A Language for Specifying Type Contracts in Erlang
and its Interaction with Success Typings

Miguel Jiménez

Tobias Lindahl

Konstantinos Sagonas

Department of Information Technology
Uppsala University, Sweden

migueljimg@gmail.com, {tobiasl kostis}®@it.uu.se

1. Introduction

For quite some time now, programs in ERLANG have been devel-
oped without any mention of types which describe their intended
use. With the advent of automatic documentation tools such as
Edoc many ERLANG programmers have discovered the usefulness
of types as documentation. However, while type annotations given
as comments are better than no annotations at all, they tend to rot as
they are not verified. In addition, the usefulness of the type anno-
tations is restricted to the programmer’s eyes, and without a stan-
dardized type language, tools for static analysis such as Dialyzer
cannot take advantage of the information.

In this work, we propose a contract language that can serve
both as documentation in the style of Edoc, and as a guidance to
tools such as Dialyzer and TypEr. The contracts are in the form
of success typings, a framework developed for expressing type
information in dynamically typed programming languages. Our
contracts are designed for ease of use and clarity, but also to provide
some key functionality, such as contract overloading and bounded
parametric polymorphism, which can provide analyses with more
refined information.

The contract language is yet another step in the authors’ attempt
to exploit type information in ERLANG programs and raise the
type awareness of the ERLANG community. Earlier experiences
with Dialyzer and TypEr have shown that there is a lot of type
information already available in ERLANG code, but with the help of
the programmer, more type information can be explicitly available
both for the eyes of other programmers and for the benefit of type-
based static analysis tools.

The remainder of the paper is structured as follows. In Section 2
we recapitulate the main ideas behind success typings and motivate
why this is a useful framework for dynamically typed languages.
The basic contract language is described in Section 3; its interaction
with success typings is described in Section 4. In Section 5 some
examples are given, followed by related work and some concluding
remarks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $5.00.

2. Success Typings

Using type information in dynamically typed languages is often
called soft typing, a term coined by Cartwright and Fagan [1].
Soft typing encompasses various approaches, but commonly soft
type systems use a static type domain extended with some way of
expressing dynamic types, either to eliminate dynamic type tests or
to find type clashes in the code. Soft type systems are by definition
not allowed to reject programs, but they can bring the attention of
the user to places in the code where there is a risk for a type clash.

If a soft type system reports all possible points in the code where
there is a risk of a type error, we say that the reports (or warnings)
are complete. If, on the other hand, the soft type system reports
only definite type clashes we call the warnings sound. With these
definitions, the warnings cannot be both sound and complete for a
practical programming language, since this is the same problem as
having a sound and complete type inference.

In dynamically typed languages type safety is guaranteed by
dynamic type tests (i.e., by inspecting the type tag of values during
runtime). Type reconstruction can be done with the help of avail-
able language constructs such as explicit type tests and primitive
operations with known type behavior. However, the available infor-
mation is often not enough to say whether there will be a type clash
or not at a given program point. A soft type system that opts for
complete warnings has no choice but to report the program point as
a possible type error, thus giving a lot of spurious warnings.

Our experience in developing the static analysis tool Dialyzer
(A Discrepancy Analyzer of ERLANG code [4, 8].) and interacting
with its user community, has taught us that soundness of warnings
is an important feature for such a tool from the usability point of
view. By allowing programmers to see the benefits from using a
type-based analysis with as little effort as possible, we can con-
vince them to put more effort into incrementally adding more type
information in the program. Without sound warnings, the benefit is
typically hidden among the numerous false positives.

In prior work we have defined success typings [6], a framework
for describing type information in dynamically typed programming
languages. The notion of success typings accurately captures the
dynamic type behavior of the ERLANG language and is the basis
for type analyses which emit warnings that are sound rather than
complete.

2.1 Basicidea

The key to giving sound warnings is determining when a program
construct will surely fail. In some primitive operations of the lan-
guage this is trivial and the corresponding type information can be
hard-coded. For example consider addition in ERLANG: adding an
integer to a list will definitely fail, but adding an integer to a float

will probably succeed.! When dealing with user-defined functions
the problem of automatically capturing the success and failure be-
havior of functions is more complex.

Consider the ERLANG implementation? of the Boolean and
function shown below.

and (true, true) -> true;
and(false, _) -> false;
and(_, false) -> false.

The first clause matches if both the arguments are true, and the re-
maining clauses match if either of the arguments is false. Assum-
ing we have defined the Boolean type, bool(), as true | false,
we would expect a Hindley-Milner type inferencer to derive the
type

(bool(), bool()) — bool()

for this function. In the first function clause, this description is ob-
vious, and nothing in the following clauses contradicts it. We can
say for sure that if this function is applied with Booleans as argu-
ments, we will have no type clash and we will get a Boolean as
the return value. A static type checker can enforce this type signa-
ture by rejecting programs that contain calls with non-Booleans. A
soft type system can give a warning based on this type signature
whenever the arguments are not Booleans, but in some cases these
warnings will be spurious. For example, the call

and(false, 3.14)

does not conform to the type signature, but will indeed evaluate to
false without any type error.

In the work of Marlow and Wadler [7] a subtype domain is
used. They report having problems with the and function and their
inference finds the type

(any(), false) — bool()

where any() is the type that includes all ERLANG terms, and
false is the singleton type containing only the atom false. In
this particular case, the odd type signature is a side effect of pattern
matching compilation, but it indicates a more general problem.
Inferred domains for a function might be too restrictive and might
not describe a function’s actual behavior. In particular, they do not
state when a function call will fail, but how to restrict the arguments
to avoid type clashes. If the second argument in our example is
restricted to false there will never be a type clash, but arguably
this restriction does not reflect how the function can, and should,
be used.

The inference of success typings takes another approach. In-
stead of restricting the domain to avoid type clashes, the inferred
domain must include all values for which a function application
can succeed, even if this means including values for which there
might be a type clash.

DEFINITION 1 (Success Typing). A success typing of a function f
is a type signature, (&) — (3, such that whenever an application
() reduces to a value v, then v € 3 and p € a.

The key property is that the domain of a success typing expresses
for which arguments an application has a chance of succeeding,
with a guarantee of failure whenever the arguments are outside this
domain. In other words, success typings are sound for failure rather
than sound for type safety, a property already guaranteed by the
ERLANG language through dynamic type tests.

' We write “probably succeed” because in ERLANG the addition will result
in a badarith exception if the result is bigger than the maximum value that
can be represented as a float.

2The example is taken from Marlow and Wadler’s work on a subtype
system for ERLANG [7, Section 9.3].

B Success Typing
] Dynamic Typing
[static Typing

Figure 1. An illustration of function domains

In Figure 1 there is an illustration of inclusion of function
domains in different frameworks. The dynamic typing domain is
the domain for which a function will evaluate without type clashes
in a dynamically typed language. This is in some sense the ideal
description of the function, since it is not restricted by the static
type system nor over-approximated due to analysis imprecision.
The static typing domain for the function will always be a subset
of the dynamic typing domain. If the static types have the principal
type property, the static typing domain will be as large as possible
and sometimes will coincide with the dynamic typing domain. In
general this is not the case, and the area between the two domains
consists of the arguments that will be disallowed by a static type
checker, although the function call would evaluate without a type
clash. The success typing domain will always be a superset of
the dynamic typing domain. The ultimate aim of any inference
algorithm should be to make these domains coincide.

A formal description of an automatic inference algorithm for
success typings is given in [6], but basically the algorithm relies on
the fact that there is a trivial success typing for all functions, namely
the type signature that accepts any input and returns any value. For
example, (any()) — any() is a success typing for all functions of
arity one. The analysis then tries to limit the domain and range of
this signature until it can no longer do so without excluding values
for which the function could possibly succeed.

The and function has the success typing:

(any(), any()) — bool()

This type might seem unnecessarily general. However, first note
that it clearly is a success typing for the function. Secondly, note
that in the absence of information about the uses of the function we
cannot restrict any of function arguments in any way. Using a type
domain that is more expressive (e.g., with intersection or with de-
pendent types) we could possibly get a more precise description of
the function’s type, but can we find a better description without al-
tering the type domain? In many cases, we can answer this question
positively using the notion of refined success typings.

2.2 Refined success typings

In every program, there is a finite number of call sites for each
function and assume that the analysis has knowledge about all these
call sites. Also suppose that the analysis can find that the function
is only called with inputs of some type(s). For example, suppose
that the analysis determines that our and function is only called
with Booleans. This situation does not change the correctness of
the success typing, but it shows that the user intended to use the
function in a certain way. We would like the inferred type signature
to reflect not only the most general use of the function, but also how
the function is actually used in a program.

DEFINITION 2 (Refined Success Typing). Let f be a function with
success typing (&) — (. A refined success typing for f is a typing
of the form (&') — (3’ such that

1. & Caand 3 C B, and
2. forall p € & for which the application f(p) reduces to a value,
fp)ep.

A refined success typing is a success typing with some addi-
tional constraints on the function’s domain. Note that there is noth-
ing in the definition that states where these constraints come from.
In [6] the success typings are refined by a dataflow analysis that
finds what domains a function is applied to. The result is function
descriptions that not only describe how a function could be used,
but also capture the actual uses of functions. The next logical step
is to let the programmer state how the function is supposed to be
used, something that fits nicely into the framework of refined suc-
cess typings.

3. A Contract Language

A contract is a way for the programmer to explicitly state the in-
tended uses of functions. In the general case, the success typing of
a function over-approximates the types of its intended uses and it
can be refined by taking the contracts into account. The basic idea
is to infer the types of a function by using some inference algorithm
for success typings, and then check if the success typing is compat-
ible with the contract. If the success typing and the contract do not
contradict each other, a refined success typing can be constructed
based on both the information in the contract and the inferred suc-
cess typing. As we will see, the resulting refined success typing can
be more expressive than the one we can infer with the algorithm for
automatic inference of (refined) success typings.

When encountering a function call, the types of the arguments
are checked against the contract. If a violation is found this is re-
ported, otherwise the contract is used to refine the type information
at the call site. By using this approach, we gain precision in the in-
ference, while preserving soundness of failure under the side condi-
tion that the user respects the contracts which have been specified.
The contract checking follows the same approach as the rest of the
inference with respect to soundness for failure, i.e., soundness for
contract violations. Only when a contract cannot possibly hold, a
contract violation is reported.

3.1 Basic syntax of contracts with types

Contracts in a module are given as compiler attributes. The basic
contract specification follows the syntax:

-spec(F/A::((a1,...,an) =>71)).

where F is a function name, A is its arity, a1, .. ., an is a possibly
empty sequence of type expressions for the function’s arguments
and r is the type expression for the function’s range.

The language for type expressions is an extension of the type
language defined and used by the TypEr tool [5] and is similar to
the language also used by Edoc. We briefly describe its syntax.

Type expressions are built from basic components which can be
partitioned into four main groups:

e The first group consists of type expressions denoting singleton
types. Examples of singleton types are: the atom true, the
integer 42, the empty list [], etc.

The second group consists of a predefined set of type names
(e.g., atom(), integer(), float(), binary(), list(), tuple(),
pid(), port(), ref(), ...) for all different kinds of ERLANG
terms. Integers get a special treatment and there exists a long
list of predefined subtypes of integers (e.g. byte(), char(),
pos_integer(), non_neg-integer(), . . .) and a notation for in-
teger ranges of the form (L..U) where L and U are integers
representing the lower and upper bound of the range. Also, the
complex types often include type expressions as arguments, in

which case they contain these types in parentheses. For exam-
ple, list(integer()) denotes the type expression for lists con-
taining integers and for convenience this type expression can
also be written as [integer()]. A special notation for tuples is
also available; for example, { atom(), integer() } denotes pairs
(i.e., 2-tuples) whose first element is an atom and whose second
element is an integer.

The third group consists of types that are defined and given
names by the user. We will soon show an example of how
types are declared in our language, but we mention that their
names always start with an atom followed by parentheses. The
parentheses are needed in order to distinguish a type from a
plain ERLANG atom, since as mentioned the type language also
accepts atom names as singleton types.

Finally, a type variable is also a type expression. Type vari-
ables are used for parametric polymorphism as described in
Section 3.4 below. We have closely followed the ERLANG con-
vention for variables and thus type variables always begin with
a capital letter.

The union of any two type expressions ¢1 and ¢2 (written as ¢1 | t2)
is also a type expression. An example of such an expression is
0 | 42 which denotes the type consisting of only the integers 0
and 42. Naturally, unions can appear anywhere where a type ex-
pression can be used. For example, an heterogeneous list consist-
ing of integers and atoms can be defined with the type expression
[atom() | integer()].

Using type expressions containing unions, the user can define
new types such as the ones below:

-type (fruit ()
-type (my_list ()

apple | orange | banana).
[atom() | integer()]).

Both examples define names, namely fruit and my_list,
which exist only as aliases for more complex type expressions.

The union of all terms, whether built-in or user-defined, is the
universal type which is denoted by any(). Also, the type language
allows for the empty set of terms, denoted by the type none().
This type is typically not used by the user but is needed for the type
lattice and in order to denote the presence of a type error.

The type system also includes funs, i.e., functions with either a
known or an unknown number of arguments. If the number of ar-
guments is known then these arguments are denoted as (tl, ey tn)
where t1, .. .,t, are their respective type expressions. If the num-
ber of arguments is unknown but it is known that the fun’s return
type is described by the type expression ¢, then the fun is denoted
by (...) — ¢. Note that ¢ can also be the type expression any().

For user convenience and for documentation purposes, the no-
tation for records has also been extended to allow for record fields
which contain type information. In other words, the user can define
a record such as:

-record(employee, {name::atom(), age::integer()}).

and she can subsequently refer to this record in another record defi-
nition or in a contract specification using the notation #employee{},

which in turn is syntactic sugar for the type expression {employee, atom(), intege

Type aliases can also be used in record definitions and vice
versa. The only restriction is that the alias or record to be used must
have been previously declared.

Optionally, the user can also give names to type expressions:

Name ::' T

Currently, these names are only used for documentation purposes,
i.e., they are treated as comments and are essentially ignored. How-

3 As a matter of fact, this particular change is orthogonal to the subject of
this paper and is already present in Erlang/OTP R11B-4.

ever, they can serve as a link between the language we describe in
this paper and the one used by the Edoc tool which automatically
creates documentation based on information given in comments.
Quite often, the information supplied to Edoc is similar and con-
tains names for variables and function arguments.

Table 1 shows a list of commonly used predefined shorthands.

Shorthand Type Alias for

; ang)

bool() (*true’ | ’false’)
number() (integer() | float())
byte() (0..255)
non_neg_integer() (0..)

pos_integer() (1..)

identifier() (pzd() | port() | ref())
[atom()] list(atom())
fm.zctwn() (...) — any()
string() ‘ [char()]
nonempty_string() [char(),..]

Table 1. Common type aliases

3.2 Example uses
Consider the factorial function shown below:
fac(0) -> 1;
fac(N) -> N * fac(N-1).
We can write the following contract specification:
((byte()) -> integer())) .

If we want to add further comments for documentation purposes,
we can use variable names. A variant of the later contract that will
have the same result is:

-spec(fac/1 ::

((Factor :: byte()) —> integer())).

Taking up again the and function described in section 2.1,
we can think of a more suitable type signature that accepts only
booleans as types for the arguments and range. The contract will
be:

-spec(fac/1 ::

-spec(and/2 :: ((bool(),bool()) => bool())) .

But the use of the function can also be extended to accept any atom
by writing:

-spec(and/2 :: ((atom(),atom()) -> bool())).

Despite being quite strange, this contract is valid and reflects one
of the possible uses of the function. As we will see in section 4, we
have a wide range of freedom to adjust the behaviour of a certain
function to fit our needs.

The nth/2 function of the 1ists module returns the element
which is contained in the nth position of a list. Suppose that we
are using this function in a module but we want it to work only for
lists of atoms. We also know that the length of the lists will never
be over a certain threshold, for example, 10. We can add these new
constraints to the analysis by writing the contract:

-spec(nth/2 :: ((1..10, Latom()]1) -> atom())).

A warning will be emitted if a call is statically found to not fulfill
all the constraints.

3.3 Contract overloading

In ERLANG, functions can be defined to operate on different types
in an overloaded fashion. In order to capture this, contracts are al-
lowed to be overloaded as well. For example, consider the function
inc/1 in Figure 2. Its two clauses are written to operate on integers

-spec(inc/1 ((integer()) -> integer());

((float()) -> float())).

inc(X) when is_integer(X) ->
X+ 1;

inc(X) when is_float(X) ->
X+ 1.0.

Figure 2. An overloaded increment function

and floats respectively, adding one to the input argument.* The suc-
cess typing for this function is (number()) — number(), losing
the information about overloading, and abstracting to a supertype.
By specifying an overloaded contract the underlying type informa-
tion is kept. Overloaded contracts are specified as a list of simple
contracts separated by semicolons. In Figure 2 an overloaded con-
tract is specified to allow calls to inc/1 with float() or integer()
to return float() or integer() respectively.

The language accepts overloading contracts with overlapping
domains, i.e., a domain for a certain contract can be subset of an-
other contract’s domain within the same specification. Domains can
even be exactly the same for two (or more) overloading contracts.
This is also allowed for contract ranges. The interaction between
overloading contracts and the success typings is discussed on sec-
tion 4.1

3.4 Polymorphism and bounded quantification

One feature of the contract language is support for parametric
polymorphism. As an example where this can be useful, consider
the higher order library function lists:map/2, which applies a
function to each element of a given list and returns the resulting
list. The success typing for this function is:

(((any () — any()), [any ()]) — [any()]

We can connect the types of the function with those of the lists by
specifying the contract:

(A -> B), [AD -> [B1).

where A and B are universally quantified variables. The interpre-
tation of the type variables will be further discussed in Section 4.1.

In addition, type variables can be bounded by subtype con-
straints by adding a guard-like constraint to the contract. For ex-
ample, the increment function in Figure 2 could be assigned the
contract

-spec(map/2 ::

(XxXH > X
when is_subtype(X, number())).

-spec(inc/1 ::

where is_subtype/1 is a new guard function which succeeds
when the type variable in its first argument is a subtype of the type
expression of its second argument.

These type variable constraints can also be combined with con-
tract overloading. The scope of a type variable lies within a single
overloading contract. For example, in this specification:

:: (Catom(), X) -> X)
when is_subtype(X, integer()));
((string(), X) -> X)
when is_subtype(X, float()))).

-spec(foo/1

type variables in each contract are different. The first one is
bounded to integers and the second one, to floats.

4Note that this could have been written in one clause since addition is
overloaded in ERLANG.

4. Interaction with Success Typings

Contracts can be used to guide the refinement of success typings.
By taking the user-defined contracts into account in the type infer-
ence, the type information can be significantly improved. However,
care must be taken so that wrongly specified contracts do not make
the information less precise or even false. In general, the contracts
cannot be soundly verified, since this is the same problem as hav-
ing a sound type checker for a dynamically typed language such as
ERLANG. However, contracts allow for a more refined analysis and
for reporting interface violations when these occur.

A contract can be interpreted as a set of constraints on the be-
havior of a function and more specifically on the set of terms which
are allowed for arguments and returned as result. These type con-
straints can be both over-approximating and constraining depend-
ing on the purpose of the contract. Sometimes it may be conve-
nient to abstract for readability, and other times the programmer
may want to specify how a function should be used rather than how
it could be used. The success typing for the function is an upper
bound of the actual behavior, so a contract cannot be allowed to be
in contradiction with the success typing. In order to get as precise
information as possible in the analysis, both the success typing and
the contract are used to find a refined success typing that is then
used in the remainder of the analysis.

Assume that a function has the success typing Sig: and the
contract signature Sig.. Success typings are covariant in the do-
main and range (e.g, the most general success typing of arity one
is (any()) — any()), which means that the subtype relation, C, on
success typings is defined covariantly.” Furthermore, the infimum
operator, N, is also covariant on function types.® When comparing
the contract and the success typing we have the following four sit-
uations:

Sige C Sige (D
Sig: C Sige 2
Sige N Sige # none() 3)
Sige N Sige = none())

In case (1) the contract is constraining the function more than the
success typing, but does not contradict it. In case (2) the contract
is over-approximating the behavior of the function, which is not in
conflict with the success typing. In both cases, the resulting refined
success typing is simply the infimum of the contract and the success
typing since we are interested in the most specific description. In
case (3) the contract and the success typing are incomparable, but
there is a common description of the type behavior, so this case
can be viewed as a combination of the two former cases. In some
aspects the contract is refining the success typing and in some
aspects it is making it more general. The refined success typing
is once again the infimum of the contract and the success typing.
In case (4) there is no common description of the type behavior of
the function. This is clearly a violation of the contract and the user
should be warned. Following the principle of soundness for failure,
this is also the only case where the user will be warned about the
contract validation.

A contract must be respected not only by the function for which
it is declared, but also by the users of the function. As explained in
more detail in [6], the success typing domain is used as an upper
bound of the argument types of a call site. Since the contract do-
main is also an upper bound, the constraints must be used in con-
junction, effectively forming the infimum of the two domains. The

(a)—>,8§()—>5' = aCadABCH

() =B8N () =g
(ozﬂoz)—BNA whenanda,BN 3 # none()
none() otherwise

ranges are treated analogously. If we find that the arguments cannot
satisfy the constraints we consider this as a contract violation at the
call site. Likewise, if the caller fails to handle the return type, the
contract violation is at the call site, even though it might have been
the contract that was malformed. In general, if a contract cannot be
disproved at the declaration point, it is trusted and all violations are
considered to be the fault of the callers.

4.1 Issues with overloading and type variables

Adding the expressibility of overloading and bounded quantifica-
tion to the contract language does not cause any considerable over-
head in the analysis. One might fear that expressibility adds com-
plexity, and this is of course true in the general case, but since the
contracts in this work are verified on a best-effort basis, where con-
tracts are only rejected if they are proved to be false, the extra effort
is reasonably small. However, there are some issues.

When faced with an overloaded contract, the type inference
gains most information when the domains of the different parts
of the contract are disjoint. However, if this is not the case, or if
the information about the applied arguments is not specific enough
to choose which overloaded part to consider, the union of the
overloaded parts that can match the arguments can be used. Note
that this corresponds to assigning a larger domain and range to
a success typing, so this does not break any assumptions. For
example, the overloaded contract in Figure 2 can be collapsed to
(number()) — number() if the analysis cannot find which of the
overloaded clauses is used at a certain call site.

Determining how to instantiate type variables in our type do-
main is problematic, and we do not claim to have found the best
solution. However, while any analysis that take the type variables
into account must take care not to surprise the user with unpre-
dicted results, it is clearly useful to have the possibility to express
parametric polymorphism in the contracts. For documentation pur-
poses if not for anything else.

The main problem with instantiation is that our type domain
includes constructor-free unions. Since types can be part of any
union (that can also include any singleton type) we have an infinite
number of types that any ERLANG term can belong to. For example,
the integer 42 belongs the type integer(), but also to the union
types integer()|atom(), number()|tuple() and 42| 77.

As an example of a polymorphic contract, consider the follow-
ing contract for the increment function in Figure 2.

-spec(inc/1 (XxX) ->X)
when is_subtype(X, number())).

In this case number() is an upper bound on X . Suppose there is a
call to the increment function with the constant 42. The operations
in the function is not closed on the singleton type 42, so this
instantiation cannot be made. This is common for the singleton
types, so one solution is to exclude the singleton types from the type
domain when instantiating type variables. Singleton integers are
widened to integer(), and singleton atoms are widened to atom().
Unions and structured types are also transformed by widening
the subparts that are singleton. For example, 1|23 is widened to
integer() and { foo} is widened to {atom()}.

This somewhat ad hoc solution removes a lot of the surprising
results, but it also makes the analysis lose precision. For example,
the built-in head function, hd/1, that returns the head of a list can
be described with the contract

-spec(hd/1 :: (([X,..]) -> X)).

When instantiated on a call site with the argument type [1/2,...],
the return becomes integer(). This is a loss of precision, but it
is still better than the success typing of this function which is

([any(), --.]) — any().

When there is more than one type variable in the arguments of
a contract, the variable is instantiated to the least upper bound of
the argument types at the call site. For example, if the contract for
some function foo/2 is

-spec(foo/2 (X, X) > XNn.

there is no bound on what types the variable X can represent. Es-
sentially, the contract gives us little more information than the suc-
cess typing (any(), any()) — any(), but if we view the contract as
pre- and postconditions, we can interpret the intention of the user
as “Whatever I give in the arguments should also be true for the
return of the function.”. Under this interpretation, if there is a call
site with the argument types integer() and atom(), the type vari-
able X is instantiated to integer()|atom(), which is also the return
type of the call site.

We are exploring different ways of limiting the types that a type
variable can be instantiated to, such as disallowing type unions
completely, only allow unions if they are declared as a named type,
or explicitly enumerating the types that a variable can be instanti-
ated to. In general, such limitations can go into the contracts as side
conditions in the same manner as the is_subtype constraint. We
choose not to elaborate further at this point, and leave this as future
work.

5. Two Examples

A commonly used function from the 1ists module in the standard
library is append/2, whose intended use is for list concatenation.
For efficiency reasons this function is actually implemented in C,
but we can consider that its implementation is as follows:

append([1, L) -> L;
append([H1|L1], L2) ->
[H1|append(L1,L2)].

The problem is that, with an implementation such as the one above,

the function’s inferred success typing is: ([any()], any()) — any().

Indeed, in a language like ERLANG and with a type system like the
one we are using (i.e., without intersection types), this success typ-
ing accurately captures the operational behavior of this function.
Notice that the call append([],3.14), however unintended, will
match the first clause and succeed with 3.14 as result. We can
make this function reflect its intended uses by defining a suitable
contract for it:

(CLT1, [T1) -> [T1)).

This would constraint the uses of this function and will flag calls
like append([],4.5) or even append([1,2],[34]) as violat-
ing the contract. Notice however, that the append ([1,2], [a,b])
call will not be flagged as violating the contract since it is actually
possible for T" to be the type expression atom() | integer().

Another commonly used function from the 1ists module is the
function al1/2. It is defined as follows:

all(Pred, [Hd|Taill) ->
case Pred(Hd) of
true -> all(Pred, Tail);
false -> false
end;
all(Pred, []) when is_function(Pred, 1) -> true.

-spec (append/2

The success typing which is inferred for this function is:
((any()) — any(), possibly improper list(any())) — bool()

At first sight this success typing might seem a bit counter-intuitive,
and possibly even incorrect. We will argue that from the point of
view of capturing all possible uses of this function, no matter how
unintended they might be, it is actually the best we can do.

First of all, we infer that the function can accept a possibly
improper list in its second argument because the function is short-
circuiting. Indeed, the call al1 (fun is_atom/1, [42]|gazonk])
will evaluate without any type clash and will return false. The
reason for the inferred type of the first argument is more subtle.
Note that the case expression in the first clause can succeed not
only when the Pred function returns the atoms true or false,
but also for a function that returns these two atoms and even more,
provided of course it happens to return true (and possibly false)
for the elements of the list in all’s second argument. Since there
is no upper limit in what the Pred function can return, the only
reasonable type that we can infer for its range is any().

Using a polymorphic contract like the one below we can restrict
its uses to those which programmers used to statically typed lan-
guages would find most natural for this function.

(((T) => bool(), [TI) -> bool())).
Of course, more liberal contracts are also possible. Two different
ones are shown below.

-spec(all/2 () => bool(), lst()) -> bool())) .
-spec(all/2 (1) => bool(),
possibly_improper 1ist (T)) => bool())) .

-spec(all/2

6. Related Work

WE ARE NOT (RE-)INVENTING THE WHEEL. WE ARE EXPLOR-
ING SOMETHING WHICH HAS ALSO BEEN EXPLORED IN OTHER
“SIMILAR” CONTEXTS IN THE HOPE THAT IT WILL PROVE IT-
SELF USEFUL IN ERLANG. BECAUSE IN ERLANG THE PROCESS
IS ALREADY SEMI-AUTOMATED, DUE TO THE EXISTENCE OF
THE TYPER TOOL WHICH AUTOMATICALLY ANNOTATES PRO-
GRAMS WITH TYPE INFORMATION, PERHAPS MORE SO?

THE FINAL VERSION OF THE PAPER WILL CONTAIN A RE-
LATED WORK SECTION WHERE WE WILL REVIEW AND CON-
TRAST OUR WORK WITH THE FOLLOWING:

e FROM THE FIELD OF FUNCTIONAL PROGRAMMING: WITH
SIMILAR PROPOSALS FOR LISP AND SCHEME AND IN PAR-
TICULAR WITH THE ANNOTATION AND CONTRACT LAN-
GUAGE OF THE DRSCHEME SYSTEM [2].

e FROM THE FIELD OF LOGIC PROGRAMMING: WITH THE TYPE
LANGUAGE OF MERCURY [9] AND THE ANNOTATION LAN-
GUAGE OF CIAO PROLOG [3]

e FROM ERLANG ITSELF: WITH DIALYZER [4], TYPER [5]
AND THE TYPE LANGUAGE CURRENTLY USED BY EDOC

PLUS ANYTHING ELSE BROUGHT TO OUR ATTENTION BY THE
REVIEWERS. SUGGESTIONS WELCOME!

7. Concluding Remarks and Future Work

We have described a language for specifying user-defined types in
ERLANG and for annotating functions with contracts containing
type information. These contracts document the intended uses of
functions, but they can also be combined with success typings
and help defect detection tools such as Dialyzer to detect type
clashes in ERLANG programs. We have presented some simple
examples of possible contracts for commonly used functions and
described issues related to annotating libraries with such contract
information.

The language we have described in this paper is already imple-
mented in the development version of Erlang/OTP R12. For its ac-
tual use, the next step is to annotate standard libraries with contract
information, a tedious and occasionally not totally straightforward
job. Doing so, might possibly reveal cases for which the contract
language is not expressive enough and needs to be extended, but

we strongly believe that the basic machinery is the one we have
described.

Eventually, it is up to the user community to decide whether
contracts containing type information is a good idea in languages
such as ERLANG or not. But we have good reasons to believe that
our proposal will not remain unexplored or just a paper design.

References

[1] R. Cartwright and M. Fagan. Soft typing. In Proceedings of
the SIGPLAN Conference on Programming Language Design and
Implementation, pages 278-292. ACM Press, 1991.

[2] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. DrScheme: A programming environment
for Scheme. Journal of Functional Programming, 12(2):159-182, Mar.
2002.

[3] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lépez-Garcia.
Integrated program debugging, verification, and optimization using
abstract interpretation (and the Ciao system preprocessor). Sci.
Comput. Programming, 58(1-2):115-140, 2005.

T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story. In C. Wei-
Ngan, editor, Programming Languages and Systems: Proceedings of
the Second Asian Symposium (APLAS’04), volume 3302 of LNCS,
pages 91-106. Springer, Nov. 2004.

T. Lindahl and K. Sagonas. Typer: a type annotator of erlang code.
In Proceedings of the 2005 ACM SIGPLAN Erlang Workshop, pages
17-25, New York, NY, USA, 2005. ACM Press.

T. Lindahl and K. Sagonas. Practical type inference based on success
typings. In Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, pages 167-178,
New York, NY, USA, 2006. ACM Press.

S. Marlow and P. Wadler. A practical subtyping system for Erlang.
In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, pages 136-149. ACM Press, June 1997.

K. Sagonas. Experience from developing the Dialyzer: A static analysis
tool detecting defects in Erlang applications. In ACM SIGPLAN
Workshop on the Evaluation of Defect Detection Tools (Bugs’05), June
2005.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of

Mercury, an efficient purely declarative logic programming language.
Journal of Logic Programming, 26(1-3):17-64, Oct./Dec. 1996.

[4

=

[5

—

[6

—_

[7

—

[8

—

[9

[t

