
An Introduction to Processing and Music Visualization
Christopher Pramerdorfer∗

Vienna University of Technology

Figure 1: Processing is used in various disciplines, from art to visualization. This Figure is a composition of visualizations
created with Processing. Some of the projects these visualizations come from are discussed in section 3.3.

Abstract

Processing is a programming language and environment tar-
geted at artists and designers. It is used in various environ-
ments for different purposes, from scientific data visualization
to art installations. This paper is comprised of two parts.
The purpose of the first part is to provide an insight into
Processing and its community as well as to showcase some
projects that were created using Processing. The second part
focuses on visualization of music. It gives a concise introduc-
tion to the theory of how information can be derived from
sound signals and presents examples of how that information
can be visualized using Processing.

Keywords: processing, processing.org, visualization, music
visualization, audio visualization

1 Introduction

Visual abstractions of things and facts, like maps or diagrams,
have been used for centuries to aid humans in thinking and
communication. Such graphical representations of data or
concepts are called visualizations. Nowadays in the informa-
tion age enormous amounts of data are produced. Techniques
are required that help humans access that information by
supporting their cognition. One of these techniques is the
processing of information in a visual way, referred to as
information visualization or data visualization.

One of the greatest benefits of data visualization is the sheer
amount of information that can be rapidly interpreted if it is
presented well. Visual displays provide the highest bandwidth
channel from the computer to the human. We acquire more

∗e-mail: e0626747@student.tuwien.ac.at

information through vision than through all the other senses
combined [Ware 2004]. With the help of modern computers,
interactive visualizations can be prepared automatically at
time of use and according to the users needs.

Processing is a programming language and environment based
on the Java programming language [Oracle 2010]. Originally
targeted at artists and designers, Processing has evolved
into a full-blown design and prototyping tool used for large-
scale installation work, motion graphics, and complex data
visualization [Fry 2008]. Processing runs on all common
operating systems, is free to use, easy to learn, and provides
sophisticated drawing functionality. This makes Processing
a great tool for visualization tasks, amongst others.

Figure 2: The Processing logo.

The goal of the first part of this paper is to provide an intro-
duction to the Processing project. It explains the language
differences to Java and addresses some core characteristics
and functionality of the API. Furthermore, it introduces the
development environment of Processing and how Processing
can be used from within Java programs. The first part then
continues with an overview on the development of the project
and on the community. It closes with a showcase of some
projects created with Processing. The second part is about
music visualization. It starts with an introduction to how
audio data is processed in the computer and provides an
overview on how information can be extracted from audio



data streams. It then presents approaches on how that infor-
mation can be used to create realtime visualizations of music
in Processing.

2 Processing

The Processing project consists of several parts, which are
discussed in this part of the paper. It includes a programming
language based on Java, an API that provides the core func-
tionality and several libraries that enhance this functionality,
as well as a development environment.

Processing can be downloaded from the official homepage
[Processing 2010]. Once downloaded and extracted, one
can start the so called Processing Development Environment
(PDE) by executing a file named processing or similar (de-
pending on the operating system). The PDE is the primary
development environment for Processing. Figure 3 depicts a
screenshot.

Figure 3: The Processing Development Environment

2.1 The Language

Programs written with Processing are called sketches. When
the PDE has started, a new sketch is created automatically.
Users can start with programming directly, without having to
worry about things like project configuration. For instance,
the following lines of code:

size(400, 200);
background(#FFFFFF);
fill(#33FF00);
ellipse(170, 110, 120, 100);
for(int i = 20; i <= 180; i += 5) {

line(275, i, 375, i);
}
stroke(#FF0000);
strokeWeight(4);
noFill();
bezier(250, 20, 10, 10, 90, 90, 50, 180);

produce the output shown in Figure 4 when the sketch is run.
Sketches can be run by clicking at the play symbol at the
top left of the PDE or by utilizing the shortcut ctrl + r.

Figure 4: Drawing shapes and lines with Processing.

The previous code provides a basic overview of the syntax
of Processing, which is very similar to C or Java. The func-
tionality of Processing is utilized by using functions, which
are named in a self-explanatory way. For instance the func-
tion background lets the user change the background of the
resulting image, while ellipse draws ellipses. Specified co-
ordinates and dimensions map directly to device pixels by
default (the Processing coordinate system is explained in
detail in section 2.2.3). Many Processing functions alter the
internal state. For instance fill sets the fill color of objects
to a specific color. This fill color will be used in subsequent
drawing operations until another color is specified by calling
fill again, or until noFill is called, which tells Processing
to no longer fill shapes. State changes affect only subsequent
operations. This makes programming in Processing a se-
quential process, which greatly simplifies development as it
enables users to create Processing applications a few lines
at a time. This is referred to as sketching by the Processing
community.

„Processing is for writing software to make images,
animations, and interactions. The idea is to write
a single line of code, and have a circle show up on
the screen. Add a few more lines of code, and the
circle follows the mouse. Another line of code, and
the circle changes color when the mouse is pressed.
We call this sketching with code. You write one
line, then add another, then another, and so on.
The result is a program created one piece at a time.”
– Casey Reas and Ben Fry [Reas and Fry 2010].

The Processing syntax is a dialect of Java. It hides certain
parts of Java in order to allow for faster coding and help
users not familiar with Java and object oriented program-
ming. Aside from this, both languages are identical. When a
Processing sketch is run in the PDE, the Processing prepro-
cessor automatically converts the code to Java source code,
which is then compiled to Java byte code. More precisely,
the preprocessor creates a new class that extends PApplet
and moves all code defined in the sketch into this class. For
example the following Processing code:

background(255);
point(10, 10);

in a sketch called Test is converted to:

import processing.core.*;



public class Test extends PApplet {
public void setup() {

background(255);
point(10, 10);

}
}

This means that Processing programs correspond to Java
classes. Therefore, the Java API can be accessed as in Java by
using import statements. PApplet contains all the core API
functionality of Processing, that is all Processing functions
are implemented inside PApplet as Java methods. Because
sketches are merely classes that inherit from PApplet, they
can use all its functionality. PApplet is defined in the Java
package processing.core, which is imported automatically
by the preprocessor.

The setup method is called once when the program starts,
thus the code above will execute only once. This mode
is referred to as the basic mode of the preprocessor. It is
sufficient only in special circumstances as it creates static
images. Most of the time the so called continuous or active
mode is used.1 To enable this mode the Processing code
must contain the functions setup and draw.2 For instance
the code:

void setup() {
size(300, 200);
stroke(0);

}

void draw() {
background(255);
rect(mouseX, mouseY, 50, 50);

}

in a Processing sketch called Test is converted to:

import processing.core.*;

public class Test extends PApplet {
public void setup() {

size(300, 200);
stroke(0);

}

public void draw() {
background(255);
rect(mouseX, mouseY, 50, 50);

}
}

when the sketch is run in the PDE. The setup method is again
called only once when the program is started. Therefore, it
should be used to define initial environment properties such
as screen size, and to load resources such as fonts or images.
After setup has finished, the program continually calls the
draw method, by default at a rate of 60 times per second.
This allows for interactivity. For instance, the above code
produces a rectangle that follows the mouse. This illustrates

1The preprocessor offers a third mode called Java mode, which
can be activated by writing a Java class definition inside the sketch.
However, if Processing is to be used at this level, it is often better
to use its API directly from Java, as discussed in section 2.3.

2One can specify any number of additional functions, which
are converted to methods by the preprocessor. Unless specified
explicitly, all generated methods are public.

how easy it is to create simple interactive applications in
Processing.

Sketches can be extended with additional source files, which
are referred to in the PDE as tabs. Every tab can contain
one or more class definitions. The preprocessor treats classes
defined in tabs as inner classes of the class created from
the sketch. Therefore, classes defined in tabs can access
functions defined in the sketch as well as those defined in
PApplet. However, static fields and methods are not available
to these classes as Java does not support static members for
inner classes.

One can also create a pure Java source file by creating a
tab with the name postfix .java. Classes defined this way
are not converted to inner classes by the preprocessor, so
if a class needs access to methods of the host PApplet, a
reference must be passed to it. The following example shows
how this can be accomplished.

import processing.core.*;

public class Shape {
PApplet _p;
public Shape(PApplet p) { _p = p; }
public void draw() { // use _p to draw ... }

}

The above class defined in the tab Shape.java can be instan-
tiated and used in the sketch by writing:

Shape s = new Shape(this);
s.draw();

While Java and Processing are almost identical languages,
there are some differences. In Java, floating point values
are stored as double by default. The Processing language
and API instead use the float data type because of memory
and speed advantages. As a result, float f = 1.0 is valid
syntax in Processing, but not in Java. The preprocessor tags
all non-integer values as float by adding an f to them (i.e.,
1.0 becomes 1.0f).

The Processing language supports a literal for specifying
colors in the form #XXYYZZ or #AAXXYYZZ, as introduced in
previous code examples. In the RGB color mode (the default)
this literal works like for instance in HTML or CSS: AA is a
hexadecimal value that defines the alpha value of the color, XX
is the red value, YY is green and ZZ specifies the blue fraction
of the color. Processing also offers a HSB color mode, in
which XX specifies the hue, YY the saturation and ZZ the
brightness of the color. The preprocessor maps color literals
to Java int values (i.e., #FF5500 becomes 0xFFFF5500).

Another difference is that Processing supports typecasts in
the style type(value), e.g. int(value) or float(value).
The preprocessor converts these constructs to use cor-
responding PApplet methods, like parseInt(value) and
parseFloat(value), respectively.

2.2 Features of Processing

Processing was created to make it easier to develop visually
oriented applications with emphasis on animation and provide
users with instant feedback through interaction [Fry 2008].
As introduced in the previous section, Processing enables
users to draw shapes in an easy and intuitive way. But the
Processing API allows for much more. This section gives a



short overview of some important features and characteristics.
An extensive API documentation is available on the official
website [Processing 2010].

2.2.1 File Input and Output

All local files to be used in Processing must reside inside the
data directory inside the sketch folder. This eliminates path
issues when Processing applications are redistributed. Files
inside the data folder are easily accessible via the Processing
API, which provides functions for loading special types of
data. For example, loadStrings reads a text file into an
array of String objects, while loadShape allows users to load
shapes stored in Scalable Vector Graphics (SVG) format, as
shown in the following code example:

String[] data = loadStrings("data.txt");
PShape shape = loadShape("shape.svg");

PShape is one of many utility classes that are part of the Pro-
cessing API. While PShape stores shapes, others store fonts
(PFont), images (PImage), or vectors (PVector). Processing
also provides functions for saving data, like saveStrings,
which saves String[] arrays to text files. These functions
do not write to the data directory, but to the directory the
sketch is located in.

2.2.2 Support for Interactivity

Interactivity is an important aspect in many visualizations.
Therefore, one of the core characteristics of Processing is
simple access to information regarding the user, such as mouse
position or whether a mouse button or key was pressed. This
functionality is implemented in an intuitive way: When an
event occurs that involves the user, Processing automatically
executes a corresponding event handler function, if available.
Event information is stored in variables.3 The following
Processing code demonstrates this:

void mousePressed() {
println("Clicked: " + mouseX + "," + mouseY);

}

void keyPressed() {
println("Pressed: " + key);

}

The above code informs the user when he clicks the mouse or
presses a keyboard key. mouseX and mouseY hold the current
mouse cursor position, while key stores the character of the
keyboard key the user pressed most recently.

2.2.3 Coordinate System and 3D

Processing uses a Cartesian coordinate system with the origin
in the upper-left corner of the window. Pixels are drawn to
the right and below the coordinate, thus if the image is m×n
pixels in dimension, the last visible pixel in the lower-right
corner is at position (m − 1, n − 1). Coordinates may be

3In Processing event handling is implemented in a thread-
safe way. Thus, it is save to access any functions and variables
from within event handler functions. This is in contrast to other
implementations such as in Java AWT (on which Processing’s
implementation is based).

specified as integer or float values, the latter are rounded to
integers automatically. This means that (0.4, 0.4) maps to
the pixel position (0, 0), while (0.6, 0.6) maps to (1, 1).

Processing supports three dimensional geometry. In 3D mode,
Processing uses a left-handed Cartesian coordinate system.
The z-coordinate is zero at the surface of the image, with
negative z-values moving back in space, as shown in Figure 5.
Processing supports boxes and spheres as three dimensional
primitives. Custom two and three dimensional shapes can
be created by specifying a number of vertices that define the
shape endpoints, like so:

beginShape();
vertex(50, 50); // x, y (2D)
vertex(50, 100, 100); // x, y, z (3D)
vertex(100, 75, 75);
endShape(CLOSE);

Figure 5: Illustration of the coordinate system used in
Processing, assuming a window size of 100×100 pixels. Image
taken from [Reas and Fry 2007].

The Processing API includes a number of functions that
are helpful when working with the coordinate system. A
feature found in most languages that support geometry is
coordinate transformations. In Processing, this functionality
is provided by the translate, scale and rotate functions,
amongst others. Simply spoken, these functions transform
the coordinate system (see Figure 7). They are commonly
used when drawing three dimensional geometry. for instance,
they make it possible to draw 2D primitives in 3D space, as
shown in the following code example:

rect(0, 0, 50, 50);
translate(30, 30, 50); // x, y, z
rect(0, 0, 50, 50);

Internally, coordinate transformations are implemented as
affine transformations by using matrices. A consequence
of this is that subsequent calls to transform functions ac-
cumulate the effect, e.g. translate(10, 10) followed by
translate(20,10) is the same as translate(30, 20). In
order to produce consistent results, the transformation ma-
trix (and thus the coordinate system) is therefore reset every
time the draw method executes. Two important functions
in this context are pushMatrix and popMatrix. pushMatrix
adds a new coordinate system to the matrix stack, which
initially contains only the default coordinate system. All
coordinate transformations are carried out on the currently
active coordinate system. Therefore, users can revert trans-



Figure 6: A sphere lit by three lights, created with Process-
ing.

formations by calling popMatrix, which removes the current
coordinate system and all its associated transformations.
Figure 7 illustrates this behavior.

DEFAULT DEFAULT DEFAULTNEW

pushMatrix();
translate(20, 20);

popMatrix();

Figure 7: Illustration of functions that relate to the coordi-
nate system: pushMatrix adds a new coordinate system to
the stack, translate translates the coordinate system, and
popMatrix removes the topmost coordinate system.

Processing also supports more advanced topics such as cam-
era control in three dimensional space, light support, and
texturing. These functionality together with transforms dis-
cussed in this section allows users to create more sophisticated
images. As an example, the image shown in Figure 6 was
created with the help of the functions sphere, translate
and three lights.

2.2.4 Image Manipulation

The Processing API makes it easy to read, manipulate, dis-
play, and save images. loadImage loads an image from inside
the data directory into a PImage object:

PImage img = loadImage("img.jpg");

The functions of PImage allow users to access pixels, to save
images to disk or to resize and copy images or parts thereof.
Two powerful functions PImage offers are blend, which blends
two images together, and filter, which applies filters such
as blur. These functions were used to create the image
shown in Figure 8. PImage objects are compatible with many
Processing functions, such as background, image or copy.
These functions can be used to display images or image parts.

Moreover, Processing supports all functions of the PImage
class, such as blur or filter.

Figure 8: An example of image manipulation in Processing.
The left and middle parts were manipulated with the filter
function. For the right part the image was blended with itself
using blend.

2.2.5 Renderer Alternatives

The actual drawing of two and three dimensional geometry
is carried out by a so called renderer. Processing supports
five different renderers. The renderer is specified with the
size function, e.g. size(300, 200, P2D). The default ren-
derer is Java2D, a 2D renderer which utilizes Oracles Java2D
graphics library. It provides high image quality at the cost
of performance. An alternative for rendering two dimen-
sional geometry is P2D, Processing’s own software-based 2D
renderer. P2D offers lower quality but is often faster than
Java2D, especially when dealing with pixel-based data [Pro-
cessing 2010]. A different renderer is PDF, which draws 2D
graphics directly to an Adobe PDF file. This mode is useful
when vector shapes are needed for high resolution output or
printing.

When 3D geometry is to be drawn, a 3D renderer must be
used. Processing offers two alternatives. P3D is Processing’s
own implementation for drawing in 3D space. Since it is
software based, it is relatively slow and not as accurate as
other renderers (see Figure 9). Processing also supports
OpenGL rendering through the Java Bindings for OpenGL
(JOGL) library. This renderer offers high image quality and
the best performance in complex 3D projects, it is however
dependent on native libraries and works only on systems with
a graphics card that supports OpenGL [Processing 2010]. The
OpenGL renderer can be enabled by using OPENGL as the
third argument of the size function. While this renderer
offers high quality and speed, it has some drawbacks and
limitations. The GLGraphics library introduced in section
3.2 provides an alternative that is also based on OpenGL.

Renderers have different rendering features, which can be
enabled or disabled with the hint function. For instance,



hint(ENABLE OPENGL 4X SMOOTH) tells the OpenGL renderer
to use anti aliasing, while hint(DISABLE DEPTH TEST) dis-
ables the z-Buffer of the 3D renderers.

Figure 9: Quality differences between the P3D (left) and
OPENGL (right) renderers. P3D does not support anti aliasing,
which results in clearly visible aliasing artifacts at box edges.

2.3 Development with Processing

The Processing Development Environment (PDE), intro-
duced at the beginning of this section, is the default de-
velopment environment for Processing. It comes with a small
set of features and is designed as a simple introduction to
programming or for testing ideas (which is referred to as
sketching by the Processing community) [Fry 2008].

The advantages of the PDE are its ease of use and level of
integration. It handles preprocessing and compiling automat-
ically and hidden from the user, imports libraries on demand
and automatically copies files to be used in the sketch to
the data folder. The PDE also has the ability to export
Processing projects to Java Archives, Java Applets or stan-
dalone applications. Another helpful feature is its ability to
create bitmap fonts from fonts installed on the system. Pro-
cessing uses a special .vlw font format that stores letters as
images. The advantage of these fonts is that they make text
rendering system independent as fonts are distributed with
the sketch. The disadvantage is that bitmap fonts cannot be
scaled without quality loss.

An alternative to the PDE is the official Processing Eclipse
plug-in, which enables users to create Processing applications
from within Eclipse [Eclipse 2010]. At the time of writing,
the plug-in is in beta phase and lacks some features of the
PDE, such as tab support and export functionality. More
information on the plug-in is available at [Fry 2010].

The PDE is not designed for larger projects. In these cases it
is often better to use the Processing API directly within Java.
This is possible since the Processing functionality is available
in the form of Java classes, as introduced in section 2.1. The
core API and libraries are merely Java Archives, which can
be imported and used in Java projects. The advantage of
this approach is flexibility: It allows programmers to use any
Java IDE they like and enables easy integration of Process-
ing into Java projects. Because the PApplet class derives

from java.awt.Component, visuals created with Processing
can even be incorporated into existing GUI applications, as
depicted in Figure 10. The downside is that the Processing
language is no longer available. The following code demon-
strates the concepts of integrating Processing and Java:

import processing.core.PApplet;

class MySketch extends PApplet {
public static void main(String[] args) {

PApplet.main(new String[] { "MySketch" });
}

public void setup() { ... }
public void draw() { ... }

}

The PApplet.main method initializes and starts the sketch
with the name that was passed to it (MySketch in the above
example). This code resembles the code that is generated by
the Processing preprocessor when a sketch is run from within
the PDE (see section 2.1). In order for the above code to
work, the Java archive core.jar containing the Processing
core functionality must be located in the Java classpath.

Figure 10: A Processing sketch embedded in a Java Swing
GUI. A Swing slider can be used to change the number of
circles created by the Processing sketch.

3 Community

3.1 The Origin of Processing

Processing was created in 2001 by Ben Fry and Casey Reas
when they were graduate students at MIT Media Lab, work-
ing with Professor John Maeda. Processing has its roots in
a language called Design By Numbers (DBN), which was
created by Maeda with contributions from his students, in-
cluding Fry and Reas. Design by Numbers was developed
for teaching programming concepts to artists and designers
with no prior experience in programming. It is easy to learn
but not suited for creating advanced applications as it lacks
essential features.

When designing Processing the goal of Fry and Reas was to
create an environment that allows for easy testing of design



ideas in code, unlike for instance in C++ or Java. The other
goal was to make a language for teaching design and art
students how to program and to give more technical students
an easier way to work with graphics [Reas and Fry 2010].
Thus, Processing is based on Design By Numbers, which
makes it easy to learn and use, while providing an extensive
feature set that makes it possible to create advanced visual
applications.

Early alpha versions of Processing were used by students
in workshops at MIT in 2001. In late 2001 and 2002 the
first institutions began using the software in their projects,
including the Musashino Art University in Tokio and the
Hochschule für Gestaltung und Kunst in Basel. The first
beta version was released in 2005. In the same year Casey
Reas and Ben Fry received the Prix Ars Electronica Golden
Nica award for Processing, one of the worlds most important
awards in electronic art and culture. The first stable version
1.0 followed in 2008.

3.2 Processing Today

Today, Processing is used throughout the world by students,
artists, design professionals, and researchers for learning,
prototyping and production [Processing 2010]. The strong
community is a major part in the development process, over
the last years the software has evolved through conversation
between Reas, Fry and Processing users. The popularity
of Processing has led to many Processing-based projects,
some of which are introduced in this section. Figure 11
shows the relationships between languages and technologies
Processing is based on as well as some of those who are based
on Processing.

Figure 11: The „family tree” of Processing. An arrow from
A to B means „B is based on A”, e.g. Processing.js is based
on Processing, JavaScript and HTML5. Illustration taken
from [Reas and Fry 2010].

Wiring [Wiring 2010] and Arduino [Arduino 2010] are
platforms for physical computing. They come with micro-
controllers and Processing-based languages and development
environments to program them. These platforms enable users
to receive sensor input and control lights or servo motors, for
instance. They are commonly used in art installations.

Processing.js [ProcessingJS 2010] is a JavaScript library
that allows Processing code to be run by HTML5 compatible

browsers. While the PDE can export Processing sketches to
Java applets that run inside a web browser, these applets
have the disadvantage that they require Java to be installed
on client systems. Processing.js on the other hand uses Java
Script and the HTML5 canvas functionality for drawing. This
eliminates the need for additional software.

Android Processing [ProcessingAndroid 2010] is a port of
Processing that runs on the Android platform. Android is
a free and popular mobile operating system developed by
the Open Handset Alliance, which is led by Google. At the
time of writing, Android Processing is still in development
but already includes features such an advanced 3D renderer
based on OpenGL and accelerometer support. Figure 12
shows an example.

Figure 12: An Android smartphone running a 3D Process-
ing sketch. Image taken from [Colubri 2010].

As mentioned before, Processing is a community effort. The
community has contributed more than 100 libraries that
extend the features of Processing. Some of them have become
part of the official Processing distribution, such as the Minim
audio library discussed in section 4.3. A comprehensive listing
is available at the Processing website [Processing 2010]. A
particularly useful library is GLGraphics by Andres Colubri
[Colubri 2010], which is introduced at this point.

Processing includes an OpenGL renderer that utilizes the
graphics card (GPU) to draw geometry (see section 2.2.5).
The main benefit of doing graphics related computation on
the GPU is speed. Modern GPUs have hundreds of cores
that work in parallel and are designed for this type of com-
putations. Without GPU support, larger 3D scenes can
become too complex for the CPU to render, which results in
low frame rates. Therefore, the OpenGL renderer is usually
the best choice when working with 3D scenes. However, it
lacks advanced features such as off-screen rendering support
and particularly support for the OpenGL Shading Language
(GLSL). The GLGraphics library includes an OpenGL based
renderer that brings speed improvements and includes sup-
port for the features mentioned, amongst others. More in-
formation and tutorials are available on the project website
[GLGraphics 2010].

GLSL is a programing language based on C that allows pro-
grammers to utilize the shaders of the GPU. These shader
programs can be used to access and modify vertex data of
geometry as well as color and other attributes of each pixel of
an image. This allows for advanced effects such as complex



geometry transformations, realistic lighting effects, shadows,
and smoke. Shaders can be used to calculate complex render-
ing effects with a high degree of flexibility. Figure 13 shows
an example. For a reference on the topic of GLSL refer to
[Rost et al. 2009].

Figure 13: A complex scene that includes effects such as
lighting, smoke and particle effects. Image created with
Processing by Robert Hodgin [Hodgin 2010]. More projects
by Hodgin are introduced in section 4.3.

3.3 Selected Projects

This section showcases selected projects that were created
with the help of Processing. In addition, projects focused
on music visualization are presented in section 4.3. A large
collection of projects created with Processing is available on
its website [Processing 2010]. OpenProcessing [OpenProcess-
ing 2010], an online community platform for sharing and
discussing Processing sketches, hosts an extensive collection
of open-source Processing projects.

Computing Kaizen was a graduate design studio at the
Columbia University Graduate School of Architecture Plan-
ning and Preservation. It explored evolutionary architectural
structures and their potential to anticipate change and inter-
nalize complex relationships. The project used Processing
to create intelligent building blocks that could self-organize
into innovative forms, as depicted in Figure 14. Further in-
formation and illustrations as well as source code is available
on the project website [Columbia 2010].

In the Air is a project which aims to visualize the micro-
scopic and invisible agents of air, such as gases, particles,
pollen or diseases, in order to see how they perform, react
and interact with the rest of the city. The project was created
and first used in Madrid and is also in use in Budapest and
Santiago de Chile, according to the project website [Medialab-
Prado 2008]. The project uses air data coming from sensor
stations that are spread out in the city to visualize air pollu-
tion over time in an interactive Processing program (Figure
15 (top)). Furthermore, air pollution data is visualized via so
called diffuse facades, which are wall-mounted devices that

Figure 14: Wireframe structure generated with Processing
(top) and rendered version (bottom), as shown on the website
of the Computing Kaizen project [Columbia 2010].

emit vaporized water. This water vapor is colorized with
light according to air pollution data coming from the nearest
sensor station (Figure 15 (bottom)).

Branching Morphogenesis is an art installation that was
on exhibition at the Futurelab of the Ars Electronica Center
in Linz (see Figure 16). According to the project website
[Sabin and Jones 2008] „Branching Morphogenesis explores
fundamental processes in living systems and their poten-
tial application in architecture. The project investigates
part-to-whole relationships revealed during the generation
of branched structures formed in real-time by interacting
lung endothelial cells placed within a 3D matrix environment.
The installation materializes five slices in time that capture
the force network exerted by interacting vascular cells upon
their matrix environment. The time lapses manifest as five
vertical, interconnected layers made from over 75,000 cable
zip ties. Gallery visitors are invited to walk around and
in-between the layers, and immerse themselves within an or-
ganic and newly created „Datascape” fusing dynamic cellular
change with the body and human occupation, all through
the constraints of a ready-made.”

While the projects introduced so far come from the areas
science and art, many creative and interesting Processing
projects come from individuals. One example is the Laser
Harp [Hobley 2010], a musical instrument made of light. It
is driven by Arduino, which was introduced in section 3.2.
A Laser Harp is a device that emits a fan of light beams.
When a beam is cut the device creates MIDI data that can
be fed into a synthesizer. This allows the performer to create
music by moving their hands in the beams of the Laser Harp.



Figure 15: Top: Visualization of the pollution of Madrid’s
air. Every mesh color refers to a specific contaminant, while
the height of the mesh at a given point describes the degree
of pollution. Bottom: Prototype of a diffuse facade emitting
colorized water vapor based on current pollution statistics
(bottom). Images courtesy of [Medialab-Prado 2008].

Figure 17 shows an image of the device. More projects by
individuals can be found at the Processing website [Processing
2010]. A list of 40 interesting Arduino projects is available
at [HackNMod 2010].

4 Music Visualization

The previous part of this paper gave an introduction to
Processing and its features and capabilities. It also presented
some projects that were created with the help of Processing.
The following sections are dedicated to one of many areas
Processing is used: visualization of music. What is referred
to as music visualization is the generation of imagery based
on music data. This paper addresses real-time approaches,
that is generation of imagery based on data coming from
music as it is played.

One of the first attempts to electronically visualize music
was the Atari Video Music, first released in 1976 [Fourney
and Fels 2009]. The device was a console designed to be
connected to a HIFI stereo system and a television set. It
used the audio data coming in from the stereo system to
create images on the TV set in real time. The Atari Video
Music had twelve buttons and five knobs that enabled users
to create custom video effects. Figure 18 shows a picture.

Software-based music visualization became widespread in the
mid to late 1990s with media players such as Winamp. Today,
many popular media players support music visualization,
such as Apple iTunes (see Figure 19) and Windows Media
Player. There are also standalone applications such as G-
Force [O’Meara 2010], which can optionally act as a plug-in

Figure 16: Photo of the Branching Morphogenesis project
at Ars Electronica Center in Linz, taken from [Sabin and
Jones 2008].

Figure 17: A Laser Harp, an Arduino-based musical instru-
ment made of light. Photo taken from [Hobley 2010].

for media players.

The following sections give an introduction on the represen-
tation, access, and analysis of digital music. Then, the paper
introduces approaches on how information derived from mu-
sic data can be used to create visualizations with the help of
Processing.

4.1 Digital Music

What humans perceive as sound is an oscillation of pres-
sure transmitted through matter, usually through air. The
change of pressure in a specific spatial position is a con-
tinuous process, dependent on time: it can be regarded as
a continuous-time signal. This means the pressure can be
described by a continuous function f(t), with t being an
instant in time. However, continuous-time signals cannot be
processed using computer technology. It is therefore required
to first transform them to discrete-time signals (see Figure
20). This conversation is carried out by evaluating the am-
plitude of f(t) at defined time intervals T . The resulting
discrete-time signal x(n) with n ∈ Z is then given by

x(n) = f(T n) (1)



Figure 18: Picture of the Atari Video Music, one of the
first electronic music visualizers. Image taken from
http://en.wikipedia.org/wiki/Atari_Video_Music.

Figure 19: Music visualization is supported by many popu-
lar music players, such as iTunes by Apple.

This transformation process is called sampling, with T being
the sampling interval. The values x(n) are called samples.
The inverse of T is the sample rate of the signal, also referred
to as sampling rate or sampling frequency. Since T is a time
unit, the unit of sample rate is hertz (Hz). The sample rate
describes the number of samples per second. For instance
the Audio CD standard has a sample rate of 44100 Hz. This
value is also used by default in audio encoders like MP3.

In practice equation (1) does not apply as the exact val-
ues f(T n) often cannot be stored exactly on the computer.
Hence, the sampled values must be rounded, which is referred
to as quantization. The Audio CD standard uses a 16-bit
quantization, that is sampled values of f can be mapped to
216 = 65536 discrete values. The process of sampling and
quantization is called pulse-code modulation (PCM). Audio
on the computer is processed as a PCM data stream. Pro-
grammers can access, evaluate and modify this audio stream,
which is referred to as digital audio signal processing.

4.2 Information Extraction

The approach of extracting information from audio signals
is called content-based audio processing. It is one of many
disciplines to music information retrieval (MIR). MIR is

n
1 2 3 4–1–2–3–4

(d)

0 …
…

x(n)

Figure 20: A discrete-time signal x(n). Image courtesy of
[Diniz et al. 2010].

a young and active multidisciplinary research domain that
addresses the development of methods for computation of
semantics and similarity within music.

Many features can be computed from audio signals. Since
these features describe aspects of the audio data, they are
called descriptors. In this paper, the terms feature and de-
scriptor are used synonymously. In the context of audio
processing, there are three types of descriptors [Polotti and
Rocchesso 2008]: Low-level descriptors are computed from
the signal, either directly or after transformation. Mid-level
descriptors describe features like music genre or tonality. Al-
gorithms for calculating this kind of information compare
features of the audio signal to reference data for classifica-
tion purposes. High-level descriptors describe features that
embrace semantics, like „happy” or „sad”. Since perception
of high-level features is subjective, algorithms compute these
features based on user ratings for other songs.

Mid-level and high-level descriptors describe features that
are understandable and thus relevant to users. On the other
hand, low-level features are often too abstract and thus
not musically-meaningful when presented directly to users.
For instance, the amplitude mean of a signal chunk is not
meaningful to users because it does not directly correspond
to something the user can hear. There are however low-
level features that correlate with perceptual attributes. Also,
low-level features are required when computing mid- and high-
level features, which emphasizes their importance. Because
low-level descriptors can be computed directly from the signal
and independently from other data, they are practical in
realtime audio visualization. Therefore, this section aims to
give an introduction on how some low-level features can be
extracted and used. It focuses on features that are meaningful
to the user, e.g., features that correlate with perceptual
attributes. For a comprehensive overview refer to [Polotti
and Rocchesso 2008].

The source of content-based audio processing is the PCM
audio signal, which is first divided into frames. These frames,
representing a time interval at the range of a few ms of the
signal, are the basis for further computation. The typical
frame length is about 20ms [Polotti and Rocchesso 2008].
Before calculations are carried out, a tapered window function
(e.g., a Gaussian or Hanning window) is applied to each frame
to minimize the discontinuities at the beginning and end. In
addition, consecutive frames are often considered with some
overlap, which allows for smoother analysis. Then for each
frame one scalar value per descriptor is calculated.

http://en.wikipedia.org/wiki/Atari_Video_Music


4.2.1 Temporal Features

Many audio features can be computed directly from the
temporal representation of these frames via simple statistics,
such as the mean, maximum and range of the amplitude of
the samples in a frame, the energy, or the zero-crossing rate
(ZCR). These features are referred to as temporal features.

Two features that loosely correspond to loudness, that is the
perceived intensity of the sound, are the Amplitude Envelope
and the Root Mean Square (RMS). The former descriptor is
the maximum of the absolute sample values of a frame. The
RMS descriptor is calculated by squaring the samples of a
frame f and taking the root of the mean of these values:

RMS(f) =
√

1
n

∑
n

f(n)2 (2)

A simple and effective way to approximate loudness is to take
the 0.23th power of the calculated RMS values [Polotti and
Rocchesso 2008]. Loudness approximations from temporal
features are vague because loudness is affected by parameters
such as sound frequency or bandwidth. The two descrip-
tors discussed are commonly used by algorithms that detect
rhythmic structure, such as beat detectors.

The ZCR descriptor is based on the number of times the sign
of the samples in a frame f changes. If that number is Z,
then the ZCR is defined as [Harrington and Cassidy 1999]

ZCR(f) = Z fs

2N (3)

where fs is the sampling frequency of the signal and N the
number of samples in the frame. The ZCR is correlated to the
pitch, which represents the perceived fundamental frequency
of a sound. In the special case of the signal being a sine
wave, the frequency of the wave, which equals the pitch, is
identical to the zero crossing rate.

4.2.2 Frequency Domain Features

Many audio features can be computed after transforming
the signal to the frequency domain. In the transformation
process, the input signal is decomposed into its constituent
frequencies, called the frequency spectrum. More precisely,
the input signal is decomposed into a sum of complex num-
bers that represent the amplitude and phase of the different
sinusoidal components of the input signal. In many applica-
tions like audio processing, the phase information is usually
not important and thus discarded. Since the spectrum re-
veals the frequencies an audio signal is composed of, many
useful features can be derived from it. The transformation is
usually carried out by applying a Discrete Fourier Transform
to each signal frame. This approach is called Short-Time
Fourier Transform (STFT). An illustration is depicted in
Figure 21.

One of the drawbacks of the STFT is its fixed resolution:
The STFT yields either good frequency resolution or good
time resolution, depending on the window size that is used.
In this context, the window size corresponds to the frame
size. When calculating the STFT from a signal, a wide frame
size gives good frequency resolution but poor time resolution
and vice versa. For example, the signal shown in Figure 22
is of the following form:

Figure 21: Visualization of the samples of an audio frame
containing 1024 samples (top) and the frequency distribution
of the frame data, obtained via STFT (bottom). Visualiza-
tion created in Processing.

x(t) =


cos(2π10 t/s) 0 s ≤ t < 5 s
cos(2π25 t/s) 5 s ≤ t < 10 s
cos(2π50 t/s) 10 s ≤ t < 15 s
cos(2π100 t/s) 15 s ≤ t < 20 s

This means that the signal is a single sine wave at any given
time t. In the spectral domain, a sinusoidal signal would
have only one peak at the frequency of the sine, with the
intensities of all other frequencies being zero. This is however
clearly not the case in Figure 22, which was created with a
window size of 25 ms. While the time resolution is high as
one can see in the abrupt change of the spectrogram at 5, 10
and 15 seconds, the frequency resolution is poor: In every
five second segment of the visualization there should only be
one horizontal line representing the sine frequency.

Figure 22: A spectrogram of an audio file, created with
a STFT. For more information on spectrograms see section
4.3.2. Image taken from http://en.wikipedia.org/wiki/
STFT.

As depicted in Figure 23, the frequency resolution increases
drastically as the window size is increased to 1000 ms, while
the time resolution decreases. If the data computed from
the FFT is to be used for real-time music visualization, the

http://en.wikipedia.org/wiki/STFT
http://en.wikipedia.org/wiki/STFT


window size should not be too high as otherwise the generated
imagery would appear out of sync with the music.

Figure 23: A spectrogram of the same audio file as in Figure
22, created with a STFT window size of 1000 ms. Image
taken from http://en.wikipedia.org/wiki/STFT.

There are alternatives to the STFT, such as the Wavelet
transform, which was developed to overcome the resolution
problems of the STFT [Tzanetakis et al. 2001]. In contrast
to the STFT, the Wavelet transform provides high time reso-
lution and low frequency resolution for high frequencies and
low time resolution and high frequency resolution for low fre-
quencies. These time-frequency resolution characteristics are
similar to those of the human ear, which makes the Wavelet
transform especially applicable for transforming audio data.
The Wavelet transform is however more complex to compute
than the Fourier transform and the resolution disadvantage
is usually not an issue in music information retrieval and
music visualization.

Many features can be extracted directly from the spectral
representation, including the spectrum energy, energy values
in several sub-bands and statistical features such as the mean,
kurtosis, skewness and other values that describe properties
of the frequency distribution of a frame. A descriptor that
has a robust connection with the impression of „brightness”
of a sound is the spectral centroid [Schubert et al. 2004]. It
is defined as

SC(f) =
∑

b
f(b) a(b)∑

b
a(b)

(4)

where f(b) is the center frequency of the frequency bin b and
a(b) the amplitude of b. The spectral centroid corresponds
to the central tendency of the frequency distribution. It is
the foundation of other statistical descriptors such as the
spectral spread, which describes the variance of the frequency
distribution, and the spectral skewness, which describes its
level of asymmetry.

While some descriptors computed directly from the audio
spectrum are to some extent correlated with perceptional
attributes, they represent rather simple concepts and thus
are not very powerful. More sophisticated descriptors re-
quire additional transformation steps to process. Figure 24
shows some common transformations along with the resulting
descriptors.

Hearing is not a purely mechanical phenomenon. Thus, the
spectrum of sound is not equal to what humans perceive

Mel/Bark/Log
Scale Bands

Spectrum

Sign of Freq. and
Time Derivative

Energy or
Loudness

Peak-based
band selection

Spectral flatness
measure

Log DCT

Envelope
Detector

Mod. Freq
Transform

MFCC

SFM

Band Repr.
Vectors

Filterbank
Energies

Hash
String

Mod.
Freq.

Figure 24: Common spectrum based transforms and de-
scriptors. Image taken from [Polotti and Rocchesso 2008].

when hearing this sound. For instance, loudness is amongst
others dependent on frequency, which means that the relative
intensities of the frequency bins of the spectrum do not cor-
respond to the intensities humans perceive these frequencies.
The study of the relation between sounds and sensations is
called psychoacoustics [Plack 2005]. The first step of more
sophisticated methods is to transform the spectrum in order
to approximate hearing perception. Common transforms to
accomplish this are the Mel, Bark and Log scales. The Log
scale is obtained by taking the logarithms of the amplitudes
to simulate loudness perception [Polotti and Rocchesso 2008].
The perceived musical pitch of sound is approximately pro-
portional to the logarithm of frequency. The Mel and Bark
scales account for this fact. They are approximately loga-
rithmic in frequency at the high-frequency end, but nearly
linear at frequencies below 1 kHz. The Mel scale is used in
MFCC computation, which is described below. The formula
to convert a frequency f to Mel m is

m = 1127 ln
(
f

700 + 1
)

(5)

A similar scale is the Bark scale, which corresponds to the 24
critical bands of hearing (the frequency bands the incoming
sound is split into in the inner ear). The intensities of Bark
scale bands correlate strongly with the loudness [Polotti and
Rocchesso 2008].

One of the more advanced descriptors derived from the
frequency domain are Mel Frequency Cepstral Coefficients
(MFCCs). MFCCs are the dominant features used for speech
recognition and are also suited to process music [Logan 2000].
The MFCCs model the shape of the spectrum in a compressed
form. They are calculated by converting the spectrum of a
frame to Mel scale and taking the logarithms of the ampli-
tudes. Then, the discrete cosine transform is applied, which
results in a number of coefficients (MFCCs). Usually, only
the lower coefficients are used, as they describe the coarse
envelope of the spectrum of the frame [Logan 2000].

4.2.3 Temporal Evolution of Features

The descriptors described above are extracted from frames
and are therefore called frame feature values. These values
approximately describe instantaneous features in the audio

http://en.wikipedia.org/wiki/STFT


signal, that is features at a given time. Another approach
is to focus on the temporal evolution of these features, i.e.,
the degree of change of feature values between consecutive
frames. For instance, the Spectral Flux is modeled to describe
the temporal change of the spectrum. It is the Euclidean
distance between the normalized frequency distributions of
two consecutive frames, and can be regarded as a measure
of the rate at which spectrum changes locally [Polotti and
Rocchesso 2008].

Descriptors that describe the temporal change of features can
further be used to determine region boundaries of sound data,
a process which is referred to as segmentation. In the most
generic way, a region of audio data is a group of consecutive
frames that share some kind of similarity. Algorithms can
determine region boundaries by using the amount of change
of a feature vector: If this amount is higher than a specified
threshold, a boundary is detected. This approach is called
model-free segmentation.

4.3 Music Visualization with Processing

The preceding section discussed how information can be de-
rived from audio data from a theoretical point of view. In
this section approaches are introduced on how this informa-
tion can be obtained and utilized to create different kinds
of visualizations in Processing. Furthermore, this section
showcases selected music visualization projects created by
the Processing community.

4.3.1 Accessing Audio Data

The Processing core API does not support audio, but several
libraries have been developed by the community that provide
this functionality. One of them is Minim [Fede 2010] by
Damien Di Fede. It is part of the Processing download and
includes features for sound access, processing and analysis,
amongst others. Minim supports playback of WAV, AIFF,
AU, SND, as well as MP3 files, and provides means to access
the audio signal from within Processing. For instance, a file
song.mp3 that resides in the Processing data directory can
be played back with the following Processing code:

Minim minim = new Minim(this);
AudioPlayer s = minim.loadFile("song.mp3");
s.play();

The AudioPlayer class can be used to control playback. It
also allows direct access to the signal of the playing song via
audio buffers, which are accessible from the fields left, right,
and mix. These buffers provide buffered and synchronized
access to the next samples to be played back. The buffers
thus correspond to audio frames introduced in section 4.2
and are therefore the foundation of feature extraction and
visualization. While Minim also provides access to buffers
that hold the signals of the left and right speaker, respectively,
visualizations discussed in this paper utilize only the mix
buffer, which contains a mix of both channels. The number
of samples n the buffers contain may be specified when an
audio file is loaded via Minim.loadFile. By default n is 1024.
At a sample rate of 44100 Hz, a buffer length of n = 1024
relates to 1000/44100 · 1024 ≈ 23 ms of music, which is a
common frame size magnitude.

4.3.2 Frame Visualizations

A simple approach to music visualization is to visualize the
frame data – that is the buffer data – in raw form. This can
be accomplished easily by accessing the mix buffer from inside
the draw method. The buffer data can then be visualized by
mapping the buffer length to the width of the window and
the sample values4 to the window height, like so:

background(255); // reset the display window

float ySilence = height/2;
int numFrames = s.mix.size(); // s = AudioPlayer

for(int i = 0; i < numFrames; i++) {
float x = map(i, 0, numFrames -1, 0, width);
float y = map(s.mix.get(i), 1, -1, 0, height);
line(x, ySilence, x, y);

}

The result is a graph of a short part of the audio signal,
referred to as its waveform. Figure 25 shows the result of
such a mapping where colors were used to emphasize the
intensity of the signal. This illustrates how easy it is to create
simple music visualization in Processing. Note that because
every frame value is drawn as an distinct vertical line, the
width of the Processing window must be at least equal to the
buffer size in order not to lose information in the visualization
process. On the other hand, if the window width is larger
than the buffer size this visualization approach can lead to
gaps as the number of lines is mapped to the window width.
One solution is to place control points at the calculated x and
y positions and then connect these points by lines. This could
be implemented with Processing’s beginShape and vertex
functions, for example.

Figure 25: Visualization of a Waveform in Processing.

The approach just described can also be used to visualize the
frame data in the frequency domain. Minim provides a STFT
implementation that can be used for transformation purposes
(see section 4.2.2). The buffer data can be transformed with
the following code:

FFT f = new FFT(s.bufferSize(), s.sampleRate());
f.forward(s.mix); // s = AudioPlayer

The intensity of a specific frequency band b can then be
retrieved by calling f.getBand(b). The number of bands is

4The sample values inside the buffers are normalized to the
interval [−1, 1], with 0 being silence.



n/2 + 1 with n being the number of samples in the buffer.
The FFT class offers many useful methods that can be used
to calculate intensity averages or map bands to frequencies,
amongst others. It can also be configured to automatically
apply a Hamming window to the buffer data before transfor-
mation, which smooths the results. In the simplest form, the
data obtained can be visualized by mapping the number of fre-
quency bands to the window width and the intensities of the
bands to the window height, which resembles the approach
used for the waveform visualization. The band intensities are
not normalized. Therefore the maximum intenity has to be
calculated first. Figure 21 shows an illustration of the result.

While the two visualizations described above show the audio
data in its raw form and are thus „exact”, they are not very
useful in practice because they contain too much informa-
tion. As a result, it is hard to perceive more than drastic
changes in intensity when the visualizations are updated 30
times per second or more often, which is required in realtime
visualization.5

A problem of the frequency band visualization introduced
above is that it is not very meaningful because the intensities
of the frequency bands do not directly correspond to human
perception, as described in section 4.2.2. An improvement is
to first take the logarithm of the band intensities and then
accumulate the bins. The accumulation could be carried
out logarithmically, which is supported by Minim’s FFT class.
Another approach that yields similar results is the calculation
of a Mel scale from the frequency data. Visualizations based
on this accumulated data correlate better with what users
hear. They are also easier to follow as they display less
information. Figure 26 shows a simple visualization based
on a Mel scale.

Figure 26: Visualization of the frequency distribution of a
frame (red) and Mel scale visualization based on the same
data (green).

Another useful visualization is the spectrogram, which shows
how the frequency distribution of a signal varies with time.
The spectrogram can reveal patterns which can be used for
identification purposes. At the simplest form, a spectrogram
has three dimensions: The horizontal axis represents time,
the vertical axis frequency, and the color indicates the in-
tensity of a given frequency band. This means a particular

5At a sample size of 44100 Hz and a sample size of 1024 practical
frame rates are around 43 as 43 · 1024 ≈ 1000 ms, which means
that nearly the complete signal data can be used for visualization
purposes.

frequency at a particular time is represented by the color of
each point in the visualization. Spectrograms of sinusoidal
signals are shown in Figures 22 and 23. Figure 27 shows
another example.

Figure 27: Spectrogram of a part of an experimental track
by Aphex Twin, created with Processing. Darker areas indi-
cate frequencies with higher intensities.

Implementation of a spectrogram visualization in Processing
is not as straightforward as the visualizations described so far.
Basically, a spectrogram is computed by mapping a counter
that represents time to the horizontal position of the display
window, the frequency bands to the height of the window
and the intensity of the bands to a color. The problem is
that data computed in former calls to draw are needed. An
approach would be to use a collection such as a LinkedList
that could hold the frequency data computed during the
current and former calls to draw. One could then read the
last w values from the collection (with w being the width of
the display window) and use that data for drawing. Older
values could be deleted from the collection. The problem
with this approach is that it is very inefficient as up to w · n
(n denotes the number of frequency bands) values have to be
accessed and drawn every time draw is called.

The solution to this type of problems is based on the usage
of so called off-screen buffers. In the simplest case, such a
buffer is just an image (an object of the PImage class) whose
pixel values are changed. Moreover, Processing provides the
PGraphics class, an off-screen buffer that supports the same
functions for drawing as Processing and can be displayed
like an ordinary image.6 By using a buffer, the spectrogram
visualization can be implemented in an efficient way. First, a
buffer with the width w and the height n is initialized, along
with a counter c that is set to zero. Then, at every invocation
of draw, c is incremented and frequency information based on
the current audio frame is used to draw row c of the off-screen
buffer as described above. Then, the buffer is displayed with
Processing’s image function.

This method works until c > w, at which point the buffer
width is exceeded. The solution is to reset c to zero when
this happens, that is to start a new iteration. With this
approach, values from the current iteration overwrite values
from the last iteration. Then, the old and new parts of the

6The PGraphics class does not work with Processing’s OpenGL
renderer. However, the GLGraphics library introduced in section
3.2 supports an OpenGL based off-screen buffer.



buffer are displayed in a shifted way, as illustrated in Figure
28. This can be done with the copy function, which allows
users to display certain parts of an image.

c (Time)

Figure 28: Illustration of off-screen buffer usage for the
creation of the Spectrogram visualization. The top image
illustrates the buffer. The green section is created with data
from the current iteration, the red section is from the last
iteration. The bottom image depicts how the buffer content
is displayed.

4.3.3 Generative Visualizations

The visualizations described in the last section were based on
raw frame data. This section discusses generative visualiza-
tions, that is visualizations that use information derived from
the audio data to generate shapes and effects. The focus of
these visualizations is to produce beautiful images, not to
correspond to the perceived music as precisely as possible.
Thus, they are often based on simple audio descriptors.

One approach to generative visualizations is to start with the
frequency distribution of the audio data and modify and use
this data in some abstract way. An example is Audio-driven
Landscape by Robert Hodgin [Hodgin 2010], which creates a
three dimensional landscape from the frequency distribution.
For this purpose the frequency data is first smoothed and
then used to create a landscape by mapping time to the
x-axis, frequency to the z-axis and intensity of the frequency
bands to the y-axis and color. This approach is also used to
create three dimensional spectrograms. Figure 29 shows an
image of the visualization.

Figure 29: Audio-driven Landscape by Robert Hodgin.
Image taken from [Hodgin 2010].

Another approach is to draw the frequency bands indepen-
dently, as done in the Narratives visualization by Matthias
Dittrich. In this visualization, frequency bands are drawn

individually side by side, according to their frequency and
intensity. Figure 30 shows an illustration. The Processing
sketch is available on the project website [Dittrich 2009].

Figure 30: Visualization of the song Familiar Feelings by
Moloko, created with Narratives. Illustration based on an
image from [Dittrich 2009].

Other generative visualizations utilize simple descriptors such
as RMS (equation 2) and beat-detection algorithms, which
are often based on these descriptors.7 An example is the
Bubbles visualization, shown in Figure 31.

Figure 31: The Bubbles visualization. Bubbles are spawned
according to the intensity of the music. Created with Pro-
cessing [Pramerdorfer 2010].

The Bubbles visualization is described in more detail to illus-
trate some characteristics of this kind of visualizations. The
visualization spawns bubbles based on the RMS descriptor,
i.e., based on the intensity of the music played. The number
and size of bubbles spawned is related to the RMS of the
frame data. However, there is no strict mapping. Instead,
the bubbles visualization relies on randomness in order to
be able to produce different results every time, which makes

7Minim offers the BeatDetect class for this purpose.



it more exciting to watch. This is a characteristic many
generative visualizations share.

The basics of the Bubbles visualization are as follows. At
every invocation of the draw function a number of random
values ri in the interval [0, 1] are calculated. Then, the
RMS of the current audio frame is calculated, which is a
value between 0 and 1. This value is transformed and then
compared to every value ri. If it is greater than ri, a bubble
is spawned. This means that the number of bubbles spawned
not only depends on the intensity of the music played, but
also on randomness. As a result, there is a very small chance
that no bubbles are spawned even if the calculated RMS
is nearly 1. In practice, this makes the visualization more
interesting to watch as it makes it less predictable while the
correlation between sound intensity and bubble spawn rate is
still apparent. The spawn positions are also chosen randomly.
For example, the vertical position is calculated based on a
Gaussian distribution with the mean at the center of the
display window. The variance is chosen depending on the
window height so that the bubbles are spawned over the total
available area, with an emphasis on the center.

When a bubble is spawned, it grows in size over a few frames,
then it stays this size and becomes blurred until it disap-
pears. While these effects can be done with Processing’s
filter function, it is inflexible and slow. Therefore, these
effects are implemented as GLSL shaders by utilizing the
GLGraphics library, which was introduced in section 3.2.
The rate at which bubbles disappear is related to the number
of new bubbles spawned recently. This adaptive behavior
is important, in the case of the Bubbles visualization it en-
sures that the bubbles do not flood the display window. The
source code of the Bubbles visualization is available on the
project website of Processing Audio Visualization [Pramer-
dorfer 2010] together with other visualizations created with
Processing.

Robert Hodgin is the author of complex generative visualiza-
tions like Solar, which is shown in Figure 32. Solar is based
on black spheres. Each sphere relates to a certain frequency
band and uses its intensity to adjust its mass and charge,
i.e., Solar integrates physics. These physical attributes pull
the spheres together or apart, depending on the frequency
distribution of the audio data. The lighting and particle
effects are also based on this information. Videos of Solar are
available at [Hodgin 2010]. Another visualization by Hodgin,
called Magnetosphere, is the default iTunes visualizer at the
time of writing.

The possibilities for generative visualizations are limited only
by the creativity of the designers. For instance, designers
could use more complex descriptors like MFCCs to model
forces that could act on geometry. Processing and libraries
created by the community provide users with the necessary
tools to create complex visualizations in an intuitive way.

Conclusion

This paper provides an introduction to Processing. The
language differences to Java, the basic functionality Pro-
cessing provides as well as development environments are
discussed. An overview of the Processing community and
selected projects are presented. The second part of this paper
deals with music visualization, one of many application areas
of Processing. After discussing how music can be accessed

Figure 32: Solar by Robert Hodgin, created with Processing.
Image based on a video from [Hodgin 2010].

with the computer and how information can be derived from
audio data streams, approaches to use this information to
create visualizations with the help of Processing as well as
projects by the community are introduced.

References

Arduino, 2010. The official arduino website.
http://www.arduino.cc/ (retrieved on 2011-01-16).

Bohnacker, H., Groß, B., and Laub, J. 2009. Genera-
tive Gestaltung: Entwerfen. Programmieren. Visualisieren.,
1 ed. Schmidt Hermann Verlag.

Colubri, 2010. Website of andres colu-
bri. http://codeanticode.wordpress.com/
(retrieved on 2011-01-16).

Columbia, 2010. Project website of comput-
ing kaizen. http://proxyarch.com/kaizen/
(retrieved on 2011-01-16).

Daubechies, I. 2002. The wavelet transform, time-frequency
localization and signal analysis. IEEE Transactions on
Information Theory 36, 5, 961–1005.

Diniz, P., da Silva, E. A., and Netto, S. L. 2010.
Digital Signal Processing: System Analysis and Design,
2 ed. Cambridge University Press.

Dittrich, M., 2009. Project website of narratives.
http://matthiasdittrich.com/projekte/narratives/
visualisation/index.html (retrieved on 2011-01-16).

Eclipse, 2010. The official eclipse website.
http://eclipse.org/ (retrieved on 2011-01-16).

Fede, D. D., 2010. The official minim web-
site. http://code.compartmental.net/tools/minim/
(retrieved on 2011-01-16).

Fourney, D., and Fels, D. 2009. Creating access to
music through visualization. In Science and Technology for
Humanity (TIC-STH), 2009 IEEE Toronto International
Conference, IEEE, 939–944.

http://www.arduino.cc/
http://codeanticode.wordpress.com/
http://proxyarch.com/kaizen/
http://matthiasdittrich.com/projekte/narratives/visualisation/index.html
http://matthiasdittrich.com/projekte/narratives/visualisation/index.html
http://eclipse.org/
http://code.compartmental.net/tools/minim/


Fry, B. 2008. Visualizing Data: Exploring and Explaining
Data with the Processing Environment, 1 ed. O’Reilly
Media.

Fry, B., 2010. Website of the processing eclipse plu-
gin. http://wiki.processing.org/w/Eclipse_Plug_In
(retrieved on 2011-01-16).

Glassner, A. 2010. Processing for Visual Artists: How to
Create Expressive Images and Interactive Art. A K Peters
Ltd.

GLGraphics, 2010. Project website of the glgraph-
ics library. http://glgraphics.sourceforge.net/
(retrieved on 2011-01-16).

Greenberg, I. 2007. Processing: Creative Coding and
Computational Art, 1 ed. friends of ED.

HackNMod, 2010. Top 40 arduino projects
of the web. http://hacknmod.com/hack/
top-40-arduino-projects-of-the-web/
(retrieved on 2011-01-16).

Harrington, J., and Cassidy, S. 1999. Techniques in
Speech Acoustics. Springer-Verlag New York, Inc.

Hobley, S., 2010. Project website of laser harp.
http://www.stephenhobley.com/blog/laser-harp-2009/
(retrieved on 2011-01-16).

Hodgin, 2010. Website of robert
hodgin. http://www.flight404.com/
(retrieved on 2011-01-16).

Logan, B. 2000. Mel frequency cepstral coefficients for
music modeling. In International Symposium on Music
Information Retrieval, vol. 28.

Lu, L., Liu, D., and Zhang, H. 2005. Automatic mood
detection and tracking of music audio signals. IEEE Trans-
actions on Audio, Speech, and Language Processing 14, 1,
5–18.

Medialab-Prado, 2008. Project website of in the air.
http://intheair.es/ (retrieved on 2011-01-16).

Noble, J. 2009. Programming Interactivity: A Designer’s
Guide to Processing, Arduino, and openframeworks, 1 ed.
O’Reilly Media.

O’Meara, A., 2010. Official website of the g-force music
visualization. http://www.soundspectrum.com/g-force/
(retrieved on 2011-01-16).

OpenProcessing, 2010. The openprocessing website.
http://openprocessing.org/ (retrieved on 2011-01-16).

Oracle, 2010. The official java website.
http://java.com/en/ (retrieved on 2011-01-16).

Plack, C. J. 2005. The Sense of Hearing, 1 ed. Psychology
Press.

Polotti, P., and Rocchesso, D. 2008. Sound to Sense,
Sense to Sound: A state of the art in Sound and Music
Computing. Logos Berlin.

Pramerdorfer, C., 2010. Web-
site of processing audio visualization.
http://web.student.tuwien.ac.at/˜e0626747/pav/
(retrieved on 2011-01-16).

Processing, 2010. The official processing website.
http://processing.org/ (retrieved on 2011-01-16).

ProcessingAndroid, 2010. The official processing an-
droid website. http://wiki.processing.org/w/Android
(retrieved on 2011-01-16).

ProcessingJS, 2010. The official processing.js website.
http://processingjs.org/ (retrieved on 2011-01-16).

Reas, C., and Fry, B. 2007. Processing: A Programming
Handbook for Visual Designers and Artists. The MIT
Press.

Reas, C., and Fry, B. 2010. Getting Started with Processing,
1 ed. Make.

Rost, R. J., Licea-Kane, B., Ginsburg, D., Kessenich,
J. M., Lichtenbelt, B., Malan, H., and Weiblen, M.
2009. OpenGL Shading Language, 3 ed. Addison-Wesley
Professional.

Sabin, J. E., and Jones, P. L., 2008.
Project website of branching morphogenesis.
http://sabin-jones.com/arselectronica.html
(retrieved on 2011-01-16).

Saito, S., Kameoka, H., Takahashi, K., Nishimoto, T.,
and Sagayama, S. 2008. Specmurt analysis of polyphonic
music signals. IEEE Transactions on Audio, Speech, and
Language Processing 16, 3, 639–650.

Schubert, E., Wolfe, J., and Tarnopolsky, A. 2004.
Spectral centroid and timbre in complex, multiple instru-
mental textures. In Proceedings of the International Con-
ference on Music Perception and Cognition, North Western
University, Illinois, 112–116.

Shiffman, D. 2008. Learning Processing: A Beginner’s
Guide to Programming Images, Animation, and Interaction.
Morgan Kaufmann.

Terzidis, K. 2009. Algorithms for Visual Design Using the
Processing Language. Wiley.

Tzanetakis, G., Essl, G., and Cook, P. 2001. Audio
analysis using the discrete wavelet transform. In Proceed-
ings of the Conference in Acoustics and Music Theory
Applications.

Ware, C. 2004. Information Visualization, 2 ed. Morgan
Kaufmann.

Wiring, 2010. The official wiring website.
http://wiring.org.co/ (retrieved on 2011-01-16).

http://wiki.processing.org/w/Eclipse_Plug_In
http://glgraphics.sourceforge.net/
http://hacknmod.com/hack/top-40-arduino-projects-of-the-web/
http://hacknmod.com/hack/top-40-arduino-projects-of-the-web/
http://www.stephenhobley.com/blog/laser-harp-2009/
http://www.flight404.com/
http://intheair.es/
http://www.soundspectrum.com/g-force/
http://openprocessing.org/
http://java.com/en/
http://web.student.tuwien.ac.at/~e0626747/pav/
http://processing.org/
http://wiki.processing.org/w/Android
http://processingjs.org/
http://sabin-jones.com/arselectronica.html
http://wiring.org.co/

