
36	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

focus 1

still growing) discipline, capable of addressing the
increasing complexity of new software systems.
The term software architecture was first coined at
a 1969 NATO conference on software engineering
techniques, but it wasn’t until the late 1980s that
software architectures were used in the sense of sys-
tem architecture.2

Today, modern software architecture practices
still rely on the principles that Dewayne E. Perry and
Alexander L. Wolf enunciated in their lovely, yet
simple formula “Architecture = {Elements, Form,
Rationale}.”3 Elements are the main constituents
of any architectural description in terms of compo-
nents and connectors, whereas the nonfunctional
properties guide the architecture’s final shape. Dif-
ferent shapes with the same or similar functionality
are possible; they constitute valid design choices by
which software architects make their design deci-
sions. These decisions are precisely the soul of archi-
tectures. However, they’re often neglected during
architecting because they usually reside in the archi-
tect’s mind as tacit knowledge, which is seldom cap-
tured and documented in a usable form. Further-

more, as the Rational Unified Process (RUP) states,
software architecture practice

encompasses significant decisions about

■	 the organization of a software system,
■	 the selection of the structural elements and

their interfaces by which a system is com-
posed with its behavior as specified by the
collaboration among those elements, and

■	 the composition of these elements into pro-
gressively larger subsystems.4

For years, architecture practice and research ef-
forts have focused solely on architecture representa-
tion itself. For a long time, these practices have ex-
clusively aimed at representing and documenting a
system’s architecture from different perspectives—
the so-called architectural views. These views rep-
resent different stakeholders’ interests as a set of
coherent, logical, harmonized descriptions; they’re
also used to communicate the architecture. IEEE
Standard 1471-2000 Recommended Practice for

S
oftware development has to deal with many challenges—increasing system
complexity, requests for better quality, the burden of maintenance operations,
distributed production, and high staff turnover, to name just a few. Increasingly,
software companies that strive to reduce their products’ maintenance costs de-

mand flexible, easy-to-maintain designs. Software architecture constitutes the cornerstone
of software design, key for facing these challenges. Several years after the “software crisis”
began in the mid-1970s,1 software architecture practice emerged as a mature (although

This is a journey
of discovery from
software architecture
representation
to architectural
methods, to design
decisions, to a
decision view, which
enables architects to
capture architectural
design decisions and
design rationale as
first-class entities.

Philippe Kruchten, University of British Columbia

Rafael Capilla, Universidad Rey Juan Carlos

Juan Carlos Dueñas, Universidad Politécnica de Madrid

The Decision View’s
Role in Software
Architecture Practice

c ap t ur ing de s ign kn o wle dge

	 March/April 2009 I E E E S o f t w a r e � 37

Architectural Description of Software-Intensive
Systems provides a guide for describing the archi-
tecture of complex, software-intensive systems in
terms of views and viewpoints.5 However, it doesn’t
offer a detailed description of the rationale that
guides the architecting process.

This article describes the historic evolution of
software architecture representation and the role it
can play. We use a set of epiphanies that can guide
you from the initial architecture views to a new de-
cision view, expressing the need for capturing and
using architectural design decisions and design ra-
tionale as first-class entities. When we explicitly re-
cord and document design decisions, new activities
arise during the architecting process; this architec-
tural knowledge (AK) constitutes a new crosscut-
ting view that overlaps the information described
by other views.

First Epiphany:
Architectural Representation
Before 1995—that is, prior to the notion of the
architecture view—software designers did archi-
tecting, but the demand for large complex systems
brought new design challenges. Such systems’ in-
trinsic complexity, with different structures entan-
gled in different levels of abstractions, was orga-
nized into a set of architecture views that tried to
describe the system from different perspectives, ac-
cording to different users’ needs.

As a result, Philippe Kruchten proposed archi-
tecture views in his “4+1” view model to provide a
blueprint of the system from different angles.6 That
model uses four views to describe the design con-
cerns of different stakeholders, plus a use-case view
(the +1) that overlaps the others and relates the de-
sign to its context and business goals (see Figure 1).
Many Rational Software consultants used the set of
views in the 4+1 view model in large industrial proj-
ects as part of the RUP approach. Similarly, Siemens
developed the Siemens Four-Views (S4V) method,
based on best architectural practices for industrial
systems.7 The S4V method aimed to separate en-
gineering concerns to reduce the complexity of the
design task.8

In 1995, we proposed views that helped archi-
tects identify all the influencing factors they can use
to identify the key architectural challenges and to
develop design strategies for solving the issues by
applying one or more views. In such contexts, we
evaluate design decisions (that is, strategies applied
to particular views) according to constraints or de-
pendencies on other decisions. The Software Engi-
neering Institute proposed a classification based on
views and view types that highlights the importance

of documenting design decisions. However, it gave
no details on how to do this and failed to define ad-
equate processes for capturing and documenting
those decisions.9 Nick Rozanski and Eoin Woods
defined up to six viewpoints that clarify the most
important architectural aspects or elements of infor-
mation systems that are relevant for stakeholders.10
In the mid-1990s, architecture research focused on
design description and modeling, with little agree-
ment on notations for architecture representation.

Second Epiphany:
Architectural Design
The period from 1996 to 2006 brought complemen-
tary techniques in the form of architectural meth-
ods, many of them derived from well-established
industry practices. Methods such as IBM’s RUP,
Philips’ BAPO/CAFCR (Business-Architecture-
Process-Organization method and its Customer,
Application, Functional, Conceptual, and Real-
ization views), Siemens’ S4V, Nokia’s ASC (Ar-
chitectural Separation of Concerns), and the
Software Engineering Institute’s ATAM (Archi-
tecture Trade-off Analysis Method), SAAM (Soft-
ware Architecture Analysis Method), and ADD
(Attribute-Driven Design) are now mature prac-
tices for analyzing, synthesizing, and evaluating
modern software architectures. In some cases,
they’re backed by architectural description lan-
guages, assessment methods, and stakeholder-fo-
cused decision-making procedures. Because many
of the design methods were developed indepen-
dently,8 they exhibit certain similarities and dif-
ferences motivated by the specific nature, purpose,
application domain, or organization size for which
they were developed. In essence, they cover the
key phases of the architecting activity but are per-
formed in different ways.

Common to some of these methods is the use of
design decisions that are evaluated during the ar-
chitecture’s construction. Groups of stakeholders,
under architects’ guidance, elicit these decisions, but

End user, designers
Functionality

Users, analysts, testers
Behavior

Logical view

Programmers
Software management

Implementation view

Process view Deployment view

Use-case view

System integrators
Performance
Scalability
Throughput

System engineering
System topology

Delivery, installation
Communication

Figure 1. The “4+1”
architecture view
model.6 Four views
describe the design
concerns of different
stakeholders. A use-
case view overlaps the
others and relates the
design to its context
and its business goals.

38	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

the ultimate decision makers are the architects—
often a single person or a small group. Unfortu-
nately, design decisions and their rationale still
aren’t considered first-class entities because they
lack an explicit representation. As a result, software
architects can’t revisit or communicate the decisions
made, so in most cases the decisions vanish forever.

Reasons for Design Rationale
In 2002, Ioana Rus and Mikael Lindvall wrote,
“The major problem with intellectual capital is
that it has legs and walks home every day.”11 Soft-
ware organizations suffer the loss of this intellec-
tual capital when their experts leave. The same
happens in software architecture when the reason-
ing required for understanding a particular sys-
tem is unavailable and hasn’t been explicitly doc-
umented. In 2004, Jan Bosch stated that “we do
not view a software architecture as a set of com-
ponents and connectors, but rather as the compo-
sition of a set of architectural design decisions.”12
The lack of first-class representation of design ra-
tionale in current architecture view models led to
the need to include decisions as first-class citizens
that should be embodied within the traditional ar-
chitecture documentation.

There are several benefits of using design ratio-
nales in architecture to explain why a particular
design choice was made or to know which design
alternatives have been evaluated before making the
final design choice. One medium- to long-term ben-
efit is avoiding architecture-recovering processes,
which are used mostly to retrieve decisions when
an architecture’s design, documentation, or even
creators are no longer available. Maintaining and
managing this AK requires continuous attention to

keep the changes in the code and the design aligned
with the decisions, and to use these to bridge the
software architecture gap.

In this new context, Perry and Wolf’s old
ideas3 become relevant for upgrading the software
architecture concept by explicitly adding the de-
sign decisions that motivate the creation of soft-
ware designs. Together with design patterns and
assumptions, design decisions are a subset of the
overall AK that’s produced during architecture de-
velopment. Most of the tacit knowledge hidden in
the architects’ minds should be made explicit and
transferable into a useful form, easing the execu-
tion of distributed and collective decision-making
processes. The formula Architecture Knowledge =
Design Decisions + Design, recently proposed by
Kruchten and his colleagues,13 modernizes Perry
and Wolf’s formula and considers design decisions
part of the architecture.

Third Epiphany:
Architectural Design Decisions
Architecture decisions are seldom rigorously docu-
mented. Explicitly documenting key design deci-
sions is pretty rare and typically justified only on
political and economic grounds or even sometimes
fear. So, our third epiphany highlights the need
to deal with the representation, capture, manage-
ment, and documentation of the design decisions
made during architecting.

Active research from 2004 to 2008 has produced
a significant number of approaches for representing
and capturing architectural design decisions, and
has defined new roles and activities for supporting
the creation and use of this AK. Several approaches
use template lists of attributes to describe and repre-
sent design decisions as first-class entities.13–15 One
approach emphasizes categorizing different types
of dependencies between decisions as valuable,
complementary information for capturing useful
traces—information that developers can use, for in-
stance, during maintenance to estimate the impact
when a decision is added, removed, or changed.13
Another approach advocates using flexible ap-
proaches that employ mandatory and optional at-
tributes for knowledge capture that can be tailored
to specific organizations.15 Others have proposed
ontologies to formalize tacit knowledge and make
visible the relationships between the decisions and
other artifacts of the software life cycle.13 The field
of product-family engineering, or product lines, has
yielded a large amount of work about specifica-
tion, modeling, and automation of design decisions
applied to describing and selecting a product line’s
common and specific elements.16 For product lines,

Create

Assess

Make

CharacterizeTeach

CommunicateValidate

Detect wrong decisions

SubscribeEvaluate

StoreReuse

ReviewRecommend

ShareLearn Design
decision

Figure 2. The four main
activities—Create,
Share, Assess,
and Learn—and the
subactivities involved
in the creation and use
of design decisions
and design rationale.
Each of the four colors
shown indicates a
main category (for
example, “Create”)
and its related, smaller
subactivities (in
this case, “Make,”
“Characterize,”
and “Store”).

	 March/April 2009 I E E E S o f t w a r e � 39

knowledge is codified in an operational manner as
derivation processes are automated.

New Architecting Activities
Several authors have recently contributed models,
methods, and tools that encourage design decisions
in both software architecture and software engi-
neering.17 Because architecture modeling isn’t iso-
lated from decision making, new processes must be
carried out in parallel with typical modeling tasks.
Hence, architecting is highly impacted by these
new activities that deal with the creation and use
of design decisions.

So, as decision makers, software architects
must assume new roles as knowledge producers
and consumers in a social process and must per-
form a variety of new activities. Figure 2 (inspired
by a technical report by Patricia Lago and Paris
Avgeriou of the first Shark [Sharing and Reusing
Architectural Knowledge] workshop18) illustrates
these two aspects to articulate the decisions made
and the architecture resulting from these deci-
sions. For instance, architects capture decisions
(“Create”) that lead to a particular architecture. In
this phase, architects make decisions, characterize
them in usable form, and link them to design ar-
tifacts. Once the architecting team has created a
first version of the architecture, they can share the
design with other stakeholders and, for instance,
review the status of the architecture. During main-
tenance, the current architecting team might need
to evaluate past decisions and recommend whether
they were right or wrong. Because the architecture
is continuously evaluated, assessment procedures
can occur at different stages of architecture devel-
opment (when decisions are first made or after).
Also, less expert architects can learn from deci-
sions made by others; if they detect wrong deci-
sions, they must fix or replace them with new deci-
sions and modify the architecture accordingly. As
a result, a perfect alignment between decisions and
design can be achieved.

Additional subactivities refine the main ones
shown in Figure 2, but our aim here is just to ex-
plain that parallel, complementary activities re-
lated to the reasoning process directly influence the
architecture-modeling tasks. We justify the separa-
tion between knowledge producers and knowledge
consumers on the basis of the distinction between
architecting for the first time and maintaining the
architecture over time.

Impact and Use
Our third epiphany has a strong impact on current
architecting practices: two empirical studies have

already reported on the value of capturing and us-
ing design decisions, and they provide some spe-
cific results:

Design decisions and rationales, considered ■■

different types of knowledge for represent-
ing and recording design information, might
not have the same value or importance for all
stakeholders.19 So, we should decide which
type of knowledge would better fit each type
of user.
The effort of capturing decisions during the ■■

early development stages really pays off only
in later maintenance and evolution phases, so
no great return on investment should be ex-
pected when decisions are captured for the
first time.20 The experiences described in this
report also highlight the benefits of using spe-
cific tool support for capturing, managing, and
documenting architectural design decisions.

Another visible impact on practice is related
to the documentation by means of the traditional
views as described in the standard IEEE Std.
1471-2000.5 Its successor, known as ISO/IEC
42010 and currently under review, expands it with
AK concepts, including concern, design decision,
and rationale.

The Texture of a Decision View
A complementary perspective in which decisions
are entangled with design for each architectural
view has led us to think about a decision view.21
This new perspective extends the traditional views
by superimposing the design rationale that under-
lies and motivates the selection of concrete design
options. Figure 3 depicts a graphical sketch of the

Logical view

Implementation viewDesign decisions

Design decisions

Design decisions
Design decisions

Deployment view

Process view

Use-case view

Design decisions

Figure 3. The “decision
view” embedded in
the 4+1 view model.
This new perspective
superimposes the
design rationale that
underlies and motivates
the selection of concrete
design options.

40	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

decision view, which incorporates design decisions
in the 4+1 view model.

The traditional representation of architectures
in terms of views and viewpoints varies when de-
cisions have to be described. Architects interested
in capturing decisions and rationale should know
how to build a decision view—that is, how to un-
derstand and represent the texture of decisions. As
a first approach, we can refer to the classic architec-
tural assessment methods, which mostly rely on the
development of scenarios, their projection against
several candidate architectures, and the addition
of information to the architectural components.
The architect then aggregates this information and
evaluates it for each candidate architecture.

Another possible approach is based on a study
of architectural assessment and definition of de-
sign decisions on a product-line architecture for
medical equipment, in which the decisions related
to the economic impact of changing each architec-
tural component.20 The authors focused on each
component’s economic attributes in the implemen-
tation view (from the 4+1 model), and their deci-
sion view consisted of the decisions, rationale, and
actual data on the architectural components.

Focusing on the capture and representation of
decisions, as a guide to help architects document
the decisions in their architectures, we propose
these steps:

	 1.	Decide which information items are needed
for each design decision (such as the decision’s
name, description, rationale, pros and cons,
status, and category). Then, decide which rep-
resentation system will better handle the re-
cording and organization of the decisions (that
is, as templates or ontologies). Select a strategy
(such as codification, personalization, or a hy-
brid strategy) to capture the items.

	 2.	For each decision, define links to the require-
ments that motivate it.

	 3.	If you must evaluate alternative decisions, pro-
vide mechanisms to change the decision’s sta-
tus (such as approved, rejected, or obsolete)
and category (such as alternative or main).

	 4.	If a decision depends on previous ones, define
these relationships to support internal trace-
ability among them.

	 5.	Once you’ve made a set of significant decisions,
link them to the architecture that results from
such decisions. These links provide the connec-
tion to traditional architecture views.

	 6.	After making and capturing all the decisions,
share them through communication and docu-
mentation mechanisms.

We could add extra items and functionality to
this list (for example, supporting the evolution of
decisions), but we believe we’ve listed enough to
help you quickly start capturing design decisions
and their underpinning rationale alongside their
architectures.

Challenges and Benefits
The explicit capture and documentation of design
decisions will bring new challenges, but in most
cases we see these as benefits derived from using
architecture development decisions. Here’s a short
list of the expected challenges and benefits:

Decisions enhance traceability between soft-■■

ware engineering artifacts produced across
the software life cycle. Forward and backward
traces facilitate our understanding of the root
causes of changes and help us better estimate
change impact analysis.
Capturing the dependencies between decisions ■■

supports impact analysis when we add, mod-
ify, or remove a decision.
Documented decisions facilitate our general ■■

understanding of a system, which is particu-
larly useful during staff turnover.
Documented decisions facilitate knowledge ■■

sharing and assessment processes because us-
ers can easily review the rationale of past
decisions.
Learning activities can use previous knowledge ■■

for assessing novice software architects in their
professional careers.
Leveraging tacit AK into formal documenta-■■

tion requires understanding and performing
many of the activities described in Figure 2.

The adoption barrier for capturing design ra-
tionale can be high because of the intrusiveness
of these new activities, listed in Figure 2. So, the
overhead required during the creation of these
decisions should pay off during maintenance, be-
cause knowledge of key design decisions avoids
the need to reverse architecture descriptions from
code, particularly in staff turnover situations or
rapid software evolution. Long-term benefits and
reduced maintenance costs should motivate users
to capture the design rationale, particularly in
successive iterations of the system as it evolves.21
Hence, the broad impact of capturing and using
architecturally significant design decisions affects
not only a design’s evolution but also the evolu-
tion and maintenance of the decisions base itself.
This issue often emerges during reviews, where
major changes affect the design. Like other key

Long-term
benefits and

reduced
maintenance
costs should

motivate users
to capture
the design
rationale.

	 March/April 2009 I E E E S o f t w a r e � 41

activities, recording the history of decisions is
another challenge requiring in-depth treatment.

T he software architecture community’s
perception that architectural design deci-
sions are intangible and difficult to cap-

ture and communicate is changing as a result of
recent research. That research is leading to a new
perspective or “view,” in the IEEE 1471 sense, to
describe rationale and architectural knowledge.
The traditional gap between different artifacts of
the software engineering process has shown the
need to effectively and precisely capture and rep-

resent design decisions and their underlying ra-
tionale for later use, thus avoiding knowledge
vaporization.

We also believe that key architectural design
decisions should be recorded and documented; in
contrast, it’s not worth the effort to capture and
maintain all the microdecisions that happen along
a software system’s life. One adoption barrier for
capturing design decisions is the intrusiveness of
many of the processes involved, as they’re not fully
integrated into current software engineering prac-
tice. So, tools such as those mentioned in the side-
bar “Tools Supporting Design Rationale” must be
improved, adapted, and better integrated to avoid

As Allen H. Dutoit and his colleagues pointed out in Rationale
Management in Software Engineering,1 the design rationale
movement began in the early 1970s with Horst Rittel’s Issue-
Based Information System (IBIS), which supported design ra-
tionale in general. The IBIS approach and its successor gIBIS
were applied to large-scale projects in the ’70s and ’80s.
IBIS-based approaches included some basic features support-
ing the design rationale and discussions on the recording of
controversial questions that arise in design. On the basis of
Rittel’s approach, other tools such as PHI (Procedural Hierarchy
of Issues), QOC (Questions, Options, and Criteria), and DRL
(Design Representation Language) appeared in the field as
extensions of the IBIS tool. Other tools (Scram, C-ReCS, Seurat
[www.users.muohio.edu/burgeje/SEURAT], Sysiphus [http://
sysiphus.informatik.tu-muenchen.de], and Drimer) developed
between 1992 and 2004, provide simple solutions to manipu-
late knowledge and record decisions for a broad number of
software engineering processes.1 Since 2005, active research
has produced a number of tools supporting design rationale in
software architecture.

Here, we identify five representative research prototype
tools for capturing, using, managing, and documenting archi-
tectural design decisions.

Archium (www.archium.net) is a Java extension that pro-
vides traceability among a wide range of concepts (such as
requirements, decisions, architecture descriptions, and imple-
mentation artifacts) that are maintained during the system life
cycle. The Archium tool suite contains a compiler, a runtime
platform, and a visualization tool. The compiler turns Archium
source files into executable models for the runtime platform.
The visualization tool uses the runtime platform to visualize
and make accessible the architectural knowledge (AK).

The Architecture Rationale and Element Linkage (AREL, www.
ict.swin.edu.au/personal/atang/AREL-Tool.zip) is a UML-based
tool to help architects create and document architectural de-
signs with a focus on architectural decisions and design ratio-
nale. AREL captures three types of AK: design concerns, design

decisions, and design outcomes. These knowledge entities are
represented as standard UML entities and linked to show their
relationships.

The Process-Based Architecture Knowledge Management
Environment (PAKME, http://193.1.97.13:8080) is a Web-based
tool that supports collaborative knowledge management for
the software architecture process. It’s built on top of the Hiper-
gate open source groupware platform. PAKME’s features can
be categorized into four AK management services: acquisition,
maintenance, retrieval, and presentation.

The Architecture Design Decision Support System (ADDSS,
http://triana.escet.urjc.es/ADDSS) is an ongoing Web-based
research prototype that captures design decisions using a
template list of mandatory and optional attributes. This tool
supports a combined strategy of codification and personaliza-
tion. Decisions are related to requirements and architectures.
The tool provides an automatic reporting system that produces
documents containing the decisions made for a given architec-
ture, the trace relationships from decisions to requirements and
architectures, and the trace relationships between decisions. In
addition, ADDSS users can navigate and visualize the architec-
tures and decisions, showing the system’s evolution over time.

The Knowledge Architect (http://search.cs.rug.nl/griffin) is
a tool suite for capturing, managing, and sharing AK using
a server and an AK repository. It’s accessed by three plug-in
clients: a Word client to capture and manage AK in MS Word
documents, a client that captures and manages the AK of
quantitative architectural analysis models using MS Excel, and
a visualization tool called the Knowledge Architect Explorer
that supports the analysis of the captured AK. This tool enables
the exploration of the AK by searching and navigating through
the web of traceability links among the knowledge entities.

Reference
	 1.	 A.H. Dutoit et al., eds., Rationale Management in Software Engineering,

Springer, 2006.

Tools Supporting Design Rationale

42	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

duplicate efforts in capturing design decisions.
They should also be used to facilitate the gradual
introduction of new activities dealing with design
rationale, some of which relate to distributed-team
decision making.

There’s often not much difference between the
software requirements or description of a well-
known design pattern and the explicit representa-
tion of a design decision. In many cases, a design
decision constitutes a replica of the requirement
that motivated that decision. As a result, the effort
to capture such decisions is considered duplicated,
because users of such tools often record the same
data. So, appropriate mechanisms should be pro-
vided to avoid recording the same information as
well as to streamline the capturing effort. These
mechanisms must be based on stronger tracing
and duplication-detection techniques.

The key goal of our current research is to high-
light the importance and impact of design ratio-
nale in software architecture activities in particu-
lar, and in software engineering from a broader
perspective. What will a fourth epiphany bring?
Despite the challenges of capturing the design ra-
tionale, the introduction of documented design
decisions will bring better ways to build and un-
derstand our software systems. Software archi-
tects and developers will also see the benefits of
considering decisions first-class entities, and they
will pursue better integration with other software

engineering artifacts. Hopefully, design decisions
and design rationale will be recognized in the up-
coming ISO/IEC 42010 standard.

References
	 1.	 W.W. Gibbs, “Software’s Chronic Crisis,” Scientific

American, vol. 271, Sept. 1994, pp. 72–81.
	 2.	 P. Kruchten, H. Obbink, and J. Stafford, “The Past,

Present, and Future of Software Architecture,” IEEE
Software, vol. 23, no. 2, 2006, pp. 22–30.

	 3.	 D.E. Perry and A.L. Wolf, “Foundations for the Study
of Software Architecture,” ACM Software Eng. Notes,
vol. 17, no. 4, 1992, pp. 40–52.

	 4.	 P.. Kruchten, The Rational Unified Process—An Intro-
duction, 3rd ed., Addison-Wesley, 2003.

	 5.	 IEEE Std. 1471-2000, Recommended Practice for Ar-
chitectural Description of Software-Intensive Systems,
IEEE, 2000.

	 6.	 P. Kruchten, “The 4+1 View Model of Architecture,”
IEEE Software, vol. 12, no. 6, 1995, pp. 45–50.

	 7.	 C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture, Addison-Wesley, 1999.

	 8.	 C. Hofmeister et al., “A General Model of Software
Architecture Design Derived from Five Industrial
Approaches,” J. Systems and Software, vol. 80, no. 1,
2007, pp. 106–126.

	 9.	 P. Clements et al., Documenting Software Architec-
tures: Views and Beyond, Addison-Wesley, 2002.

	10.	 N. Rozanski and E. Woods, Software Systems Architec-
ture, Addison-Wesley, 2005.

	11.	 I. Rus and M. Lindvall, “Knowledge Management in
Software Engineering,” IEEE Software, vol. 19, no. 3,
2002, pp. 26–38.

	12.	 J. Bosch, “Software Architecture: The Next Step,”
Proc. 1st European Workshop Software Architecture
(EWSA 04), LNCS 3047, Springer, 2004, pp. 194–199.

	13.	 P. Kruchten, P. Lago, and H. van Vliet, “Building Up
and Reasoning about Architectural Knowledge,” Proc.
2nd Int’l Conf. Quality of Software Architectures
(QoSA 06), LNCS 4214, Springer, 2006, pp. 43–58.

	14.	 J. Tyree and A. Akerman, “Architecture Decisions:
Demystifying Architecture,” IEEE Software, vol. 22,
no. 2, 2005, pp. 19–27.

	15.	 R. Capilla, F. Nava, and J.C. Dueñas, “Modeling and
Documenting the Evolution of Architectural Design
Decisions,” Proc. 2nd Workshop Sharing and Reusing
Architectural Knowledge Architecture, Rationale, and
Design Intent, IEEE CS Press, 2007, p. 9.

 	16.	T. Käkölä and J.C. Dueñas, eds., Software Product
Lines—Research Issues in Engineering and Manage-
ment, Springer, 2006.

	17.	 A.H. Dutoit et al., eds., Rationale Management in
Software Engineering, Springer, 2006.

	18.	 P. Lago and P. Avgeriou, “First ACM Workshop on
Sharing and Reusing Architectural Knowledge (Shark),”
ACM SIGSOFT Software Eng. Notes, vol. 31, no. 5,
2006, pp 32–36.

	19.	 D. Falessi, R. Capilla, and G. Cantone, “A Value-Based
Approach for Documenting Design Decisions Rationale:
A Replicated Experiment,” Proc. 3rd Int’l Workshop
Sharing and Reusing Architectural Knowledge (Shark
08), ACM Press, 2008, pp. 63–70.

	20.	 R. Capilla, F. Nava, and R. Carrillo, “Effort Estima-
tion in Capturing Architectural Knowledge,” Proc.
23rd IEEE/ACM Int’l Conf. Automated Software Eng.,
IEEE Press, 2008, pp. 208−217.

	21.	 J.C. Dueñas and R. Capilla, “The Decision View of
Software Architecture,” Proc. 2nd European Work-
shop Software Architecture (EWSA 05), LNCS 3047,
Springer, 2005, pp. 222–230.

About the Authors
Philippe Kruchten is a professor of software engineering in the University of
British Columbia’s Department of Electrical and Computer Engineering. He spent more
than 30 years in industry, working mostly with large software-intensive systems design in
telecommunication, defense, aerospace, and transportation domains. Kruchten directed the
development of the Rational Unified Process from 1995 to 2003. His research interests are
software architecture, particularly architectural decisions and the decision process, and soft-
ware engineering processes, particularly the application of agile processes in large, globally
distributed teams. He received his doctorate in computer science from the French Institute
of Telecommunications. He’s a senior member of the IEEE Computer Society, the founder of

Agile Vancouver, and a Professional Engineer. Contact him at pbk@ece.ubc.ca.

Juan Carlos Dueñas is a professor in the Telecommunications School and currently
the deputy director of the Department of Telematics Engineering at Universidad Politécnica
de Madrid. He received his PhD in telecommunications from the same university. His research
focuses on Internet services, service-oriented architectures, software architecture, software
engineering, and system evolution. Dueñas coedited Software Product Lines: Research Issues
in Engineering and Management (Springer, 2006) and is a member of the IEEE. Contact him
at jcduenas@dit.upm.es.

Rafael Capilla is an assistant professor of software engineering in the Computer
Science Department at Universidad Rey Juan Carlos. His research interests include software
architectures, product-line engineering, software variability, and Internet technologies. He
received his PhD in computer science from Universidad Rey Juan Carlos. Capilla is a member
of the IEEE Computer Society. Contact him at rafael.capilla@urjc.es.

