You should see a list of features similar to those listed in Figure 7-4.

Features:
jabber.org « http:fizjabbend jabberstudio.org/protocodconfigure
= hitp:ijabber.org/profocolcommands
Identities: » hitp:/fjabber.org/protocolidiscoffinio
= hitp:ljabber.org/profocolidiscofilems
« Mama = hitp:ijabber.org/profocolidiscofpublish
SOCKSS Bylostroams Servioo v ig !
Typa - *abb-un_lq:lusl_
bylestreams + jabberiq:register
Category » |abberiq-time
proxy = |abberiqversion
= presance
5 . invisibl
Features: = mp'“‘“_h“'m;‘"" -
« hitpifabber.ong; 1t e = htip:/fabber.org/protocolicommands
FIGURE 7-3 FIGURE 7-4

As you can see, the jabber:iq:register feature appears in the list, so you can be assured that the
server supports registration.

Looking for a Chat

Service discovery is also used to enumerate lists of publicly available resources, be they publish-
subscribe nodes, multi-user chat rooms, or a list of shared files. You’ve seen from the previous two
examples that the jabber.org server hosts a conference.jabber.org service. You can browse this ser-
vice to get a list of the public rooms.

Use Dig to browse to the disco tree of jabber.org and click the conference.jabber.org item. You
should see a long list of chat rooms like those in Figure 7-5.

Summary | 163

» jabbor.ong
o ponference.jabbor.org

dmoredays@conference jabber.org
banda® conference. jabber.org
bright@conference. jabber.org
paradox & conference. jabbar.org
minimal @conference jabbar.ong
c++Econference. jabber.ong
se-developers @ conference jabber.ong
meabomesbochatis)® conference jabber.org
softwarekbrecr@conlarence jabber.org
mator® conference. jabber.org
esperanto @conlarence. jabber.org
Bupa® conference, jabber.org
aptitudeim @ conarence jabber.org
german@conference jabber.org
fp@conlerence.jabber.ong
me-cdev&conierence jabber.org

FIGURE 7-5

SUMMARY

If you click any of the rooms, you will see more infor-
mation about it in the right pane. You may notice that
after you click a specific room, the tree expands beneath
it. These subitems are the participants of the chat; the
resource part of each JID is the participant’s nickname.

Now that you’ve built Dig and seen service discovery
in action, you’ll be ready to make use of it in your own
applications.

DISCOVERING MORE

Dig is already quite useful for browsing disco trees, but
you might try adding a few new features to make it even
better:

> Add the ability to group the items by category or type
instead of only by their names.

> Allow the user to filter the tree for specific features
they are interested in.

This chapter covered a simple, but important, X MPP extension called service discovery, often referred
to as disco. Using service discovery, your application can browse available resources, determine
support for specific features, and find metadata about various services. Your application can also
implement service discovery to enable other entities to gather information on your application’s
resources.

You created a simple service discovery browser called Dig, which allowed you to explore several
areas of jabber.org’s services tree. Along the way you learned:

> How to make disco#info and disco#items queries

How to interpret results and use the items to build a disco tree

How to use disco to determine feature support

>
>
> How to enumerate public chat rooms and other public resources
>

How to find specific services needed by your application

The next chapter is all about one of the services you explored here, multi-user chat.

Group Chatting:
A Multi-User Chat Client

WHAT'’S IN THIS CHAPTER?

Joining group chat rooms
Creating and configuring rooms
Exchanging presence and messages in group chat

Multi-user chat roles and permissions

Y Y Y Y Y

Moderating rooms

XMPP’s multi-user chat extension was originally inspired by the Internet Relay Chat (IRC)
protocol. Some clever XMPP protocol designers wanted to improve upon IRC in several ways,
while at the same time bringing group chat natively to XMPP.

XMPP’s multi-user chat (MUC) has one enormous advantage over its predecessors — struc-
tured payloads. IRC and other chat protocols typically transmit plain text back and forth with
very little structure. Because of XMPP’s extensibility, MUC messages can carry arbitrarily
complex payloads even within regular chat messages.

MUC is also a form of message broadcast. A single message sent to a room gets rebroadcast
out to all the participants automatically. This makes it similar to Publish-Subscribe, which you
see in the next chapter. Unlike Publish-Subscribe, MUC provides a lot of advanced management
features typical of group chat services, such as room moderation, and each participant is often
allowed to broadcast messages to the room as well.

166 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

The combination of structured messaging, automatic broadcast, and group publishing opens the
doors to many alternative uses of MUC. It has been used as the basis for rich, collaborative spaces
(for example, Drop.io, which was shown in Chapter 2), and in Chapter 11, you build a multi-user
Tic-Tac-Toe game on top of MUC.

Multi-user chat is a big protocol, and a full-featured client can become quite sophisticated. In this
chapter, you build a simple group chat client called Groupie, which uses the most important pieces
of the MUC protocol.

APPLICATION PREVIEW

Figure 8-1 shows a screenshot from the finished Groupie application. Just as in previous chapters, the
application’s interface is as simple as possible.

Groupie

JabberXMPP Development | RFCs and Extensions: hiipdempp.ang 1

-
Logs: Mip-Hogs jabber orgievidconference jahber ony/ _ Matt |
rare ; o armine |
Jiatlls- That's what | gaid *» avilotto |
So | ahould stora it lor exampla in & var or array slnokbot I
.ﬁ.;anrm::-ruah::l;.l
ko WAl | ber abbe 1o write 1o it frorm the parent m_m :
Err, the parent can stora it on the parent's side. O isn nabatt \
that what wou nead? teo i
] Yes that s what | wanl, and then access variables and darkraind? |
rr'e!hnm from the parant - jcea |
By tha wa].- Mat] , | found & way 10 USE jsjay ACTORS bic |
i Ireram windows, | just raferance the original connectian fram the johnny |
window that is n-,,wnen‘ using the window.opemer . That s what nolan |
pwchat does Link Mauve |
! Work, great agoods :
YES | did it It fowds good 1o go Indo tho woeckend knowing | WaGES |
camplotad my lask Zogg |
Work - Good evieing to you all xepbot |
anl:l THANK GOD IT" S FRIDAY wiratap |
Xdicurk |
pihhan W
slpatar
W Kev
* BCippin
b almax
misha e
Cla

FIGURE 8-1

At the top of the screen are the chat and participant areas. The chat area contains all the messages
people send to the room as well as private messages sent to and from the user. The participant area
contains the list of current room occupants with whom the user is conversing. Beneath the chat area is
a text box for the user to type and send messages.

Public Speaking | 167

GROUPIE DESIGN

Although Groupie’s Ul design appears simplistic, there is some sophistication necessary to make a
usable group chat client. Groupie will need to support features like room creation and configuration,
topic changes, private messaging between participants, and basic moderation.

When the application starts, the user is presented with an expanded version of the login dialog box
you have seen in earlier chapters. This new login dialog box contains new fields for the multi-user
chat room the user wants to join as well as the nickname the user wants to use within the room. If
the room already exists, the user will join the other participants in the room, and if the room doesn’t
already exist, the room will be created.

Once in the room, messages from other participants appear in the chat area, and the user can type
their own messages in the text entry box. The list of participants to the right of the chat area changes
as people join and leave the room. Private messages can be sent to other participants using special
commands in the text box, and private messages that get sent to the user show up in the normal chat
area but rendered differently.

Two other special commands will be implemented — user actions and topic changes. User actions
allow users to describe their own actions, similar to someone talking about himself or herself in the
third person. Topic changes allow the user to modify the room’s topic if they have adequate permis-
sions within the room.

Group chat rooms have roles and affiliations, which control permissions and access to the room on a
short- or long-term basis. Manipulating roles is necessary for silencing or removing users in a room
when they get out of hand and changing a participant’s affiliation can make them a fellow adminis-
trator or ban them permanently. Groupie supports these operations via special text commands. You
see more on these topics later in Understanding Roles and Affiliations.

It may seem like a lot to implement, but these features just scratch the surface of possible functionality
for multi-user chat rooms. Before you start coding, you should become familiar with the stanzas
that make up the multi-user chat protocol.

PUBLIC SPEAKING

Group chat allows multiple people to gather in the same place to discuss a topic. These virtual meeting
places are called rooms, and unlike in the real world, users can be in more than one group chat room
at the same time. Rooms can have access controls, moderators, administrators, and even automatic
logging and archival of the group’s communications. Before you can start work on your application,
you must first learn how group chat operations are accomplished at the protocol level.

Group Chat Services

Group chat is provided as a service, usually alongside a regular XMPP server. The group chat
service has its own domain; for example, the jabber.org server runs a group chat service at
conference.jabber.org.

168

| CHAPTER 8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

Each room on the group chat service gets its own address, which looks just like a user’s JID. The
XMPP developer’s chat room on the conference.jabber.org service is at jdev@conference.jabber.org,
and general XMPP-related chat takes place in jabber@conference.jabber.org.

Many XMPP servers run group chat services, and thousands of chat rooms are spread across these
services. As you saw in Chapter 7, service discovery can be used to find and locate group chat services
as well as the public rooms hosted on them.

Entering and Leaving a Room

Before you can do much with a group chat room, you must first enter the room. This is also often
referred to as joining the room. When you are done participating, you leave the room. Because this
mirrors the concept of a user coming and going on and offline, the multi-user chat designers decided
to model this part of the protocol with <presence> stanzas.

Users can join a group chat room simply by sending available presence to the room, along with a note
that they understand the multi-user chat protocol. Sending presence directly to a JID instead of to the
user’s server is called directed presence. Similarly, to leave, unavailable presence is sent to the room.

@ DIRECTED PRESENCE

Sending presence stanzas directly to a JID instead of to the user’s server is called
sending directed presence. Directed presence is quite useful in X MPP protocols
and extensions because it has some special properties.

Directed presence can be sent to users or services without requiring that presence
subscriptions be set up. This is useful for giving another user or an external ser-
vice temporary access to presence information.

Another property of directed presence is that the server keeps track of who has
received direct presence notifications. The server uses this information to ensure
that the recipients are notified when the sender goes offline, even if the sender
forgets to send unavailable presence before logging off.

There is one limitation to be aware of when using directed presence — only
unavailable presence is sent automatically. Presence changes from available
to away or away to available are not automatically broadcast on the sender’s

bebalf.

Because group chat services need to keep track of participants’ presence, direct
presence fulfills a crucial role. The server rarely loses track of a participant’s
presence, even if that person forgets to send unavailable presence.

Every participant in a group chat room gets their own address as well. Each participant picks a nick-
name for the room, and their JID within the room is the room’s JID with a resource added containing
their nickname. For example, Darcy’s nickname in the Meryton ball chat room is darcy, so his group
chat JID is ball@chat .meryton.lit/darcy.

Public Speaking | 169

If Bingley and Jane want to join the group chat room for the Meryton ball, they will both need to
send directed presence to their desired identity in the room ball@chat .meryton.1lit. Their stanzas
are shown here:

<presence to='ball@chat.meryton.lit/bingley'
from='bingley@netherfield.lit/meryton'>
<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

<presence to='ball@chat.meryton.lit/jane'
from='jane@longbourn.lit/meryton'>
<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

Once they have joined the room, the group chat service will broadcast all the other participants’
presence statuses to them. After all the other participants’ presence stanzas are sent, the server con-
cludes the presence broadcast by sending the arriving participant’s presence to everyone, including
the new arrival. Thus, when a new participant sees their own presence broadcast back to them, they
know they have fully joined the room.

This is what Jane’s client will receive upon joining the room:

<presence to='jane@longbourn.lit/meryton'
from='ball@chat.meryton.lit/elizabeth'>
<x xmlns='http://jabber.org/protocol/muc'>
<item affiliation='member' role='participant'/>
</x>
</presence>

<presence to='jane@longbourn.lit/meryton'
from='ball@chat.meryton.lit/bingley'>
<x xmlns='http://jabber.org/protocol/muc'>
<item affiliation='member' role='participant'/>
</x>
</presence>

<presence to='jane@longbourn.lit/meryton'
from='ball@chat.meryton.lit/jane'>
<x xmlns='http://jabber.org/protocol/muc'>
<item affiliation='member' role='participant'/>
<status code='110"'/>
</x>
</presence>

The room sends the affiliations and roles of each participant along with their presence. Jane’s own
presence broadcast also includes a status code of 110, which signals that this presence refers to the
user herself. Just as with presence updates from Jane’s roster, Jane will also receive presence updates
from the room as people leave and new people join.

170 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

It can happen that someone already in the room has a user’s desired nickname. When this happens,

the group chat service will respond to the directed presence with a presence error signaling a nickname
conflict.

Lydia tries to join the room with her sisters, but someone else has already used her desired
nickname:

<presence to='ball@chat.meryton.lit/lydia'
from='1lydia@longbourn.lit/meryton'>
<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

The server responds with a nickname conflict error:

<presence to='lydia@longbourn.lit/meryton'
from='ball@chat.meryton.lit'
type='error'>
<x xmlns='http://jabber.org/protocol/muc'/>
<error type='cancel'>
<conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

Lydia will have to choose a new nickname and attempt to join the room again.

Leaving a room is accomplished by sending unavailable presence to your room JID. Darcy has tired
of the conversation in the room and has decided to leave. He sends the following stanza:

<presence to='ball@chat.meryton.lit/darcy'
from='darcy@pemberley.lit/meryton'
type='unavailable'/>

The server will broadcast this out to the other occupants. For example, Jane’s client will receive the
following stanza marking Darcy’s exit:

<presence to='jane@longbourn.lit/meryton'
from='ball@chat.meryton.lit/darcy’
type='unavailable'>
<x xmlns='http://jabber.org/protocol/muc'>
<item affiliation='member' role='none'/>
</x>
</presence>

Darcy will also receive the broadcast from the room. Note that it also contains the status code 110
because it refers to his own presence.

<presence to='darcy@pemberley.lit/meryton'
from='ball@chat.meryton.lit/darcy'
type='unavailable'>
<x xmlns='http://jabber.org/protocol/muc'>
<item affiliation='member' role='none'/>
<status code='110"'/>
</x>
</presence>

Public Speaking | 171

Aside from more error cases defined in the specification, that is all there is to joining and leaving
group chat rooms.

Sending and Receiving Messages

Once in a room, users can communicate with each other by sending and receiving messages. This works
very similarly to private chat messages, which you’ve seen in previous chapters.

Messages are sent to the room with a special type — groupchat. Messages directed to the bare room
JID, ball@chat .meryton.1lit, for example, are broadcast out to all occupants. Messages sent to the
full JID of an occupant in the room are private and relayed by the room to the real JID of the user.

In the following example, Mr. Bingley addresses Mr. Darcy in the room. First Bingley sends his mes-
sage to the room:

<message to='ball@chat.meryton.lit'
from='bingley@netherfield.lit/meryton'
type='groupchat'>
<body>Come, Darcy, I must have you dance. I hate to see you standing
about by yourself in this stupid manner. You had much better
dance.</body>
</message>

His message will be broadcast out to all occupants, including Mr. Darcy. Darcy’s client will receive:

<message to='darcy@pemberley.lit/meryton'
from='ball@chat.meryton.lit/bingley’
type="'groupchat'>
<body> Come, Darcy, I must have you dance. I hate to see you standing
about by yourself in this stupid manner. You had much better
dance.</body>
</message>

In most group chat rooms, messages will appear just like these, perhaps with XHTML-IM payloads
for nicer formatting. Group chat messages can be extended just like anything else in XMPP, and by

using extensions, the messages can carry arbitrary structured information. You see this in action in

Chapter 11 when you build a game service using group chat.

Anonymity

XMPP multi-user chat rooms have configurable levels of anonymity, unlike many other group chat
systems. Three levels are currently defined in the specification: non-anonymous, semi-anonymous,
and fully anonymous.

In non-anonymous rooms, each occupant can see the real JID of the other occupants; the room will
broadcast an extra jid attribute in the occupant’s presence updates.

In semi-anonymous rooms, only owners and admins can see the real JIDs of occupants. Semi-
anonymous and non-anonymous rooms are the most common types, and most group chat services
will be configured to use one of these as the default for newly created rooms.

172 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

Fully anonymous rooms are quite rare, and only server administrators have access to the real JIDs of
participants of these rooms. Not even the room’s owner can access the real JIDs.

Normal private messages cannot be sent to participants in semi-anonymous or anonymous rooms,
as the sender does not have access to the participant’s actual JID. This is why private messages in
group chat are sent to the participant’s room JID.

Creating Rooms

Thousands of rooms in the federated XMPP network are already available for you to participate in,
but sometimes you will find that the room you are looking for does not yet exist. Creating rooms is
easy, and it is accomplished in much the same manner as joining a room.

Actually, rooms can be created just by joining a non-existent room. Assuming the service allows the
user to create new rooms, sending directed presence to the desired room JID of the new room will
cause the room to be created and the user to be set as the room’s owner. Here, Bingley creates a new
room for the Netherfield party:

<presence to='chatter@chat.netherfield.lit/bingley'
from='bingley@netherfield.lit/drawing_room'>
<x xmlns='http://jabber.org/protocol/muc'/>
</presence>

The chat.netherfield.lit service responds with the presence broadcast for the room’s new and only
occupant:

<presence to='bingley@netherfield.lit/drawing_room'
from='chatter@chat.netherfield.lit/bingley'>
<x xmlns='http://jabber.org/protocol/muc'>
<item affiliation='owner' role='moderator'/>
<status code='110"'/>
<status code='201"'/>
</x>
</presence>

Notice that Bingley has the owner affiliation and the moderator role. These attributes give Bingley
special powers within the room, and you see more about these later. The 110 status code is sent, just
as it was before, and a new status code of 201 is sent. This new status code signals that a new room
has been created.

Once the room is created, the owner will usually configure it to behave as desired. Group chat
rooms support a wide range of configuration options, including:

> Room persistence, or whether the room will continue to exist after all participants have left
Room description

Whether the room’s messages should be logged

Whether participants are allowed to change the room’s topic

The maximum number of occupants

Y VYV Y Y Y

Access controls like membership lists

Public Speaking | 173

Room configuration is done with Data Forms (XEP-0004), which you learn about in the next chapter.
Groupie’s needs are modest so the default room configuration will be sufficient.

Understanding Roles and Affiliations

You’ve already seen that every user in a group chat room has a role and an affiliation assigned.
Occupants will usually have a role of participant and an affiliation of member, but as you saw with
room creation, the room’s creator has a role of moderator and an affiliation of owner. It’s time to learn
a little more about roles and affiliations because they are important for one of the most essential pieces
of chat rooms, community management.

Roles and affiliations enable or restrict functionality, but they apply on different time scales.

An affiliation is a long-term property that persists across visits to the room, but roles apply only to
the current visit. For example, when the room’s owner joins the room, their role is moderator, and
when they leave, their role becomes none, but even after leaving, their affiliation remains as owner.

Roles and affiliations are mostly hierarchical, and each level has all the properties of the previous one
as well a few new ones. Table 8-1 lists the defined roles and their normal meanings, and Table 8-2
lists the possible affiliations.

TABLE 8-1: Group Chat Roles

ROLE PRIVILEGES

None No permissions — not in the room

Visitor Can observe conversation, but can’t talk

Participant Can fully participate in public conversation

Moderator Can remove users from the room, or promote participants to visitors

TABLE 8-2: Group Chat Affiliations

AFFILIATION PRIVILEGES

Outcast Banned from the room

None Can join the room

Member Can join even if room is members-only, and can retrieve the member list

Admin Can ban members or unaffiliated users; can add and remove the member affiliation

or the moderator role

Owner Can add and remove admins and owners; can configure or destroy the room

Using the information in Table 8-1 and Table 8-2, you can begin to see how community manage-
ment is accomplished. Kicking out a rowdy participant is done by setting their role within the room

174 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

to none. If they return and continue to cause problems, you can set their affiliation with the room to
outcast, and they will no longer be allowed to join. The room’s owner can recruit new room admin-
istrators by setting their affiliations to admin, which will change their role to moderator whenever
they join the room.

Manipulating roles and affiliations is done via 1Q-set and 1Q-get stanzas. Modifying the role or
affiliation of a participant usually causes new presence information to be broadcast to the room for
the affected user.

Wickham has eloped with Lydia, abandoning his post in the militia. Colonel Forster is forced to ban
Wickham from the militia’s chat room. The colonel sends an IQ-set to change Wickham’s affiliation:

<ig to='militia@chat.emdashshire.lit"
from='forster@militia.lit/headquarters’
type="'set'
id='banl'>
<query xmlns='http://jabber.org/protocol/muc#admin'>
<item jid='wickham@emdashshire.lit'
affiliation='outcast'/>
<reason>AWOL</reason>
</query>
</ig>

The chat.emdashshire.lit service will respond with an IQ-result indicating success because Colonel
Forster is the owner of the room. If Wickham is not currently in the room, the room does not need to
broadcast anything to the rest of the occupants; however, if Wickham is in the room when he is banned,
he will be forcibly removed, and all the room occupants will be notified of his presence change.

Wickham will receive the following stanza when he is removed from the room after his banishment:

<presence to='wickham@emdashshire.lit/london'
from='militia@chat.emdashshire.lit'
type='unavailable'>
<x xmlns='http://jabber.org/protocol/muc#user'>
<item affiliation='outcast' role='none'>
<actor jid='forster@militia.lit'/>
<reason>AWOL</reason>
</item>
<status code='301"'/>
</x>
</presence>

The <actor> element lets Wickham know who made the affiliation change, and the status code of
301 signals that he has been banned.

The other militia members receive a similar presence stanza.

Role changes are done in the same manner as affiliations. If Lady Catherine wants to grant speaking
privileges to Elizabeth within her room, she will send an IQ-set with the desired role change:

<ig to='chatter@chat.rosings.lit'
from='lady_catherine@rosings.lit/parlor’
type="'set'
id='voicel'>

Building the Interface | 175

<x xmlns='http://jabber.org/protocol/muc#admin'>
<item nick='elizabeth' role='participant'/>
</x>
</ig>

Elizabeth’s role changes from visitor to participant, and the room will send the presence change
to all occupants. Note that the nick attribute is used to specify Elizabeth by her nickname; because
roles apply to a single room visit, changing roles is done by nicknames instead of JIDs.

As you have seen, the multi-user chat protocol has quite a bit of depth. Many more use cases, con-
figuration options, and error flows are enumerated in the extension’s specification, but the topics
covered in this section are enough for you to build Groupie.

BUILDING THE INTERFACE

Groupie’s interface is simple, as you saw in Figure 8-1. It consists of a slightly extended login dialog
box, a chat area, a participant area, and the chat input box. The HTML required to build this inter-
face is shown in Listing 8-1, and the CSS for styling it is shown in Listing 8-2.

‘) LISTING 8-1: groupie.html

an?m§mr <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
Wi o "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-type" content="text/html;charset=UTF-8">

<title>Groupie - Chapter 8</title>

<link rel='stylesheet' href='http://ajax.googleapis.com/ajax/libs/jqueryui
/1.7.2/themes/cupertino/jquery-ui.css'>

<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js'>

</script>

<script src='http://ajax.googleapis.com/ajax/libs/jqueryui/l1.7.2/jquery-ui
.Jjs'></script>

<script src='scripts/strophe.js'></script>

<script src='scripts/f1XHR.js'></script>

<script src='scripts/strophe.flxhr.js'></script>

<link rel='stylesheet' type='text/css' href='groupie.css'>
<script type='text/javascript' src='groupie.js'></script>
</head>
<body>
<hl>Groupie</hl>

<div id='toolbar'>
<input id='leave' type='button' value='Leave Room'
disabled='disabled'>
</div>

<div>
<div>
continues

176 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

LISTING 8-1 (continued)

</div>
<div id='chat'>
</div>

<textarea id='input'></textarea>
</div>

<div id='participants'>
<ul id='participant-list'>

</div>

<!-- login dialog -->
<div id='login_dialog' class='hidden'>

<label>JID:</label><input type='text' id='jid'>
<label>Password:</label><input type='password' id='password'>

<label>Chat Room:</label><input type='text'
<label>Nickname:</label><input type='text'
</div>
</body>
</html>

\) LISTING 8-2: groupie.css

Available for body {

dﬂ‘,’:’&‘f‘c’gn‘:“ font-family: Helvetica;

hl {
text-align: center;
}
.hidden {
display: none
}
#toolbar {
text-align: center;
padding: 5px;
margin-bottom: 15px;
}

#room-name {
font-size: 150%;
font-weight: bold;

id='room'>
id='nickname'>

Building the Interface | 177

}

#room-topic {
font-style: italic;
}

#chat-area {
float: left;
width: 500px;

#chat {
overflow: auto;
height: 400px;
border: solid 1lpx #ccc;

}

#participants {
float: left;
width: 200px;
height: 500px;
overflow: auto;

}

#input {
width: 95%;
font-size: 120%;

}

.notice {
font-style: italic;
font-weight: bold;

color: #3d3;
}
.error {

color: #d33;
}
.message {

color: #aaa;

}

.nick {

color: #66f;
}
.self {

color: #f66;
}
.body {

color: #000;

continues

178 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

\) LISTING 8-2 (continued)

Available for }
download on
Wrox.com

.delayed {
opacity: 0.5;
}

.private {
background-color: #fdd;
}

.action {
color: #333;
}

You’ll want the login dialog box to be presented as soon as the application is opened, just as in pre-
vious chapters. The JavaScript skeleton in Listing 8-3 has been slightly modified to work with the
new fields in the login dialog box, but is otherwise the same as you’ve seen previously.

‘) LISTING 8-3: groupie.js (skeleton)

Available for var Groupie = {

download on .

Wrox.com connection: null,
room: null,
nickname: null

Y

$ (document) .ready (function () {
S('#login_dialog') .dialog({
autoOpen: true,
draggable: false,
modal: true,
title: 'Join a Room',
buttons: {
"Join": function () {
Groupie.room = $('#room').val();
Groupie.nickname = $('#nickname') .val();

S (document) . trigger ('connect', {
jid: s('#jid').val(),
password: $('#password').val()

1)

S ('#password') .val('');
$(this).dialog('close');

Joining the Room | 179

)

$ (document) .bind('connect', function (ev, data) {
Groupie.connection = new Strophe.Connection (
'http://bosh.metajack.im:5280/xmpp-httpbind') ;
Groupie.connection.connect (
data.jid, data.password,
function (status) {

if (status === Strophe.Status.CONNECTED) {
S (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) . trigger ('disconnected') ;

)
)

$ (document) .bind('connected', function () {
// nothing here yet
)

$ (document) .bind('disconnected', function () {
// nothing here yet
)

Now that the boilerplate is done, you can start adding support for joining the group chat room.

JOINING THE ROOM

As you saw in the section Public Speaking, joining group chat rooms is a simple matter of sending
directed presence to your desired room JID. However, the room will immediately send you a presence
broadcast for all of the other participants when you join, so you will have to handle those too. You'll
also need to add support for leaving the room, in case your users care to join a different room.

First, you should add a namespace constant to the Groupie object, so that you don’t have to keep
typing the multi-user chat namespace, http://jabber.org/protocol /muc, over and over. Also,
a flag is needed for whether the user has joined a room or not. Finally, a dictionary for the room’s
occupants is needed as well. Add the following attributes to the Groupie object:

\) NS_MUC: "http://jabber.org/protocol/muc",
joined: null,

Available for participants: null
download on
Wrox.com

code snippet groupie.js

Next, modify the connected event handler to send initial presence to the server to go online and
directed presence to the user’s desired room JID to join the room:

‘) $ (document) .bind('connected', function () {
Groupie.connection.send($pres().c('priority').t('-1'));
Available for Gropuie.connection.send(

download on
Wrox.com $pres({

180 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

to: Groupie.room + "/" + Groupie.nickname
}).c('x', {xmlns: Groupie.NS_MUC}));

code snippet groupie.js

The directed presence stanza looks just like the ones you saw as examples before, but the initial
presence has something new, a priority child.

Presence priorities give information to the user’s server about which connected resources are more
important for message delivery. Messages will be routed to the resources with the highest positive
presence priority, and in the case of a tie, the message will be delivered to one or all of the resources
with tied priorities.

The presence priority in Groupie is negative, which has a special meaning. Any resource with nega-
tive priority will never receive messages addressed to the bare JID. This is very useful for XMPP
applications that do not intend to use private messages, because the negative priority will ensure that
the application is not delivered messages it won’t process. It also ensures that the user does not lose
private messages that are sent to resources that are not capable of private chat.

Because Groupie doesn’t handle private messages, aside from the special group chat private messages
you see later, it sets the presence priority to -1 to avoid accidentally stealing private messages from
users.

Now that Groupie starts the process to join a group chat room, you should add support for handling
the broadcast of the other participants’ presence as well as the broadcast of your own presence, which
indicates the room join is complete.

Add the following highlighted lines to the connected event handler to set up the incoming presence
handler:

‘) $ (document) .bind('connected', function () {
Groupie.joined = false;

Available for Groupie.participants = {};

download on

Wrox.com) , . .
Groupie.connection.send($pres().c('priority').t('-1"));

Groupie.connection.addHandler (Groupie.on_presence,
null, "presence");
Gropuie.connection.send (
$pres ({
to: Groupie.room + "/" + Groupie.nickname
}).c('x', {xmlns: Groupie.NS_MUC}));

code snippet groupie.js

Now you must implement on_presence (). This handler needs to do two things at this stage. First,
it must populate the participant area with the current occupants of the room. Second, it will trigger

Joining the Room | 181

the room_joined event when the user’s own presence shows up. The modified Groupie object is

shown here:
‘) var Groupie = {
connection: null,
Available for room: null,
download on

Wrox.com nickname: null,
NS_MUC: "http://jabber.org/protocol/muc",
joined: null,

participants: null,

on_presence: function (presence) {
var from = $(presence).attr('from');
var room = Strophe.getBareJidFromJid(£from);

// make sure this presence is for the right room
if (room === Groupie.room) {
var nick = Strophe.getResourceFromJid(from) ;

if ($(presence).attr('type') === 'error' &&
IGroupie.joined) {
// error joining room; reset app
Groupie.connection.disconnect();

} else if (!Groupie.participants[nick] &&

$ (presence) .attr('type') !== 'unavailable') {

// add to participant list
Groupie.participants[nick] = true;

$('#participant-list').append('<1li>' + nick +

if ($(presence).attr('type') !== 'error' &&
1Groupie.joined) {

'</1i>");

// check for status 110 to see if it's our own presence
if ($(presence).find("status[code='110']").length > 0) {
// check if server changed our nick
if ($(presence).find("status[code='210"']").length > 0) {
Groupie.nickname = Strophe.getResourceFromJid(from) ;

// room join complete
$ (document) .trigger ("room joined");

return true;

code snippet groupie.js

182 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

The code keeps track of whether or not the room is joined in order to know when to fire the
room_joined event. It should only fire room_joined the first time it receives the user’s own pres-
ence as indicated by a status code of 110. If a presence error occurs, this usually signals a nickname
conflict. Groupie simply resets the application in this case. Note that the group chat service may
change the user’s requested nickname; this change is signaled by the 210 status code, so in that case,
the nickname property is updated to reflect the change.

You can add a handler for the room_joined event to let the user know their action was successful
and enable the Leave Room button. Add the following handler to the end of groupie.js:

‘) S (document) .bind('room_joined', function () {
Groupie.joined = true;
Available for

download on

Wrox.com S('#leave') .removeAttr ('disabled') ;

S ('#room-name') .text (Groupie.room) ;

S ('#chat') .append("<div class='notice'>*** Room joined.</div>")
1)

code snippet groupie.js

All that’s left is to enable the user to leave the room by wiring up the Leave Room button. Add the
following code to the document ready handler:

\) S('#leave') .click(function () {

Groupie.connection.send (
Available for Spres ({to: Groupie.room + "/" + Groupie.nickname,
download on A ; " .
Wrox.com . type: una}vallable 1))
Groupie.connection.disconnect () ;

1)

code snippet groupie.js

The preceding code sends directed presence of type unavailable to the room to exit nicely and then
terminates the XMPP connection. You should make sure that the login dialog box reappears by
modifying the disconnected event handler:

‘) $ (document) .bind ('disconnected', function () {
Groupie.connection = null;
Available for $ ('"#participant-list').empty();
dmg;‘fgg{g" $ ('#room-name') .empty () ;
$ ('#room-topic') .empty();
$('#chat') .empty();
$('#login dialog').dialog('open');

code snippet groupie.js

If you run Groupie now, you should see it join the requested room and add the list of all occupants
to the participant area. Once your own presence is received, you should see “*** Room joined”
printed in the chat area.

Dealing with Presence and Messages | 183

DEALING WITH PRESENCE AND MESSAGES

Once in a group chat room, the user needs to be able to send and receive messages, and their participant
list should remain updated as people join and leave the room. Private messages sent to the user should
be displayed specially, and the user should also be able to send private messages to other participants.
You can add all these features to Groupie very easily.

Handling Room Messages

To display messages from people in the room, you must first add a handler for incoming <message>
stanzas and then display them. You can add the appropriate handler in the connected event handler,
right after the addHandler () for <presence> stanzas:

‘) Groupie.connection.addHandler (Groupie.on_public_message,
null, "message", "groupchat");

Available for
download on . .
Wrox.com code snippet groupie.js

Note that each message to the room will have the type attribute set to groupchat. This differenti-
ates public messages from private ones. Later you add a handler for private messages, which have a
type attribute equal to chat or normal.

Now you must implement on_public_message (), which should display incoming messages
addressed to the room. Add this code to the Groupie object:

‘) on_public_message: function (message) {

var from = $(message).attr('from');
Available for var room = Strophe.getBareJidFromJid (from) ;
d&ﬁ:yg&g“ var nick = Strophe.getResourceFromJid (from) ;

// make sure message is from the right place

if (room === Groupie.room) {
// 1s message from a user or the room itself?
var notice = !nick;

// messages from ourself will be styled differently

var nick_class = "nick";
if (nick === Groupie.nickname) {
nick_class += " self";

var body = $(message).children('body').text();

if (!notice) {
Groupie.add_message("<div class='message'>" +
"§lt;" +
nick + "> " +
body + "</div>");
} else {
Groupie.add _message("<div class='notice'>*** " + body +
t</div>") ;

184 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

return true;

code snippet groupie.js

This function is less complicated than it may appear. First, the function distinguishes messages sent
by the room’s occupants from messages sent by the room itself and prints the message appropriately. It
also uses CSS styles to differentiate messages the user sends from the messages of the other occupants.
Finally, just as in previous applications, the function ensures that the content window is scrolled to the
bottom when adding new lines by using the add_message () function. The add_message () helper is
shown here, and should be added to the Groupie object:

‘) add_message: function (msg) {
// detect if we are scrolled all the way down

Available for var chat = $('#chat').get(0);
dﬂ‘,’:g:(“:gnoln var at_bottom = chat.scrollTop >= chat.scrollHeight -
’ chat.clientHeight;

S ('#chat') .append (msg) ;
// if we were at the bottom, keep us at the bottom

if (at_bottom) {
chat.scrollTop = chat.scrollHeight;

code snippet groupie.js

Next on the list is wiring up the input text box so that the user can send messages to the room. You
do this by adding a keypress event handler and watching for the key code that corresponds to the
Enter key. Add the following code to the document ready handler:

‘) S('#input') .keypress (function (ev) {

if (ev.which === 13) {
Available for ev.preventDefault () ;
download on
Wrox.com

var body = $(this).val();

Groupie.connection.send (
$msg ({
to: Groupie.room,
type: "groupchat"}).c('body') .t (body));

S (this).val('');

code snippet groupie.js

Dealing with Presence and Messages | 185

With this latest feature, Groupie is moderately useful. Users can join group chat rooms and partici-
pate in the conversation. Unfortunately, the participant list does not track the actual state of the
room yet, but you will fix that next.

Tracking Presence Changes

The on_presence () handler you wrote earlier does a great job of updating the participant list when-
ever a new person joins the room, but it isn’t kept up-to-date as people leave. You’ll need to add logic
to on_presence () to remove people when they leave the room.

The modified on_presence () appears in the following code with the new and modified lines high-
lighted. Note that events have been added for people joining and leaving the room. You will make
use of these shortly.

‘) on_presence: function (presence) {
var from = $(presence).attr('from');

Available for var room = Strophe.getBareJidFromJid (from) ;
download on

Wrox.com , . .
// make sure this presence is for the right room

if (room === Groupie.room) {
var nick = Strophe.getResourceFromJid(from) ;

if ($(presence).attr('type') === 'error' &&
IGroupie.joined) {
// error joining room; reset app
Groupie.connection.disconnect () ;

} else if (!Groupie.participants[nick] &&

S (presence) .attr('type') !== 'unavailable') {
// add to participant list
Groupie.participants[nick] = true;

S ('#participant-list') .append('' + nick + '</1i>"');

if (Groupie.joined) {
$ (document) .trigger ('user_joined', nick);
}
} else if (Groupie.participants[nick] &&
$ (presence) .attr('type') === 'unavailable') {
// remove from participants list
$('#participant-list 1li').each(function () {
if (nick === $(this).text()) {
$(this) .remove();
return false;

)i

$ (document) .trigger ('user_left', nick);

if ($(presence).attr('type') !== 'error' &&
IGroupie.joined) {
// check for status 110 to see if it's our own presence
if (S (presence).find("status[code='110']").length > 0) {

186 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

// check if server changed our nick
if ($(presence).find("status[code='210']").length > 0) {
Groupie.nickname = Strophe.getResourceFromJid (from) ;

}

// room join complete
$ (document) . trigger ("room_joined") ;

return true;

code snippet groupie.js

You can print helpful messages to the user whenever people join and leave by writing handlers for
these two new events. The following event handlers add notice messages to the chat area on these
events; add them to the end of groupie.js:

‘) S (document) .bind('user_joined', function (ev, nick) {
Groupie.add_message("<div class='notice'>*** " + nick +

Available for " joined.</div>");
download on):
Wrox.com !

S (document) .bind('user_left', function (ev, nick) {
Groupie.add_message("<div class='notice'>*** " 4+ nick +
" left.</div>");
1)

code snippet groupie.js

Now Groupie keeps track of who is in the room as well as when people join and leave.

Chat History

You might have noticed that often, as soon as you join a group chat room, a lot of messages appear
immediately. These represent the recent chat history, and XMPP multi-user chat rooms send a con-
figurable amount of this history to new occupants so that they have some context for the ensuing
discussions. If you’ve ever used IRC, you may be familiar with how confusing it is to join a room in
the middle of an active conversation.

It would be nice if Groupie presented this chat history differently. You can modify the on_public_
message () handler to add a special CSS class to these messages. The room tags historical chat mes-
sages with <delay> elements just like the stored private messages you saw in Chapter 5. It may be
that group chat servers you encounter use the legacy version of delay indication defined in XEP-0091
instead of the current version in XEP-0203. To detect the old-style delay indicators, just check for an <x>

Dealing with Presence and Messages | 187

element under the jabber:x:delay namespace. The following modified version of on_public_
message () adds the delayed class to messages that contain delay indicators of either type:

‘) on_public_message: function (message) {
var from = $(message).attr('from');

Available for var room = Strophe.getBareJidFromJid (from) ;
dmg;”:g"':" var nick = Strophe.getResourceFromJid (from) ;

// make sure message is from the right place

if (room === Groupie.room) {
// 1s message from a user or the room itself?
var notice = !nick;

// messages from ourself will be styled differently

var nick_class = "nick";
if (nick === Groupie.nickname) ({
nick _class += " self";

var body = $(message).children('body') .text();

var delayed = $(message).children("delay"”).length > 0 ||
$ (message) .children("x[xmlns='jabber:x:delay']l").length > 0;

if (!notice) {
var delay css = delayed ? " delayed": "";
Groupie.add message("<div class='message" + delay css + "'>" +
"glt;" +
nick + "> " +
body + "</div>");
} else {
Groupie.add_message("<div class='notice'>*** " + body +
"</div>") ;

return true;

code snippet groupie.js

With chat history taken care of, you can now move on to the last messaging-related feature — private
room messages.

Keeping It Private

When sending messages for all to see, Groupie addressed the message to the room itself, and the room
rebroadcast it to all occupants. You can also address messages to specific occupants, and these

188

| CHAPTER 8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

J

messages are sent privately and not shared with the rest of the room. To complete Groupie, you’ll
want to add support for sending and receiving private messages within the room.

To send a private room message, you need only address the message directly to the occupant’s room
JID, making sure to set the type attribute to chat instead of groupchat. As discussed in the Anonymity
section, the participant’s room JID is used since the room may be configured as anonymous or semi-
anonymous.

Without a different type attribute, the recipient would have no way to distinguish a public message
from a private one. To receive private messages, you must watch for incoming messages from room
occupants with a type attribute of chat.

First, add a new <message> stanza handler for private messages next to the others in the connected
event handler:

Groupie.connection.addHandler (Groupie.on_private_message,
null, "message", "chat");

Available for

download on

Wrox.com code snippet groupie.js

J

Next, add the on_private_message () function to the Groupie object:

on_private_message: function (message) {
var from = $(message).attr('from');

Available for var room = Strophe.getBareJidFromJid (from) ;
da‘,’:g;“zglg" var nick = Strophe.getResourceFromJid (from) ;

// make sure this message is from the correct room
if (room === Groupie.room) {
var body = $(message).children('body') .text();
Groupie.add_message("<div class='message private'>" +
"@@ <" +
nick + "> " +
body + " @@</div>");

return true;

code snippet groupie.js

Groupie ensures the message is from a participant of the room before displaying it to the user.

Finally, you need to modify the input text box’s keypress event handler to detect private messages
and send them. Private messages are sent with the /msg command, which the user types into the text
box. If you’ve used IRC clients before, this should look pretty familiar. The new handler code must
parse out this special command, check it for errors or bad arguments, and then execute the intended
action.

Dealing with Presence and Messages | 189

The modified keypress handler follows, with the changed lines highlighted:
‘) S('#input') .keypress (function (ev) {

if (ev.which === 13) {
Available for ev.preventDefault () ;
download on
Wrox.com

var body = $(this).val();

var match = body.match(/A\/(.*?)(?: (.*))?%$/);
var args = null;
if (match) {
if (match[l] === "msg") {
args = match[2].match(/A(.*?) (.*)$/);
if (Groupie.participantsl[args[1]]) {(
Groupie.connection.send (
$msg ({
to: Groupie.room + "/" + args[l],
type: "chat"}).c('body').t(body)):;
Groupie.add message (
"<div class='message private'>" +
"@@ <" +
Groupie.nickname +
"> " +
args[2] + " @@</div>");
} else {
Groupie.add message(
"<div class='notice error'>" +
"Error: User not in room." +
"</div>");
}
} else {
Groupie.add message(
"<div class='notice error'>" +
"Error: Command not recognized." +

ne/divo>");
}
} else {
Groupie.connection.send (

$msg ({
to: Groupie.room,
type: "groupchat"}).c('body') .t (body));
}

$(this).val('");

code snippet groupie.js

The preceding code abstracts the command parsing logic because you add more special commands
in the next section. For the /msg command, Groupie sends the private message to the occupant specified
by the user. If the addressed occupant is not in the room or an invalid command was given, an error
is shown.

190

| CHAPTER 8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

Private messages are now shown in between “@@” markers and with a light red background. Adding
support for one command wasn’t too hard, but additional commands can be implemented extremely
easily. As the final feature in this section, you should add an action command.

Describing Actions

Many chat systems support action descriptions where users describe themselves or what they are
doing. Because talking about yourself in the third person is often strange, commands were added to
these chat systems to make this more natural. Typically these commands were written /action or
/me, and users would type something like this:

/me writes another XMPP application
You can easily add support for these to Groupie. All you need to do is to add a new clause to the

command logic inside the keypress event handler and display messages starting with /me in a
special way.

The following code shows the modifications needed to the command interpretation clauses:

‘) if (match[1l] === "msg") {

args = match[2].match(/"(.*?) (.*)$/);
Tﬂemimr if (Groupie.participantslargs([1]]) {
ownload on . .
Wrox.com Groupie.connection.send (

$msg ({
to: Groupie.room + "/" + args[1l],
type: "chat"}).c('body') .t (body)):;
Groupie.add_message (
"<div class='message private'>" +
"@@ <" +
Groupie.nickname +
"> " +
args[2] + " @@</div>");
} else {
Groupie.add_message (
"<div class='notice error'>" +
"Error: User not in room." +

"</div>");
}
} else if (match[l] === "me" || match[l] === "action") {
Groupie.connection.send(

$msg ({
to: Groupie.room,
type: "groupchat"}).c('body')
.t('/me ' + match[2]));

} else {
Groupie.add_message (

"<div class='notice error'>" +
"Error: Command not recognized." +
"</div>");

code snippet groupie.js

Managing the Room | 191

Lastly, modify the relevant parts of on_public_message () to match the parts in the modified ver-

sion here:
‘) if (!notice) {
var delay_css = delayed ? " delayed": "";
G\vail?hlziur
ownload on . _)
Wrox.com var action = body.match(/\/me (.*)$/);

if (laction) {
Groupie.add_message (
"<div class='message" + delay_css + "'>" +
"<" +
nick + "> " +
body + "</div>");
} else {
Groupie.add message (
"<div class='message action " + delay css + "'>" +

"k v 4 nick + " " + action[l] + "</div>");
}
} else {
Groupie.add_message("<div class='notice'>*** " + body +
"</div>");

code snippet groupie.js

Groupie is nearly done, and it’s already quite a usable group chat client. However, if you are a room
moderator, you will need some extra functionality for managing the occupants.

MANAGING THE ROOM

The last features you will add to Groupie are all about room management. These are the tools users
need to run their own successful group chat rooms, including manipulating the room’s topic, kicking
and banning users, and managing the room’s administrators.

Changing Topics

Every room has a topic, which is typically shown at the top of the room. Depending on the room’s
configuration, users may be able to change the topic message, or this action may be restricted to
administrators. Groupie will need to display the current topic and allow authorized users to change it.

Topic changes are sent out as bodiless messages that contain a <subject> element, and the content
of the <subject> element becomes the new room topic. You can watch for these messages in the on_
public_message () handler. The following code should be inserted right before the line containing
“if (lnotice) {™:
‘) // look for room topic change
var subject = $(message).children('subject').text();

Availablefor if (subject) {

download on | _ et ; .
Wrox.com $('#room-topic') .text (subject) ;

code snippet groupie.js

192 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

You can allow users to change the topic by adding a /topic command to the keypress event handler.
The modified command logic appears here with the new lines highlighted:

‘) } else if (match[l] === "me" || match[l] === "action") {
Groupie.connection.send (

Available for $msg ({

download on

to: Groupie.room,
type: "groupchat"}).c
.t('/me ' + match[2])
} else if (match[l] === "topic")
Groupie.connection.send(
$msg({to: Groupie.room,
type: "groupchat"}).c('subject')
.text (match[2]));

Wrox.com
'body ")

(
)
{

} else {
Groupie.add_message (
"<div class='notice error'>" +
"Error: Command not recognized." +
r</div>") ;

code snippet groupie.js

Groupie’s users can now see and change room topics, assuming that the room’s configuration allows
them to do so.

Dealing with Troublemakers

It is a sad fact that nearly every gathering place on the Internet is prey to those who would disturb
peaceful conversations. Luckily, the multi-user chat protocol has quite a few tools for dealing with
these troublemakers, and you add two of these to Groupie: kicking out and banning.

Kicking out users from the room simply removes them from the room temporarily and functions as
a stern warning. As you saw in the section Public Speaking, kicking out users is accomplished by
sending an IQ-set for an occupant that changes the occupant’s role to none. In order for a user to
kick out an occupant, the user must have the role of moderator.

Add the /kick command by adding the following clause to the command logic:

‘) } else if (match[l] === "topic") {
Groupie.connection.send(
Available for Smsg ({to: Groupie.room,
dﬂ"’:g:gzgnol“ type: "groupchat"}).c('subject')
.text (match[2]));
} else if (match[l] === "kick") {
Groupie.connection.sendIQ(
$ig({to: Groupie.room,
type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {nick: match[2],
role: "none"}));
} else {
Groupie.add_message (

Managing the Room | 193

"<div class='notice error'>" +
"Error: Command not recognized." +
t</div>");

code snippet groupie.js

You can test this feature by creating a new room so that you are the room’s owner and then joining the
room with another XMPP account. Once the second account is joined, you can type /kick nickname
on the first account to remove the second one from the room.

Banning a user is nearly the same, except that you must modify the user’s affiliation instead of their
role. A banned user has an affiliation of outcast, and won’t be able to join the room again until the

ban is lifted.
Add the following clause to the command logic to add support for /ban:
‘) } else if (match[1l] === "kick") {
Groupie.connection.sendIQ(
Available for $ig({to: Groupie.room,
download on

type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {nick: match[2],
role: "none"}));
} else if (match[l] === "ban") {
Groupie.connection.sendIQ(
$ig({to: Groupie.room,
type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {jid: Groupie.participants[match[2]],
affiliation: "outcast"}));

Wrox.com

} else {
Groupie.add_message (
"<div class='notice error'>" +
"Error: Command not recognized." +
"</div>");

code snippet groupie.js

Users must be banned using their bare JIDs, not their room nicknames. It is also possible to ban an
entire domain, but usually moderators try to restrict the ban to avoid inadvertently punishing the
innocent. The preceding code uses the participants dictionary to get the JID for an occupant’s
nickname. Previously, Groupie only stored the value true in this dictionary; you will have to add
the following highlighted lines to the on_presence () handler to store the JID if that information is
available:

‘) } else if (!Groupie.participants[nick] &&
$ (presence) .attr('type') !== 'unavailable') {
Available for // add to participant list
dmg;”:g"':" var user jid = $(presence).find('item').attr('jid');
’ Groupie.participants[nick] = user_jid || true;

194 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

$('#participant-list').append('' + nick + '</1i>');

if (Groupie.joined) {
S (document) .trigger ('user_joined', nick);
}

} else if (Groupie.participants[nick] &&

code snippet groupie.js

Groupie can now help room administrators and owners keep the peace as long as one of them is around.
Because administrators have to sleep sometime, it is often helpful to recruit new administrators to
help out.

Recruiting Help

The final feature you will add to Groupie is granting and revoking administrator privileges. This is
done via the /op and /deop commands, named after their IRC counterparts.

Adding or removing administrators is done very similarly to banning users; you need only change
someone’s affiliation with the room. Add the following highlighted clauses to implement the new

commands:
‘) } else if (match[l] === "ban") {
Groupie.connection.sendIQ(
Available for Sig({to: Groupie.room,
download on Lo "
Wrox.com type: "set"})

.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {jid: Groupie.participants[match[2]],
affiliation: "outcast"}));
} else if (match[l] === "op") {
Groupie.connection.sendIQ(
$ig({to: Groupie.room,
type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {jid: Groupie.participants[match[2]],
affiliation: "admin"}));
} else if (match[l] === "deop") {
Groupie.connection.sendIQ(
$ig({to: Groupie.room,
type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {jid: Groupie.participants[match[2]],
affiliation: "none"}));
} else {
Groupie.add_message (
"<div class='notice error'>" +
"Error: Command not recognized." +
"</div>") ;

code snippet groupie.js

Managing the Room | 195

Groupie is finally complete, and can be used by normal participants and moderators alike. The final
JavaScript code appears in Listing 8-4.

‘) LISTING 8-4: groupie.js (final)

Available for var Groupie = {

download on .

Wrox.com connection: null,
room: null,
nickname: null,

NS_MUC: "http://jabber.org/protocol/muc",
joined: null,
participants: null,

on_presence: function (presence) {
var from = $(presence).attr('from');
var room = Strophe.getBareJidFromJid (from) ;

// make sure this presence is for the right room
if (room === Groupie.room) {
var nick = Strophe.getResourceFromJid (from) ;

if ($(presence).attr('type') === 'error' &&
!Groupie.joined) {
// error joining room; reset app
Groupie.connection.disconnect () ;

} else if (!Groupie.participants[nick] &&
S (presence) .attr('type') !== 'unavailable') {
// add to participant list
var user_jid = $(presence).find('item').attr('jid");
Groupie.participants[nick] = user_jid || true;
$('#participant-list') .append('' + nick + '</1li>"');

if (Groupie.joined) {
S (document) .trigger ('user_joined', nick);
}
} else if (Groupie.participants[nick] &&
S (presence) .attr('type') === 'unavailable') {
// remove from participants list
$('#participant-list 1i').each(function () {
if (nick === $(this).text()) {
S (this) .remove () ;
return false;

)

S (document) .trigger ('user_left', nick);

if ($(presence) .attr('type') !== 'error' &&
!Groupie.joined) {
// check for status 110 to see if it's our own presence
continues

196 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

LISTING 8-4 (continued)

if ($(presence).find("status[code='110']").length > 0) {
// check if server changed our nick
if ($(presence).find("status[code='210"']").length > 0) {

Groupie.nickname = Strophe.getResourceFromJid (from) ;
}

// room join complete
$ (document) .trigger ("room_joined") ;

return true;

I

on_public_message: function (message) {
var from = $(message).attr('from');
var room = Strophe.getBareJidFromJid (from) ;
var nick = Strophe.getResourceFromJid(from) ;

// make sure message is from the right place

if (room === Groupie.room) {
// 1s message from a user or the room itself?
var notice = !nick;

// messages from ourself will be styled differently

var nick_class = "nick";

if (nick === Groupie.nickname) {
nick_class += " self";

}

var body = $(message).children('body') .text();

var delayed = $(message).children("delay").length > 0 ||
$ (message) .children ("x[xmlns="'jabber:x:delay']").length > 0;

// look for room topic change
var subject = $(message).children('subject').text();
if (subject) {

S ('#room-topic') .text (subject);

i1f ('notice) {
var delay css = delayed ? " delayed": "";

var action = body.match(/\/me (.*)S$/);
if (laction) {
Groupie.add_message (
"<div class='message" + delay_css + "'>" +
"<" +

Managing the Room | 197

nick + "> " +
body + "</div>");
} else {
Groupie.add_message (
"<div class='message action " + delay_css + "'>" +

"k " 4+ nick + " " + action[l] + "</div>");
}
} else {
Groupie.add _message("<div class='notice'>*** " + body +
"</div>") ;
}

return true;

I

add_message: function (msg) {
// detect if we are scrolled all the way down
var chat = $('#chat').get(0);
var at_bottom = chat.scrollTop >= chat.scrollHeight -
chat.clientHeight;

S ('#chat') .append (msg) ;

// if we were at the bottom, keep us at the bottom
if (at_bottom) {
chat.scrollTop = chat.scrollHeight;

b

on_private_message: function (message) {
var from = $(message).attr('from');
var room = Strophe.getBareJidFromJid (from) ;
var nick = Strophe.getResourceFromJid(from) ;

// make sure this message is from the correct room
if (room === Groupie.room) {
var body = $(message).children('body') .text();
Groupie.add _message("<div class='message private'>" +
"@@ <" +
nick + "> " +
body + " @@</div>");

return true;
Y

$ (document) .ready (function () {
S('#login_dialog') .dialog ({
autoOpen: true,
draggable: false,

continues

198 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

LISTING 8-4 (continued)

modal: true,
title: 'Join a Room',
buttons: {
"Join": function () {
Groupie.room = $('#room').val();
Groupie.nickname = $('#nickname') .val();

$ (document) . trigger ('connect', {
jid: $('#3jid').vall()
password: $('#password').val()

}) i
S ('#password') .val('');
$(this) .dialog('close');
}
}
)i
S('#leave') .click(function () {
S('#leave') .attr('disabled', 'disabled');
Groupie.connection.send (
Spres ({to: Groupie.room + "/" + Groupie.nickname,
type: "unavailable"}));
Groupie.connection.disconnect () ;
1)

S('#input') .keypress (function (ev) {
if (ev.which === 13) {
ev.preventDefault () ;

var body = $(this).val();
var match = body.match(/"\/(.*?)(?: (.*))?$/);

var args = null;
if (match) {

if (match[1l] === "msg") {
args = match[2].match(/"~(.*?) (.*)$/);
if (Groupie.participants[args[1]]) {
Groupie.connection.send (
$msg ({

to: Groupie.room + "/" + args[1l],
type: "chat"}).c('body') .t (body)):;
Groupie.add_message (
"<div class='message private'>" +
"@@ <" +
Groupie.nickname +
"> " +
args[2] + " @@</div>");
} else {
Groupie.add_message (
"<div class='notice error'>" +

Managing the Room | 199

"Error: User not in room." +

"</div>");
}
} else if (match[l] === "me" || match[l] === "action") {
Groupie.connection.send(

$msg ({
to: Groupie.room,
type: "groupchat"}).c('body')
.t('/me ' + match([2]));
} else if (match[1l] === "topic") {
Groupie.connection.send(
$msg ({to: Groupie.room,
type: "groupchat"}).c('subject')
.text (matchl2]));
} else if (match[l] === "kick") {
Groupie.connection.sendIQ (
$ig({to: Groupie.room,
type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {nick: match[2],
role: "none"}));
} else if (match[l] === "ban") {
Groupie.connection.sendIQ (
$ig({to: Groupie.room,
type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {jid: Groupie.participants[match[2]],
affiliation: "outcast"}));
} else if (match[1l] === "op") {
Groupie.connection.sendIQ (
$ig({to: Groupie.room,
type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {jid: Groupie.participants[match[2]],
affiliation: "admin"}));
} else if (match[l] === "deop") {
Groupie.connection.sendIQ (
$ig({to: Groupie.room,
type: "set"})
.c('query', {xmlns: Groupie.NS_MUC + "#admin"})
.c('item', {jid: Groupie.participants[match[2]],
affiliation: "none"}));
} else {
Groupie.add_message (
"<div class='notice error'>" +
"Error: Command not recognized." +
"</div>") ;
}
} else {
Groupie.connection.send (
$msg ({
to: Groupie.room,
type: "groupchat"}).c('body') .t (body));
continues

200 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

LISTING 8-4 (continued)

S (document) .bind('connect', function (ev, data) {
Groupie.connection = new Strophe.Connection (
'http://bosh.metajack.im:5280/xmpp-httpbind') ;
Groupie.connection.connect (
data.jid, data.password,
function (status) {
if (status === Strophe.Status.CONNECTED) {
S (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {
$ (document) . trigger ('disconnected') ;

1)
1)

$ (document) .bind ('connected', function () {
Groupie.joined = false;
Groupie.participants = {};

Groupie.connection.send($pres().c('priority').t('-1"'));

Groupie.connection.addHandler (Groupie.on_presence,
null, "presence");
Groupie.connection.addHandler (Groupie.on_public_message,
null, "message", "groupchat");
Groupie.connection.addHandler (Groupie.on_private_message,
null, "message", "chat");

Groupie.connection.send(
$pres ({
to: Groupie.room + "/" + Groupie.nickname
}).c('x', {xmlns: Groupie.NS_MUC}));
1)

$ (document) .bind('disconnected', function () {
Groupie.connection = null;
S ('#room-name') .empty () ;

$('#room-topic') .empty () ;
$('#participant-list') .empty();
S ('#chat') .empty () ;

Summary | 201

$S('#login_dialog') .dialog('open') ;
)

$ (document) .bind('room_joined', function () {
Groupie.joined = true;

S('#leave') .removeAttr ('disabled');
$('#room-name') .text (Groupie.room) ;

Groupie.add_message("<div class='notice'>*** Room joined.</div>")

)

$ (document) .bind('user_joined', function (ev, nick) {
Groupie.add _message("<div class='notice'>*** " + nick +
" joined.</div>");

)

$ (document) .bind('user_left', function (ev, nick) {
Groupie.add _message("<div class='notice'>*** " + nick +
" left.</div>");
3

IMPROVING GROUPIE

Groupie is a simple group chat client, but it is full of potential. Try adding some more features to make
your users even happier:

> Add support for chatting in multiple rooms at the same time.
> Let room owners configure some basic settings for newly created rooms.

Combine a version of Chapter 7’s browser with Groupie to allow users to find new chat rooms
and join them easily.

SUMMARY

XMPP’s multi-user chat protocol allows a group of people to create a shared space for communica-
tion. Typically, it is used for text communication between human users, but it can also be used for
many other purposes. Some people have used group chat to enable bots to exchange data. Others
have used it to create rich collaborative environments or to provide the basis for game systems,
which you do in Chapter 11.

202 | CHAPTER8 GROUP CHATTING: A MULTI-USER CHAT CLIENT

In this chapter, you created a simple group chat client that implemented an important cross-section
of MUC’s feature set. By the end you learned:

>

Y Y Y Y Y Y Y

How to join, leave, and create group chat rooms

How to participate in conversations

How to send and receive private messages within a room

How to manage the room’s topic

How roles and affiliations work and the different privileges they enable
How to deal with and ban troublemakers

How to create new room administrators

How to deal with chat history

In the next chapter, you discover a similar protocol called Publish-Subscribe, which is used primar-
ily for notification and one-to-many broadcast systems.

Publishing and Subscribing:
A Shared Sketch Pad Introduction

WHAT'’S IN THIS CHAPTER?

How publish-subscribe systems work

Using Data Forms

Creating and configuring pubsub nodes
Subscribing and unsubscribing from pubsub nodes

>
>
>
>
> Publishing and receiving events
>

Using HTML5’s <canvas> element

Chatting online is a great way for teams to communicate, but it is often ineffective at com-
municating visual ideas. In a face-to-face setting, the speaker can step up to a whiteboard and
begin sketching out their ideas. In this chapter, you develop an application called SketchCast,
which allows a presenter to broadcast a whiteboard session to a virtually unlimited number of
participants. You develop SketchCast using one of XMPP’s most powerful extensions, publish-
subscribe, or pubsub as it is commonly called.

SketchCast is an example of a very simple vector drawing program. Similar programs can be
found in almost every introductory book on graphics or GUI programming. SketchCast stretches
this functionality to a shared environment, giving the entire audience a view of what the presenter
is drawing.

A lot of functionality is required to bring this application to life beyond just the simple graph-
ics. To enable others to see what someone is drawing, you must capture the drawing actions,
transform them into a format suitable for transmission, send these actions across a network, and
re-create them on the audience’s computers. In addition, presenters will need some mechanism for

204 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

setting up this whole system, keeping track of participants, and ensuring everyone is getting the
same data.

XMPP and pubsub make this complex set of actions easy to achieve. It handles the heavy lifting,
leaving you free to concentrate on only a few key pieces.

This chapter presents many of the core ideas of the XMPP pubsub system as well as an introduction
to working with XMPP’s Data Forms, which is used in many XMPP extensions.

SKETCHCAST PREVIEW

Before you get started, Figure 9-1 shows a peek at what the final application will look like.

SketchCast

Broadeasting at service: pubseb pamberley lit node: tamelpemberleylitidare W IS500I6865

I]

FIGURE 9-1

SketchCast has a simple user interface consisting of a toolbar of various drawing tools and a large
sketching area. The presenter can pick from a number of colors or line widths and can also erase the
board. These controls will be disabled for the audience.

SketchCast Design | 205

SKETCHCAST DESIGN

SketchCast has a lot of functionality, but as you will see, it is actually one of the simplest XM PP
pubsub applications possible. This is a testament to the immense power and flexibility of the pubsub
system. It’s time to dive in and see what pubsub has to offer.

Everything Is Pubsub

Publish-subscribe systems are everywhere — newspapers, blogs, television, and even e-mail lists. Almost
everything you need to know about how pubsub works is right there in its name. There is a channel
of communication, subscribers who are interested in data sent on that channel, and publishers who
can send data across the channel.

Imagine that you start a new magazine, X MPP Aficionado. The magazine becomes quite popular,
and it attracts thousands of subscribers who give you their money and their addresses. Whenever a
new issue is ready, you publish it and mail it out to every subscriber’s address.

Publishing a magazine is hard work; think about all the time you must spend collecting money and
addresses, printing each issue, and driving the truck full of magazines to the post office. Wouldn’t it
be great if you could just worry about writing the next issue and sending that out to a company that
would handle the rest of the work? Oh, look! There is Pubsub, Inc. right there in the yellow pages.

XMPP pubsub takes all the manual labor out of building publish-subscribe systems, just as Pubsub,
Inc. promises to make publishing your magazine easier. Computing machines made calculation
so easy that sophisticated applications, like spreadsheets and web browsers, were built on top of
them. In the same way, XMPP pubsub enables new types of applications to be built on top of its
foundations.

Now that you know what pubsub systems are, you can learn to use them to power the SketchCast
application.

Presenter’s Flow

The first thing the SketchCast application must do for a would-be presenter is to create a channel for
them to publish sketches. In XMPP pubsub these channels are called nodes.

Pubsub applications vary in their needs, so the system offers a configuration facility to allow for max-
imum flexibility. SketchCast will need to make some tweaks to the default configuration of its pubsub
nodes. Many different XMPP extensions have similar configuration systems so it makes sense to have
a standardized way to manipulate these systems. XMPP’s Data Forms provides this mechanism, and
SketchCast will need to use this to request and submit a configuration form.

Once a node is created and configured, the application needs to publish the user’s drawing actions to
the node. Once these events are published, pubsub takes over and makes sure that they get delivered
to the interested audience members.

206

| CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

While the presenter is sketching, they’ll want to know how many people are watching. SketchCast
will need to retrieve the subscriber list from the pubsub node so that it can present this data to them.

Once the sketching session is done, it’s good to clean up after it by deleting the pubsub node.

Audience’s Flow

Once a presenter has created a node and is ready to begin, they’ll communicate the existence of the
node to potential audience members. You don’t need to worry about how this happens; perhaps it is
sent inside a company-wide e-mail to all employees.

Each audience member will type in the node to SketchCast, and the application will subscribe to the
pubsub node for the sketch. From then on the pubsub system will make sure that any new data that
is published will be sent to them.

Some audience members will probably be busy playing Minesweeper and will not notice the presenter’s
e-mail until after they have already begun drawing. These users will need to catch up to the rest of the
group, so SketchCast will need to use pubsub to fetch the drawing actions they have missed.

Each drawing action will need to be rendered in the sketching area, just like it appeared on the pre-
senter’s screen. SketchCast will translate the drawing events into graphics on the screen to re-create
the sketch.

Finally, once the sketch is over or the audience members’ attentions are spent, they will want to stop
watching the presentation. The application will have to unsubscribe from the pubsub node to ensure
that it doesn’t keep getting events that the user isn’t interested in.

Keep this design for SketchCast in mind as you learn about the Data Forms and Publish-Subscribe
extensions. Once you learn these new XMPP protocols, you start to build SketchCast.

FILLING OUT FORMS

Every application’s data is different. A spreadsheet organizes data in one format, whereas a recipe
tracker organizes it completely differently. Even different versions of the same application may have
different needs. Instead of creating new formats for each application, it’s often better to create a
flexible format that can be used by a wide range of applications. Data Forms is the most widely used
such format in the XMPP toolbox.

You’ll need to use forms to configure your pubsub nodes for SketchCast.

What Is The Data Forms Extension?

Data Forms takes a bit of inspiration from forms in HTML. It allows applications to define a form
with fields of various types — text fields, list fields, and address fields to name a few. It also provides
a lightweight workflow on top of these forms enabling applications to request, provide, submit, and
cancel forms.

Filling Out Forms | 207

Forms are used in several places in the Pubsub protocol, including configuring pubsub nodes

and dealing with subscription options. Many XMPP protocols depend on forms for similar func-
tionality. Multi-User Chat (XEP-0045) uses forms for room configuration among other things;
Ad-Hoc Commands (XEP-0050) uses forms for command input and output; and Service Discovery
Extensions (XEP-0128) relies on forms as a way to easily add extensibility to a another protocol.

An example form is shown here. This form has a type attribute whose value is form, which means
that the system expects it to be filled it out. You might receive such a form as a result of requesting
one from some XMPP service. Don’t worry if you don’t understand the purpose of some of the attri-
butes yet; you will see these in more detail in the next section.

<x xmlns='jabber:x:data' type='form'>
<title>A Simple Form</title>
<instructions>Fill out this simple form!</instructions>
<field type='text-single'
label="What's your favorite color?"
var="'favorite_color'>
<required/>
</field>
</x>

Forms of this type often come with labels, and for certain fields, a list of options will also be included.
When forms are filled out and returned, usually only the response data is sent, and the metadata for
the fields is omitted.

A completed version of the preceding form might look like this:

<x xmlns='jabber:x:data' type='submit'>
<field type='text-single'
var='favorite_color'>
<value>orange</value>
</field>

</x>

Forms are easily extensible. If someone later decides that this form should ask about your favorite
food, the question can be added to the form without changing the protocol at all. A well-designed
user interface could just add the new field to a dialog box and send the user’s response back to the
server.

Form Elements, Fields, and Types

You saw that forms consist of some metadata and some fields in the examples in the previous section.
These elements are all contained inside of a form element, which looks like <x xmlns='jabber:x:data’
type='form' />. The <x> element is an historical artifact; if protocol designers were building Data
Forms today, this would probably have been the more descriptive <forms>.

Inside the <x> element are a few bits of metadata, like the <instructions> element you saw in the
preceding section, and the form’s fields.

208 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

The <x> Element’s type Attribute

The type attribute in a form has four possible values: form, submit, cancel, and result. These
relate to the form’s place in a particular workflow.

A value of form means that the form is blank and needs filling out. If you were attempting to open
a new bank account, and the bank clerk handed you a clipboard with a form on it, that form would
have a type attribute with the value of form.

The submit value is used when you return a completed form. Once you’ve filled out that new
account form at the bank, you hand it back to the teller, and that form now has a type of submit.

If you change your mind about completing a form, you can send back an empty form with the cancel
type. As you’re sitting in the bank filling out the new account form, you might notice that the bank
across the street has a big sign advertising its lower fees. You would stop filling out the form, hand it
back to the clerk, and walk across the street to the other bank. The poor clerk is now holding a form
with a type of cancel.

Finally, there is the result type. This type is used when the form represents a generic data set, or the
result of submitting a form generated some response data. After completing a new account form at
the cheaper bank, the clerk creates the account and hands you a document containing your account
details. This document is a form with a type of result.

Form Metadata

In addition to fields, forms may have a title and a set of instructions. These are intended for human
consumption in the case that the form is presented directly in the user interface. You saw these ele-
ments used in the previous section with the example favorite color form.

Form Fields

The heart of every form is the collection of fields waiting to be filled out or communicating result
data. Unlike HTML forms, XMPP’s Data Forms has a fairly rich set of data types that can be speci-
fied. Form fields can even be flagged as required or optional and contain other metadata to assist
with display to users.

Every field can have some metadata associated with it. You've already seen the label attribute in the
first example. Fields may also contain the <required> element, which means that any submission of the
form must include a value for that field. And just like the <instructions> element in the form itself,
each field can have a <desc> element containing a human-readable description of the field’s purpose.

Every field must have a var attribute, which uniquely identifies the field. This can be any identifier
you like, but most XMPP extensions use standardized form fields as defined in Field Standardization
for Data Forms (XEP-0068). There is more about this in the next section.

Each field has a type attribute that describes the type of data for the field. The following types are
defined:

> text-single: A single line of text, similar to <input type='text'>in HTML

> text-private: A single line of text that is obscured during entry, similar to <input
type="'password'> in HTML

Filling Out Forms | 209

text-multi: Multiple lines of text, similar to <textarea> in HTML

list-single: A single value from a predefined list of options, similar to <select>
in HTML

\

list-multi: Multiple values from a predefined list of options, similar to <select
multiple='multiple'> in HTML

jid-single: A single JID
jid-multi: Multiple JIDs
boolean: Either true or false

hidden: A field hidden from the user and whose value is normally returned unmodified

Y Y YVY VY Y

fixed: A human-readable description, used for section headers in the form

The options for 1ist-single and 1ist-multi fields are specified by including <option> elements
as children of the field. Each <option> element can have a 1abel attribute, and the value of
the option is specified in a <value> child. Take a look at an example 1ist-single field with
three options:
<field type='list-single' var='animals'
label='Pick an animal'>
<option label='Fox'>
<value>fox</value>
</option>
<option label='Hare'>
<value>hare</value>
</option>
<option label='Tortoise'>
<value>tortoise</value>
</option>
</field>

Fields may also specify a default value by including a <value> element as an immediate child. If the
field can have multiple values, as with 1ist-multi, jid-multi, and text-multi fields, multiple
<value> children can be present. The same <value> elements store the filled out fields’ values when
forms are returned. The following is an example of a submitted form field that was used to inquire
about XMPP server administrators:
<field type='jid-multi' var='admins'>
<value>alice@example.com</value>

<value>boblexample.com</value>
</field>

Forms allow a rich, structured set of data to be manipulated or returned. In Figure 9-2 you can see a
screenshot of an XMPP client rendering a form related to multi-user chat room configuration. This
form allows a user to make configuration changes easily. Even if the server supports some new feature
that wasn’t defined in the multi-user chat specification, the user can still customize it due to the flex-
ible nature of forms.

210 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

w

[“Affiliations | General |
Reaem tithe: My Room
Room description: Eﬂnem oninl | I
Make room persisoent =
Make room public searchable:]
Make participants list public: e
Make room password protected: o
Passwornd
Maximum Mumber of Occupants: '-E-D'ﬁ " a
Present real JiDs to: | maderatars anty]
Make room members-onky LA
Make room moderated; M i
Defauilt wsers as panticipants W :
PO e e R R e =l I

(" Destroy Roam
rsi | {Appv) (Gl
FIGURE 9-2

Standardized Form Fields

Flexibility is a wonderful attribute to have, but having forms be so malleable does have a downside.
How do you get everyone to agree what the fields should be for common forms? It didn’t take long for
the XMPP community to address this problem with Field Standardization for Data Forms (XEP-0068).

Each standardized form has a form type, which is encoded in a special field. The XMPP registrar
manages a list of standard types used in XMPP extensions, but custom protocol developers are not
required to register their form types. Because you’ll be using standardized pubsub-related forms in
the SketchCast application, you should see an example of such a form. The following is a node con-
figuration form that has been submitted to change the title of a pubsub node:
<x xmlns='jabber:x:data' type='submit'>
<field var='FORM_TYPE' type='hidden'>
<value>http://jabber.org/protocol/pubsub#node_config</value>
</field>
<field var='pubsub#title'>
<value>Best Node Ever</value>
</field>
</x>

The standardized form type is included as a special hidden field with a var attribute equal to
FORM_TYPE. The value of this field is the form type’s identifier. The pubsub extension defines several
different types of forms, and consulting the pubsub specification in XEP-0060, you can see that
http://jabber.org/protocol /pubsub#node_config is the identifier for the node configuration form.

Working with Pubsub Nodes | 211

Fields within a standardized form will have var attributes that are defined in the specification for
the form. The node configuration form for pubsub is specified in section 16.4.2 of XEP-0060, and
an excerpt that includes the pubsub#title field is shown here:

<form_type>
<name>http://jabber.org/protocol /pubsub#node_config</name>
<!-- parts omitted -->
<field var='pubsub#title'
type='text-single'
label="'A friendly name for the node'/>
<!-- parts omitted -->
</form_type>

The content of the <name> element is what will appear in the ForM_TYPE field, and the <field>
element specifies what kind of field it will be.

The SketchCast application will use standardized forms to configure the pubsub node, and custom
forms to transmit drawing information from the publisher to the subscribers. If the SketchCast pro-
tocol was published in a XEP of its own, it might define and register a standard form type for the
drawing information.

WORKING WITH PUBSUB NODES

Pubsub nodes are the communication hubs of the publish-subscribe system. Users and applications
can subscribe to a node that they are interested in, and when data is published there, the node will
immediately broadcast that data to all subscribers.

These nodes are provided by pubsub services. Nearly every XMPP server has a built-in pubsub ser-
vice for its users. For example, the well-known jabber.org XMPP server has a public pubsub service
located at pubsub.jabber.org. All you need to know to start using pubsub is the location of a pubsub
service. You can create an interesting pubsub node, and to subscribe, a user needs to know the ser-
vice’s address and the node’s name.

Pubsub nodes support a wide range of actions and configurations. The SketchCast application will
make use of many of the basic actions: creating nodes, configuring nodes, publishing to nodes, delet-
ing nodes, subscribing to nodes, and receiving events from nodes. It may seem like a lot of work, but
you see shortly that pubsub nodes are pretty simple.

Creating Nodes

SketchCast’s users can’t accomplish much unless there is a pubsub node to publish and subscribe to.
The presenting user will need to create a node so that all the viewers can subscribe to it.

A pubsub node is created by sending an 1Q-set stanza to the pubsub service:

<ig to='pubsub.pemberley.lit'
from='darcy@pemberley.lit/library’
type="'set'
id='createl'>

212 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

<pubsub xmlns='http://jabber.org/protocol/pubsub’'>
<create node='latest_books'/>
</pubsub>
</ig>

Most actions on pubsub nodes will look very similar to this one. You’ve seen several stanzas like
this one in other chapters already; the difference here is the <pubsub> element.

Other than Service Discovery queries (see Chapter 7), pubsub-related actions all contain a <pubsub>
element qualified by one of the pubsub namespaces. Here, http: //jabber.org/protocol /pubsub is
used, which is the main pubsub namespace, but some actions, such as node configuration, require related
namespaces like http: //jabber.org/protocol /pubsub#owner. It’s easy when reading these examples
to skip over the namespace used and to assume that they are all the same. If you encounter errors with
pubsub stanzas, please double-check that you are using the correct namespace for your actions.

Inside the <pubsub> element is the action requested, <create>. The node to create is specified in the
node attribute. If there isn’t already a node with this name, and if you are allowed to create nodes
on this service, the server will acknowledge that your request was successful:

<ig from='pubsub.pemberley.lit'
to='darcy@pemberley.lit/library"
type='result'
id='createl'/>

If the node already existed, or if you didn’t have authorization to create it, the server would have
returned an IQ-error with a <conflict> or <forbidden> condition.

Now your pubsub node is created and ready to receive events.

It’s possible to let the server choose the name when you create a node. Sometimes it doesn’t matter what
the node is called, and if the user doesn’t have to pick a name, the application becomes easier to use.
You’ll be using these instant nodes in SketchCast, and the following example shows how to create one:

<ig from='darcy@pemberley.lit/library'
to="'pubsub.pemberley.lit"
type="'set"
id='instantl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub’'>
<create/>
</pubsub>
</ig>

Creating instant nodes is even easier than named ones. One question remains, though; what node
did the server create? Thankfully, when you create an instant node, the server includes the node’s
name with its response.

<ig from='pubsub.pemberley.lit'
to='darcy@pemberley.lit/library"
type="result'
id='instantl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub’'>
<create node='1390361429'/>
</pubsub>
</ig>

Working with Pubsub Nodes | 213

The server’s response looks just like your original creation request for a named node. It has gener-
ated a random number for the node name because it was instructed that you didn’t care what the node
was called. Pubsub services may name instant nodes differently; one might name each node with a
random string of characters, and another might use a numeric counter.

Configuring Nodes

Newly created pubsub nodes have a default configuration that is useful for many purposes. Normally
the default configuration is for a publicly accessible node that persists a few of the most recently
published items and allows only the node’s creator (also called the owner) to publish to it. The exact
configuration that is used depends on the service and its configuration.

Applications with special requirements may need to configure pubsub nodes appropriately to ensure
that those requirements are met. SketchCast, for example, should persist quite a few recent drawing
actions or new subscribers may be confused by a partial sketch. The pubsub node’s configuration
also includes things like the title of the node, the access controls, and whether event notifications
should include the original data.

Pubsub node configuration is done by submitting a form inside a <configure> action. Node con-
figuration must be done by the owner of the node, so the <pubsub> element’s namespace is slightly
different than the previous example. First, request a configuration form to see what options are
available:

<iqg from='darcy@pemberley.lit/library'
to="'pubsub.pemberley.lit"'
type='get'
id="'configurel'>
<pubsub xmlns='http://jabber.org/protocol/pubsub#owner'>
<configure node='latest_books'/>
</pubsub>
</ig>

The server returns a blank configuration form. Many of the form fields are omitted in the following
form so you can concentrate on the structure of the protocol instead of its fine details. Also, XMPP
servers vary in their support of the pubsub feature set, so don’t be surprised if a server doesn’t return
some of these fields.

<ig from='pubsub.pemberley.lit'
to='darcy@pemberley.lit/library"
type='result'
id="'configurel'>
<pubsub xmlns='http://jabber.org/protocol/pubsub#owner'>
<configure node='latest_books'>
<x xmlns='jabber:x:data' type='form'>
<field var='FORM_TYPE' type='hidden'>
<value>http://jabber.org/protocol /pubsub#node_config</value>
</field>
<field var='pubsub#title' type='text-single'
label="'A friendly name for the node'/>
<field var='pubsub#persist_items' type='boolean'
label="'Persist items to storage'>
<value>true</value>

214

| CHAPTER 9

PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

</field>
<field var='pubsubf#max_items' type='text-single'
label="'Max # of items to persist'>
<value>10</value>
</field>
<!-- more fields -->

</x>
</configure>
</pubsub>

</ig>

This configuration form is just like the ones you saw in the section Filling Out Forms. The first field
in the form is the form type identifier and after that are the normal fields. The three fields shown in
the form are settings that control the title of the node, whether it persists previously published items,
and if so, how many items it will persist.

Because you want to change the node’s settings, you must submit a completed form back to the server
containing your desired configuration. The form submission stanza appears almost identical to the pre-
ceding example, but the field labels and types have been removed, the field values filled in, and the
form’s type attribute changed to submit. Only the three settings from the example have changed
here, but you could also change a single setting or all possible settings at the same time:

<ig from='darcy@pemberley.lit/library'
to="'pubsub.pemberley.lit"'
type="'set'
id="'configure2'>
<pubsub xmlns='http://jabber.org/protocol/pubsub#owner"'>
<configure node='latest_books'>
<x xmlns='jabber:x:data' type='submit'>

<field var='FORM_TYPE'>
<value>http://jabber.org/protocol /pubsub#node_config</value>

</field>

<field var='pubsub#title'>
<value>Books I've Read Lately</value>

</field>

<field var='pubsub#persist_items'>
<value>true</value>

</field>

<field var='pubsub#max_items'>
<value>100</value>

</field>

</x>
</configure>
</pubsub>

</ig>

The server should respond to your submission with a successful reply:

<iqg from='pubsub.pemberley.lit’
to='darcy@pemberley.lit/library"
type='result'
id='configure2'/>

Working with Pubsub Nodes | 215

Now Mr. Darcy has a pubsub node with a nice title to entice subscribers and the ability to persist
the data about the most recent 100 books he has read.

Pubsub Events

Pubsub nodes and their configuration are necessary and useful, but they don’t do much by them-
selves. The real value of pubsub nodes is in the events that are published to them and broadcast to
subscribers.

Anything can be included in a pubsub event. The pubsub service doesn’t know or care what is inside
the event; it simply broadcasts this data to a node’s subscribers. The content of a pubsub event is called
its payload. Generally, subscribers will know what payloads are published at a given node and how to
interpret them. Some common event payloads include blog posts in the Atom syndication format or
information about songs currently playing in User Tune format (XEP-0118).

When publishing, the event is wrapped in a <publish> action within the <pubsub> element, and when
receiving events, the same event is carried in a <message> stanza. In both cases the event payload is
the same. Following is an example of an event with a User Tune payload:

<tune xmlns='http://jabber.org/protocol/tune'>
<artist>Elizabeth Bennet</artist>
<title>A Piano Song for Lady Catherine</title>
</tune>

Forms are flexible enough to represent many kinds of payloads, and Mr. Darcy has chosen to use a
form to encode the latest books that he has read. Whenever he finishes reading a book, he publishes
an event to his pubsub node using the following form-based payload:

<x xmlns='jabber:x:data' type='result'>
<field var='title'>
<value>A History of Pemberley</value>
</field>
<field var='author'>
<value>Sir Lewis de Bourgh</value>
</field>
</x>

The previous examples both included event payloads, but nodes can also be configured to send only
event notifications. In this case, the payload can be retrieved by querying the pubsub node. You see
how to publish and receive events as well as how to retrieve payloads in the next sections.

Publishing to a Node

Mr. Darcy, having just finished his latest book, must now publish a new event to his pubsub node.
You saw Mr. Darcy’s event payloads in the previous section; here is how they are published:

<ig from='darcy@pemberley.lit/library"'
to="'pubsub.pemberley.lit"'
type="'set'
id='publishl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>

216 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

<publish node='latest_books'>
<item>
<x xmlns='jabber:x:data' type='result'>
<field var='title'>
<value>A History of Pemberley</value>
</field>
<field var='author'>
<value>Sir Lewis de Bourgh</value>
</field>
</x>
</item>
</publish>
</pubsub>
</ig>

In this example, the event payload is wrapped in an <item> element and then placed inside the
<publish> action. If Mr. Darcy had just finished two books, he would just append the second one
in its own <item> element.

The server will accept the publish request and return a successful response:

<iqg from='pubsub.pemberly.lit"’
to="'darcy@pemberley.lit/library"
type="result'
id="'publishl'>
<pubsub pubsub xmlns='http://jabber.org/protocol/pubsub'>
<publish node='latest_books'>
<item id='821b576dfabfc6b358bb6ecd139b87£f5¢c!' />
</publish>
</pubsub>
</ig>

Notice that the server’s response also includes an <item> element. Because Mr. Darcy’s <item> ele-
ment did not contain an id attribute, the server created one for him since every item must have an
identifier. These identifiers are used for notifications, item retrieval, and retraction.

Mr. Darcy could also have specified an id attribute in his original publish stanza, and the server
would have used that id instead. This is very similar to the earlier examples of normal and instant
node creation.

Subscribing and Unsubscribing

Elizabeth and Georgiana are both avid readers and quite curious about what books Mr. Darcy has
had his nose in lately. Each of the ladies can subscribe to Mr. Darcy’s pubsub node by sending an
IQ-set with the <subscribe> action:

<iqg from='elizabeth@longbourn.lit/outside'
to="'pubsub.pemberley.lit"'
type="'set'
id='subscribel'>
<pubsub pubsub xmlns='http://jabber.org/protocol/pubsub'>

Working with Pubsub Nodes | 217

<subscribe node='latest_books'
jid='elizabeth@longbourn.lit/outside'/>
</pubsub>
</ig>

Elizabeth has specified both the node she wants to subscribe to as well as the address to which events
should be delivered. As long as she stays a subscriber, she’ll be immediately notified whenever Mr. Darcy
finishes a book and publishes a corresponding event.

The server sends a successful response to Elizabeth’s request:

<ig from='pubsub.pemberley.lit'
to='elizabeth@longbourn.lit/outside'
type='result'
id='subscribel'>
<pubsub pubsub xmlns='http://jabber.org/protocol/pubsub'>
<subscribe node='latest_books'
jid='elizabeth@longbourn.lit/outside"
subscription="'subscribed' />
</pubsub>
</ig>

The subscription attribute informs Elizabeth about the status of her subscription, and in this
example, it informs her she is fully subscribed. Pubsub nodes can be configured with a variety of
access models, some of which require the node’s owner to approve subscription requests manually.
If Mr. Darcy’s node were configured this way, the subscription attribute would have a value of
pending.

If for some reason Mr. Darcy had configured his node to allow only a specific set of people to
subscribe (called a whitelist access model), Elizabeth’s request might have been returned with a
not-allowed error:

<iqg from='pubsub.pemberley.lit'
to='elizabeth@longbourn.lit/outside'
type='error'
id="'subscribel'>
<pubsub pubsub xmlns='http://jabber.org/protocol/pubsub'>
<subscribe node='latest_books'
jid='elizabeth@longbourn.lit/outside'/>
</pubsub>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<closed-node xmlns='http://jabber.org/protocol/pubsub#errors'/>
</error>
</ig>

Now that Elizabeth has subscribed, she’ll receive event broadcasts when Mr. Darcy finishes

a book. Event broadcasts are sent in <message> stanzas containing an <event> child with the
http://jabber.org/protocol/pubsub#eventllanwspaca'rhe<event> element will contain
one or more <item> elements wrapped in an <items> element; the payloads are contained within
the <item> elements, if included. In this example, a lone item appears, and the item’s id attribute

218 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

matches the one the server returned earlier to Mr. Darcy. The payload is also identical to the one
Mr. Darcy published.

<message from='pubsub.pemberley.lit'
to='elizabeth@longbourn.lit/outside'>
<event xmlns='http://jabber.org/protocol/pubsubf#event'>
<items node='latest_books'>
<item id='821b576dfabfc6b358b6ecd139b87£5¢c'>
<x xmlns='jabber:x:data' type='result'>
<field var='title'>
<value>A History of Pemberley</value>
</field>
<field var='author'>
<value>Sir Lewis de Bourgh</value>
</field>
</x>
</item>
</items>
</event>
</message>

Unlike Elizabeth, Georgiana sees Darcy all the time, and this frequent contact has the benefit of
keeping her informed about Darcy’s reading habits without having a pubsub subscription. After a
few days of being subscribed to Darcy’s pubsub node, she’s decided the information published there
is not useful to her. She can unsubscribe by sending an 1Q-set with the <unsubscribe> action:
<iqg from='georgiana@pemberley.lit/piano'
to="pubsub.pemberley.lit"
type='set'
id='unsubscribel'>
<pubsub pubsub xmlns='http://jabber.org/protocol/pubsub'>
<unsubscribe node='latest_books'
jid='georgiana@pemberley.lit/piano' />
</pubsub>
</ig>

The server responds with a successful result:

<iqg from='pubsub.pemberley.lit'
to='georgiana@pemberley.lit/piano’
type="'result'
id='unsubscribel'/>

Any future book updates from Mr. Darcy will no longer be sent to Georgiana.

Retrieving Subscriptions

Mr. Darcy is of an inquisitive mind, and though he loathes admitting it, he often wants to see how
popular his book updates have become. When he publishes a new update, he gets no indication of
how many people have received his event. Luckily, Mr. Darcy can easily query the list of subscribers
to his pubsub node:

<iqg from='darcy@pemberley.lit/library'
to='"pubsub.pemberley.lit"

Working with Pubsub Nodes | 219

type="'get'
id='subscribersl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub#owner'>
<subscriptions node='latest_books'/>
</pubsub>
</ig>

You can see that Mr. Darcy has used the http://jabber.org/protocol /pubsub#owner namespace
because retrieving the subscriber list is an action restricted to the node’s owner. Inside the normal
<pubsub> element he’s placed a <subscriptions> action referencing his pubsub node. The server
returns an unfortunately short subscriber list:

<iqg from='pubsub.pemberley.lit'
to='darcy@pemberley.lit/library'
type='result'
id='subscribersl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub#owner'>
<subscriptions node='latest_books'>
<subscription jid='elizabeth@longbourn.lit/outside'
subscription="'subscribed'/>
<subscription jid='bingley@netherfield.lit/house’
subscription="'subscribed' />
</subscriptions>
</pubsub>
</ig>

Only his dear friend Charles and that willful girl Elizabeth care to know what books he’s been
reading.

Retrieving Items

Elizabeth just subscribed to Mr. Darcy’s 1atest_books node, and she has missed his event broadcasts
from earlier in the week. She must investigate his past reading material if she wishes to learn more
about him.

Remember that Mr. Darcy configured his node to persist items. Anyone can query his node for the
most recently published items. Here, Elizabeth requests the last five items by sending an IQ-get
stanza to the node with the <items> action:

<iqg from='elizabeth@longbourn.lit/outside'
to="'pubsub.pemberley.lit"’
type="'get'
id='itemsl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<items node='latest_books' max_items='3"'/>
</pubsub>
</ig>

The <items> element contains a node attribute just like the other actions you’ve seen previously.
Elizabeth has also set the max_items attribute to 3 because she is only interested in the recent
history. If she had omitted max_items, the server would interpret it as a request to send all the his-
torical data it has been configured to keep. If she had set max_items to 500, which is much larger
than the configured maximum for the node, the server would have sent as many as were available.

220 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

The server responds with the requested items along with their payloads:

<iqg from='pubsub.pemberley.lit’
to="'elizabeth@longbourn.lit/outside’
type="'result'
id='itemsl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub’'>
<items node='latest_books'>
<item i1d='4£900045977f0ccd372c4a670bcba27f'>
<x xmlns='jabber:x:data' type='result'>
<field var='title'>
<value>0f Acquaintances and Persuasion</value>
</field>
<field var='author'>
<value>Daleforth Carnham</value>
</field>
</x>
</item>
<item id='16ddab0d5b3572388446c552d1bdf793"'>
<x xmlns='jabber:x:data' type='result'>
<field var='title'>
<value>Managing Temperment</value>
</field>
<field var='author'>
<value>Sarah Pratt</value>
</field>
</x>
</item>
<item id='e4139c¢9d583558¢c172a28f68ec036c6c'>
<x xmlns='jabber:x:data' type='result'>
<field var='title'>
<value>The Haunting at Hertfordshire</value>
</field>
<field var='author'>
<value>Sir William Lucas</value>
</field>
</x>
</item>
</items>
</pubsub>
</ig>

The node could have been configured to send only notifications, in which case the payloads would be
missing. Had Mr. Darcy’s node been configured this way, the server’s response would have appeared
like this:

<ig from='pubsub.pemberley.lit’
to='elizabeth@longbourn.lit/outside’
type='result'
id='itemsl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub’'>
<items node='latest_books'>
<item id='4£900045977£f0ccd372c4a670bcba27f"' />
<item id='16ddab0d5b3572388446c552d1bdf793"' />

Working with Pubsub Nodes | 221

<item id='e4139c9d583558¢c172a28f68ec036chc’ />
</items>
</pubsub>
</ig>

A separate request must be sent to the server to retrieve the items with their payloads. Elizabeth would
send an IQ-get with an <items> action as before, but the <items> element would contain the list of
items she is interested in. An example is shown here:

<ig from='elizabeth@longbourn.lit/outside'
to="'pubsub.pemberley.lit"'
type="'get'
id='items2'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<items node='latest_books'>
<item id='4£f900045977f0ccd372c4a670bcbal7f"' />
<item id='16ddab0d5b3572388446c552d1bdf793"' />
<item id='e4139c9d583558¢c172a28f68ec036c6e’' />
</items>
</pubsub>
</ig>

The server will then respond with the payloads just as in the original example.

If a node is configured to send only notifications, subscribers will receive <message> containing a
list of items that are new. A similar retrieval process is necessary to get the event payloads for these
items.

Subscription Management

You saw that when subscribing to a pubsub node, you must include the JID at which you want to
receive event notifications. This JID can be either the bare JID (as with elizabeth@longbourn.lit) or

a full JID (as with darcy@pemberley.lit/library). Because delivery of events is done with <message>
stanzas, the delivery semantics are different depending on whether a subscription is for the bare or
full JID. Whether an application should use the bare or full JID depends on the situation.

Normally, each subscription will last as long as the pubsub node exists or until the user unsub-
scribes. A pubsub node can also have a different subscription life cycle; the specification contains
several examples of expiring subscriptions (see section 12.18 of XEP-0060 for an example). For
instance, anonymously connected users’ subscriptions will be removed when their session terminates,
even if they never unsubscribe explicitly. Some clever developers are even working on presence-based
subscriptions that can be canceled as soon as the subscriber goes offline.

Considering the number of available pubsub services and nodes, Elizabeth might forget just what
she is subscribed to and where events are supposed to be sent. If Elizabeth remembers the pubsub
services that she might have subscriptions on, she can ask them for a list of her subscriptions:

<ig from='elizabeth@longbourn.lit/outside'
to="'pubsub.pemberley.lit"’
type="'get'

222

| CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

id='"mysubsl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub’'>
<subscriptions/>
</pubsub>
</ig>

Elizabeth asks the service at pubsub.pemberley.lit to list her subscriptions across all nodes on the
service. She could also specify a node attribute on the <subscriptions> action to limit her query to
a specific node. Here, the server informs her that in addition to her subscription to Mr. Darcy’s latest
books, she also has a forgotten subscription to Georgiana’s public diary:

<ig from='pubsub.pemberley.lit'
to="'elizabeth@longbourn.lit/outside’
type='result'
id="'mysubsl'>
<pubsub xmlns='http://jabber.org/protocol/pubsub’'>
<subscriptions>
<subscription node='latest_books'
jid='elizabeth@longbourn.lit/outside’
subscription="'subscribed' />
<subscription node='public_diary'
jid='elizabeth@longbourn.lit"
subscription="'subscribed' />
</subscriptions>
</pubsub>
</ig>

You’ve now seen many of the major use cases in pubsub, and this is enough knowledge about the
protocol to create this chapter’s application.

BROADCASTING SKETCHES USING PUBSUB

It’s time to put theory into practice. You’ve spent the bulk of this chapter getting familiar with Data
Forms and Publish-Subscribe, and this new knowledge will make it easy to build the SketchCast
application.

The presenting user must create a pubsub node, turn drawing events into form-based payloads,
publish the events to the node, and delete the node once finished. Users in the audience need to sub-
scribe to the presenter’s pubsub node, retrieve the past drawing events, translate events into drawing
commands, handle new event notifications, and eventually unsubscribe from the node. All the while
the application should be user friendly, handle common errors, and enable users to communicate
visually.

Building the Interface

The SketchCast user interface needs only a few major pieces. First you need someplace to draw.
You’ll also need some buttons to change the color being used, to change the thickness of the lines, to

Broadcasting Sketches Using Pubsub | 223

erase the drawing, and to disconnect. You also need a small status bar to report what’s going on to
the user. Finally, you need a login dialog box and an error dialog box.

The HTML for the application, shown in Listing 9-1, contains all of these interface elements.

‘) LISTING 9-1: sketchcast.html

Available for <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
download on "http://www.w3.org/TR/htmld/strict.dtd"s
<html>
<head>
<meta http-equiv="Content-type" content="text/html;charset=UTF-8" />

<title>SketchCast - Chapter 9</title>

<link rel='stylesheet' href='http://ajax.googleapis.com/ajax/libs/jqueryui/1l.
7.2/themes/cupertino/jquery-ui.css'>

<script src='http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js'>

</script>

<script src='http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-u
i.js'></script>

<script src='scripts/strophe.js'></script>

<script src='scripts/flXHR.js'></script>

<script src='scripts/strophe.flxhr.js'></script>

<link rel='stylesheet' type='text/css' href='sketchcast.css'>
<script type='text/javascript' src='sketchcast.js'></script>

</head>

<body>
<hl>SketchCast</hl>
<!-- status bar -->

<div id='status'></div>

<!-- drawing tool buttons. The ids are the button values -->
<div class='button disabled color' id='color-000'></div>
<div class='button disabled color' id='color-f00'></div>
<div class='button disabled color' id='color-0£f0'></div>
<div class='button disabled color' id='color-00f'></div>
<div class='button disabled linew' id='color-2'><div></div></div>
<div class='button disabled linew' id='color-4'><div></div></div>
<input id='erase' type='button' value='erase sketch'
disabled>
<input id='disconnect' type='button' value='disconnect'
disabled>
<div class='clear'></div>

<!-- drawing area -->
<canvas id='sketch' class='disabled' width='600"
height='500"'></canvas>

<!-- login dialog -->
<div id='login_dialog' class='hidden'>
continues

224 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

LISTING 9-1 (continued)

<label>JID:</label><input type='text' id='jid'>

<label>Password:</label><input type='password' id='password'>

<label>Pubsub service:</label><input type='text' id='service'>

<label>Pubsub node:</label><input type='text' id='node'>
</div>

<!-- empty error dialog -->
<div id='error_dialog' class='hidden'>
<p></p>
</div>
</body>
</html>

The CSS for this application is shown in Listing 9-2.

\) LISTING 9-2: sketchcast.css

Available for . clear {

dmg;(?gglgn clear: both;

.button {
border: solid lpx black;
width: 25px;

height: 25px;
float: left;

div.disabled ({
-moz-opacity: 0.25;
opacity: 0.25;

}
.hidden {
display: none;
}
#sketch {
border: solid 1lpx black;
}

#color-000 {
background-color: #000;

#color-f00 {
background-color: #£00;

#color-0£f0 {
background-color: #0£f0;

Broadcasting Sketches Using Pubsub | 225

#color-00f {
background-color: #00f;
}

#width-2 div {
background-color: #000;
height: 5px;
margin-top: 10px;

}

#width-4 div {
background-color: #000;
height: 10px;
margin-top: 7px;

#erase {
margin-left: 5px;

The two dialog boxes start off hidden and the status bar starts empty. All other controls are shown
but disabled. When the presenter starts publishing a sketch, the toolbar and drawing area will be
enabled. Viewers’ toolbars will remain disabled, but the drawing area will be become enabled once
they are subscribed to a sketch.

Sketching with Canvas

Before you worry about the XMPP parts of the application, you should wire up the drawing area
and the drawing tools so that you can make some test sketches.

Sketching is done with a virtual pen, similar to the ones found in many consumer graphics applica-
tions. The end of the pen is the mouse pointer, and it will leave ink on the drawing area while the
mouse button is pressed. The toolbar buttons are used to change the color of the ink, the thickness
of the lines produced, and to erase the entire sketch.

First, you must keep track of whether the pen is up or down and connect these to the mouseup and
mousedown events. Next, whenever the mouse moves, you should check if the pen is down and, if so,
draw a line from its old position to the current position. Create a file called sketchcast.js and add
the following code to it:

‘) var SketchCast = {
pen_down: false,

Available for old_pos: null
download on };
Wrox.com !
$ (document) .ready (function () {
$('#sketch') .mousedown (function () {

SketchCast.pen_down = true;

)

S ('#sketch') .mouseup (function () {

226 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

SketchCast.pen_down = false;
1)

S ('#sketch') .mousemove (function (ev) {
// get the position of the drawing area, our offset
var offset = $(this).offset();
// calculate our position within the drawing area
var pos = {x: ev.pageX - offset.left,
v: ev.pageY - offset.top};

if (SketchCast.pen_down) {
if (!SketchCast.old_pos) {
SketchCast.old_pos = pos;
return;

// render the line segment

var ctx = $('#sketch').get(0).getContext('2d");
ctx.beginPath() ;

ctx.moveTo (SketchCast.old_pos.x, SketchCast.old_pos.y);
ctx.lineTo(pos.xX, pPos.Vy);

ctx.stroke();

SketchCast.old_pos = pos;
} else {
SketchCast.old_pos

null;

code snippet sketchcast.js

Once your application has loaded, it binds the mousedown, mouseup, and mousemove events. The
mousedown and mouseup events simply change the pen state; all the real work is in mousemove.

In order to draw anything, you’ll need to know exactly where you are inside the drawing area. This
is slightly tricky because the coordinate system for the <canvas> element begins at its upper-left cor-
ner but the mouse coordinates from the mousemove event are relative to the top left of the browser’s
viewport. jQuery helps resolve this difference with its offset () function, which will give you the
coordinates of an element relative to the viewport. If you subtract these from the mousemove event
coordinates, the result is a set of coordinates relative to the top left of the drawing area.

The HTMLS <canvas> element is capable of some amazing things, but this application’s needs are
quite modest. All the drawing logic needed for SketchCast is explained shortly, but if you are inter-
ested in what else canvas elements can do, there is a great tutorial on the Opera developer’s site at

http://dev.opera.com/articles/view/html-5-canvas-the-basics/.

All canvas operations require a drawing context, which contains drawing information like the cur-
rent color and line width. If you’ve ever done graphics programming before, it’s very likely you’ve
seen drawing contexts like these. Because SketchCast is only capable of two-dimensional drawing,
you create a 2d context using the getContext () function from the canvas API as shown here:

var ctx = $('#sketch').get(0).getContext('2d");

Broadcasting Sketches Using Pubsub | 227

Call beginPath () on the context to start defining a path. Paths can be quite complex, but you’ll only
be using simple line segments in SketchCast. moveTo () is used to go to the last known position of the
mouse without marking the canvas and 1ineTo () is used to add a line segment from the previous
position to the current location. The path is now completed, so you can make it appear on the canvas
by calling stroke (). That’s all there is to it!

Load SketchCast into a web browser and try a few sketches.

It’s pretty fun to play around with, but before long it gets boring drawing thin, black lines. You can
make sketches more interesting by enabling the buttons on the toolbar so that the pen’s color and
width are changeable. Bind the c1ick event on each of the toolbar buttons and implement them as
shown here. Make the highlighted modifications to sketchcast.js:

‘) var SketchCast = {
pen_down: false,

gvmﬁhﬁim old _pos: null,
ownload on . '
Wrox.com color: '000',

line width: 4
Y

$ (document) .ready (function () {
S ('#sketch') .mousedown (function () {
SketchCast.pen_down = true;
});

$('#sketch') .mouseup (function () {
SketchCast.pen_down = false;
)

S ('#sketch') .mousemove (function (ev) {
// get the position of the drawing area, our offset
var offset = $(this).offset();
// calculate our position within the drawing area
var pos = {x: ev.pageX - offset.left,
y: ev.pageY - offset.top};

if (SketchCast.pen_down) {
if (!SketchCast.old_pos) {
SketchCast.old _pos = pos;
return;

}

// render the line segment

var ctx = $('#sketch').get(0).getContext('2d");
ctx.strokeStyle = '#' + SketchCast.color;
ctx.linewidth = SketchCast.line_width;

ctx.beginPath() ;

ctx.moveTo (SketchCast.old_pos.x, SketchCast.old_pos.y);
ctx.lineTo(pos.x, pPos.Vy);

ctx.stroke() ;

SketchCast.old_pos = pos;
} else {

228 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

SketchCast.old_pos = null;

1)

$('.color').click(function (ev) {
SketchCast.color = $(this).attr('id').split('-")[1];
1)

$('.linew') .click(function (ev) {
SketchCast.line width = $(this).attr('id').split('-")I[1];
)i

$('#erase') .click(function () {
var ctx = $('#sketch').get(0).getContext('2d4');
ctx.fillStyle = '#fff';
ctx.strokeStyle = '"#f£ff';
ctx.fillRect (0, 0, 600, 500);
});

code snippet sketchcast.js

Two new state variables have been added — color and 1ine_width — and the code has been modified
to use these values while drawing. The erase button implementation is straightforward; it draws a white
rectangle over the whole canvas. The toolbar buttons, however, warrant a little more explanation.

All the color buttons work almost identically except for the actual color value they set. Instead of
writing several different handlers, one for each button, you can use the button’s id attribute to store
the color the button will set. All the color buttons have the CSS class color, and whenever one of
them is pressed, you can grab the color value out of its id attribute to set the drawing color. The
same trick also works for the line width buttons. This saves a lot of typing!

Reload the SketchCast page in your web browser and exercise your new creative options!

Logging In and Making Nodes

The next step in bringing SketchCast to life is to start building in pubsub support so that users can
share drawings with others. First, you’ll want to enable the login dialog box and ensure that it pops
up when the application starts. Then you’ll connect to the XMPP server and either create and con-
figure a pubsub node if the user is presenting or subscribe to an existing one if he is just watching.

The login dialog box has the normal fields for the username and password, but it also contains two
fields for the pubsub service and the pubsub node. If a presenter wants to create a new sketch, they
will leave the pubsub node blank, and if a viewer wants to watch a sketch, they simply enter the
sketch’s node. Put the following code at the top of your document ready handler:

‘) $('#login_dialog') .dialog ({

autoOpen: true,

Available for draggable: false,
download on .
Wrox.com modal: true,

title: 'Connect to a SketchCast',

Broadcasting Sketches Using Pubsub | 229

buttons: {
"Connect": function () {

$ (document) . trigger ('connect', {
jid: $('#3jid').val(),
password: $('#password').val(),
service: $('#service').val(),
node: $('#node') .val()

)

S('#password').val('");
$(this) .dialog('close');

code snippet sketchcast.js

As with the other applications, SketchCast will need to keep track of the connection; it must also
store the pubsub service and node. SketchCast also needs some namespace constants for pubsub and
forms. Add the following attributes to the Sketchcast object:

\) connection: null,
service: null,
Available for node: null,

download on

Wrox.com \
NS_DATA_FORMS: "jabber:x:data",

NS_PUBSUB: "http://jabber.org/protocol/pubsub",

NS_PUBSUB_OWNER: "http://jabber.org/protocol/pubsub#owner",
NS_PUBSUB_ERRORS: "http://jabber.org/protocol/pubsub#errors",
NS_PUBSUB_NODE_CONFIG: "http://jabber.org/protocol/pubsub#node_config"

code snippet sketchcast.js

You also need to hook up the error dialog box. For simplicity, all errors are treated as fatal and
terminate the connection when they occur. You don’t want to confuse users, so when they close the
error dialog box, you must re-open the login dialog box so that they can start over. Later, you’ll add
a function to report errors that opens this dialog box. Add this code to the document ready handler:

\) & ('#error_dialog') .dialog ({
autoOpen: false,

Available for draggable: false,
download on .
Wrox.com mc?dal. true, .
title: 'Whoops! Something Bad Happened!',
buttons: {
"Ok": function () {

$(this).dialog('close');
$('#login_dialog') .dialog('open') ;

code snippet sketchcast.js

230 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

Now add the familiar connection logic event handlers at the end of sketchcast.js:

‘) S (document) .bind('connect', function (ev, data) {
S ('#status') .html ('Connecting.."');

Available for
download on

var conn = new Strophe.Connection
Wrox.com p (

'http://bosh.metajack.im:5280/xmpp-httpbind') ;

conn.connect (data.jid, data.password, function (status) {

if (status === Strophe.Status.CONNECTED) {
S (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) .trigger ('disconnected') ;

1)

SketchCast.connection = conn;
SketchCast.service = data.service;
SketchCast.node = data.node;

)

$ (document) .bind ('connected', function () {
// nothing here yet

1)

code snippet sketchcast.js

Once SketchCast is connected, it must send initial presence and set up or subscribe to a pubsub
node. Modify the connected event handler to accomplish this:

‘) $ (document) .bind('connected', function () {
$('#status') .html ("Connected.");
Available for
d&ﬂgrggﬁ“ // send negative presence since we're not a chat client
’ SketchCast.connection.send($pres().c('priority').t('-1"));

if (SketchCast.node.length > 0) {
// a node was specified, so we attempt to subscribe to it

// first, set up a callback for the events
SketchCast.connection.addHandler (
SketchCast.on_event,
null, "message", null, null, SketchCast.service);

// now subscribe
var subiq = $ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB})
.c('subscribe', {node: SketchCast.node,
jid: SketchCast.connection.jid});
SketchCast.connection.sendIQ(subiq,
SketchCast.subscribed,

Broadcasting Sketches Using Pubsub | 231

SketchCast.subscribe_error) ;
} else {
// a node was not specified, so we start a new sketchcast
var createiq = $iqg({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB})
.c('create');
SketchCast.connection.sendIQ(createiq,
SketchCast.created,
SketchCast.create_error);

code snippet sketchcast.js

A negative presence priority is used because SketchCast is not capable of dealing with normal chat
messages. You used this before in Chapter 8 to avoid accidentally stealing private messages from the
user’s other connected resources.

If the user has supplied a node, the application prepares a pubsub event handler, builds a subscrip-
tion stanza — just like the ones from the “Working with Pubsub Nodes” section — and sends the
request to the server. If they receive a successful reply, the subscribed () function is called; other-
wise, an error has occurred and subscribe_error () is invoked. A <message> handler is added so
that when a pubsub event is received, on_event () can process it.

If a node is not supplied, SketchCast builds and sends a similar IQ-set stanza to create a node.
Once the node is created, the code calls created (), or, on any [Q-error response, create_error ()
is called.

The initial implementation of SketchCast.on_event () does nothing. You’ll be adding more to it
later. Add this placeholder to the sketchcast object:

‘) on_event: function (msg) {
// blank for now
Available for }

download on
Wrox.com

code snippet sketchcast.js

Now add the subscription handlers to the sketchcast object:
‘) subscribed: function (iqg) {

$ (document) .trigger ("reception_started") ;

Available for },

download on

Wrox.com ! , .
subscribe_error: function (iqg) {

SketchCast.show_error ("Subscription failed with " +
SketchCast.make_error_from_ig(iq));

code snippet sketchcast.js

232 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

Once successfully subscribed, the code fires a custom reception_started event. If the subscription
fails, an error is shown. You’ll need to implement the two error helper functions, show_error () and
make_error_from_iq(), by adding the following to the sketchcast object:

J

Available for
download on
Wrox.com

Y,

make_error_from_ig: function (iqg) {

var error = $(iq)

.find (' * [xmlns=""' + Strophe.NS.STANZAS + '"]'")

.get (0) . tagName;
var pubsub_error = $(iq)

.find (' * [xmlns=""' + SketchCast.NS_PUBSUB_ERRORS + '"]');
if (pubsub_error.length > 0) {

error = error + "/" + pubsub_error.get(0) .tagName;

return error;

show_error: function (msg) {

SketchCast.connection.disconnect () ;
SketchCast.connection = null;
SketchCast.service = null;
SketchCast.node = null;

S('#error_dialog p') .text (msg);
S ('#error_dialog').dialog('open') ;

code snippet sketchcast.js

The make_error_from_iq() function looks at the <error> element of the IQ-error stanza and pulls
out the generic error type and, if present, the application-specific error type. It combines these into

a simple string for presentation to the user. show_error () disconnects, resets the XMPP state, and
pops up the error dialog box with the supplied message. These error messages aren’t the most user-
friendly, but they are simple to generate and get the job done. In a real-world application, more care
should be taken to present more helpful errors.

Subscriptions are taken care of, so you can move on to node creation for the presenter. Following
are the node creation callback implementations, which should be added to the sketchcast object:

J

Available for
download on
Wrox.com

created: function (iqg) {

// find pubsub node
var node = $(iqg).find("create").attr('node');
SketchCast.node = node;

// configure the node
var configig = $ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB_OWNER})
.c('configure', {node: node})
.c('x', {xmlns: SketchCast.NS_DATA_FORMS,
type: "submit"})
.c('field', {"var": "FORM_TYPE"})
.c('value') .t (SketchCast.NS_PUBSUB_NODE_CONFIG)

Broadcasting Sketches Using Pubsub | 233

.up () .up()

.c('field', {"var": "pubsub#deliver_payloads"})
.c('value').t("1")

.up () .up()

.c('field', {"var": "pubsub#send_last_published_item"})
.c('value') .t ("never")

.up () .up()

.c('field', {"var": "pubsubi#ipersist_items"})
.c('value').t("true")

.up () .up()

.c('field', {"var": "pubsub#max_items"})

.c('value'),t("20");
SketchCast.connection.sendIQ(configiq,
SketchCast.configured,
SketchCast.configure_error) ;

I

create_error: function (iqg) {
SketchCast.show_error ("SketchCast creation failed with " +
SketchCast.make_error_from_iqg(iq));

code snippet sketchcast.js

The pubsub node creation stanza requests an instant node; the first thing the created () callback
must do is store the name of the node created.

After the presenter begins sketching, any viewers that arrive will see new drawing events, but they
won’t get any of the events from before they subscribed. To remedy this situation, the viewers

must retrieve the most recent items from the pubsub node to give the drawing events some context.
Because you usually have no idea what the configuration defaults might be on any given pubsub ser-
vice, the code must configure the pubsub node to store a reasonable amount of past events.

The created() callback that follows builds a configuration form for the pubsub node and sub-
mits it. Notice that you do not need to ask for a form from the server; you already know what
values need changing. The callback sends the configuration form and assigns configured() and
configure_error () to handle the success and error cases, respectively.

create_error () just displays an error message to the user.

Both callbacks are shown here:

‘) configured: function (iqg) {

$ (document) . trigger ("broadcast_started") ;
Available for },
download on

Wrox.com ; . .
configure_error: function (iqg) {

SketchCast.show_error ("SketchCast configuration failed with " +
SketchCast.make_error_from_iqg(iq));

code snippet sketchcast.js

234 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

When the server acknowledges that your node is successfully configured, SketchCast triggers the
custom event broadcast_started. If something bad happens during configuration, the error dialog
box is opened.

A placeholder handler for the broadcast_started event is shown here and should be added at the
end of sketchcast.js; it updates the status area and enables the drawing controls:

‘) S (document) .bind('broadcast_started', function () {
S ('#status').html ('Broadcasting at service: <i>' +

Available for SketchCast.service + '</i> node: <i>' +
download on W /iamy .
Wrox.com SketchCast.node + "</i>");

$('.button') .removeClass ('disabled') ;
S ('#sketch') .removeClass ('disabled') ;
S ('#erase') .removeAttr ('disabled') ;

1)

code snippet sketchcast.js

Publishing and Receiving Sketch Events

The next tasks to implement are generating the sketch events from the presenter’s drawing actions,
publishing those events to the node, receiving the events on the subscriber side, and translating event
payloads back into drawing actions. Once you’ve written these pieces, the rest of the application is
just polish.

Sketch Events

A form is a convenient way to store sketch events, but first you must decide what data needs to
be encoded to re-create a drawing action. Look again at the lines that control drawing inside the
mousemove handler you wrote earlier:

‘) // render the line segment
var ctx = $('#sketch').get(0).getContext('2d");

Available for ctx.strokeStyle = '#' + SketchCast.color;
ﬂmy’gg o cex. lineWidth = SketchCast.line width;
ctx.beginPath() ;
ctx.moveTo (SketchCast.old_pos.x, SketchCast.old_pos.y);
ctx.lineTo(pos.x, pPos.Vy);
ctx.stroke();

code snippet sketchcast.js

Only a few pieces of data are needed to draw the line segment — the color, line width, and the old
and new coordinates of the mouse pointer.

To build a pubsub event payload, you can encode these four pieces of data into a form like this:

<x xmlns='jabber:x:data' type='result'>
<field var='color'>
<value>f00</value>
</field>
<field var='line_width'>

Broadcasting Sketches Using Pubsub | 235

<value>6</value>
</field>
<field var='from_pos'>
<value>50,123</value>
</field>
<field var='to_pos'>
<value>72,89</value>
</field>
</x>

Publishing Sketch Events

The drawing code must be modified to publish events to the node in the format outlined previously.
Also, only the presenter should be able to draw and only when the sketching area is enabled. Modify
the mousemove event handler to match the one shown here:

\) S ('#sketch') .mousemove (function (ev) {

// get the position of the drawing area, our offset

Available for var offset = $(this).offset();
d&ﬁg?g;" // calculate our position within the drawing area

var pos = {x: ev.pageX - offset.left,
y: ev.pageY - offset.top};

if (SketchCast.pen_down) {
if (!SketchCast.old_pos) {
SketchCast.old_pos = pos;
return;

}

if (!$('#sketch').hasClass('disabled') &&
(Math.abs (pos.x - SketchCast.old pos.x) > 2 ||
Math.abs(pos.y - SketchCast.old pos.y) > 2)) {
// render the line segment
var ctx = $('#sketch').get(0).getContext('2d");
ctx.strokeStyle = '#' + SketchCast.color;
ctx.lineWidth = SketchCast.line_width;
ctx.beginPath() ;
ctx.moveTo (SketchCast.old_pos.x, SketchCast.old_pos.y);
ctx.lineTo(pos.x, pPos.Vy);
ctx.stroke () ;

SketchCast.publish_action({
color: SketchCast.color,
line_width: SketchCast.line_width,
from: SketchCast.old_pos,
to: pos

)i

SketchCast.old_pos = pos;
}
} else {
SketchCast.old_pos = null;

code snippet sketchcast.js

236 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

Note that any line segment must be at least two pixels high or two pixels wide before it will be
drawn in this new version of the code. This is needed to prevent excessive amounts of drawing
events from being published. In some browsers, the mousemove event will be sent many times within

the same pixel.

Next, implement publish_action() by adding the following code to the Sketchcast object:

publish_action: function

J

(action) {
SketchCast.connection.sendIQ (

Available for $ig({to: SketchCast.service,

douncad o type: "set’))
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB})
c('publish', {node: SketchCast.node})
.c('item")
c('x', {xmlns: SketchCast.NS_DATA_FORMS,

type: "result"})

.c('field', {"var": "color"})
.c('value') .t (action.color)
.up () .up()
.c('field', {"var": "line_width"})
.c('value').t('' + action.line_width)
.up () .up()
.c('field', {"var": "from_pos"})
.c('value').t('' + action.from.x + ',' + action.from.y)
.up () .up()
.c('field', {"var": "to_pos"})

.c('value') .t ("'

+ action.to.x + ',

+ action.to.y));

code snippet sketchcast.js

This function may look complex, but it’s just building the form you saw previously and sending it to
the server wrapped in a pubsub IQ-set stanza containing a <publish> action. Once this data is pub-
lished to the node, the pubsub service will broadcast it out to all subscribers.

Receiving Sketch Events

You already created a blank on_event () handler that is executed whenever new events come in.
You must now fill in the missing pieces to extract the data from the event and turn it into a line seg-

ment on the canvas.

You will build an action object like the one you used for publish_action() in the previous section,
and then send that to the render_action() function. The new on_event () code is shown here:

on_event: function (msg) {

J

if ($(msg).find('x').length

0) {

Available for // this message wasn't for us!
download on .
Wrox.com return true;

var color =
var line_width =

$(msg) .find('field[var="color"] value').text();
$(msg) .find('field[var="1line width"] value').text();

Broadcasting Sketches Using Pubsub | 237

var from pos = $(msg).find('field[var="from pos"] value').text ()
.split(',");

var to_pos =1 $(msg).find('field[var="to_pos"] value').text()
.split(',");

var action = {
color: color,
line _width: line_width,
from: {x: parseFloat(from pos[0]),
y: parseFloat (from pos[1])},
to: {x: parseFloat(to_pos[0]),
y: parseFloat(to_pos[1])}
};

SketchCast.render action(action);

return true;

code snippet sketchcast.js

Now implement render_action() and add it to the sketchcast object:

‘) render_action: function (action) {
// render the line segment

Available for var ctx = $('#sketch').get(0).getContext('2d");
dmg;"gg"ﬂ" ctx.strokeStyle = '"#' + action.color;

ctx.lineWidth = action.line_width;
ctx.beginPath() ;

ctx.moveTo (action.from.x, action.from.y);
ctx.lineTo(action.to.x, action.to.y);
ctx.stroke();

code snippet sketchcast.js

Don’t be surprised if this code looks familiar; it’s just a slightly modified version of the drawing code
from the mousemove event handler. It’s bad practice to be copying slightly modified code around, so
replace the old drawing code with another call to render_action (). This puts all the drawing logic
in one place where it is easier to find and modify and won’t get out of sync. You can replace the old
drawing code by modifying the mousemove event handler:

‘) $('#sketch') .mousemove (function (ev) {
// get the position of the drawing area, our offset
Available for var offset = $(this).offset();
dmg;”gg"t:" // calculate our position within the drawing area
var pos = {x: ev.pageX - offset.left,
y: ev.pageY - offset.top};

if (SketchCast.pen_down) {
if (!SketchCast.old_pos) {

238 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

SketchCast.old_pos = pos;
return;

if (!S$('#sketch') .hasClass('disabled') &&
(Math.abs (pos.x - SketchCast.old_pos.x) > 2 ||
Math.abs(pos.y - SketchCast.old pos.y) > 2)) {
SketchCast.render_action({
color: SketchCast.color,
line_width: SketchCast.line_ width,
from: {x: SketchCast.old_pos.x,
y: SketchCast.old pos.y},
to: {x: pos.x,
: pos.yl}});

SketchCast.publish_action({
color: SketchCast.color,
line_width: SketchCast.line_width,
from: SketchCast.old_pos,
to: pos

1)

SketchCast.old_pos = pos;
}
} else {
SketchCast.old_pos = null;

code snippet sketchcast.js

You now have a working version of SketchCast!

Joining Late and Catching Up

When late joining users arrive, they need to request the drawing events that they have missed from
the pubsub service. As shown previously, this is easily done with an IQ-get stanza containing an
<items> command. Add the following highlighted code to the reception_started event handler:

‘) S (document) .bind('reception_started', function () {
S('#status') .html ('Receiving SketchCast.');
Available for
dﬂ‘,’:g:g:gnol“ // get missed event.:s
SketchCast.connection.sendIQ(
$ig({to: SketchCast.service, type: "get"})
.c('pubsub', {xmlns: SketchCast.NS_ PUBSUB})
.c('items', {node: SketchCast.node}),
SketchCast.on _old items);

code snippet sketchcast.js

Broadcasting Sketches Using Pubsub | 239

Now, add the implementation of on_old_items () to the SketchCast object:

‘) on_old_items: function (iqg) {
$(ig).find('item') .each(function () {
Available for SketchCast.on_event (this) ;

download on });
Wrox.com !

code snippet sketchcast.js

Because the on_event () handler only looks for a form containing drawing actions, you can just
send each <item> child to it. As far as on_event () knows, the action was received just like any
other event.

When a straggler joins an in-progress sketching session, they will receive past drawing actions,

and they will have some context for the new parts of the sketch they will see. In this case, they will
receive up to twenty previous actions because the node configuration was set to persist up to twenty
items. Note that some XMPP servers place limits on how many items can be persisted, so if you
need a lot of persistence, you may have to specially configure the server to support your application.

Gracefully Ending the Session

To finish off SketchCast, you should make sure the presenter and the viewers can gracefully quit. In
order to clean up after itself, the application must delete the pubsub node if the user is a presenter
and unsubscribe if they are a viewer. In both cases, you should also disconnect and reset the applica-
tion to its starting state.

Start with the publisher case by implementing the Disconnect button in the toolbar. The best place
to add the handler for the button is when you get the broadcast_started event; when this event is
received you know the user is a publisher and that they have just created a pubsub node. The modi-
fied event handler is shown here:

‘) $ (document) .bind('broadcast_started', function (ev, data) {
$('#status') .html ('Broadcasting at service: <i>' +

Available for SketchCast.service + '</i> node: <i>' +
download on RN
Wrox.com data.node + "</i>");

$('.button') .removeClass ('disabled');
$('#sketch') .removeClass ('disabled') ;

S ('#erase') .removeAttr ('disabled');

$ ('#disconnect') .removeAttr('disabled');

$ ('#disconnect') .click(function () {
$('.button').addClass('disabled’);
$('#sketch') .addClass('disabled’);
$('#erase') .attr('disabled', 'disabled');
$('#disconnect') .attr('disabled', 'disabled');

SketchCast.connection.sendIQ(
$ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB_OWNER})

240 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

.c('delete', {node: SketchCast.node}));

SketchCast.disconnect () ;

code snippet sketchcast.js

The code binds the c1ick event for the Disconnect button in order to delete the pubsub node using
the <delete> pubsub action and then disconnect. You must now write the disconnect () function
and add it to the Sketchcast object:

‘) disconnect: function () {
S('#erase') .click();

Available for SketchCast.connection.disconnect () ;
download on SketchCast.connection = null;
Wrox.com : !

SketchCast.service = null;
SketchCast.node = null;
$('#login_dialog').dialog('open') ;

code snippet sketchcast.js

After disconnecting the XMPP stream, the code resets the application state, clears the drawing area,
and opens the login dialog box. SketchCast is then ready for another round.

The viewer’s disconnection sequence is slightly more complicated. You must unsubscribe from the
pubsub node and disconnect, which is very similar to the publisher’s actions, but there is a possibility
that the publisher of the sketch has disconnected before all the subscribers. In this case, the pubsub
service will notify the user of the node’s deletion, and you must extend on_event () to deal with this
new kind of event.

First, enable the disconnect button once you receive the reception_started event, just like you did
for the publisher’s side. The modified event handler is shown here:

‘) $ (document) .bind('reception_started', function (ev, data) {
S('#status') .html ('Receiving SketchCast.');
Available for
ds\‘;:g;ozglg" $ ('#disconnect') .removeAttr('disabled');
’ $('#disconnect') .click(function () {
$('#disconnect') .attr('disabled', 'disabled');
SketchCast.connection.sendIQ(
$ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB_OWNER})
.c('unsubscribe', {node: SketchCast.node
jid: SketchCast.connection.jid}));

SketchCast.disconnect () ;

Broadcasting Sketches Using Pubsub | 241

});:

// get missed events
SketchCast.connection.sendIQ
$ig({to: SketchCast.service, type: "get"})
c('pubsub', {xmlns: SketchCast.NS_PUBSUB})
c('items', {node: SketchCast.node}),
SketchCast.on_old_items) ;

code snippet sketchcast.js

Next, you must modify the pubsub event handler, on_event (). Simply show an error if the pubsub
node gets deleted while the user is still subscribed. Replace the old handler with the following:

‘) on_event: function (msg) {
if ($(msg).find() length > 0) {

Available for var color = $ g) .find('field[var="color"] value').text();

X'
(m
d&xgrg&g" var line_width = $(msg).find('field[var="1line_width"] value').text();
’ var from_pos = $(msg).find('field[var="from pos"] value').text()
.split(',"');
var to_pos =1 $(msg).find('field[var="to_pos"] value').text()
.split(',");

var action = {
color: color,
line_width: line_width,
from: {x: parseFloat(from_pos([0]),
y: parseFloat (from pos[1])},
to: {x: parseFloat(to_pos[0]),
y: parseFloat (to_pos[1])}
Y

SketchCast.render_action(action);
} else if ($(msg) .find('delete[node=""' + SketchCast.node + '"]"')
.length > 0) {
SketchCast.show_error ("SketchCast ended by presenter.");

return true;

code snippet sketchcast.js

This new version first looks for a sketch drawing event, and if it doesn’t find one, it looks for a node
delete notification.

Your job is done, and it’s time to alert the marketing department! The complete JavaScript file is
shown in Listing 9-3.

242 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

J

Available for
download on
Wrox.com

LISTING 9-3: sketchcast.js

var SketchCast = {
// drawing state
pen_down: false,
old_pos: null,
color: '000',
line_width: 4,

// xmpp state
connection: null,
service: null,
node: null,

// namespace constants

NS_DATA_FORMS: "jabber:x:data",

NS_PUBSUB: "http://jabber.org/protocol/pubsub",

NS_PUBSUB_OWNER: "http://jabber.org/protocol/pubsubfowner",
NS_PUBSUB_ERRORS: "http://jabber.org/protocol/pubsub#errors",
NS_PUBSUB_NODE_CONFIG: "http://jabber.org/protocol/pubsub#node_config",

on_event: function (msg) {
if ($(msg).find('x').length > 0) {
var color = $(msg).find('field[var="color"] value').text();
var line_width = $(msg)
.find('field[var="1line_width"] value') .text();
var from pos = $(msg).find('field[var="from_pos"] value').text()

.split (', ");

var to_pos = $(msg).find('field[var="to_pos"] value').text()
.split (', ");

var action = {

color: color,
line width: line width,
from: {x: parseFloat(from pos([0]),
y: parseFloat (from _pos[1])},
to: {x: parseFloat(to_pos([0]),
y: parseFloat (to_pos[1l])}
I

SketchCast.render_action(action) ;
} else if ($(msg).find('delete[node=""' + SketchCast.node + '"]"')
.length > 0) {
SketchCast.show_error ("SketchCast ended by presenter.");

return true;

I

on_old_items: function (iqg) {
$(iqg) .find('item') .each(function () {
SketchCast.on_event (this) ;
1)

Broadcasting Sketches Using Pubsub | 243

b,

// subscription callbacks
subscribed: function (iqg) {

$ (document) .trigger ("reception_started");
}

subscribe_error: function (iqg) {
SketchCast.show_error ("Subscription failed with " +
SketchCast.make_error_from_iqg(iq));

I

// error handling helpers
make_error_from_iqg: function (iqg) {
var error = $(iq)
.find (' * [xmlns=""' + Strophe.NS.STANZAS + '"]')
.get (0) .tagName;
var pubsub_error = $(iq)
.find (' * [xmlns=""' + SketchCast.NS_PUBSUB_ERRORS + '"]');
if (pubsub_error.length > 0) {
error = error + "/" + pubsub_error.get(0).tagName;

return error;

b,

show_error: function (msg) {
SketchCast.connection.disconnect() ;
SketchCast.connection = null;
SketchCast.service = null;
SketchCast.node = null;

S('#error_dialog p') .text (msg);
S ('#error_dialog') .dialog('open') ;
}

// node creation callbacks

created: function (iqg) {
// find pubsub node
var node = $(iq).find("create") .attr('node');
SketchCast.node = node;

// configure the node
var configiqg = $ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB_OWNER})
.c('configure', {node: node})
.c('x', {xmlns: SketchCast.NS_DATA_FORMS,
type: "submit"})
.c('field', {"var": "FORM_TYPE"})
.c('value'") .t (SketchCast.NS_PUBSUB_NODE_CONFIG)
-up () .up ()
.c('field', {"var": "pubsub#deliver_payloads"})
.c('value').t("1")
continues

244 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

LISTING 9-3 (continued)

.up () .up()
.c('field', {"var": "pubsub#send_last_published_ item"})
.c('value') .t ("never")

.up () .up()

.c('field', {"var": "pubsub#persist_items"})
.c('value') .t ("true")

.up () .up()

.c('field', {"var": "pubsub#max_items"})

.c('value').t("20");
SketchCast.connection.sendIQ (configiq,
SketchCast.configured,
SketchCast.configure_error) ;

I

create_error: function (iqg) {
SketchCast.show_error ("SketchCast creation failed with " +
SketchCast.make_error_from_iqg(iq));

3,

configured: function (iqg) {
S (document) . trigger ("broadcast_started") ;

I

configure_error: function (iqg) {
SketchCast.show_error ("SketchCast configuration failed with " +
SketchCast .make_error_from_iq(iq));

b,

publish_action: function (action) {
SketchCast.connection.sendIQ (

Sig({to: SketchCast.service, type: "set"}
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB})
c('publish', {node: SketchCast.node})
.c('item")

c('x', {xmlns: SketchCast.NS_DATA_FORMS,
type: "result"})

.c('field', {"var": "color"})

.c('value') .t(action.color)

.up () .up()

.c('field', {"var": "line_width"})

.c('value').t('' + action.line_width)

.up () .up()

.c('field', {"var": "from_pos"})

.c('value').t('" + action.from.x + ',' + action.from.y)
.up () .up()

.c('field', {"var": "to_pos"})

.c('value').t('' + action.to.x + ',' + action.to.y));

I

render_action: function (action) {
// render the line segment

Broadcasting Sketches Using Pubsub | 245

var ctx = $('#sketch').get(0).getContext('2d");
ctx.strokeStyle = '#' + action.color;
ctx.lineWidth = action.line_width;
ctx.beginPath() ;
ctx.moveTo (action.from.x, action.from.y);
ctx.lineTo(action.to.x, action.to.y);
ctx.stroke() ;

}

disconnect: function () {

Y

$('#erase') .click();
SketchCast.connection.disconnect () ;

SketchCast.connection =

null;

SketchCast.service = null;
SketchCast.node = null;
S('#login_dialog') .dialog('open') ;

$ (document) .ready (function () {
S('#login_dialog') .dialog ({
autoOpen: true,
draggable: false,
modal: true,
title: 'Connect to a SketchCast',
buttons: {
"Connect": function () {

)

$ (document) .trigger ('connect', {
jid: $('#3jid').val(),
password: $('#password').val(),
service: $('#service').val(),
node: $('#node') .val()

)

$('#password') .val('');
S (this) .dialog('close');

S ('#error_dialog') .dialog({

)

autoOpen: false,
draggable: false,
modal: true,
title: 'Whoops! Something Bad Happened!',
buttons: {
"Ok": function () {

S (this).dialog('close');
S('#login_dialog') .dialog('open') ;

$('#sketch') .mousedown (function () {

continues

246 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

LISTING 9-3 (continued)

SketchCast.pen_down = true;

1)

S ('#sketch') .mouseup (function () {
SketchCast.pen_down = false;

Y

S ('#sketch') .mousemove (function (ev) {
// get the position of the drawing area, our offset
var offset = $(this).offset();
// calculate our position within the drawing area
var pos = {x: ev.pageX - offset.left,
y: ev.pageY - offset.top};

if (SketchCast.pen_down) {
if (!SketchCast.old_pos) {
SketchCast.old_pos = pos;
return;

1f (!S$('#sketch') .hasClass('disabled') &&
(Math.abs (pos.x - SketchCast.old pos.x) > 2 ||
Math.abs(pos.y - SketchCast.old pos.y) > 2)) {
SketchCast.render_action({
color: SketchCast.color,
line _width: SketchCast.line_width,
from: {x: SketchCast.old_pos.x,
y: SketchCast.old_pos.y},
to: {x: pos.x,
y: pos.v}});

SketchCast.publish_action({
color: SketchCast.color,
line_width: SketchCast.line_width,
from: SketchCast.old_pos,
to: pos

1)

SketchCast.old_pos = pos;
}
} else {
SketchCast.old_pos = null;

S('.color').click(function (ev) {
SketchCast.color = $(this).attr('id').split('-")[1];

S('.linew') .click(function (ev) {

Broadcasting Sketches Using Pubsub | 247

SketchCast.line_width = $(this).attr('id').split('-")[1];
)

$('#erase') .click(function () {
var ctx = $('#sketch').get(0).getContext('2d");
ctx.fillStyle = '"#fff';
ctx.strokeStyle = '"#fff';
ctx.fillRect (0, 0, 600, 500);
)
)

$ (document) .bind('connect', function (ev, data) {
S('#status') .html ('Connecting.."');

var conn = new Strophe.Connection (
'http://bosh.metajack.im:5280/xmpp-httpbind') ;
conn.connect (data.jid, data.password, function (status) {

if (status === Strophe.Status.CONNECTED) {
S (document) . trigger ('connected') ;
} else if (status === Strophe.Status.DISCONNECTED) {

$ (document) . trigger ('disconnected') ;

)

SketchCast.connection = conn;
SketchCast.service = data.service;
SketchCast.node = data.node;

)

$ (document) .bind('connected', function () {
S('#status') .html ("Connected.") ;

// send negative presence send we're not a chat client
SketchCast.connection.send($Spres().c('priority').t('-1"));

if (SketchCast.node.length > 0) {
// a node was specified, so we attempt to subscribe to it

// first, set up a callback for the events
SketchCast.connection.addHandler (
SketchCast.on_event,
null, "message", null, null, SketchCast.service);

// now subscribe
var subig = $ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB})
.c('subscribe', {node: SketchCast.node,
jid: SketchCast.connection.jid});
SketchCast.connection.sendIQ (subiqg,
SketchCast.subscribed,
SketchCast.subscribe_error) ;
} else {
// a node was not specified, so we start a new sketchcast
continues

248 | CHAPTER9 PUBLISHING AND SUBSCRIBING: A SHARED SKETCH PAD INTRODUCTION

LISTING 9-3 (continued)

var createiq = $ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB})
.c('create');
SketchCast.connection.sendIQ(createiq,
SketchCast.created,
SketchCast.create_error) ;

}
1)
S (document) .bind('broadcast_started', function () {
S('#status') .html ('Broadcasting at service: <i>' +
SketchCast.service + '</i> node: <i>' +
SketchCast.node + "</i>");
S('.button') .removeClass ('disabled') ;
S ('#sketch') .removeClass ('disabled');
S('#erase') .removeAttr ('disabled') ;
$ ('#disconnect') .removeAttr ('disabled') ;
S ('#disconnect').click(function () {
$('.button').addClass('disabled"') ;
S ('#sketch').addClass ('disabled');
S ('#erase') .attr('disabled', 'disabled');
S ('#disconnect') .attr('disabled', 'disabled');
SketchCast.connection.sendIQ (
$ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB_OWNER})
.c('delete', {node: SketchCast.node}));
SketchCast.disconnect () ;
1)
)i
$ (document) .bind('reception_started', function () {

S ('#status') .html ('Receiving SketchCast.');

S ('#disconnect') .removeAttr ('disabled');

S ('#disconnect') .click(function () {
S('#disconnect').attr('disabled', 'disabled');
SketchCast.connection.sendIQ(

$ig({to: SketchCast.service,
type: "set"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB_OWNER})
.c('unsubscribe', {node: SketchCast.node,
jid: SketchCast.connection.jid}));

SketchCast.disconnect () ;

Summary | 249

)

// get missed events
SketchCast.connection.sendIQ
$ig({to: SketchCast.service, type: "get"})
.c('pubsub', {xmlns: SketchCast.NS_PUBSUB})
.c('items', {node: SketchCast.node}),
SketchCast.on_old_items);
)

A Better SketchPad

Software can always be improved. Perhaps you’d like to try adding some new features to SketchCast?
The marketing department says that the top three user requests are:

> Show drawing events that happened before viewers subscribed.
> Enable writing on the board using fonts.

> Browse for available SketchCasts instead of typing in their names.

SUMMARY

XMPP pubsub is an extremely powerful tool. Even in its simplest forms, it makes creating applications
like SketchCast quite easy. In this chapter, you used XMPP pubsub to develop a sketch presentation
application and learned about:

> The basics of pubsub

Creating and using forms

Subscribing, unsubscribing, and retrieving items from pubsub nodes
Creating, configuring, and deleting pubsub nodes

Publishing and dealing with pubsub events

Y Y ¥V VY Y

HTMLS’s <canvas> element

In the next chapter, you see a truly collaborative application, which allows two users to edit a
shared document, and you learn how to extend XMPP stanzas with your own elements.

10

Writing with Friends:
A Collaborative Text Editor

WHAT'’S IN THIS CHAPTER?

» Learning the Operational Transformation algorithm
» Using service discovery to probe features

> Extending XMPP stanzas

People used to mail manuscripts back and forth to collaborate. Over the years, as technology
improved, this turned into file sharing via disks and then sharing over e-mail. Technology
has now reached a point where multiple people, even in large groups, can simultaneously edit
the same document over the network, and the familiarity of the Web has made it both easy
and common. Given your previous experience with XMPP applications, it should be no sur-
prise to you that XMPP provides an ideal medium for collaborative document editing.

One of the latest examples of such applications is Google Wave, a rich, media-filled, col-
laborative space for groups of people to work on shared documents. When Google needed
a protocol to facilitate such a platform, it turned to XMPP. On top of XMPP, Google has
built a fantastic platform for collaborative editing based on the principles of operational
transformation. It has also chosen to do its protocol design work on the Wave protocol in
the open at http://www.waveprotocol.org.

In this chapter, you will build a collaborative text editor based on the same principles as Google
Wave — operational transformation. Although the application is designed for collaboration
between a pair of users, the underlying algorithms can be scaled to arbitrary numbers of col-
laborators. You see through this and other applications how simple it is to build sophisticated
software on top of XMPP’s core technology.

252

| CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

APPLICATION PREVIEW

The final version of the NetPad application is shown in Figure 10-1. It has a simple UI, but is never-
theless quite powerful.

NetPad

Collaborating with bingley @ netherfiold.litdrawing_roam.

[discennect)

<darcy @ pambarlay lit- Hi
<hingley&@natharfiald.lit- Hello. Can you assist me with this latier?
<darcy@pamberiaylit- | can but try.

FIGURE 10-1

A large editing area takes up most of the screen. A status area and a disconnect button appear at the
top, and the chat area appears at the bottom. Not only can the two collaborators work on the same
text, but they can also chat with each other about their ideas.

NETPAD DESIGN

Like any text editor, NetPad’s primary focus is to edit text. It is easy to accept local edits to the text,
but NetPad must also support editing operations coming from a remote user. Most of the work of
building NetPad is supporting these remote operations. The chat area is a slimmed-down version of
the functionality from Chapter 6’s Gab application, and by now you should be comfortable with the
private messaging pieces that are needed.

To allow users to collaborate on the same text, NetPad uses the theory of operational transformation.
Local editing actions are expressed as operations on the text and sent to the remote party. Remote
operations are received and transformed into slightly modified versions; after these modified versions
are applied, both parties end up with a consistent view of the text.

NetPad must establish an editing session between a pair of users, send local operations to the other
party, and process incoming remote operations. These operations will be encoded into XML as an

Operational Transformation | 253

extension to the XMPP protocol. The application uses <presence> stanzas for establishing sessions
and <message> stanzas for communicating editing operations.

Of course, not every user will be capable of collaborating on a NetPad document, so NetPad must
first determine whether the potential collaborator’s client has support for this editing functionality.
This can be done with Service Discovery, which you saw in Chapter 7.

NetPad’s design is rather simple, but operational transformation and XMPP protocol extensions are
both worthy of a thorough investigation. Once these concepts are explained, you will be ready to
design the NetPad protocol and build NetPad.

OPERATIONAL TRANSFORMATION

Ellis and Gibbs first presented the concept behind operational transformation in their paper
“Concurrency Control in Groupware Systems.” This paper is an excellent example of an academic
article that is extremely readable, turning a complex topic into a simple description. The algorithm
that NetPad uses is based directly on the work of these fine researchers.

Collaborative editing is a form of real-time groupware. These types of applications have many inter-
esting and important properties. First, they are highly interactive, real-time, distributed network
applications. These properties are true of most of the applications in this book. Groupware applica-
tions are ad-hoc and volatile in nature; there is no telling what actions users will take or what order
they take them in, and the users may come and go freely. Finally, these types of applications are quite
focused; each user of the system is interacting with the same data and often making conflicting
changes.

The main challenge of groupware applications is consistency. The view that one user has of a docu-
ment should be as close as possible to the other users’ views of the same information. When editing
operations have stopped, the resulting documents should all be identical. It does users no good to
work collaboratively if at the end of their session each has a different result.

Concurrency problems are not unique to groupware applications, but the real-time and distributed
properties of these systems make most common solutions to the concurrency impractical. For example,
database management systems have often supported various forms of concurrency control, but they
accomplish this by disallowing conflicting operations altogether. Other systems allow only one edi-
tor at a time, and this ability passes from user to user. The low latency and interactivity required by
groupware necessitates a different approach.

Basic Principles

The operational transformation algorithm is concerned with a group of users, the operations these
users can perform, and the order in which each user executes these operations.

The set of operations that NetPad needs is quite simple — inserting a character and deleting a
character. The insertion operation takes two arguments — the character to insert and the position
at which to place it. This operation is written as insert (pos, char). The deletion operation needs
only the position at which to delete a character and is written as delete (pos).

254 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

Each user’s editing actions will generate a sequence of these two operations. It is important that the
sequence of operations be executed in the proper order. For example, consider the four operations
insert (0, 'c'), insert (0, 'b'), insert (0, 'a'), and delete(0). Permuting the order of these
operations would result in a different string. In the order listed, these operations result in the string
be. If the middle two operations are switched, the resulting string becomes ac.

Each user’s operations are ordered, and other users must execute them in the same order. In addi-
tion, the total set of operations has an order as well, although unlike local operations, this ordering
is not always complete. It is possible for two users to generate different operations simultaneously on
the same string. These operations are overlapping and cannot be ordered in relation to each other.

Figure 10-2 and Figure 10-3 illustrate these two cases. In both figures each user, u, and u,, gener-
ates an operation, o, and o,, respectively. In Figure 10-2, o, is executed by u, before they generate o,.
However, in Figure 10-3, u, and u, perform simultaneous operations that overlap.

~~~~~~~~~ Operation 1 e Operation 1
\\\\\\\\\ \‘\\\ g
\\\\\\\ Sso g
T Saal L
\\\ ,r

= R22 =]
3 PN 3
o) s Sso o

- “a

« Operation 2 «
A\ A\
User A User B User A User B
ADAPTED FROM FIGURE 2 OF “CONCURRENCY CONTROL IN ADAPTED FROM FIGURE 2 OF “CONCURRENCY CONTROL IN
GROUPWARE SYSTEMS” BY ELLIS AND GiBBs, ACM SiGMOD GROUPWARE SYSTEMS” BY ELLIS AND GiBBs, ACM SiGMOD
REecorp, ACM 18(2), 1989. REecorp, ACM 18(2), 1989.
FIGURE 10-2 FIGURE 10-3

The case where operations overlap is the real crux of the collaborative editing problem. The non-
overlapping cases can easily be handled by keeping track of the order of operations, and enforcing
execution in the correct order. Overlapping operations, however, have no ordering. How are these to
be executed?

Overlapping operations must be transformed into new operations that can be ordered, and this is
where the name “operational transformation” comes from. Because u, knows the state on which o,
operated, they can transform o, into an operation that accounts for the local operation o,. Similarly,
u, can transform o, to account for the changes made by o,.

Imagine that both u, and u, have the string ace in their editors. Each user simultaneously does an
insert operation; o, performed by u,, is insert (1, 'b'), and o,, performed by u,, is insert (2, 'd').

First, watch what happens when these operations are not transformed. The first user executes o, and
then receives and executes o,; the resulting string is abdce. The second user executes o, and then o,
and ends up with the string abcde. Each user now has an inconsistent view of the data, and only one
of them has the correct version.



Operational Transformation | 255

Now, observe the result when each user transforms the operations they receive. The first user exe-
cutes o, and then receives o,. Because the user has added a character to the string, he or she applies
a transformation turning o, into o,” adding one to the position of the insert operation; insert (2, 'd")
becomes insert (3, 'd'). The o, operation that u, receives needs no transformation because the posi-
tion it references has not been changed by o,; 0,” is the same as o,. Applying o, 0,” or 0,, 0, results in
the same result — the string abcde.

Similar transformations are possible between any pair of operations.

Details of the Algorithm

As you’ve learned, operational transformation solves a complex problem in a relatively simple

and straightforward manner. However, you have a few important details to consider before the
algorithm can be implemented in NetPad. The structure of operation requests must be defined.
Executing groups of operations will need some care, and the algorithm has the concept of priorities
to address this. Also, it is necessary for each user to maintain a queue of outstanding operations, to
know the state for which a given operation applies, and to track the history of operations that have
already been performed.

State

Each user must keep a state vector with one element for each user participating in the session. There
will be two participants in every NetPad session, and the state vectors for both users will have two
elements. The elements of the state vector are simple counters that start at zero. For every operation
executed, the operation initiator’s element of the state vector is incremented by one. For example, if
the first position in the state vector represents the local user and the second position represents the
remote user, a state vector of <10, 23> means that 10 locally generated operations and 23 remotely
generated operations were executed on the local document.

Each user’s place in the state vector must be the same for all state vectors. This can be achieved eas-
ily by lexicographically ordering the users by their JIDs.

Operation Requests

When any user executes a local operation, they will broadcast a corresponding operation request
to the other users. Operation requests can be represented as a four-element vector in the form
<j, 8, 0, p>. The first element, j, is the initiator’s position in the state vector. The next element, s, is
the state vector of the jth user at the time the operation was generated. The element o is the opera-
tion requested, and p is the operation’s priority.

Each request carries not only the operation and its parameters but also the state vector at the time
the operation was first executed and its priority. This extra information will allow the other par-
ticipants to determine when they can execute the request. For example, one user may generate an
operation that comes after a second user’s; a third user, who has received the second user’s operation
first, must wait for the first user’s operation before they can execute either. Without knowledge of
the operation’s corresponding state, it would not be possible to order execution properly.



256 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

Request Queue and Execution Log

Each user must keep a queue for incoming requests. All requests, both local and remote, will be
appended to the queue, and a user must traverse the queue to execute operations that are ready.
An operation is ready for execution if the current state vector for the user is less than or equal to
the queued request’s state vector.

State vectors are compared in a special way, described in the Implementation section. If the state
vectors are equal, the operation was performed on the same state, and can be executed without any
transformation. If the request’s state vector is less than the current local state vector, some overlap-
ping operations have already been executed and the request’s operation must be transformed before
execution.

After any request’s operation is executed, the request is appended to the user’s execution log. This
log is used to transform overlapping operations — operations executed simultaneously by different
users — by taking into account operations that have already been executed. The execution log will
be traversed in reverse chronological order to look for operations that affect a given request.

Priorities
Every request has a priority, which is calculated at the operation’s origin at the time of its execution.
These priorities must take into account previous operations’ priorities at the same location, so they
are composed of two parts. The first part is the priority of the most recent request in the execution
log whose operation had an original position equal to the current operation’s position. The second
part is the user’s position in the state vector. If no request in the execution log applies, the priority
consists of just the user’s position in the state vector.

This may sound complex, but it is necessary for the algorithm to function perfectly. Using a simpler
scheme for priorities doesn’t work in all cases, so this scheme is needed. The outline of a proof for
the correctness of this approach is provided in the paper; the paper also shows why a simpler scheme
cannot work.

Implementation

The implementation of operational transformation is taken directly from the aforementioned
paper. The details are explained here along with the source code, but if you need more details or
are just curious, please read the original paper.

Initial Code

You start by setting up the opTrans object and its basic properties and initialization function. Place
the following code into a new file called optrans. js:

‘) var OpTrans = {
log: null, // the request log

Available for queue: null, // the request queue

download on .

Wrox.com sltI:ate. null, // our”state vector
jid: null, // our jid
jid_map: null, // maps jids to positions in state vectors
buffer: null, // the text buffer being affected by operations



Operational Transformation | 257

update_func: null, // callback function

init: function (
this.log = [
this.queue = H
this.state = ;
this.jid_map {};
this.buffer = buffer.split('');
this.jid = jids[0];
this.update_func = update_func;

jids, buffer, update_func) {
1

[
[

$.each(jids.sort (), function (i) {
OpTrans.jid_map[this] = 1i;
OpTrans.state.push(0) ;

});

code snippet optrans.js

The init () function’s parameters are a list of JIDs of the participants, the initial buffer contents,
and a callback function. The first item in the list of JIDs must be the JID of the local user. The ini-
tial buffer will normally be an empty string, but it may be a partial document if the hosting user
has done some editing before the other user has connected. The callback function will be invoked
every time an operation is executed, and it will be passed the new buffer as well as a flag indicating
whether the update came from the local user or a remote one.

The init () function sets the various properties to their default values. The execution log and request
queue start empty. The list of JIDs passed into the function is used to create the jid_map property,
which maps each JID to a corresponding index in a state vector. Each state vector is the same length
as the list of JIDs, and the initial state vector starts with each value set to zero. The jid property
stores the local user’s JID.

Each user in the session will initialize their own opTrans object when the session begins. Except for
the jid property, which will be different for each user, all participants start with the same initial state.

Comparison Functions

A state vector will need to be compared against other state vectors in order to determine operation
precedence. Similarly, priority values will also need to be compared to each other. Because both of
these objects are not simple numbers or strings, you will write special comparison functions for them.

Add the following code for the compare_state () and compare_priority() functions to the
ObTrans Object:

‘) compare_state: function (sl, s2) {

var 1, smaller = false;

Available for for (1 = 0; i < sl.length; i++) {
download on . . .
Wrox.com if (s1[i] > s2[i]) {

return 1;

} else if (s1[i] < s2[i]) {
smaller = true;



258 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

if (smaller) {
return -1;

return 0;
+,

compare_priority: function (pl, p2) {
if (pl.length > p2.length) {
return -1;
} else if (pl.length < p2.length) {
return 1;
} else {
var 1i;
for (i = 0; 1 < pl.length; i++) {
if (pl[i] > p2[i]) {
return -1;
} else if (pl[i] < p2[i]) ¢
return 1;

return 0;

code snippet optrans.js

State vectors are compared element by element. A state vector s, is equal to another state vector s, if
all its elements are equal. If all elements of s, are less than or equal to s, but at least one element in s,
is less than its corresponding element in s, s, is less than s.. Otherwise, s, is considered greater than s..

Priorities are also compared element-wise. Whereas state vectors are always of equal length, priori-
ties can be arbitrarily long. Two priorities are equal if they have the same length and each element
is the same. Otherwise, either one priority is a sub list of the other, or they differ at some specific
element. In the former case, the longer priority is the greater one. In the latter case, the result of the
first differing elements’ comparison is the result of the priorities’ comparison.

Handling Requests

The first step in operational transformation is to handle the request. A request may be a result of
a local user operation, or it may be received over the network from a remote user. For local opera-
tions, a priority must be calculated and a request constructed; remote operations are wrapped in
a request before they are sent. In both cases, the request must be added to the requests queue, and
then the execution stage is begun.



Operational Transformation | 259

Add the following do_local () and do_remote () functions to the obTrans object:

‘) do_local: function (op, pos, chr) {
// calculate p

dAvailzlth(Eiur var 1, maxp = [];
ownload on - 0. : .
Wrox.com for (1 = 0; 1 < this.log.length; 1++) {

if (this.log[l][4] === pos) {

if (this.compare_priority(maxp, this.log[1l][31])

maxp = this.log[l]1[31;

var p = maxp.concat (this.jid maplthis.jid]);

// append request to queue

var req = [this.jid_maplthis.jid],
this.state.concat (),
[op, pos, chrl],
pl;

this.queue.push(req) ;

this.execute();

return req;

b

do_remote: function (jid, state, op, pos, chr, pri) {
// append request

== 1) {

var req = [this.jid_map[jid], state, [op, pos, chr], pril;

this.queue.push(req) ;

this.execute();

code snippet optrans.js

For do_1local () only the operation’s details are passed in, but for do_remote () you must pass in all
the necessary components of the request, which are used to create a request object.

The do_local () function is more involved than do_remote () due to the priority calculation. The
do_local () function must also return the constructed request back to the caller in order for the request to
be broadcast to the remote users. The priority calculation was described previously in the “Priorities”

section.

NetPad calls init () once the editing session has started, and from then on it calls do_local ()
when the local user performs editing operations and do_remote () when requests are received from
the remote user. After each request is executed, the callback function will be invoked to notify
NetPad about the new text changes. All the other functions of the opTrans object are for use

internally.



260 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

Execution

The execute () function contains most of the core logic of the operational transformation algorithm.
It finds requests that are ready to be executed on the request queue, potentially transforms these
based on past operations in the execution log, and then applies the operation to the buffer. The fol-
lowing execute () function should be added to the opTrans object:

‘) execute: function () {
var r, cmp, new_queue = [];
Available for for (r = 0; r < this.queue.length; r++) {
d“mg;”‘a:glgn var remstate = this.queuelr][1];
var cmp = this.compare_state(remstate, this.state);
if (cmp < 1) {
var op = this.queuelr][2];

var orig_pos = opl[l];
if (cmp < 0) {
var 1 = -1;
while (1 = this.find_prev(remstate, 1) >= 0) {

var k = this.log[1][0];
if (remstate[k] <= this.log[1l][1][k]) {
op = this.transform_ op (op,

this.log[l][2],
this.queuelr][31],
this.log[11([31);
}
}
}
var remote = this.queuel[r][0] !== this.jid maplthis.jid];

this.perform_op.apply(this, [remote].concat (op, orig_pos));
this.log.push(this.queue(r].concat (orig_pos));
this.statel[this.queue[r][0]] += 1;

} else {
new_queue.push (this.queue(r]) ;

this.queue = new_gueue;

code snippet optrans.js

The execute () function traverses the request queue in the order the requests were added, looking
for requests that are ready for execution. Each request whose state vector is less than or equal to the
local user’s current state vector can be executed. If the request’s state vector is strictly less than the
local user’s state vector, the request must be transformed before it can be executed; the local buffer
has been modified by operations that weren’t executed at the request’s origin. If the two state vectors
are equal, the request can be executed immediately.

To transform a request, the execution log is searched for requests whose state vectors are less than
or equal to the current request. The find_next () function returns the index of the next such request



Operational Transformation | 261

from the execution log or -1 if no such request is found. Additionally, only some of these requests from
the log will affect the transformation; the logged request’s and the current request’s state vectors are
compared at the element corresponding to the logged request’s origin, and if the element in the logged
request’s state vector is greater than or equal to the element of the current request’s state vector, that
request must be transformed against. Each such request found in the execution log will trigger a trans-
formation done by transform_op ()} it is possible that several transformations will take place.

Add the following find_prev () function to the opTrans object:

‘) find_prev: function (state, last_idx) {
if (last_idx < 0) {

Available for last_idx = this.log.length;
download on }
Wrox.com

var k;

for (k = last_idx; k >= 0; k--) {
if (this.compare_state(this.log[k][1l], state) < 1) {
break;

return k;

code snippet optrans.js

Once the potentially transformed operation is ready for execution, perform_op () does the buffer
manipulation, and then the request is added to the execution log. Note that the original position of
the operation is also stored in the execution log because this is needed for the priority calculation
shown previously in do_local().

The following perform_op () function should be added to the opTrans object:

‘) perform_op: function (remote, op, pos, chr) {

if (op === 'insert') {
(Ii\vail?hltleilnr this.buffer.splice(pos, 0, [chr]);
ownload on : —— '
Wrox.com } elsellf (op === <.ilelete ) {
this.buffer.splice(pos, 1);
}
this.update_func(this.buffer.join(''), remote);

code snippet optrans.js

The final operations are very easy to perform. The splice () method of JavaScript’s Array class makes
it easy to insert or delete a character at any position. Once the operation is done, the callback func-
tion is notified with the new buffer. Note that inside the opTrans object the buffer is stored as an
array, but perform_op () passes it as a string to the callback function.



262 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

Transformation

The only piece of the algorithm left is to perform the transformation of operations. The transform_
op () function takes both an operation to transform and also an operation to transform against. The
first operation will always be the current operation, and the operation to transform against will come
from the execution log. Once it has finished the transformation, it returns the new, transformed
operation.

The transform op () function that follows should be added to the opTrans object:

\) transform_op: function (opl, op2, pril, pri2) {
var idxl = opll[l];

Available for var idx2 = op2[1l];
download on
Wrox.com X X .
if (opl[0] === 'insert' && op2[0] === 'insert') {

if (idxl < idx2) {
return opl;
} else if (idxl > idx2) {
return [opl[0], idxl + 1, opl[2]];

} else {
if (opll2] === op2[2]) {
return null;
} else {
var cmp = this.compare_priority(pril, pri2);
if (cmp === -1) {
return [opl[0], idxl + 1, opl[2]];
} else {
return opl;
}
}
}
} else if (opl[0] === 'delete' && op2[0] === 'delete') {

if (idxl < idx2) {
return opl;
} else if (idx1l > idx2) {
return [opl[0], idxl - 1, opl[2]];
} else {
return null;
}
} else if (opl[0] === 'insert' && op2[0] === 'delete') {
if (idxl < idx2) {
return opl;
} else {
return [opl[0], idxl - 1, opll2]1];
}
} else if (op2[0] === 'delete' && op2[0] === 'insert') {
if (idxl < idx2) {
return opl;
} else {
return [opl[0], idxl + 1, opll2]1]1;

code snippet is part of optrans.js




Operational Transformation | 263

There are four possible combinations of operations — insert () transformed against an insert ()
or a delete() and delete() transformed against an insert () or delete (). In each case the trans-
formed operation may shift position forward or backward, be discarded, or remain unchanged.

Consider the case where a delete () is transformed by a previous delete () operation. If the index
where the current delete () will occur is less than the old delete (), no change is necessary. If the
index is the same, then the delete has already happened and the operation is superfluous. Otherwise,
the index must be decremented by one so account for the missing character. The other operation
transformations are similar.

The one slightly tricky case is when both operations are insert ()s. In this case, if two insert ()
operations occur at the same index, the algorithm must use the priorities of the operations to deter-
mine the final transformation. If this priority comparison were not done, it would be possible for
users to perform the operations in different orders, resulting in different buffers.

The final optrans.js file appears in Listing 10-1. Although NetPad uses this to enable collaborative
editing between two users, the operational transformation algorithm — and this particular implemen-
tation of it — is not limited to two users; arbitrary numbers of participants can work simultaneously
on the same buffer just as easily.

‘) LISTING 10-1: optrans.js

Available for  var OpTrans = {

d\‘;\mtggnﬂ" log: null, // the request log
queue: null, // the request queue
state: null, // our state vector
jid: null, // our jid
jid_map: null, // maps jids to positions in state vectors
buffer: null, // the text buffer being affected by operations
update_func: null, // callback function

init: function (jids, buffer, update_func) {
this.log = []

this.queue =
this.state ;
this.jid_map {}:

this.buffer = buffer.split('');
this.jid = jids[0];
this.update_func = update_func;

S.each(jids.sort (), function (i) {
OpTrans.jid_map[this] = 1i;
OpTrans.state.push(0) ;

)

}

getState: function (jid) {
}

do_local: function (op, pos, chr) {
// calculate p
continues



264 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

LISTING 10-1 (continued)

var 1, maxp = [];
for (1 = 0; 1 < this.log.length; 1++) {
if (this.log[l][4] === pos) {
if (this.compare_priority(maxp, this.log[l][3]) == 1)
maxp = this.log[1][3];

var p = maxp.concat(this.jid map[this.jid]l);

// append request to queue

var req = [this.jid_maplthis.jid],
this.state.concat (),
[op, pos, chr],
pl;

this.queue.push(req) ;

this.execute();

return req;

I

do_remote: function (jid, state, op, pos, chr, pri) {
// append request
var req = [this.jid_map[jid], state, [op, pos, chr], pril;
this.queue.push(req) ;

this.execute();

b,

compare_state: function (sl1, s2) {
var i, smaller = false;
for (i = 0; 1 < sl.length; i++) {
if (s1[i] > s2[i]) {
return 1;
} else if (sl[i] < s2[i]) {
smaller = true;

if (smaller) {
return -1;

return 0;

3,

compare_priority: function (pl, p2) {
if (pl.length > p2.length) {
return -1;
} else if (pl.length < p2.length) {



Operational Transformation | 265

return 1;
} else {
var 1;
for (i = 0; i < pl.length; i++) {
if (pl[i] > p2[i]) {
return -1;
} else if (pl[i] < p2[i]) {
return 1;

return 0;

b

execute: function () {
var r, cmp, new_queue = [];
for (r = 0; r < this.queue.length; r++) {
var remstate = this.queuelr][1];
var cmp = this.compare_state(remstate, this.state);
if (cmp < 1) {
var op = this.queuelr][2];
var orig_pos = opl[l];
if (cmp < 0) {
var 1 = -1;
while (1 = this.find_prev(remstate, 1) >= 0) {
var k = this.log[1]1[0];
if (remstatel[k] <= this.log[1]1[1]1[k]) {
op = this.transform_op (op,

this.log[1l]1[2],
this.queue[r] [3],
this.log[1][3]);
}
}
}
var remote = this.queuel[r][0] !== this.jid_map[this.jid];

this.perform op.apply(this, [remote].concat (op, orig_pos));
this.log.push(this.queuel[r].concat (orig_pos));
this.state[this.queue[r][0]] += 1;

} else {
new_queue.push (this.queuelr]) ;

}

this.queue = new_queue;

b,

perform_op: function (remote, op, pos, chr) {

if (op === 'insert') {
this.buffer.splice(pos, 0, [chr]);

} else if (op === 'delete') {
this.buffer.splice(pos, 1);



266 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

LISTING 10-1 (continued)

}

this.update_func(this.buffer.join(''), remote);

3,

find_prev: function (state, last_idx) {
if (last_idx < 0) {
last_idx = this.log.length;

var k;
for (k = last_idx; k >= 0; k--) {
if (this.compare_state(this.logl[k][1l], state) < 1) {
break;

return k;

Y,

transform_op: function (opl, op2, pril, pri2) {
var idxl = opl[1l];
var idx2 = op2[1];

if (opl[0] === 'insert' && op2[0] === 'insert') {
1f (idx1l < idx2) {
return opl;
} else if (idxl > idx2) {
return [opl[0], idxl + 1, opl[2]];

} else {
if (opll2] === op2[2]) {
return null;
} else {
var cmp = this.compare_priority(pril, pri2);
if (cmp === -1) {
return [opl[0], idxl + 1, opll2]1]1;
} else {
return opl;
}
}
}

} else if (opl[0] === 'delete' && op2[0] === 'delete') {
if (idxl < idx2) {
return opl;
} else if (idxl > idx2) {
return [opl[0], idxl - 1, opl[2]];
} else {
return null;



Extending the XMPP Protocol | 267

} else if (opl[0] === 'insert' && op2[0] === 'delete') {
if (idx1l < idx2) {
return opl;
} else {
return [opl[0], idxl - 1, opll[2]11];
}
} else if (op2[0] === 'delete' && op2[0] === 'insert') {
1f (1dxl < idx2) {
return opl;
} else {
return [opl[0], idxl + 1, opl[2]];
}

EXTENDING THE XMPP PROTOCOL

In previous applications you have seen much of the core XMPP protocol and several important exten-
sions, but you’ve not yet created your own extensions. Creating protocol extensions is an important
part of XMPP development, and sometimes you’ll even need to create extensions of another extension.

XML documents are easily extensible through the use of namespaces. Every attribute or element

is attached to some namespace, and new elements and attributes can be added under different
namespaces. XMPP systems are designed to ignore XML under namespaces they don’t recognize,
but they will forward these payloads along to their final destinations. This combination of features
makes XMPP easy to extend, and the community around developing extensions has used these fea-
tures to create nearly 300 protocol extensions.

Ignoring the Unknown

XMPP extensions work because XMPP systems do not require knowledge of every bit of XML
passing through. New things can be added without breaking existing XMPP software, and anything
unknown will not only be ignored, but it will also be preserved until it is finally delivered to its
destination.

This principle of ignoring the unknown is adhered to by every piece of the XMPP stack. For example,
servers do not know anything about typing notifications, but these can still be sent from one client

to another. Clients, likewise, may not understand some features of other clients; this does not cause
them to break, and the strange features are simply ignored.

It is hard to know how developers or even end users will use a protocol. Therefore, it is best to remain
as flexible as possible, leaving room for future growth and change. If XMPP did not ignore unknown
protocol elements, it is likely that it would still be limited to the few uses for which it was originally
designed.



268 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

XML Namespaces

Many people are familiar with XML, but few seem to have much experience with XML namespaces.
Namespaces are important for defining XMPP extensions because they allow the addition of elements
and attributes that will be interpreted in a new context.

An XML namespace is simply a URI, or uniform resource identifier. It is important to note that
although a URI may sometimes look like a URL, it does not necessarily reference an actual location
on the Web.

In XMPP, the URIs take several forms. Originally URIs of the form jabber: foo or jabber:x: foo
were used. Eventually the community adopted more URL-like URIs such as http://jabber.org/
protocol/muc. Today, XMPP URIs look like urn:xmpp:jingle:1. These differences are due to the
community’s increasing knowledge of and sophistication with URIs.

Official XMPP extensions register their URIs with the XMPP registrar as part of the standardization
process. Application-specific namespaces that are not intended for standardization typically use
URL-style URIs such as http: //metajack.im/ns/netpad. If you intend to submit your protocol
extension to the XSF, you can contact the XMPP registrar to obtain a temporary namespace to use
until your extension reaches draft status and is assigned a permanent namespace.

XML elements can have a default namespace, and this namespace is inherited by child elements
that have no namespace declaration of their own. For instance, XMPP client streams use a default
namespace of jabber:client; a <message> element in the stream does not need to declare itself
part of the jabber:client namespace because it will inherit this property from the default namespace.
This inheritance is quite handy because it saves having to declare the namespace of every element;
most of the time, elements will all be in a common, inherited namespace.

Extended Elements

Extended elements are just new child elements that live under a different namespace. You’ve seen
several examples of these including XHTML-IM’s <html> child and inside every IQ-get and 1Q-set
stanza in the book.

There’s no restriction on where you can place extended elements, except that you cannot normally
place an extended element at the XMPP stanza level. XMPP extensions routinely add extended ele-
ments even to other XMPP extensions’ elements.

Extended elements for a particular protocol extension can generally appear only in a few specific
places. It makes little sense, for example, to place a jabber:ig:roster element anywhere but as the
first child of an <ig> stanza. Some extensions do have more generic properties; Data Forms in par-
ticular can go nearly anywhere.

Extended elements can appear two ways. Either they can declare a new default namespace by including
the xmlns attribute in the element, or they can use namespace prefixes.

Changing the Default Namespace

Changing the default namespace is the most common method used with extended elements, and all
the examples in this book have used this method. Any element can declare the default namespace



Extending the XMPP Protocol | 269

by setting the value of the xm1ns attribute to the namespace desired. The following example shows
a <message> stanza with an extended <event> child under a new default namespace. Some children
under the <event> element are also under the new namespace because they have no namespace specifi-
cally declared, and the <x> element declares another default namespace for the form and its children.

<message to='elizabeth@longbourn.lit/bedroom'
from='pubsub.pemberley.lit'>
<event xmlns='http://jabber.org/protocol/pubsubf#event'>
<items node='latest_books'>
<item id='821b576dfabfc6b358bb6ecd139b87f5¢c"' >
<x xmlns='jabber:x:data' type='result'>
<field var='title'>
<value>A History of Pemberley</value>
</field>
<field var='author'>
<value>Sir Lewis de Bourgh</value>
</field>
</x>
</item>
</items>
</event>
</message>

Namespace Prefixes

Instead of changing the default namespace, XML elements may define namespace prefixes. You’ve
seen these briefly in Chapter 1; the <stream: stream> element that opens an XMPP stream is a pre-
fixed element.

Prefixes must be defined before or at the time of their use, and descendants of an element that defines
a prefix will also inherit the prefix’s definition. The prefix is defined by including an xmins: foo attri-
bute, where foo is the prefix you want you use. The value of this attribute is the namespace to which
the prefix is bound. Prefixes appear before element names and are separated from the name by a colon.

The following example shows the same <message> stanza as before, but uses prefixes instead of
changing the default namespace:

<message to='elizabeth@longbourn.lit/bedroom'
from="'pubsub.pemberley.lit'>
<pubsub:event xmlns:pubsub='http://jabber.org/protocol/pubsub#event'>
<pybsub:items node='latest_books'>
<pubsub:item id='821b576dfabfc6b358b6ecd139b87f5c"'>
<form:x xmlns:form='jabber:x:data' type='result'>
<form:field var='title'>
<form:value>A History of Pemberley</form:value>
</form:field>
<form:field var='author'>
<form:value>Sir Lewis de Bourgh</form:value>
</form:field>
</form:x>
</pubsub:item>
</pubsub:items>
</pubsub:event>
</message>



270 | CHAPTER10 WRITING WITH FRIENDS: A COLLABORATIVE TEXT EDITOR

In this case, prefixes are more verbose than changing the default namespace. However, if the children
of the <pubsub: event> element were replaced with elements under the jabber:client namespace,
the use of pref