
Prepared exclusively for Correl Roush

ß Under Construction: The book you’re reading is still under
development. As part of our Beta book program, we’re releasing
this copy well before a normal book would be released. That
way you’re able to get this content a couple of months before
it’s available in finished form, and we’ll get feedback to make
the book even better. The idea is that everyone wins!

Be warned: The book has not had a full technical edit, so it will contain errors.
It has not been copyedited, so it will be full of typos, spelling mistakes, and the
occasional creative piece of grammar. And there’s been no effort spent doing
layout, so you’ll find bad page breaks, over-long code lines, incorrect hyphen-
ation, and all the other ugly things that you wouldn’t expect to see in a finished
book. It also doesn't have an index. We can’t be held liable if you use this book
to try to create a spiffy application and you somehow end up with a strangely
shaped farm implement instead. Despite all this, we think you’ll enjoy it!

Download Updates: Throughout this process you’ll be able to get updated
ebooks from your account at pragprog.com/my_account. When the book is com-
plete, you’ll get the final version (and subsequent updates) from the same ad-
dress.

Send us your feedback: In the meantime, we’d appreciate you sending us your
feedback on this book at pragprog.com/titles/jgotp/errata, or by using the links at
the bottom of each page.

Thank you for being part of the Pragmatic community!

Andy

Prepared exclusively for Correl Roush

http://pragprog.com/my_account
http://pragprog.com/titles/jgotp/errata

Designing Elixir Systems with OTP
Building Self-Healing, Massively Concurrent Programs

James Edward Gray, II
Bruce A. Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Prepared exclusively for Correl Roush

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-661-7
Book version: B1.0—April 17, 2019

Prepared exclusively for Correl Roush

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Change History v

Introduction vii

1. Build Your Project in Layers 1
We Must Reimagine Design Choices 1
Choose Your Layers 2
Begin with the Right Data Types 5
Build Your Functional Core 6
Establish Your Boundaries 8
Test Your Code 12
Plan Your Lifecycle 13
Invoke your Workers 15
Do Fun Things with Big, Loud Wildebeests 15

Part I — Do Fun Things

2. Know Your Elixir Datatypes 21
Primitive Types 22
Lists 23
Maps and Structs 26
Strings 29
Tuples 31
Functions As Data 32
When To Leave Elixir 33
Know Your Elixir Datatypes 34

3. Start With The Right Data Layer 37
Access Patterns Shape Data Structures 38
Immutability Drives Everything 41

Prepared exclusively for Correl Roush

Try It Out 44
Start With the Right Data 50

4. Build a Functional Core 53
Organize Core Functions by Purpose 54
Compose a Quiz From Functions 61
Build At a Single Level of Abstraction 64
Keep the Left Margin Skinny 68
Try Out the Core 70
Build Your Functional Core 72

5. Test Your Core 75
Simplify Tests with Common Setup Functions 77
Improve the ExUnit Infrastructure 78
Provide Test Data With Fixtures 80
Prime Tests With Named Setups 84
Make Tests Repeatable 88
Compose Within Tests 91
Take Tests Beyond the Elixir Base 94
Test Your Functional Core 97

Part II — with Big, Loud Wildebeests

6. Isolate Process Machinery in a Boundary 101
Maintain Composition Through Uncertainty 102
Build Your Optional Server 106
Wrap the Server in an API 116
Prefer Call Over Cast to Provide Back Pressure 125
Extend Your APIs Safely 128
Wrap Your Core in a Boundary API 130

7. Lifecycle 131

8. Workers 133
9. Test the Boundary 135
10. Put Them Together As Components 137

Bibliography 139

Contents • iv

Prepared exclusively for Correl Roush

Change History
The book you’re reading is in beta. This means that we update it frequently.
Here is the list of the major changes that have been made at each beta release
of the book, with the most recent change first.

Beta 1—April 17, 2019
• Initial release

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Introduction
In October 2018, we were gathered with some family and friends in a mock
Chattanooga train station working to solve a fictional puzzle so we could
escape. We had burned through most of our clock and were calling for our
first clue. We scrambled to take this last bit of information and translate it
to the various combination locks and levers that would eventually let us out
of the room. Eventually the host called through the intercom that we’d failed.
We’d run out of time.

Roughly two years before, we started working on an advanced book about
OTP. We knew that Elixir developers were starting to push the set of tools
beyond the basic libraries and books that were on the market at that time.
They wanted a way to express increasingly complex code in ways that would
scale and hold up to years of revision.

We set ourselves to this effort with a will and fell short. It seemed that we
would run out of time, or patience, or will. Some days we came up with out-
lines that looked like a watered down table of contents for better books.
Others we wrote chapters that had nuggets of wisdom presented awkwardly.
Sometimes life just got in the way. The train was all but dead and we hauled
it back to the station.

Luckily, not every project has a time limit. The last few months seem like
we’ve just been given a clue, the cheat codes that helped us start to pressurize
the boiler in this train to get the wheels turning again. These insights helped
us break through.

• We didn’t want to write strictly about OTP. Sometimes OTP is the wrong
thing to do.

• We didn’t want to write about simplicity. We wanted to write about
revealing complexity piece by piece in layers.

• We wanted to present material that developers could remember and take
with them.

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

With these ideas in mind, we rebooted the project. The boiler pressure built
enough that our wheels started to turn and we pulled out of the station, once
again.

Wildebeest Driven Design
James came up with a great way to generalize the layers for a typical OTP
application, which led to the sentence “Do fun things with big loud wildebeests”
to remember the layers: Data, functions, tests, boundaries, layers, workers.
We shared these ideas with some trusted advisors and they resonated
strongly. We began to experience an unfamiliar feeling of blessed momentum!

All at once, with that system of layering we had the overarching structure for
our table of contents. We could finally imagine the book that Elixir developers
have long desired. The system of layers gave us a framework for expressing
the deep wisdom we’ve collected and the simple layers let us express those
ideas in a way our readers could understand and digest piecemeal.

James picked the perfect project for the book and we could immediately
imagine what the layers in our software would look like and how to present
each piece to the user. As we used all of these layers together in the context
of a complex project, it felt right. We had discovered WDD, or Wildebeest
Driven Design. As we continue to write software, we can testify that the
approaches work.

We hope these layers have the same impact on your software that it has had
on our book. We hope they feel like cheat codes that completely unlock your
thought processes so you can escape some of the concurrency ceremony and
move on to the hard pieces of your problem.

Who Should Read This Book
Hopefully, you have a rough idea of the work we’ll be doing together. We’ll
examine design through layers.

In this book, we’re addressing intermediate and advanced programmers who
want a better understanding of how to design Elixir projects. We’ll offer advice
in this book that may conflict with concepts you’ve seen elsewhere, but that’s
ok. You can take what you like and leave the rest behind.

If you are an Elixir beginner, this book will be for you eventually, but not yet.
You should take advantage of one of the many excellent Elixir books and
courses available, including Programming Elixir ≥ 1.6 [Tho18] by Dave Thomas.

Introduction • viii

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

If you want to focus on programming user interfaces and want to skip the
heavy back-end designs, you’d be better off with Programming Phoenix ≥ 1.4
[TV18]. Similarly, if you’re concerned with pure database programming,
Programming Ecto [WM18] will be a better book for you.

Online Resources
You can get the code from the book page on the Pragmatic Bookshelf website.1

We’ll have more information about the code as we get further along in the
writing process.

We hope that when you find errors or suggestions that you will report them
on the Pragmatic Bookshelf website book page2 under the errata link.

If you like the book we hope you’ll take the time to let others know about it.
Reviews matter, and one tweet or post from you is worth ten of ours! We’re
both on twitter, and tweet regularly. Find James at @geg2 and Bruce at
@redrapids. You can also drop notes to @pragprog!

We’re excited to head down the tracks with you. The experience of shaping
this book together before it hits the general market can be quite rewarding.
We hope you enjoy it as much as we know we will.

Bruce Tate and James E Gray II

April 2019

1. https://pragprog.com/book/jgotp
2. https://pragprog.com/book/jgotp

report erratum • discuss

Online Resources • ix

Prepared exclusively for Correl Roush

https://pragprog.com/book/jgotp
https://pragprog.com/book/jgotp
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

CHAPTER 1

Build Your Project in Layers
Don’t let anyone tell you differently. Building great software is hard, and
Elixir’s not a silver bullet. Though it makes dealing with processes easier,
concurrent code will never be easy. If your checklist includes intimidating
scalability requirements, performance consistency under load, or highly
interactive experiences or the like, programming gets harder still. In this book,
we won’t shy away from these demands.

If you’re like us, you’ve found a valuable companion in Elixir, with some
characteristics you believe can help you with some of these challenges, even
if you don’t fully understand it. Perhaps Elixir is your first functional language,
as it is for many of us. You may need some guidance for how to choose your
data structures or organize your functions. Or, you might have found several
ways to deal with concurrency and need some advice on which approach to
use.

We can tell you definitively that you’re not alone and we’re here to help. We
won’t offer panaceas, or full solutions to toy problems that have general advice
about design. We will offer some mental models for how to deal with complex-
ity piece by piece.

With most any new endeavor, progress comes at a price. Our first payment
is a willingness to change.

We Must Reimagine Design Choices
We believe good software design is about building layers, so perhaps the most
important aspect of this book is helping good programmers understand where
layers should go and how they work. Some of the techniques that we used
when the internet was young are not the ones we’ll be using into the future,

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

but take heart. This author team doesn’t have all of the answers, but both of
us have a strong corpus to draw from.

Some of our inspiration comes from the past. Throughout this book, we’re
going to distill much of the conventional wisdom from functional programmers
and we’re not shy about crossing language boundaries to learn. We’re going
to draw on the expertise of Elixir programmers, including many of the people
who shaped the language as it was formed.

We’ll also draw inspiration from Erlang, Clojure and Elm for algorithms and
techniques to solve problems similar to the ones we’re facing as we determine
what the right set of layers should be. We’ll rely heavily on Erlang, especially
the OTP framework that helps manage concurrency state and lifecycle.

Since this book is about design and since Elixir heavily uses OTP, this book
must address how to construct layers around an OTP program. Let’s define
that term quickly with a brief generality. OTP is a library that uses processes
and layers to make it easy to build concurrent, self-healing software.
Throughout the book, we’ll deepen that understanding.

In this brief journey together, we will show you how to write effective Elixir
by showing you how to use layers to hide complex features until you need to
think about them. We’ll extend our layers to take advantage of OTP, offering
some intuition for how it works and some guidance for how to incorporate it
into your layered designs.

If you find some tools to improve that skill, even if you don’t use every tech-
nique in this book, you’ll be much better positioned to create good Elixir code
that takes full advantage of the wide variety of libraries and frameworks in
the Elixir ecosystem.

The first question you may be asking is which layers you should build. In the
sections that follow, we’ll offer some guidance to help you choose.

Choose Your Layers
The layers we will present to write a typical project will not be set in stone.
Instead, they are a rough scaffold, a framework for thinking about solutions
to common design problems. We’re not slaves to these systems but they help
to free us from dealing with mechanical details so that we can focus on solving
problems.

We recommend the software layers: data structures, a functional core, tests,
boundaries, lifecycle, and workers. Not every project will have all of these
layers, but some will. It’s your job as the author of a codebase to decide which

Chapter 1. Build Your Project in Layers • 2

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

layers are worth the price and which ones to eliminate. It’s a lot to remember,
so use this sentence as a mnemonic:

Do Fun Things with Big Loud Wildebeests.

The first letter in the capitalized words match the first letters in our layers:
data, functional core, tests, boundaries, lifecycles, workers. You can see how
they all fit together in the following figure.

API

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Do Fun Things with Big Loud Wildebeests

Loud: Lifecycle
(OTP supervisors)

In this chapter, we will explore each layer in detail. We’ll call each unit of
software you build that honors these concepts a component.

To help you understand what each of these layers do, we’re going to build
two components in this book. The first will be a trivial counter. We know you
understand how counters work, but building this component will help you
internalize the design framework we’ve established, and what each of the
layers means.

The next component, a project called Mastery. will be much more complex,
and will take the whole rest of the book. It will be a quiz, but not a typical
one. This quiz will tailor itself as the user answers questions. It’s purpose will
be to help you learn to use that design framework in context to build a project
with real complexity.

Let’s get started with that first component, the counter. Rather, let’s not get
started. It always pays to think first.

Think Before you Start
This isn’t as much a layer in our framework as a philosophy for coding. Most
programmers don’t think enough before opening the editor. It’s healthy to
start every problem with whatever tools help you think. It may just mean
propping your feet up on a desk; it may be spending a little bit of time with

report erratum • discuss

Choose Your Layers • 3

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

a whiteboard or even a pen and paper. Testing zealots like us believe bugs
are less expensive to fix before they reach the customer. We’ll take this idea
further. Bugs are cheapest to catch before you write your first line of code.

At this stage, you’re first goal is to understand how to break down the major
components in your system. Within the Elixir community, you won’t find any
single answer to how fine you should break down your components.

Here’s the thing. If you think of OTP as a way to encapsulate data, or even
objects, you’re going to get it wrong. Elixir processes work best when they
span a few modules that belong together. Breaking your processes up too
finely invites integrity problems the same way that global variables do.

We believe that whenever possible, concepts that belong together should be
packaged together as part of the same component. For example, we’d rather
wrap a process around a chess game as a standalone component than have
each piece in its own process, so we can enforce the integrity of the board at
the game level.

Our counter is a stand alone component that we’ll use to count things in
isolation. The data is an integer, does not need to persist through a failure
or restart. The counter has a two function API to increment the counter and
get the value. We only have a single component so we don’t have to divide
responsibilities.

We’ll make the critical assumption that persisting state is unimportant and
we don’t have to worry about guaranteed delivery of messages, even across
restarts, but our counter should track a value transiently, and that value
should be available to other processes. Such state is ephemeral. Freedom
from persistence allows us much more flexibility than we’d otherwise experi-
ence. Elixir is extremely good at managing ephemeral state such as counters
and caches. In later chapters, you’ll see a good way to add persistence to a
component as we deal with the second component.

Create a Mix Project
With those details firmly in place, we can create our software. You might have
noticed that until now, we’ve steadfastly avoided the word “application”.
There’s a reason for that decision. The term is overloaded. To any given Elixir
developer, an application might be the thing you:

• build with OTP
• create when you type mix new
• create when you type mix phx.new

Chapter 1. Build Your Project in Layers • 4

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

• deploy

And each of these, in some context, are right. We’re going to refrain from
using “application” in the context of the thing we’re creating with mix new. That
thing is a project. Let’s create one now.

Create a new project from your OS console. Type mix new counter and change
into the counter directory. We are finally ready to build our first layer.

Begin with the Right Data Types
The “data” layer has the simple data structures your functions will use. Just
as an artist needs to learn to use the colors on their palate, Elixir developers
need to learn the best ways to mix the data structures. Every programmer
making a transition to functional programming needs to understand how FP
impacts data design.

In this book, we won’t tell you what maps or lists are, but we will provide an
overview of what kinds of datatypes to choose for selected tasks and how you
can weave them together into a good functional data strategy. We’ll give you
some dos and don’ts for the most common data types, and provide you some
tips for choosing good ways to express the concepts in your program as data.

Our counter’s data type couldn’t be simpler. It’s an integer. Normally, you’ll
spend much more time thinking about your data than we do here. You’ll
likely begin to code up the major entities in your system. We don’t need to
do that for our counter because Elixir already has the integer, and it already
supports the kinds of things we’ll do to it.

As this book grows, we’ll spend a good amount of time working through data
structures. Our focus will be primarily in three areas.

• We’ll look at what’s idiomatic and efficient in Elixir.
• We’ll consider how our structures will influence the designs of our func-

tions.
• We’ll look at some of the tradeoffs around cohesion, meaning how closely

we group related bits of data.

When the data structure is right, the functions holding the algorithms that
do things can seem to write themselves. Get them wrong and it doesn’t really
matter how good a programmer you are; your functions will feel clumsy and
awkward.

Since we don’t have any custom data structures, we can move on. Let’s write
some functions.

report erratum • discuss

Begin with the Right Data Types • 5

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Build Your Functional Core
Now we’ll finally start coding. Our functional core is what some programmers
call the business logic. This inner layer does not care about any of the
machinery related to processes; it does not try to preserve state; it has no
side effects, or as few as we can manage. It is made up of functions.

Our goal is to deal with complexity in isolation. Make no mistake, processes
and side effects add complexity. Building our core allows us to isolate the
inherent complexity of our domain from the complexity of the machinery we
need to manage processes, handle side effects and the like.

In a Chess game, this logic would have functions that take a board, move an
individual piece, and return an updated board. It may also have a function
to take a board with all of its pieces and calculate the relative strength of a
position. In a calculator, the core would handle all of the numeric operators
for the calculator.

Let’s look at a specific example, our counter. Our business logic will count
numbers. This code should be as side effect free as we can make it. It should
observe two rules:

1. It must not have side effects, meaning it should not alter the state of its
environment in any way.

2. A function invoked with with the same inputs will always return the same
outputs.

Our counter’s business logic simply increments a value. Let’s write that inner
functional core now. Crack open lib/counter/core.ex and make it look like this:

GettingStarted/counter/lib/counter/core.ex
defmodule Counter.Core do

def inc(value) do
value + 1

end
end

Documentation and Typespecs

Before we dive into code, let’s say a brief word about documentation. We’ll mainly
strip out the module docs and doc tests when we initially work on a project because
we want to keep a tight feedback loop. A book is a poor place for comments and
documentation fixtures in code because prose serves that role. In practice, when code
reaches a fairly mature point, we’ll add typespecs and module docs, and possibly
even doc tests if they make sense. We also made the tough decision to remove type-

Chapter 1. Build Your Project in Layers • 6

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter/core.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

specs because books are about tradeoffs between space and concept. We believe the
story arc flows better without them.

All of this is to say documentation and typespecs are important, but do what works
for you. If you want to read more, check out Adopting Elixir [Tat18].

Though you can’t yet behold the power of the fully operational counter, the
business logic makes it easy to track exactly what is happening. Recall that
our public API had two functions but our process that manages state doesn’t
belong here so we need only the inc function. Let’s take it for a quick spin.
Open it with iex -S mix, like this:

iex(1)> Counter.Core.inc(1)
2

That’s all our functional core needs, just the functions that manipulate our
data structure. If you want to see this code in the context of a program, spin
up the following program:

defmodule Clock do
def start(f) do

run(f, 0)
end

def run(your_hearts_desire, count) do
your_hearts_desire.(count)
new_count = Counter.Core.inc(count)
:timer.sleep(1000)
run(your_hearts_desire, new_count)

end
end

If you want to run this much, open up a new IEx shell because we’ll have to
kill the following one after running the timer since it loops forever. Then pick
what you want to do every cycle by passing which ever function your heart
desires into run, like this:

iex> Clock.start(fn(tick) -> IO.puts "The clock is ticking with #{tick}" end)
The clock is ticking with 1
The clock is ticking with 2
The clock is ticking with 3
...

And you’ll have to kill that session with hot fire because it loops forever. Still,
you can see the way we build our inner layer into a functional core.

report erratum • discuss

Build Your Functional Core • 7

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

We’ve addressed the data and functional core in “Do fun things”. We will come
back to tests. For now, we understand that our counter must be more than
a simple library. Counters exist to count and that means saving state. It’s
time to address the process machinery, the “big, loud wildebeests” part of
our sentence. We’ll start with a boundary layer.

Establish Your Boundaries
The boundary layer deals with side effects and state. This layer is where you’ll
deal with processes, and where you’ll present your API to the outside world.
In Elixir, that means OTP.

We want to dispel the notion that each time you type mix new, you must reach
for a GenServer, the fundamental abstraction in OTP. The first way to win
the boundary game is not to play. Some projects don’t need boundary layers
at all. If you’re building a library of functions that doesn’t need processes,
don’t add them. Your code is a library and can present an API that serves
your purposes just fine. There’s no boundary; no GenServer; no lifecycle.
Your library will serve other software systems that provide this infrastructure,
but it need not introduce those concepts.

With that disclaimer out of the way, if you’re dealing with state in Elixir, you’ll
often use processes in conjunction with recursion and message passing, and
you’ll usually use OTP GenServers to provide that concept.

It’s time to be a little more precise with our definition of boundary. A boundary
layer is:

• the machinery of processes, message passing and recursion that form
the heart of concurrency in Elixir systems

• an API of plain functions that hides that machinery from clients.

We typically call the collective machinery a server, the code that calls that
server an API and the code that calls that API a client. In OTP’s case, the
server in that boundary layer is called a GenServer, which is an abbreviation
for Generic Server.

In this section, rather than using OTP, we’ll build similar concepts from
scratch. We do this to demystify OTP and show you exactly what’s happening
under the hood, so when it’s time to build your boundary layer with OTP,
you’ll understand exactly what’s happening.

Now we’ll code a process that looks a little like the clock in the previous
example. Our new counter will have two functions: one to tick the counter

Chapter 1. Build Your Project in Layers • 8

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

and another to get the current count. It’s surprisingly easy. Crack open
lib/counter/lib/counter/server.ex and key this in:

GettingStarted/counter/lib/counter/server.ex
defmodule Counter.Server do

def run(count) do
new_count = listen(count)
run(new_count)

end

We define a module called server. Our server is just a process that exposes a
service layer. Don’t get hung up in today’s baggage about the name. We’re
calling it a server to mirror Elixir’s terminology, and it means a process that
provides a service. We save state by running a loop, with each iteration of the
loop containing the new state. In the midst of our loop, we invite users to
send a message to our server, a message which may change the state.

Now, to code the listen function, the heart of our loop:

GettingStarted/counter/lib/counter/server.ex
def listen(count) do

receive do
{:tick, _pid} ->

Counter.Core.inc(count)
{:state, pid} ->

send(pid, {:count, count})
count

end
end

end

Here’s the magic. The receive message allows us to interact with the server at
each iteration of the loop. The tick message uses the functional core to calculate
the new state. The state message simply sends a message back to the server.
All that remains is to wrap all of these features up into a friendly API, which
we’ll put in lib/counter.ex, like this:

GettingStarted/counter/lib/counter.ex
defmodule Counter do

def start(initial_count) do
spawn(fn() -> Counter.Server.run(initial_count) end)

end

def tick(pid) do
send pid, {:tick, self()}

end

def state(pid) do
send pid, {:state, self()}
receive do

report erratum • discuss

Establish Your Boundaries • 9

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter/server.ex
http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter/server.ex
http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

{:count, value} -> value
end

end
end

Our API interacts with our process with spawn, send and receive, just as you’d
expect. We track each counter process with a pid, which we keep as we spawn
a new process. The tick and state functions are ridiculously simple. They send
messages to the server, and retrieve a response if we expect one back.

And that’s it. We can interact with our counter. Either recompile or restart
IEx with iex -S mix, and you’re ready to play:

iex(1)> counter_pid = Counter.start(0)
#PID<0.112.0>
er.Api.state(counter_pid)
0
iex(3)> Counter.tick(counter_pid)
{:tick, #PID<0.112.0>}
iex(4)> Counter.state(counter_pid)
1
iex(5)> Counter.state(counter_pid)
1
iex(6)> Counter.tick(counter_pid)
{:tick, #PID<0.112.0>}
iex(7)> Counter.tick(counter_pid)
{:tick, #PID<0.112.0>}
iex(8)> Counter.state(counter_pid)
3

The counter_pid points to a process, and that process is our homemade
GenServer. We can interact with it directly by sending it messages with our
API layer. Together those two concepts make up our boundary layer. Notice
that the sends and receives are hidden from us. At this level of abstraction,
we just know that we have an API endpoint that counts.

OTP and State
We built some boilerplate to use recursion and message passing to manage
state. The OTP GenServer does precisely that. It creates a process and loops
over some state. Then other processes can modify that state by sending the
GenServer messages.

In Elixir, OTP uses the magic of macros to build all of this, the recursive loop,
the message passing and more. It hides many of the messy details from you.
It simply gives the user control of the receive_message function by calling func-
tions called callbacks in your code. We’ll get into the details, but for now,
understand that OTP is an Elixir feature that uses concurrency, recursion

Chapter 1. Build Your Project in Layers • 10

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

and process primitives to track processes and manage state. It also has fea-
tures we’ll need but have not yet discussed to handle circumstances like
graceful startup and shutdown.

Few creatures are as mysterious or misunderstood as the OTP server. Consider
the name. Ask a grizzled Elixir or Erlang veteran what OTP means and you’ll
get a story that goes something like this:

Long ago, the acronym stood for “Open Telephone Platform”, but it doesn’t have
anything to do with telephony. So now, it doesn’t stand for anything.

Or check out the anchor concept, the GenServer. Forget that gen is abbrevi-
ated. The server word is confusing enough as it is because these GenServers
are abstractions that usually don’t have anything to do with network commu-
nication at all.

It’s no wonder that this concept is poorly understood by the bulk of program-
mers that enter the Elixir ecosystem, even though the concepts underneath
the architecture are stunningly simple. Remember the loop and the counter.
That’s the heart of OTP.

Since variables in functional languages are immutable, we can’t simply change
them when we want to change state. Instead, OTP uses function arguments
to represent our state, and have a recursive loop just calling itself with a new
state as shown in the following diagram. All our counter needs to do is spec-
ify a call message to our process, which increments the counter and specifies
the new value for the state.

def run(state) do
…
new_state = listen(state)
…
run(new_state)
end

send(
pid,
new_state
)

Keep Your Functional Core Separate
A surprising number of Elixir developers get tripped up at this point. It’s
tempting to wrap up the details of your business logic in the state manage-
ment. Doing so conflates two concerns: organization and concurrency. We’ll

report erratum • discuss

Establish Your Boundaries • 11

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

use modules not processes to organize our code so basic strategy changes
won’t necessarily lead to changing your core business logic. We’ll use an API
that hides messaging. If we need to, we can then wrap that core in a process
layer to concurrently share our data.

If we wanted to, we could also add some code to do tests, manage the counter’s
lifecycle and perhaps pool resources. These bits of function and configuration
would be part of a boundary, but our counter does not really need them. All
of these layers are working together to form a single working unit, and that’s
the API we’ll expose to the rest of the world.

As we dive in to more sophisticated examples, we’ll tap the depths of functional
composition as well. We’ll show you the nuances of coding and testing these
kinds of solutions, designing your functions to be friendly to Elixir’s main
units of composition, pipelines and with/1. For now, we have a promising start
so it’s time to move on.

Test Your Code
One of the benefits of structuring your project into core and boundary layers
is that our coding organization will simplify testing. With a basic API layer
that does most of the business logic, you’ll be able to write tests to thoroughly
exercise your business code should you choose to do so. You’ll be able to
represent your testing concepts in any way you choose, and we’ll discuss a
few strategies as the book evolves.

We will focus on unit testing here with ExUnit, but the same principles apply
to property based testing, a philosophy that allows you to specify properties
about your code so that the computer can generate many different tests. For
now, let’s write a simple test for our counter. We’ll start with the business
logic.

Since we have only a single function, testing it should go quickly. Open up
test/counter_test.exs and make it look like this:

GettingStarted/counter/test/counter_test.exs
defmodule CounterTest do

use ExUnit.Case
test "inc increments an integer value" do

assert Counter.Core.inc(1) == 2
end

end

We dropped the doctest that appears by default for now, but we could add it
again later after our code stabilizes, should we choose to do so. We won’t talk
too much about testing philosophies yet. We’ll just mention that testing core

Chapter 1. Build Your Project in Layers • 12

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/test/counter_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

code is easier and more predictable, so it often receives the bulk of the test
focus.

Testing the boundary layer is important, but it’s also pretty simple because
we’ll use the outer API to do so. That test looks like this:

GettingStarted/counter/test/counter_api_test.exs
defmodule CounterApiTest do

use ExUnit.Case

test "use counter through API" do
pid = Counter.start(0)
assert Counter.state(pid) == 0

Counter.tick(pid)
Counter.tick(pid)

count = Counter.state(pid)
assert count == 2

end
end

Notice that we’re testing by interacting with our servers via an API, the way
our client users would. Sometimes, testing using only this API layer is the
right thing to do.

We’re just getting started and you can already tell that testing the functional
core will be easy because we don’t have to deal with external conditions. Since
that’s where most of the logic should be, it will give you a good opportunity
to do as much work as possible before you start integrating components.

That’s a pretty good start on the testing layer, but you can learn more, starting
with the ExUnit documentation1. Testing your components will often mean
using techniques to isolate elements of your code, and clean out messages
in your queue.

Now that we’ve dealt with data, functions, tests, and boundaries, it’s time to
focus on lifecycle.

Plan Your Lifecycle
We’re going to break with tradition and use the word lifecycle instead of
supervisor. Most Elixir developers think of Elixir’s supervision as a way to
handle failure, and it’s easy to see why. Some Erlang deployments using OTP
have been up for years at a time. If you’ve been telling yourself that “supervi-
sors are about failure,” we want to help you reshape that idea.

1. https://hexdocs.pm/ex_unit/ExUnit.html

report erratum • discuss

Plan Your Lifecycle • 13

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/test/counter_api_test.exs
https://hexdocs.pm/ex_unit/ExUnit.html
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

To illustrate, let’s look at some holes in our Counter component. Look at the
start function in our counter again.

GettingStarted/counter/lib/counter.ex
defmodule Counter do

def start(initial_count) do
spawn(fn() -> Counter.Server.run(initial_count) end)

end

def tick(pid) do
send pid, {:tick, self()}

end

def state(pid) do
send pid, {:state, self()}
receive do

{:count, value} -> value
end

end
end

This code has a problem. If the code crashes at any time, the counter will not
recover and components using it will likely fail too. If we were to continue to
build out our own personal OTP, we would have to start a linked process.
Then we’d wait for a DOWN or EXIT message and restart the process with a
clean, good state.

Supervisors are about starting and stopping cleanly, whether you have a
single server or a bunch of them. Once you can start cleanly and detect failure,
you can get failover almost for free. When a customer support person says
“Did you try turning it off and on again?”, they are using lifecycle to recover
from failure, whether you’re working with a TV or a desktop computer program.
They are making a good bet that shutting things down cleanly and starting
with a known good state is a powerful way to heal broken things.

Here, then, is the premise of the whole supervision strategy underneath Elixir.
Get the lifecycle right and you have a very good chance to get failure recovery
right as well.

We’ll look at our lifecycle in exactly these terms in the (as yet) unwritten
Chapter 7, Lifecycle, . We’ll rely on OTP to do the heavy lifting. We’ll define
how to start things and stop them correctly. Whether you’re bringing your
system up after a deploy or after a failure doesn’t really matter.

Elixir will give us the tools to handle complexity, including a strategy and
ordering for starting your code, shutting things down correctly, and, yes,
handling failure. Our simple counter has a simple lifecycle, a broken one.

Chapter 1. Build Your Project in Layers • 14

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Failure will result in the failure of our counter, and possibly failure of the
systems that rely on it. When we build our next component, one based on
OTP, we’ll fix those limitations.

Here’s the point to the lifecycle layer. One of the core ideas in Elixir that
passed straight down from Erlang is that lifecycle is a fundamental principle
of design.

It’s finally time to move on to the next layer.

Invoke your Workers
The workers are the different processes in your component. Generally, you’ll
start with a flat design having a single worker and decide where you need to
be more sophisticated. As your design evolves you will possibly see places
that you need to add workers, for cleaning up lifecycles or for concurrently
dividing work. Connection pools are workers; tasks and agents can be as well.

Believe it or not, our Counter component is not the simplest possible. We
could have a library with a counter API but no state at all. That program
would not have any workers. Our counter has a single worker, one we use to
encapsulate state with OTP. Still, we don’t have to yet consider how to effi-
ciently partition work, but Elixir will give us some of the best tools in the
world for dealing with these kinds of issues.

When it’s time, we’ll have several options to summon workers, from unsuper-
vised processes and simple tasks on the simple end of the spectrum to pro-
cesses spawned from dynamic supervisors on the other. We also have to
consider how to partition workers. Sometimes we’ll want to simply start a
process per user such as web requests, and other times we’ll have a consistent
pool of processes to serve requests such as a database connection pool.

As you can imagine, this section is closely related to the last one. Once you
introduce a process, you must also consider its lifecycle. We considered
grouping them together, but we view supervision as primarily a lifecycle dis-
cussion and process control as a process organization discussion.

There you have it. Our counter is done and you’ve seen all of our layers. Let’s
wrap up, and then we’ll be ready to introduce the layers step by step.

Do Fun Things with Big, Loud Wildebeests
We’ve addressed all of the major concepts in our mental framework. You can
remember them all with the sentence above. The sentence is a mental
mnemonic for data, functions, tests, boundaries, lifecycle and workers.

report erratum • discuss

Invoke your Workers • 15

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Look. We know not every program needs every one of these layers. For
example, if you just need a couple of temperature functions and you try to
create all of these layers, your project is going to stink. Not all components
need all of these layers, but if you teach yourself to think in these terms,
you’ll understand exactly how to think about Elixir’s development.

Elixir is probably different from languages you’ve used before. It’s functional,
with great language features to support concurrency, and great abstractions
for dealing with both lifecycle and state. All of that power across so many
dimensions comes with risk of building so much complexity that you can’t
manage it all. In this chapter, we introduced principles for thinking about
development to allow you to introduce features and abstractions in layers,
so you don’t have to think about too much at any given time.

Data, Functions, Tests
Remember these with “Do Fun Things.”

Our first three steps relate to the internal building blocks of your project.
They are datatypes, functions, and tests. We construct the datatypes that
will later guide the structure of our component and the interactions between
our functions. We divide our functions along the obvious lines of purpose,
but we don’t stop there. We also separate our core from our boundary layers.
Finally, we use tests to verify what we’ve done. Our test layers use conventional
techniques to test our core, boundary, supervision and workers.

Boundaries, Lifecycles, Workers
Remember these with “Big, Loud Wildebeests”.

Our next three steps relate to how the components of your system work
together. We begin with the important boundaries within your solution. We
built this layer into our counter from scratch to show you how OTP works
underneath. Getting these interfaces right is the secret to dealing with only
small pieces of complexity at a time. The boundary API for our counter was
clean, with only very small hints to the implementation underneath.

We use the term lifecycle rather than failover because you must get lifecycles
right to build in failover, deployments, startup and clean shutdown. Our
counter built only a broken version of lifecycle but we’ll show how to do the
same with OTP as the book progresses.

Finally, we talked about dividing our work. Our counter had a single process
so we didn’t need to do more, though we did point out some of the other fea-

Chapter 1. Build Your Project in Layers • 16

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

tures in your tool box. Elixir and its libraries provides tasks, agents, worker
pools and the like.

With the groundwork behind us, we can dive into the first step in the next
chapter! Turn the page and we’ll dig deeply into datatypes.

report erratum • discuss

Do Fun Things with Big, Loud Wildebeests • 17

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Part I

Do Fun Things

In this part of the book, we’ll look at the first half
of the sentence "Do Fun Things with Big, Loud
Wildebeests". Data, functions and tests are the
layers that focus on the parts of your program that
don’t need any supervision, OTP, or any other pro-
cess machinery.

Prepared exclusively for Correl Roush

CHAPTER 2

Know Your Elixir Datatypes
Since our book is about design, it’s about layers, and all other layers depend
on the data layer. The next two chapters will focus on the “D” for “Data” in
the sentence “Do fun things with big loud wildebeests.” In this chapter, we’ll
look at Elixir’s implementation of the foundational datatypes, and in the next
chapter you’ll see how to use them as building blocks in the data structures
that will form your data layer.

You may be primed to “get to the good stuff”, the functions or the OTP. Give
us a sentence or two to talk you out of that mindset.

In Elixir, the data is the good stuff. If you have worked with functional lan-
guages before, you know that they work differently under the hood than what
you’d find in other languages. Those who love programming contests or ana-
lyzing algorithms know that your data structures drive the shape of your
design. If you want to get the most out of this language, you need to know
the best Elixir datatype to employ in each situation— which structures are
the fastest to copy, and which ones allow the smoothest updates. You need
to understand how functional programs will impact your choices and why
certain structures most elegantly represent the problems you’re likely to
encounter.

In that spirit, in this chapter, we’ll tell you more than what a datatype does.
We’ll give you the tradeoffs so that if you’re building a structure that needs
to be updated often, you can choose between maps, lists and tuples. It’s a
short chapter, but a tough one. Come with focus. It’s going to be fun.

Not all languages are alike, but languages in different families often have
similar characteristics. Functional languages like Elixir tend to support the
same kinds of datatypes. Functional lists are almost always linked lists
because of the ease of traversing them with functions and the required

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

internal implementation for efficiency. Functional languages generally support
fixed length lists like Elixir’s tuples. Elixir also supports maps and structs
for dealing with key-value pairs, strings and charlists for dealing with text,
and bitstrings for dealing with bitwise data, as well as some other complex
types and primitive ones.

API

Do: Elixir Datatypes

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Loud: Lifecycle
(OTP supervisors)

Atoms

Chars Booleans

Functions Integers Floats

Numerics

Tuples

Lists Dicts

BinariesStrings

Charlists

Structs

Maps

There’s a lot of ground to cover, including the datatypes in the previous figure.
Let’s start with the most simple building blocks, our primitive types.

Primitive Types
Elixir supports a short list of primitive types, including booleans, floats,
integers, atoms and references. We don’t have much guidance for primitive
types since for the most part, they behave much like they do in other lan-
guages. We do have a couple of thoughts though.

Numbers
Elixir numbers are integers and floats. Remember that floats are estimates.1

Consider this example:

iex(1)> 0.1 + 0.2
0.30000000000000004

1. https://floating-point-gui.de/

Chapter 2. Know Your Elixir Datatypes • 22

report erratum • discussPrepared exclusively for Correl Roush

https://floating-point-gui.de/
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Therefore, unless you’re in a position to profit illegally, prefer integers or
decimals over floats when you can. Here are a few places that strategy might
make, er, sense:

• If you have a choice, store money in cents.
• Use div() and rem() to get integer division rather than /.
• make_ref() is a function that returns a reference, an Elixir type that is typi-

cally used as a globally unique identifier. These references are generally
better than numbers for identifying things.

With numbers behind us, let’s move on to atoms, the next primitive datatype.

Atoms
Since languages such as Java don’t support atoms, it’s probably worth talking
through where to use them versus strings. In general, atoms are for naming
concepts. The keys in a struct, the colors your API supports, or the mix
environment are examples. Atoms are quite efficient, taking a single byte,
plus a lookup table.

Atoms are different than strings internally. Two different strings in Elixir with
the same contents may or may not be the same, but two different atoms are
the same object. This concept is the atom’s greatest strength and its greatest
weakness.

The strength is the representation of concise concepts efficiently. One atom
is one integer. That efficiency carries a potential trap, though. If you choose
to use atoms for user data or generated concepts, the table that maps atoms
onto integers will keep growing until you run out of memory. Exhausting the
atom table will crash the BEAM, the virtual machine that runs all Elixir
applications. Therefore, it’s important to use atoms only for things with a
finite set of possible values, even a relatively small set of values.

Lists
One of the most important data structures in Elixir is the list. If you’re
thinking about skipping this section because lists are arrays, please stop and
read on. In Elixir, lists are singly linked, meaning that each node of a list
points to the next node. That’s extremely different than arrays. Arrays make
random access cheap, but traversing lists takes longer.

Here’s the main point. In Elixir, a list with n elements is actually n different
lists. Said another way, you can accurately represent [1, 2, 3] with a list con-
struction operator, called cons cells, like this:

report erratum • discuss

Lists • 23

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

[1 |
[2 |

[3 | []]]]

We have four different lists. Each list starts with an open bracket and any
code can bind to any one of those individual list. Each | operator will create
a brand new list, leaving the tail intact. Depending on how you use these
lists, this construction actually comes into play as you navigate your various
access strategies and modifications. Let’s see why.

Order Of

As we discuss the performance of algorithms, let’s take a brief moment to describe a
key indicator of performance, order-of, sometimes called Big O. It’s a brief rough
description of the efficiency of an algorithm. If something is O(1) for a list, that means
it has one step regardless of the size of the list. (Elixir’s hd function is O(1).) If a
function is O(n) for a list n elements long, that means the algorithm has n steps. It
also means that some algorithms grow very quickly or slowly with the number of
elements in a list. The efficiency of algorithms, then, follows the rules of math. From
fastest to slowest, we’ll see algorithms with O(1), O(log(n)) and O(n).

Random Access in Lists
Lists are built head-first as you’ll see in the following image. Accessing them
by the head is extremely efficient. Pattern matching on the head is O(1).
Random access is far less so. To accessing the third element of a list you need
to access the first two. That kind of expense can add up quickly if you’re
working with recursion and long lists.

Updating Lists
Updating lists has similar characteristics, but also some surprising efficiencies.
Adding an element to the head is O(1). Elixir doesn’t need to copy anything,
it just makes a new head and points it at the existing list you’re adding to.
This may be surprising to you. For example, changing the third element of a
list is more efficient than you might expect, whether you’re measuring mem-
ory or time. Let’s say you want to add an item to a list, like this:

Chapter 2. Know Your Elixir Datatypes • 24

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
iex> replaced = List.replace_at(list, 2, 0)
[1, 2, 0, 4, 5]

Each list in Elixir is a head pointed to another list, so [1, 2, 3, 4, 5] is actually
six different lists. One of those is [4, 5]. The replace_at/3 function must discard
the first half of the list, but it’s not a complete replacement.

The following figure shows what’s happening. We can actually leave the sublist
- 4 - 5 alone, since it’s at the tail and can serve both lists in memory. We need
only copy the first two elements of the list.

That means though replacements are more expensive in functional languages
than their imperative counterparts, the story is not as bad as it otherwise
might be. You do need to be careful, though. When accessing long lists, the
head is far better than the tail, and using algorithms that avoid copying
altogether are better than algorithms that don’t.

Elixir is Lazy When You Need It to Be
Though we don’t talk much about it, Streams provide some wonderful prop-
erties because Elixir is a lazy language. Lazy functional languages do exactly
what you think. They delay execution of a sequence until the values are
actually needed. The Stream module is the implementation of Elixir’s laziness.

report erratum • discuss

Lists • 25

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

It’s full of functions that don’t compute values until they are needed. Elixir’s
streams let you deal with large blocks of data, infinite sequences and avoid
unnecessary computation.

When you’re dealing with very large datasets, data of indeterminate size, or
data from external sources, you’ll want to use streams. If you want to delay
execution for computed lists, you’ll also be using a stream.

We’ve taken an initial look at lists and streams. Next is one of Elixir’s most
recent additions, the Map.

Maps and Structs
The map has rapidly become the go-to data structure for Elixir programmers.
For the purposes of this section, we’re going to treat maps and structs as
basically the same thing. In IEx, you can see that a struct is actually imple-
mented as a map. Let’s take a peek under the hood.

iex(1)> defmodule User do
...(1)> defstruct [:name, :email]
...(1)> end
{:module, User, ...}
iex(2)> map = %User{}
%User{email: nil, name: nil}
iex(3)> is_map(map)
true
iex(4)> map.__STRUCT__
** (KeyError) key :__STRUCT__ not found in: %User{email: nil, name: nil}

iex(4)> map.__struct__
User

So a User is actually a map with a __struct__ field. Let’s look at the functions User
supports. In IEx, type “User.” and then type tab, twice.

iex(5)> User.__struct__
__struct__/0 __struct__/1
iex(6)> User.__struct__
%User{age: nil, name: nil}
iex(7)> User.__struct__ name: "James"
%User{age: nil, name: "James"}

The defstruct macro adds the __struct__ function to User with two arities. The
zero arity function creates a default struct and the second takes a list of key-
value pairs.

and a predetermined list of attributes, :name and :email. One capability of structs
that’s often missed is the @enforce_keys module attribute. You can use it to

Chapter 2. Know Your Elixir Datatypes • 26

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

force the specification of one or more fields when creating a new struct, like
this:

iex(1)> defmodule User do
...(1)> @enforce_keys [:name]
...(1)> defstruct [:name, :age]
...(1)> end
{:module, User,..., %User{age: nil, name: nil}}
iex(2)> %User{age: 25}
** (ArgumentError) the following keys must also be given

when building struct User: [:name]
expanding struct: User.__struct__/1
iex:2: (file)

We specify a key to enforce, and then try to create a struct without it. We get
an exception. That’s a handy trick to make sure default values don’t slip by
and cause data integrity problems within your codebase. Even with this extra
enforcement, when you use a struct you’re dealing with a Map. The character-
istics of maps and structs are the same because the implementation is the
same. Structs simply provide validation of the fields when you need it.

While random access in lists is quite slow, random access in maps is O(log
n), significantly faster than O(n) for lists. Updating also is O(log n). Whenever
possible, any data that you’ll heavily edit should be in a map, and data with
unique values must be in a map. Maps also work with core Elixir concepts
very well, especially pattern matching. Let’s see how.

Pattern Matching
Two of the most iconic parts of Elixir, the map data type and pattern matching,
are even stronger in combination. The Elixir community is full of developers
who have made the trek from object oriented programming. Most of them at
one time or another try to find a way to replicate inheritance, a way to share
behavior across parts of a program. What they are really looking for is poly-
morphism or a way to write behaviors that work differently for the same data
structure. Elixir can simulate polymorphism by explicitly matching map types
with pattern matching.

Let’s say you have a struct called Animal, like this:

defmodule Animal do
defstruct type: "", legs: 4

end

If you wanted to change the implementation of speak based on the type of the
animal, it’s easy:

def speak(%Animal{type: "dog"}), do: "Woof"

report erratum • discuss

Maps and Structs • 27

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

def speak(%Animal{type: "cat"}), do: "Meow"

You can also use this technique to delegate speaking to another module
altogether.

The difference between this approach and OOP’s approach is that you can
match on two dimensions at once, say animal.type and animal.size should you
need to do so, like this:

def speak(%Animal{ type: "dog", size: _}), do: "Woof"
def speak(%Animal{ type: "cat", size: "small"}), do: "Meow"
def speak(%Animal{ type: "cat", size: "large"}), do: "Roar!!!"

Inheritance limits extension to a single dimension. Often, you may need to be
able to invoke logic across more than one dimension. Even if you have thou-
sands of clauses, pattern matching used in this way is fast. Matching a map
or struct is O(log n).

Another nice feature of pattern matching is quick validation. Say your code
expects maps to have a status code set, and if that code is missing, something
is broken. If so, you can fail quickly, in the manner of your choosing:

def(%{status: status}=thing), do: process(thing)
def(_thing_without_status), do: raise "boom"

This strategy allows code that fails quickly and explicitly. Those are the
characteristics you want.

We’ve extolled the virtues of maps, but languages all are opinionated, temper-
amental beasts. In any language, datatypes work best when they are matched
to their intended use. The following list contains some traps you’ll find as you
dive into maps.

Map Traps
These are some of the traps you might fall into if you’re not careful. Don’t let
the fact that IEx sorts small maps in the console for convenience trick you.
You cannot count on this ordering! If you need to enforce order, prefer lists.

Keyword lists were the maps in Elixir before we had true maps. They are liter-
ally lists of two-tuples, each with an atom key and any type for a value. They
make better function options than maps because they allow dupes and support
some useful syntactic sugar. For example, if the last argument in a function
is a keyword list, you can omit the surrounding [], such as Elixir’s short-form
functions.

Chapter 2. Know Your Elixir Datatypes • 28

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

When you find yourself working with keys and ignoring the values, switch to
MapSet. The MapSet is a collection of values of any type that supports ==. They
enforce uniqueness and provide a full set of functions for set math. Often,
Elixir developers will use maps to enforce uniqueness for things like set math.
MapSets are optimized for set math and maps are not. Finally, if you know
the keys in advance, you may want to upgrade to a struct. In this book, we’ll
use structs primarily for internal interfaces, except when we’re building com-
mon infrastructure.

We’ve just looked at maps and structs. Next are a couple of data structures
for dealing with text, charlists and binaries.

Strings
You’ve already seen one of our suggestions, to prefer strings for user defined
text and atoms for naming concepts in code. In this section, we’re going to
dive a little deeper. Elixir’s strings have a slightly different set of characteristics
from maps or lists, and you should know about those subtle differences. Let’s
talk a little bit about these concepts.

Elixir has two different kinds of strings. The first is the charlist, and it’s just
a list of characters, like this:

iex> [67, 65, 66]
'CAB'
iex> ?C
67

Notice the single quotes. The representation of the charlist is simply a list of
numbers, the ASCII codes for those characters. Use this datatype to work
with the individual characters in a list, or when you are working with an
underlying framework that uses them. You can also use String.graphemes/1
to break a string down into characters.

You may have also noticed strings with double quotes, and they are not the
same as charlists:

iex> 'CAB' == "CAB"
false

The reason is that "CAB" is a compacted string, a more efficient representation.
Let’s see how.

report erratum • discuss

Strings • 29

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Strings Are Bitstrings
Elixir has datatypes and libraries for dealing with strings of data called bit-
strings. The operator for converting something to a bitstring is << >>. You
can actually see them at work, like this:

iex> <<?C, ?A, ?B>>
"CAB"

While the <<>> operator looks like a sharp tool that could hurt you, don’t be
afraid. It’s a bitstring, and the most common Elixir strings are binaries
manipulated in exactly this way. It’s invaluable for storing and accessing
bytes in a sequence and even breaking them into requisite pieces. You can
see that some elements of strings take one byte and others take two in the
diagram.

We won’t go into more detail, but we encourage you to read more about bit-
strings in the Elixir documentation.2

For the most part, prefer strings to charlists. They represent data more effi-
ciently. While the mechanics are beyond the scope of this book, you should
know binaries are extremely efficient for dealing with low-level protocols. To
wrap up this section on strings, we’ll look at the common tricks and traps
associated with them.

String Traps
Because strings are not typical lists, Elixir has several ways to break the
usual rules for efficiency. For example, the BEAM shares very long strings
across processes, and lets them go after all references are cleared. Therefore,
it’s extremely important to refrain from letting processes hold references to

2. https://hexdocs.pm/elixir/Kernel.SpecialForms.html#%3C%3C%3E%3E/1

Chapter 2. Know Your Elixir Datatypes • 30

report erratum • discussPrepared exclusively for Correl Roush

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#%3C%3C%3E%3E/1
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

large strings for longer than needed, to avoid hard to find memory leaks.3

Such leaks can crash the BEAM, and do so in ways that are hard to diagnose.

Keep in mind that editing or even just finding a character are O(N), just as
they are with lists. Therefore you shouldn’t use long strings to encode infor-
mation. For example, translating such things as URLs with many parts to an
intermediate form can pay big dividends if you’re doing many lookups for the
component parts, like the protocol, host, path, and query parameters.

For strings, a copy is a full copy, like a tuple instead of a list, but the BEAM
cheats as much as it can. To avoid copying strings across processes, if you
have a long string, the BEAM puts it into common memory. The BEAM also
takes very large strings and cuts them into smaller ones, some of which will
never change.

There’s another potential trap, string concatenation. Simply put, it’s slow.
There’s a cheat code for this game, though. You should prefer IO lists to
concatenation4. That technique is beyond the scope of this book but you can
check the footnote to learn more. That’s the way that Phoenix Templates work,
for example. They pass lists of strings to IO for export instead of concatenating
and then processing. That tip makes a huge difference when you’re doing
high-volume concatenations with large strings.

If you’re glazing over, sit tight. There’s just one more data type we need to
cover, the tuple, before we start to put what we’ve learned into practice.

Tuples
Tuples are fixed length data structures. Like all Elixir data structures, they
are immutable. You can access, or pattern match against, any element of the
tuple and you can do so efficiently. This section will show you the types of
problems you can generally solve with tuples.

Good Tuples
Generally, think of tuples as structures where the position within the tuple
means something. Coordinates, {key, value} pairs from maps, and {city, state}
pairs are all good examples of what you’ll see in tuples.

A common and acceptable use for tuples is tagging data. This technique pairs
a result tag with data. For example, you’ll see this technique in action with
many Elixir functions in return codes like {:ok, value} or {:error, reason}

3. https://blog.heroku.com/logplex-down-the-rabbit-hole
4. https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-building-output-efficiently/

report erratum • discuss

Tuples • 31

Prepared exclusively for Correl Roush

https://blog.heroku.com/logplex-down-the-rabbit-hole
https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-building-output-efficiently/
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

You’ll also sometimes find the need to read chunks of data with the same
structure, such as columns. These types of rows are data clumps,5 and APIs
that use them favor tuples. Database query results and CSV rows are good
examples of data clumps.

Tuple Traps
Since tuples are not as structured as other datatypes, they often lead to code
that’s hard to read or understand. When you find yourself having trouble
remembering which element of the tuple goes in which position, it’s time to
switch to a map. Tuples give no opportunity to label their columns, whether
you’re matching a particular column or extracting a value from a specific
column. This problem is common across many functional languages and it
is called Connascence of Position.6

Appending to tuples is slow, as you might expect. You can see in the following
figure that appending to a tuple means creating a whole new copy.

Similarly, if you find yourself editing tuples, you should prefer maps. Tuples
are also not enumerable. If you find yourself iterating through them by using
an index, switch to a list.

That’s most of the Elixir types, but we should offer one more. Let’s move on
to the most iconic of datatypes for functional languages, the function.

Functions As Data
Since Elixir is a functional language, we should all remember that functions
are data too. Sometimes using functions can offer tremendous performance
wins.

For example, this is one way to store the drawing instructions for a square:

iex(1)> square = [{:line, {5, 0}, {15, 0}},

5. https://refactoring.guru/smells/data-clumps
6. http://connascence.io/position.html

Chapter 2. Know Your Elixir Datatypes • 32

report erratum • discussPrepared exclusively for Correl Roush

https://refactoring.guru/smells/data-clumps
http://connascence.io/position.html
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

{:line, {15, 0}, {15, 10}},
{:line, {15, 10}, {5, 10}},
{:line, {5, 10}, {5, 0}}]

[
{:line, {5, 0}, {15, 0}},
{:line, {15, 0}, {15, 10}},
{:line, {15, 10}, {5, 10}},
{:line, {5, 10}, {5, 0}}

]

That way works fine. Each tuple has an instruction, a beginning point and
an ending point. A CAD system would have an extensive list of such instruc-
tions. The problem comes when you start to partition work across processes.
When Elixir moves across process boundaries, it often has to copy data.

Here’s another, very powerful, way:

iex(2)> square = fn {x, y}, size ->
[{:line, {x, y},
{x + size, y}},
{:line, {x + size, y},
{x + size, y + size}},
{:line, {x + size, y + size},
{x, y + size}},
{:line, {x, y + size},
{x, y}}

]
end

#Function<12.127694169/2 in :erl_eval.expr/5>
iex(3)> square.({5, 0}, 10)
[

{:line, {5, 0}, {15, 0}},
{:line, {15, 0}, {15, 10}},
{:line, {15, 10}, {5, 10}},
{:line, {5, 10}, {5, 0}}

]

We start with a function called square. It takes a point and a size, and
transforms that data to the same square format we saw earlier. This technique
has far reaching implications for a language built on the actor model7 with
heavy distributed computing influences: don’t send the data to the functions
because that’s slow. Send the functions to the data!

When To Leave Elixir
Elixir datatypes are good for many problems, but not all. Data structures
built with those types are not always efficient. The classic example is number

7. https://www.brianstorti.com/the-actor-model/

report erratum • discuss

When To Leave Elixir • 33

Prepared exclusively for Correl Roush

https://www.brianstorti.com/the-actor-model/
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

crunching. If you find yourself working with arrays that you need to update
frequently and randomly, you should consider integrating a third party
solution into your program. Such integration strategies are not for this book,
but Adopting Elixir [Tat18] has an excellent treatment of techniques you can
use.

A great example of when to leave Elixir is an SQL database. Most projects
need one and there’s so much you can gain from it: ACID compliance, trans-
actions, table joins, and the list goes on for miles. Maybe even more impor-
tantly, it’s so helpful to be able to scale your database separately from your
production Elixir deployment. It’s wins all around.

We should point out that the BEAM gives us a toolkit that means we don’t
need external dependencies as often as many other environments do. It’s rare
to need memcached or Redis for ephemeral state with ets built-in. If you need
a worker pool or a background job system, you can probably meet your exact
need with around 100 lines of code. If you want to save even that, there are
libraries that handle the general case for you, without leaving the VM. There
are some advantages to having all of this with the rest of your app too: the
same data structures work everywhere, you get to use supervision, it’s easier
to react to subsystems becoming unavailable, etc. The BEAM is closer to an
operating system than most programming language runtimes, so building
out various kinds of processing with it is much easier.

This chapter is not long, but it’s dense. It’s a good time to take a break and
digest what we’ve consumed so far.

Know Your Elixir Datatypes
In this chapter. we focused on what it means to work with data in the Elixir
language. We started with basic datatypes such as atoms and numbers,
paying close attention to the traps related to float precision and exhausting
the atom table, which can crash the BEAM.

We moved on to lists and maps. For lists, we showed a representation of lists
in memory. We emphasizing the need to access lists head first. Maps and
structs are arguably the workhorses of the language. Access, both read and
write, were extremely fast and this datatype is appropriate for a wide list of
purposes.

Next, we tackled strings and tuples. We worked through the differences
between strings and charlists and practiced accessing elements of a binary.
We showed the relative positive usage patterns and traps along the way. We

Chapter 2. Know Your Elixir Datatypes • 34

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

then explored tuples, the fastest data structure for random access but with
traps for updating and cognitive load.

We moved on to functions as data. We represented squares as both data and
functions. After the original function was built, representing squares with
different dimensions was trivial.

Finally, we concluded that Elixir data structures specifically, and functional
data structures more broadly, are not appropriate for every problem.

With these tools in our pocket, we can start to write some code. In the next
chapter we’ll put these tips into practice building the data layer for our quiz
project. Let’s go!

report erratum • discuss

Know Your Elixir Datatypes • 35

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

CHAPTER 3

Start With The Right Data Layer
We’re going to spend our second consecutive chapter in the D for data from
the sentence “Do fun things with big loud wildebeests”. We’ll use the Elixir
data types you saw in the last chapter to roll up data structures. Elixir is a
functional programming language and that concept will have a huge impact
on how you represent data. In FP, functions can’t update data in place, they
must create new copies that transform data step by step. When your data
structures are wrong, your code must compensate so it will look awkward
and feel wrong. The following figure shows that your data layer often serves
as the foundation.

API

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Do Fun Things with Big Loud Wildebeests

Loud: Lifecycle
(OTP supervisors)

In the sections that follow, we’ll explore how your foundational data structures
will shape your project, especially access patterns. Throughout the chapter,
we’re going to introduce several different hypothetical problems because we
want you to see the impact of data structures on the various decisions we’ll
make.

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

We’ll also explore what it means to build data structures in the functional
world, and why it’s fundamentally different than programming models like
OOP or procedural programming.

Finally, we’ll take all of that wisdom and start to design data for a real world
project, a quiz engine. There’s a lot on our plate, but it’s a tasty dish. Let’s
get started.

Access Patterns Shape Data Structures
In FP, data structures are inextricably linked to functions. Building good
programs means considering how those programs use the data. Some data
structures are primarily read only and others exist to be updated. As you saw
in the previous chapter, some datatypes are easier to update than others.

Let’s take a very simple programming problem, representing a tic-tac-toe
game. For those rare folks who have never seen this game, it’s a childhood
favorite where two players, denoted by “X” and “O”, take turns putting
markers on a 3x3 grid. The game ends when the first player gets three in a
row.

Since it’s a small game, performance isn’t really a concern. Even when full,
our biggest board will have nine cells. We’ll be updating the board frequently,
and reading frequently as well. Elixir has no multi-dimensional arrays, so we
need some kind of composite data structure to represent the game board.
Because tuples work best for fixed length structures, we’ll build our board
with a three-tuple of three-tuples. Each tuple will have an “X” or “O” for a
player, or a “ “ character for a blank space, like this:

iex(1)> board = { {"O", " ", " "},
...(1)> {" ", "X", " "},
...(1)> {" ", " ", " "} }

-> {{"O", " ", " "}, {" ", "X", " "}, {" ", " ", " "}}

This structure will work. In fact, it has some nice qualities. Accessing random
contents is acceptable with pipes and indexes. For example, we can get the
middle square like this:

iex(2)> board |> elem(1) |> elem(1)
"X"

We can even abstract that much into a function, like this:

def square(board, row, col) do
board
|> elem(row)
|> elem(col)

Chapter 3. Start With The Right Data Layer • 38

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

end

Checking the value of some cell means finding the right row and then finding
the right column. Kernel.elem/2 is all we need. square(1, 1) isn’t so bad to read, or
to use. There’s a fly in the ointment though. Things get more complex when
we want to change the board. Functional languages are generally immutable,
meaning updates return a new copy rather than change the old one. Playing
an “X” on the first cell of the middle row looks like this:

iex(3)> new_middle_row = board |> elem(1) |> put_elem(0, "X")
{"X", "X", " "}
iex(4)> new_board = put_elem(board, 1, new_middle_row)
{{"O", " ", " "}, {"X", "X", " "}, {" ", " ", " "}}

Our data structure is an awkward choice for updates and that awkward
structure leads to awkward code. Since the tuples are immutable, every piece
of the data structure that changes must be replaced. The outer tuple and the
middle row need to be changed, and that takes too much awkward code. We
need to build a new middle row and place that new middle row into the board.
The complexity definitely ramped up when we went from reading to writing.
Since our board will probably have only a single update function, the one to
make a move, we may be willing to live with this complexity for such a simple
game. Still, let’s see if we can do better.

Use Cases Shape Data
What if we make one small change by choosing to represent the board as a
list of lists of strings?

iex(5)> board = [["O", " ", " "],
...(5)> [" ", "X", " "],
...(5)> [" ", " ", " "]]
-> [["O", " ", " "], [" ", "X", " "], [" ", " ", " "]]

iex(6)> get_in(board, [Access.at(1), Access.at(1)])
"X"
iex(7)> put_in(board, [Access.at(1), Access.at(0)], "X")
-> [["O", " ", " "], ["X", "X", " "], [" ", " ", " "]]

Ah, that’s better. We can simply use Elixir’s Access module and paths to
update one cell. With this change reading and writing have the same level of
complexity. We construct a path into the data structure and hand it to the
appropriate function, depending on our intended operation. In fact, the get_in
and put_in functions exist exactly because working with nested data structures
in Elixir is awkward! A small tweak to how we represent our data has had a
noticeable impact on the code that has to manipulate it.

report erratum • discuss

Access Patterns Shape Data Structures • 39

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

We can do even better, though. One of the problems with both the list of lists
and tuple of tuples we chose earlier is the depth, as you will see. Let’s explore
an alternative.

Prefer Flat Data To Deep Ones
Updates to deep places in data structures are often more complex in deep
data structures, as with our tuple of tuples. That’s an avoidable problem:
don’t use deep data structures. As well, flatter data structures generally allow
simpler algorithms and easier pattern matches.

By thinking out of the box, we can get a more effective representation. Maps
can use a variety of datatypes as keys, including tuples, like this:

iex> board =
... %{
... {0, 0} => "O", {0, 1} => " ", {0, 2} => " ",
... {1, 0} => " ", {1, 1} => "X", {1, 2} => " ",
... {2, 0} => " ", {2, 1} => " ", {2, 2} => " ",
}

Now, both reads and writes are trivial:

iex> board[{1,1}]
"X"
iex> Map.put(board, {1, 0}, "O")
...

Finally, we have a clean, simple way to store and fetch the elements of our
board. It’s not perfect, for example the default representation in tools like IEX
is ugly. Still, it does allow quick access for storing and retrieving our game
pieces.

Here’s the moral of our simple example. If you want to write beautiful code,
you need to design the right data structures that considers your primary
access patterns. This rule of thumb is doubly true for functional languages
because data structures are immutable. We’ll spend the rest of the chapter
giving a little guidance on the right structure. We won’t give you any silver
bullets, but we can offer a few basic rules to help you choose.

At this point, you may be starting to appreciate that working with data in
functional programs is different. We’ve only reached the tip of the iceberg.
Read on.

Chapter 3. Start With The Right Data Layer • 40

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Immutability Drives Everything
You’ve probably heard that FP means that the same inputs will give you the
same outputs. You’ve likely also heard that Elixir binds variables exactly
once.

When we say Elixir doesn’t allow mutable variables, you might be tempted to
push back. Technically, you’d be right, but we should show you the games
the compiler is playing to maintain the illusion of mutability. Take a look at
this example:

iex> x = 10
10
iex> x
10
iex> x = 11
11
iex> x
11

That looks like x is mutable, but what you’re seeing is not the full picture.
The values 10 and 11 are immutable. x is a variable that can be rebound at
will within the scope of a function. Look at this second example.

iex> x = 10
10
iex> f = fn() -> x end
#Function<20.99386804/0 in :erl_eval.expr/5>
iex> x = 11
11
iex> x
11
iex> f.()
10

Each function has its own bindings and they can’t be changed by another
function, or another process. In the end, we have immutability. You can’t
invent a flow that allows colliding mutable values because Erlang, the foun-
dational language, simply doesn’t support mutable variables. Once a variable
is bound, the underlying representation is fixed, period.

With immutability, rather than updating your data in place, you create a new
copy of that data. That rule is true of simple types such as integers or complex
ones like structs or maps. There are some subtleties related to this approach.
Let’s look at them.

report erratum • discuss

Immutability Drives Everything • 41

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

New Facts Don’t Invalidate Old Facts
Sometimes, it helps to think of pieces of data as facts, or assertions about
the world. Say you have code that depends on a data structure in a variable
in Elixir or some other functional language. Elixir makes a guarantee: that
data structure in that variable is always stable. That’s why functional lan-
guages are so good at concurrency. Multiple processes can access the same
variables without having to deal with the data changing out from under them.

It does mean that you’ll often need to change the way you think about data.
In an object oriented system, a bank account might be an object with a balance
and some other fields. The bank account might process transactions at any
time, resulting in a changing balance.

On the other hand, a functional bank account is something different entirely.
It’s an initial balance plus a set of transactions at a point in time. These
transactions are functions. If you’re writing a program, once you have a rep-
resentation of an account, you don’t have to worry about it ever changing.
Rather than having an ever-changing account that reflects the present value,
you have an account as of a point in time. This means that adding new facts
doesn’t invalidate your old facts. If you’re holding an account as of 11:25 and
someone makes a deposit at 11:30, you just don’t care because your data
structure protects you.

Functional programmers look at the world in this way. If you represent a
mouse as locations and clicks at a point in time rather than a variable (x, y)
location that changes over time, each function in your program is dealing
with fixed data instead of changing data. Your test cases no longer care about
an ever-changing mouse location; an error captured in a log can give you
enough information about how to reproduce a problem exactly, and so on.

Object oriented data structures change over time. Functional data structures
are maps of stable values over time. Functional programs do this automatically.
Changing anything means creating a new copy, and your data structures will
reflect these new realities. Your programming techniques should reflect this
reality.

Write Data Structures Functionally
Let’s keep exploring our bank account. Here’s one way to think about our
bank account example.

account:
%{

account_number: String,

Chapter 3. Start With The Right Data Layer • 42

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

account_holder: %User{},
balance: Int,
transaction_log: [strings],

}

This structure works OK in many languages, but it is not a functional data
structure. There’s a hidden problem. Let’s take a quick hypothetical.

Processes Are Not Data
Since we’re writing an Elixir program, it’s tempting to wrap this data in a
process, and allow other processes to access it. We have two functions,
read_balance and write_balance. Then, say we have other worker processes that
use those functions to do the work of debiting and crediting. Such a design
would be a mistake.

Say two different processes called worker 1 and worker 2 fetch the account
balance near the same time, both retrieving a value of say $100. Both wish
to modify the balance, one adding $50 and one subtracting $50. They then
both write their balance, as in the following figure. Depending on which actor
writes first, the balance will be either $50 or $150. Both are incorrect. Either
the bank or the user will be happy, for a while, but the data is inconsistent
with the truth.

Account

Time

Worker 1

Worker 2

Read
balance:
100

Read
balance:
100

Write
balance:
150

Write
balance:

50

What we’ve done is built our own datatype with processes, with its own set
of rules. We’ve taken much of the goodness of FP away. We have built some-
thing that works just like an OOP variable that answers the question “What
is the current balance?”

A much better question is “What is the balance at a specific time?” To answer
that question, we can store an initial balance and all of the changes represent-
ed in our transactions. We can get all transactions since the beginning of
time, or if this becomes a performance problem, all transactions since a
checkpoint. We’re never changing the initial balance. We’re just adding
transactions to our account as they come in, like this:

report erratum • discuss

Immutability Drives Everything • 43

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

account:
%{

account_number: String,
initial_balance: Integer,
account_holder: %User{},
transactions: [%Transaction{}],

}

transaction:
%{

change: Integer,
inserted_at: DateTime,
note: String,

%}

def balance(account_number, date_time), do: ...

Hey, we know these aren’t true type specs, but bear with us. We’re trying to
communicate abstract concepts instead of precise types.

In this example, balance becomes a function that computes a balance at a point
in time based on adding all of the transactions, each with a change that has
positive or negative values. We can then simply start with a balance and
reduce over the transactions to get a balance. There’s no ambiguity. It’s
completely deterministic.

To get the most out of functional programming, you’re going to have to extend
the thinking beyond the functions and into the data. With these high level
concepts in mind, it’s time to dive to a lower level and look at data in Elixir
itself.

Try It Out
Let’s take the ideas we’ve learned and put them into practice. Throughout
the rest of the book, we’re going to build a project that generates quizzes. As
we describe the problem, think about the nouns in the system. Those will be
data, and many of them will be custom datatypes.

Let’s get started. From a system console, create a new mix project.

mix new mastery --sup

That command creates a new project. We added the –sup flag because we’ll
be building an OTP project and it will need a supervisor. We’ll need to fill the
project with a few data structures, but as usual, it pays to think first.

Chapter 3. Start With The Right Data Layer • 44

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Break Nouns Into Data Structures
In our quiz project, we can have templates in various categories which create
questions. For example, a template for a simple addition problem may be <%=
left %> + <%= right %> with [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] being valid values for left and
right. This means a quiz might generate 3 + 2 or 0 + 0. As we ask questions, we
track the user’s responses and we keep generating questions until our user
masters the template. Once they get three in a row right, we’ll let them move
on to the next category.

API

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Loud: Lifecycle
(OTP supervisors)

Quiz

Template Question

Question

Template Question

QuestionQuestion

Template Question

Question Question

Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response

In the previous figure, you can see that picking the nouns out of our
description gives us a good start toward the structure of our data. A category
will be a string, and a user will just be an email address for now. The rest of
those nouns—quizzes, templates, questions and responses—are going to be
structs in our system. Let’s take a look.

Define a Template
We’re going to use the primary Elixir data structure, the map. We know
exactly what the fields will be and that’s a struct. The centerpiece of our quiz
is the template. The fields in our templates will serve three purposes.

report erratum • discuss

Try It Out • 45

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Our Flow

In truth, when we built this application, we didn’t magically land
on the perfect data structure. We made mistakes, refactored our
data, refactored our functions and them made more mistakes.
We’re showing you all of these data structures in their final form
because we think it makes a better book, one that reinforces our
layering concepts.

Our first three fields will describe our templates. As such, we’ll have a name
and a category, which we’ll represent as atoms. We’ll also have an instruction
to tell users what to do as they answer a question. These are the fields that
describe our template:

name (atom)
The name of this template.

category (atom)
A grouping for questions of the same name.

instruction (string)
A string telling the user how to answer questions of this type.

Second, our templates will generate questions. We’ll need the raw and compiled
version of the template to generate a question, and a generator for each sub-
stitution pattern in our template. These are the fields that support question
generation:

raw (string)
The template code before compilation.

compiled (macro)
The compiled version of the template for execution

generators (%{ substitution: list or function})
The generator for each substitution in a template. Each generator is a list
of elements or a function. Generating a template substitution will either
fire the function or pick a random item from the list.

Finally, our templates will check responses. This responsibility will fall on
the checkers, which are functions. This is the field for processing responses:

checker (function(substitutions, string) -> boolean)
Given the substitutions strings and an answer, the function returns true
if the answer is correct. For example, fn subs, answer -> to_string(subs.left +
subs.right) == String.trim(answer) end)

Chapter 3. Start With The Right Data Layer • 46

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Taken together, we have a structure that defines the template. We’ll create a
lib/core directory to hold the modules with our data layer (and later our core
functions). Crack open lib/mastery/core/template.ex and key this in:

defmodule Mastery.Core.Template do
defstruct ~w[name category instructions raw compiled generators checker]a

end

We use the sigil ~w to create a list of words. Though you usually see () char-
acters with this sigil, the [] characters work perfectly fine. The a modifier
means the statement will create a list of atoms instead of strings. This data
structure is complex, but it reflects the values we’ve discussed in this section.
Rather than just keeping transient data, this permanent data structure gives
us everything we need. We can use the data structure to:

• represent a grouping of questions on a quiz
• generate questions with a compilable template and functions
• check the response of a single question in the template

We have the data for a template. Now we can move on to the individual
questions.

Templates Generate Questions
Once again, we have a known set of fields of disparate types. That structure
screams map. Questions consist of the text a user is asked, the template that
created them, and the specific substitutions used to build this question. These
are the field details:

asked (String.t)
The question text for a user. For example, "1 + 2".

template (Template.t)
The template that created the question.

substitutions (%{ substitution: any})
The values chosen for each substitution field in a template. For example,
for a template <%= left %> + <%= right %>, the substitutions might be %{ "left"
=> 1, "right" => 2}.

Templates generate questions, and questions are instantiations of those
templates. Once again the data structure is functional. A question is
immutable and constant. Now, let’s code it up. Create a new file called
lib/mastery/core/question.ex and make it look like this:

defmodule Mastery.Core.Question do
defstruct ~w[asked substitutions template]a

report erratum • discuss

Try It Out • 47

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

end

Those are the three fields we need: the asked question, the actual substitutions
for this question, and the template we used to create this one. Now that we
have the templates and questions, we should allow a user to answer a ques-
tion.

Users Answer With Responses
When a user answers a question, we’ll generate a response. Our responses
don’t really need too much data. We’ll track some extra data we might have
otherwise computed just to make it easy to debug and reason about the pro-
gram. This is the data we want to track:

quiz_title (String.t)
Title field from the quiz

template_name (atom)
Name field identifying the template

to (String.t)
The text for the question being answered, the asked field from the question

email (String.t)
The email address of the user answering the question

answer (String.t)
The answer provided by the user

correct (boolean)
Whether the given answer was correct.

timestamp (Time.t)
The time the answer was provided

The code to implement those fields is, as you might expect, a struct. Create
a new lib/mastery/core/respone.ex to look like this:

defmodule Mastery.Core.Response do
defstruct ~w[quiz_title template_name to email answer correct timestamp]a

end

That’s all we really need. We could have provided the underlying question
and quiz, but since we’ll be dealing with many responses, it’s nice to be able
to print them cleanly, and keep these data structures flat. Next, we roll it all
together in a quiz.

Chapter 3. Start With The Right Data Layer • 48

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Quizzes Ask Questions
Here’s one of the key concepts of Mastery. Our quiz will ask questions until
a user achieves mastery. Once we have templates that create questions, we
can use them to build quizzes. Before we code up this data structure, let’s
talk about our overall strategy.

We’ll start with a set of templates, organized by category. We’ll cycle through
the templates, one at a time. Once the user gets enough right in a row, we’ll
stop asking that question.

Given that set of directions, we’ll need to keep track of the following.

For the overall quiz, we’ll need to name the quiz, and we’ll need to let the user
specify how many answers a user will need to get correct before we finish
asking the question:

title (String.t)
The title for a quiz.

mastery (integer)
The number of questions a user must get right to master a quiz category

Next, we’ll need to keep track of some metadata as users advance through
the quiz.

current_question (Question.t)
The current question being presented to the user

last_response (Response.t)
The last response given by the user.

templates (%{ "category" => [Template.t]})
The master list of templates, by category.

used ([Template.t])
The templates that we’ve used, this cycle, that have not yet been mastered.

mastered ([Template.t])
The templates that have been mastered

record (%{ "template_name" => integer})
The number of correct answers in a row a user has given for each template.

That’s all we need. With the fields we need, let’s build a struct with the fields
and defaults we’ll need. Crack open lib/mastery/core/quiz.ex and make it look like
this:

defmodule Mastery.Core.Quiz do

report erratum • discuss

Try It Out • 49

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

defstruct title: nil,
mastery: 3,
templates: %{ },
used: [],
current_question: nil,
last_response: nil,
record: %{ },
mastered: []

end

Initially, all questions will start in templates. The quiz will select a question,
and that question will move from templates to used. After all questions get asked
once, unless they’re mastered in the meantime, they’ll move back from used
to templates.

Getting an answer right will increment a record, and getting enough right in
a row will move a template from used to mastered. Getting an answer wrong will
reset the record.

We haven’t written any code yet, but we have a pretty good idea of how our
program will work, just by looking at the data structure of the quiz. We know
the overall structure our component will take. We have a good idea how our
algorithms will work as we create templates, add them to a quiz, and then
move from question to question. The representation of our data will drive how
we think about managing the quiz.

We are not yet thinking about the user interface or database layers at all.
We’ll address those concerns elsewhere. Our next job is to create the functional
core that will manipulate those data structures.

That’s enough to digest. It’s time to wrap up.

Start With the Right Data
First, we examined how choices of data structure might change access patterns
and impact the complexity of the code we write. We introduced simple princi-
ples to keep data structures flat and saw that functional data structures are
generally slower.

Next we introduced the way functional programmers shape data, preferring
many versions of a value over time rather than continuously mutating a single
value.

We looked at Elixir’s data structures including lists, tuples maps and structs,
among others. We showed some of the strengths and weaknesses of each.

Chapter 3. Start With The Right Data Layer • 50

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Finally, we applied all of those lessons using a functional component. We
used templates with functions to generate questions, and we used functions
to check each question we created. When we were done, we had a rough
skeleton to build on.

In the next chapter, we’ll begin to add meat to those bones. We’ll build a
functional core to manipulate the data structures, functions that will create
questions from templates, check responses, and move the quiz from question
to question as the user answers questions. We’ll build a concise layer that
will be easy to reason about and easy to test before we get into the intricacies
of concurrency and state.

It’s starting to get exciting. Turn the page and let’s write some functions.

report erratum • discuss

Start With the Right Data • 51

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

CHAPTER 4

Build a Functional Core
In this chapter, we’ll dive into the functional core, sometimes called the
business logic of your component. Functional-core is the “f” for “fun” in “Do
fun things with big loud wildebeests.” In the last chapter, we worked with
data. We carved our project into hollow modules holding structs that form
our data skeleton. In this chapter, we’ll fill those empty modules up with
functions, each logically addressing a part of the whole functional core. The
following figure shows where this core fits.

API

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Do Fun Things with Big Loud Wildebeests

Loud: Lifecycle
(OTP supervisors)

A functional core is a group of functions and the type definitions representing
the data layer, organized into modules. Our core doesn’t access external
interfaces or use any process machinery your component might use. In Elixir,
that process machinery is the GenServer, and those bits are banished to the
outer bands of our architecture.

Your core will present a clear, stable interface to any external code. This API
decouples core code from any process machinery in the outer layers and hides
implementation details. By establishing a firm API without side effects to the
rest of the world, you can effectively deal with your most complex code piece

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

by piece. Your algorithm complexity and process machinery are defined in
isolated layers so you can deal with each separately. In the end, each piece
is easier to test and understand so the whole is more manageable.

Just as your data shapes your functions, your functional core will shape your
tests, your boundary layer and ultimately the code your clients write. The
most understandable Elixir code uses composition features to weave functions
together into an easily understandable story, and your core will lean on those
composition features heavily.

Some say that functional cores should be pure functions. In this book, we
won’t say too much about “pure” versus “impure” functions because such
debates are rarely constructive. We do think it’s important to mention the
concept of purity here. For the most part, a pure function returns the same
value given the same inputs each time you run it.

Your core doesn’t have to be completely pure. Some functions will have con-
cepts like timestamps, id generation, or random number generation that are
not strictly pure. For the most part though, a functional core gets much eas-
ier to manage if the same inputs always generate the same outputs.

As we build our quiz project, the functional core will use a random number
generator because that’s where we believe that concept should be. As we write
test cases, you’ll see that we pay the price for making that compromise.

In the sections that follow, we’re going to build our functional core for our
Mastery project. As we walk through each module, we’ll illustrate some core
concepts of composing with functions along the way. When we’re done you’ll
have a better understanding of how cores work. You’ll also know some useful
techniques for weaving together those functions inside the core.

Organize Core Functions by Purpose
Recall our initial data architecture. We have Quizzes made up of Templates and
Questions. Users answer questions with Responses. We designed our data by
putting structs inside empty modules. That design will serve as a useful
foundation of our core as shown in the following figure.

Chapter 4. Build a Functional Core • 54

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

API

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Loud: Lifecycle
(OTP supervisors)

Quiz

Template

Question

Response

Now, we’ll slowly start to fill those modules up with functions. It’s time to
build out the first few modules for our Quiz component.

Let’s look first at three pieces of our Mastery core, the Response, Question and
Template. Remember, each of these is a module, and also the name of the struct
that lives inside the module. We will fill each of those modules with functions
that deal with those structs.

This is a primary Elixir design goal. When you group like functions together
based on the data with the sole purpose of managing that kind of data, Elixir
code becomes easier to code. You’ll find that it’s easier to compose with pipes
and easier to tell where functions belong.

Let’s start with a simple example. Nothing in Mastery is simpler than a Response.

You might wonder how large a module has to be. The answer is “as big as it
needs to be to do a single job.” On a module basis, we want to keep the
external API simple and internal details hidden. That way the interactions
between modules will be simpler. In a sense, we’re building layers inside of
layers.

Some of our modules have only data and a constructor, and that’s OK.
Responses exist only to be data holding structs, so all we need is a constructor.
Think of a constructor as a convenience function to instantiate a piece of
data. Add your constructor to lib/mastery/core/response.ex, like this:

report erratum • discuss

Organize Core Functions by Purpose • 55

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Code structure

The example code for this book will be packaged by chapter. You’ll
see a file name at the top that will point you to the folder for the
chapter, and then the project code therein. For example, the code
in this chapter will live in FunctionsCore with the code in ‘Func-
tionsCore/lib‘ and the tests in ‘FunctionsCore/test‘.

FunctionsCore/lib/mastery/core/response.ex
defmodule Mastery.Core.Response do

defstruct ~w[quiz_title template_name to email answer correct timestamp]a

def new(quiz, email, answer) do
question = quiz.current_question
template = question.template

%__MODULE__{
quiz_title: quiz.title,
template_name: template.name,
to: question.asked,
email: email,
answer: answer,
correct: template.checker.(question.substitutions, answer),
timestamp: DateTime.utc_now

}
end

end

We’re using __MODULE__ instead of typing the full name of the module because
that code defaults to the current module, and protects us from refactoring
code whenever we reorganize the project.

If you were designing your own Mastery component, you might be tempted
to put questions and templates together, but we chose not to do so because
templates and questions are different concepts with different purposes. A
template exists to generate questions, and a question exists to present an
answerable construct to a user.

Edit to a Single Purpose
We’re approaching the first complex piece of our project, the template. After
all, templates will need to compile code to perform substitutions. You may
find it tempting to reach right for a GenServer instead of pure functions to
build our template. If we needed to do that, we’d need to take another pass
through our design since we’re working only with modules within our func-
tional core, and cores don’t deal with processes.

Chapter 4. Build a Functional Core • 56

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/response.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

When you run into situations like this one, we’d like to council you to sit tight
and try to attack the problem with functions first, and those should be as
pure as you can make them. Our rule of thumb is to use processes only when
we need them to control execution, divide work, or store common state where
functions won’t work.

Given that rule of thumb, we’ll try to keep things inside the core by carving
our modules into specific functions. If we hit a wall and find a problem that
mandates a task or a GenServer, we’ll slow down and reexamine our interfaces.
For now, recall the struct defining the data for templates.

defstruct ~w[name category instructions raw compiled generators checker]a

The templates have some descriptive names, but the most important pieces
are the raw field containing code we’re going to use to create questions, gener-
ators to fill in each of the substitutions in the template, and a checker functions
to test results. For now, let’s focus on the raw field. The rest will come into
play when we write tests, generate quizzes, and answer questions.

A typical template for a math problem might be <%= left %>+<%= right %>. We’ll
compile that to Elixir, and put the result in compiled. We’ll need to compile
templates as users create them. That’s a library function, not a process
function so it belongs in our core. Open up the existing lib/mastery/core/template.ex
and add the new function:

FunctionsCore/lib/mastery/core/template.ex
defmodule Mastery.Core.Template do

defstruct ~w[name category instructions raw compiled generators checker]a

def new(fields) do
raw = Keyword.fetch!(fields, :raw)
struct!(__MODULE__, Keyword.put(fields, :compiled, EEx.compile_string(raw)))

end
end

Typically, we’ll create a simple constructor named new when we want to add
any default behaviors to the default constructor for struct. Since struct! takes
some fields as a KeywordDict, we’ll conform to that API. We’ll compile the template
and add it to the keyword list.

EEX is a module used to compile idiomatic Elixir templates, called EEx tem-
plates. Though our template looked complex at the surface, it simply wraps
the complexity in the EEx module, and that module does the work in a rea-
sonably pure way. There’s no need for a GenServer because we can use pure
functions instead. Much of the time, solutions with functions can satisfy
many of our needs.

report erratum • discuss

Organize Core Functions by Purpose • 57

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/template.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Now we can use those templates to create questions. Let’s strategize a bit.
Recall that our question fields look like this:

defstruct ~w[asked substitutions template]a

We will need to use the template to generate the question text we put in asked,
and we’ll store the template we use to generate a question, as well as the
substitutions we’ll choose from. Note that we can’t really compute asked
because sometimes we’re going to rely on a function to pick a random substi-
tution from a list, and we want the question to be locked down once we decide
to ask a user.

Since we’ll need templates to create questions, let’s add an alias to make it
easier. Open up lib/mastery/core/question.ex to add this code:

FunctionsCore/lib/mastery/core/question.ex
defmodule Mastery.Core.Question do

alias Mastery.Core.Template

defstruct ~w[asked substitutions template]a

These are the things a question needs to be able to do:

• We need a constructor called new that will take a Template and generate a
Question.

• We need a function to build the substitutions to plug into our templates.
• As we build substitutions, we’ll need to process two different kinds of

generators, a random choice from a list and a function that generates a
substitution.

• We need to process the substitutions for our template.

Let’s start from the bottom up. We need to generate substitutions. We’ll use
those substitution strings to fill out our template. Recall that our template
had generators. We have two types of generators, a list of potential substitu-
tions or a function. If it’s a function, we’ll execute it; if it’s a list, we’ll pick a
random element from it, like this:

FunctionsCore/lib/mastery/core/question.ex
defp build_substitution({name, choices_or_generator}) do

{name, choose(choices_or_generator)}
end

defp choose(choices) when is_list(choices) do
Enum.random(choices)

end
defp choose(generator) when is_function(generator) do

generator.()
end

Chapter 4. Build a Functional Core • 58

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/question.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/question.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

The magic happens in the choose function supporting build_substitution. choose
matches each of our generator types and picks the appropriate one. If it’s a
generator, we simply call it; if it’s a list, we pick a random one with Enum.random.
Then the build_substitution function takes a two-tuple with a name and a gener-
ator and returns a tuple with a two tuple having a name and substitution.

Functions Are Data
The generators in the previous example illustrate an under appreciated aspect
of functional programming: functions are just another data type. Anywhere
you can pass some data as an argument, you can pass a function instead.
The BEAM even serializes functions, just like other types.

When you learn to think of functions as data, it should radically change the
way you approach problems. Take another look at the previous example. We
wrapped the template.generator functions with choose/1 to normalize our treatment
of options. We combined this tool with guard functions so choose becomes a
general tool that works with both lists and functions. That code greatly sim-
plifies the build_substitution function to a trivial level.

Elixir and Erlang use functions as data all over the place, to process random
numbers, manage iterators and streams. They take functions that produce
the next values. The entire OTP is based on behaviours which use groups of
functions to implement common patterns. The list goes on and on.

Joe Armstrong, one of the creators of Erlang, says we’re always taking the
data to the code, which is really hard, when we could take the code to the
data, and that’s much easier. In Elixir, this idea is tremendously powerful.

Name Concepts with Functions
Sometimes, when we have a concept in our code that needs a description,
it’s tempting to reach for a comment. Instead, think about whether there’s a
way to name the concept with code. A new variable or a function with a
descriptive name is better than a comment because those concepts get checked
by the compiler and comments don’t. Let’s look at an example.

In the first version of this code, we combined the concepts of compiling a
macro and evaluating it in a single function that looked like this:

defp evaluate(substitutions, template) do
{asked, _bound} =

Code.eval_quoted(template.compiled, assigns: substitutions)

%__MODULE__{
asked: asked,
substitutions: substitutions,

report erratum • discuss

Organize Core Functions by Purpose • 59

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

template: template
}

end

After thinking about it more, we opted to simplify that code by following two
coding principles. The first is single-purpose functions. The second is using
functions to name important concepts. We decided to break out the compila-
tion concept. That led to a better design. Given substitutions and a template,
let’s fill in the template to form our question text. Crack open lib/mastery/core/ques-
tion.ex and add these functions.

FunctionsCore/lib/mastery/core/question.ex
defp compile(template, substitutions) do

template.compiled
|> Code.eval_quoted(assigns: substitutions)
|> elem(0)

end

defp evaluate(substitutions, template) do
%__MODULE__{
asked: compile(template, substitutions),
substitutions: substitutions,
template: template

}
end

end

We named the compile concept with a function called compile. to do the work,
we pipe template.compiled to Code.eval_quoted which returns a tuple. We need the
first element, so we grab that with elem(0) and we’re off to the races.

Now that we can build substitutions and evaluate the template, it’s trivial to
build our remaining constructor, called new. Key these lines into the top of
the module, just below the struct:

FunctionsCore/lib/mastery/core/question.ex
def new(%Template{ } = template) do

template.generators
|> Enum.map(&build_substitution/1)
|> evaluate(template)

end

We have a good start in our organization. We’ve defined functions for the
simple modules in our system, Response, Question, and Template. We’ve chosen a
problem with meat on it for a reason, though.

Organizing the quiz will stretch us a little more. Let’s explore some of the
basic principles of functional programming and put those into practice as we
compose the functions that make up our quiz.

Chapter 4. Build a Functional Core • 60

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/question.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/question.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Compose a Quiz From Functions
Every program is a conversation; every programmer’s first job is to be
understood. Whether you’re communicating to your future teammate or future
you, the goals should be the same. This section is about writing functions
that are easier to understand. Though getting better at this critical skill is a
lifelong pursuit, putting certain tools on your tool belt where you can use
them daily will improve your readability immediately, if you’re not already
using them.

Hopefully, we’ll give terminology and voice to concepts you’ve already experi-
enced. Over the next few sections, watch for some important concepts as we
write code. We will choose function names to fully communicate core concepts.
Those well-named functions will focus on a single purpose. Then, we’ll
structure those functions specifically for composition.

Build Well-named Functions
If a program is a story, functions represent the verbs, a critical part of your
vocabulary. Your function arguments are nouns. Programming is about
naming things well. Too many programmers are afraid of long names. Usually,
that’s a mistake. The best name is as long as it needs to be. Consider this
example:

def tax(amount, city, state, sku), do: ...

That name may save typing, but it carries a pretty significant risk because it
does not have enough information. It needs context. We could make the name
more descriptive, and it would help:

def compute_cart_tax(amount, city, state, sku), do: ...

Now we know the tax is for a shopping cart. We have more context and less
of a chance of confusion that could change business behavior. Still, an
important piece of information is missing:

def compute_cart_tax_in_cents(taxable_cents, city, state, sku), do: ...

Now we’re getting there. cart shows what we’re computing, and in_cents makes
sure our clients know we’re returning currency in cents rather than dollars.
If you’re so inclined, you could use a typespec and explicitly specify dollars
and cent types to accomplish the same things.

To be fair, short names have their place. Honk if you’d rather be typing Enu-
merable than Enum. For the most part, though, acronyms and abbreviations do

report erratum • discuss

Compose a Quiz From Functions • 61

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

more harm than good. Functions are opportunities to name concepts. Take
full advantage.

Shape Them for Composition
Once you have functions with good names, the next step in organizing them
is to shape them for composition. In Elixir, that means pipes. The progression
of good Elixir code often goes something like this.

• Try to string together a pipeline of transformations using |>.
• Fallback to with/1 when you need to embrace failure.
• To shape code that’s difficult to compose, use tokens. (More on this later.)

In Elixir, we’ll typically want to compose across functions with these strategies.
In the core, we’ll focus on the first and third concepts, both forms of piping.
In the service layer, we’ll lean on the second, since we’ll have to deal with
more failure and uncertainty, places where with shines.

So far, we’ve built out questions, templates and responses. With modules
having functions shaped around a single concept and taking a common
datatype as the first argument, we’re already moving toward structures that
will pipe well. When functions in your module also return the module’s struct,
you’re built to pipe. Then complex multipurpose functions simply break down
into pipes of single-purpose functions.

The concept we mention above, tokens, is an extreme form of composition
with pipes. Let’s explore.

Use Tokens to Share Complex Context
One of the key concepts in functional programming is the token.1 Think of a
token as a piece representing a player on a board game. It moves and marks
concepts. Tokens in programming are very much the same.

If you’re familiar with the Phoenix framework, the Plug.Conn is a token. An
Ecto.Changeset or Query is also a token. Pipelines of functions transform these
structures, tracking progress through a program.

Think about our quiz. The quiz will mark a user’s progress through answering
a set of generated questions as they master concepts and repeat others. It’s
not a linear progression through a list, or a reduction across some other
datatype. It’s a token, the representation of a quiz at a point in time. Our quiz

1. https://youtu.be/ycpNi701aCs

Chapter 4. Build a Functional Core • 62

report erratum • discussPrepared exclusively for Correl Roush

https://youtu.be/ycpNi701aCs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

is still a functional data structure because we represent each point in time
with a different quiz.

Build Single Purpose Functions
Let’s use these concepts to build out our quiz. Along the way we can examine
other principles of good design. We’ll try to make each function take on one
single task, however simple. Functions should be relatively short, but a much
more important concept is to keep them to a single task. Decoupling concepts
is a foundational concept for any kind of programming, regardless of language.

Let’s put this advice into practice as we build our quiz. Recall our initial
structure for quizzes in Quizzes Ask Questions, on page 49. We have the
struct, the constructor, and the common aliases we’ll need to keep our sanity
and reduce our typing. Open up lib/mastery/core/quiz.ex and key this in:

FunctionsCore/lib/mastery/core/quiz.ex
defmodule Mastery.Core.Quiz do

alias Mastery.Core.{Template, Question, Response}

defstruct title: nil,
mastery: 3,
templates: %{ },
used: [],
current_question: nil,
last_response: nil,
record: %{ },
mastered: []

def new(fields) do
struct!(__MODULE__, fields)

end

Sometimes, we don’t need to build a custom constructor, but in this case,
the new function will help us compose cleanly in our tests and other functions.

Our next few functions allow us to add a template to the quiz. Remember,
our Quiz is a token. It will track the composition of new quizzes and track a
user through answering questions. Building a single-purpose function to add
templates to a quiz makes sense:

FunctionsCore/lib/mastery/core/quiz.ex
def add_template(quiz, fields) do

template = Template.new(fields)

templates =
update_in(
quiz.templates,
[template.category],
&add_to_list_or_nil(&1, template)

report erratum • discuss

Compose a Quiz From Functions • 63

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

)

%__MODULE__{quiz | templates: templates}
end

defp add_to_list_or_nil(nil, template), do: [template]
defp add_to_list_or_nil(templates, template), do: [template | templates]

Here, we create a new template and add it to quiz.templates[category], building a
new list if none exists and returning a new module. That means when it’s
time, we can beautifully generate a new test like this:

Quiz.new(title: "Basic math", mastery: 4)
|> add_template(fields_for_addition)
|> add_template(fields_for_subtraction)
|> add_template(fields_for_multiplication)
|> add_template(fields_for_division)

Each step moves our token with a simple transformation. Each step represents
a single purpose function, and we compose each of those to form bigger steps.
Once the quiz has templates, we’re ready to pick a question for the user. Let’s
do that now.

Build At a Single Level of Abstraction
As we’re building the quiz, we’ll continue to build single-purpose functions
that are easy to compose. One of the things that makes code easy or hard to
read is the number of abstractions a programmer has to deal with at once.
It turns out that we can handle many different abstractions if those abstrac-
tions are well named, well organized and close together. This concept is the
single level of abstraction2 principle introduced by Bob Martin in Clean Code:
A Handbook of Agile Software Craftsmanship [Mar08].

Choose a Random Question
The single level of abstraction principle says that each line of a function or
method should be at the same level of abstraction. It’s a tough principle to
articulate, but we know it when we see it. A good example of that principle
is our select_question function:

FunctionsCore/lib/mastery/core/quiz.ex
def select_question(%__MODULE__{templates: t}) when map_size(t) == 0, do: nil
def select_question(quiz) do

quiz
|> pick_current_question
|> move_template(:used)

2. http://principles-wiki.net/principles:single_level_of_abstraction

Chapter 4. Build a Functional Core • 64

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://principles-wiki.net/principles:single_level_of_abstraction
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

|> reset_template_cycle
end

That code is written to a single level of abstraction. It picks a random question,
moves the template to the used list, and resets the cycle if we’ve gone through
all of our templates.

Earlier versions of our code looked like this:

def select_question(quiz) do
quiz
|> Map.put(:current_question, select_a_random_question(quiz))
|> move_template(:used)
|> reset_template_cycle

end

The problem is that Map.put is at a different level of abstraction than
select_a_question. One deals with questions; one deals with Elixir basic datatypes.
Sometimes, code written to a single level of abstraction is longer. In the end,
it’s worth it because the most complex logic is what we’re optimizing. Let’s
fill out the details of selecting a question by looking at each of the individual
pieces. First, we’ll look at pick_current_question:

FunctionsCore/lib/mastery/core/quiz.ex
defp pick_current_question(quiz) do

Map.put(
quiz,
:current_question,
select_a_random_question(quiz)

)
end

defp select_a_random_question(quiz) do
quiz.templates
|> Enum.random
|> elem(1)
|> Enum.random
|> Question.new

end

Recall that quiz.templates has a list of all unused templates for a test, grouped
by category. The function select_a_random_question takes a random template cat-
egory in the form {category_name, templates}, selects the second element of the
tuple at index 1, picks a random template from that list, and then creates a
new question based on that template.

Then pick_current_question adds that list to a quiz. pick_current_question exists solely
to make select_a_random_question composable by returning a Quiz, which is our
token.

report erratum • discuss

Build At a Single Level of Abstraction • 65

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Move Our Tokens Through Transformations
Remember, our quiz is a token, like a token on a game board. Think of our
token advancing through the game board squares where each square is a
new question. The most critical advancements happen when we choose a
question and when the user answers questions. The Quiz token will need to
seamlessly move through states just as a token moves through the game.

With a question chosen, we can now move a template from our master
quiz.templates list to quiz.used, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp move_template(quiz, field) do

quiz
|> remove_template_from_category
|> add_template_to_field(field)

end

defp template(quiz), do: quiz.current_question.template

Moving a template to used or any other field is the same, so we generalize the
concept. We remove the quiz from the quiz.templates list and then add it to the
specified field of quiz. We’ll get to the details next, but first we’ll define a helper
function to make things a little easier.

The current template for a quiz comes from the current question for a quiz,
so we have a simple helper function called quiz.template that returns the template
from the current question.

Let’s look at that remove_template_from_category function now.

FunctionsCore/lib/mastery/core/quiz.ex
defp remove_template_from_category(quiz) do

template = template(quiz)
new_category_templates =

quiz.templates
|> Map.fetch!(template.category)
|> List.delete(template)

new_templates =
if new_category_templates == [] do
Map.delete(quiz.templates, template.category)

else
Map.put(quiz.templates, template.category, new_category_templates)

end

Map.put(quiz, :templates, new_templates)
end

This function is a little awkward because it deals with the most complex of
our data structures in a quiz, the path quiz.templates[category]. We start by

Chapter 4. Build a Functional Core • 66

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

computing the new value for quiz.templates. We get templates[category] and then
delete the current template from the list.

Next, we build the new quiz.templates record. This is made slightly more compli-
cated because we don’t want an empty category, so if the new list of templates
for a category is empty, we simply delete the key in quiz.templates. Otherwise,
we simply put the new template list into quiz.templates[category].

This code isn’t complex but it is awkward. We hide the complexity from the
user by wrapping it in a single purpose function. The only time a coder needs
to consider this code is when they are reprogramming how templates are
organized.

Now that we’ve done the hard part, we can move on to happier things. Adding
our template to a field is as simple as Map.put, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp add_template_to_field(quiz, field) do

template = template(quiz)
list = Map.get(quiz, field)

Map.put(quiz, field, [template | list])
end

We get the current template, we get the list for the field, and then replace
that list with a new list having our new template.

Reset a Quiz
After we’ve moved all of the templates from quiz.templates to quiz.used, we need
to consider what to do next, now that quiz.templates is empty. If the quiz user
has yet to master all concepts in the quiz, we need to reset quiz.templates from
the quizzes we’ve used but not yet mastered. That will happen in reset_tem-
plate_cycle, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp reset_template_cycle(%{templates: templates, used: used} = quiz)
when map_size(templates) == 0 do

%__MODULE__{
quiz |
templates: Enum.group_by(used, fn template -> template.category end),
used: []

}
end
defp reset_template_cycle(quiz), do: quiz

Now, our token can successfully represent new quizzes, adding templates to
quizzes, and advancing through questions. The next step is to finish up our
business logic by letting a user answer questions.

report erratum • discuss

Build At a Single Level of Abstraction • 67

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Keep the Left Margin Skinny
You can tell a lot about a programmer by scanning code. For elixir, this is
especially true. When I scan Elixir, I am looking for long pipelines, short
functions and skinny left margins. We’ve talked about designing for composi-
tion and single level of abstraction. Skinny left margins mean decisions are
often made in pattern matches instead of control structures like if, cond and
case. Skinny left margins make single concept functions much more likely,
and simplify tests. Let’s take an example.

When a user answers a question, the response may be correct or incorrect.
We’ve built a boolean into our Response struct for the purposes of quickly
making decisions with pattern matching. It looks like this:

FunctionsCore/lib/mastery/core/quiz.ex
def answer_question(quiz, %Response{correct: true}=response) do

new_quiz =
quiz
|> inc_record
|> save_response(response)

maybe_advance(new_quiz, mastered?(new_quiz))
end
def answer_question(quiz, %Response{correct: false}=response) do

quiz
|> reset_record
|> save_response(response)

end

def save_response(quiz, response) do
Map.put(quiz, :last_response, response)

end

def mastered?(quiz) do
score = Map.get(quiz.record, template(quiz).name, 0)
score == quiz.mastery

end

We decide how to handle a response by pattern matching on response.correct.
When we answer a question, the behavior is different for correct and incorrect
questions. In either case, we need to appropriately set the number of consec-
utive correct answers which we store in quiz.record and to save the response in
quiz.last_response.

If the answer is correct, we increment the record, save the response and may
possibly advance, based on whether the user has mastered that template.
We’ll handle the potential advancement in maybe_advance. On an incorrect
response, we reset the record for that template and save the response.

Chapter 4. Build a Functional Core • 68

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

The save_response function is just a Map.put. We break out a function only to
name the concept. Similarly, mastered? is trivial. A template is mastered? if the
record matches the quiz mastery.

This coding style may seem alien to you at first, but once you get used to it,
reading code like this is more like reading independent business rules, and
flows seamlessly. Debugging is often simpler because you’ll often have the
arguments to a failing function when things break, so you have all the data
you need at your disposal.

Let’s look at the independent pieces that make up answer_question. For a right
answer, we need to increment the record, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp inc_record(%{current_question: question}=quiz) do

new_record = Map.update(quiz.record, question.template.name, 1, &(&1 + 1))
Map.put(quiz, :record, new_record)

end

Easy. We compute the new record with Map.update. That function takes a data
structure, a path to data within that structure, a default value and a function.
The function updates the data at the path with the given function, using the
default if there’s not yet a value.

Next, we handle advancing. This is the crux of our token movement, but
breaking our system down into composable steps makes quick work of it:

FunctionsCore/lib/mastery/core/quiz.ex
defp maybe_advance(quiz, false = _mastered), do: quiz
defp maybe_advance(quiz, true = _mastered), do: advance(quiz)

def advance(quiz) do
quiz
|> move_template(:mastered)
|> reset_record
|> reset_used

end

Notice we name the second boolean argument, and immediately discard that
name. We’re doing so to name the concept related to the boolean as _mastered.
If a concept is not yet mastered, we do nothing, meaning we simply return
our token, the quiz. Once a concept is mastered, we move the template to
quiz.mastered, reset quiz.record for that category to zero, and reset quiz.used.

There are just a few remaining concepts to handle. We need to code reset_record
and reset_used, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp reset_record(%{current_question: question} = quiz) do

report erratum • discuss

Keep the Left Margin Skinny • 69

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Map.put(
quiz,
:record,
Map.delete(quiz.record, question.template.name)

)
end

defp reset_used(%{current_question: question} = quiz) do
Map.put(
quiz,
:used,
List.delete(quiz.used, question.template)

)
end

end

Those functions are trivial. In each case, we update the quiz with a Map.put.
reset_record deletes the record for a template, and reset_used simply deletes a
question template from quiz.used.

With that last detail, we’re done. Let’s take it for a spin!

Try Out the Core
IEx is a great tool to sanity check our code as we go. We’re not going to run
an exhaustive test; we’ll save that work for the test chapter in Chapter 5, Test
Your Core, on page 75. We’ll simply use IEx to do a quick integration check
to make sure our tools work together as we expect.

To do any meaningful integration test, we need a quiz but before we can build
one we’ll need a template. Our quiz will use a single template for addition
that generates questions of the form “x + y”. Type iex -Smix to open the codebase
interactively:

$ iex -S mix
iex(1)> alias Mastery.Core.{Template, Quiz, Response}
[Mastery.Core.Template, Mastery.Core.Quiz, Mastery.Core.Response]
iex(2)> generator = %{ left: [1, 2], right: [1, 2] }
%{left: [1, 2], right: [1, 2]}
iex(3)> checker = fn(sub, answer) ->
...(3)> sub[:left] + sub[:right] == String.to_integer(answer)
...(3)> end
#Function<12.99386804/2 in :erl_eval.expr/5>

We get the aliases out of the way before moving on to the generator and
checker functions our template will need. The generator uses two short lists
of integers and the checker tests that the answer is left + right. The user data
will arrive in string form so we account for that with the String.to_integer/1
function.

Chapter 4. Build a Functional Core • 70

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Next we’ll create a quiz, and then add the template with the pieces we’ve
created, like this:

iex(4)> quiz = Quiz.new(title: "Addition", mastery: 2) \
...(4)> |> Quiz.add_template(
...(4)> name: :single_digit_addition,
...(4)> category: :addition,
...(4)> instructions: "Add the numbers",
...(4)> raw: "<%= @left %> + <%= @right %>",
...(4)> generators: generator,
...(4)> checker: checker) \
...(4)> |> Quiz.select_question
%Mastery.Core.Quiz{

current_question: %Mastery.Core.Question{
asked: "1 + 2",
substitutions: [left: 1, right: 2],
template: %Mastery.Core.Template{
category: :addition,
checker: #Function<12.99386804/2 in :erl_eval.expr/5>,
compiled: {...},
generators: %{left: [1, 2], right: [1, 2]},
instructions: "Add the numbers",
name: :single_digit_addition,
raw: "<%= @left %> + <%= @right %>"

}
},
last_response: nil,
mastered: [],
mastery: 2,
record: %{},
templates: %{ addition: [...] },
title: "Addition",
used: []

}

Perfect. Our new quiz looks like it should with an empty record, nothing yet
mastered and a single addition category for templates. Let’s create an incorrect
response, like this:

iex(5)> email="jill@example.com"
"jill@example.com"
iex(6)> response = Response.new(quiz, email, "0")
%Mastery.Core.Response{

answer: "0",
correct: false,
email: "jill@example.com",
quiz_title: "Addition",
template_name: :single_digit_addition,
timestamp: #DateTime<2019-03-31 20:59:12.823720Z>,
to: "1 + 2"

report erratum • discuss

Try Out the Core • 71

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

}
iex(7)> quiz = Quiz.answer_question(quiz, response)
%Mastery.Core.Quiz{...}
iex(8)> quiz.record
%{}

We create a response. Mastery runs checkers as it creates the responses to
make debugging and inspection easier so you can see that the response is
incorrect. We advance our token with answer_question/2 and just as we expect,
the record field remains empty.

Let’s try a correct response instead:

iex(9)> quiz = Quiz.select_question(quiz)
%Mastery.Core.Quiz{...}
iex(10)> quiz.current_question.asked
"1 + 2"
iex(11)> response = Response.new quiz, email, "3"
%Mastery.Core.Response{

answer: "3",
correct: true,
email: "jill@example.com",
quiz_title: "Addition",
template_name: :single_digit_addition,
timestamp: #DateTime<2019-03-31 20:59:43.820340Z>,
to: "1 + 2"

}
iex(12)> quiz = Quiz.answer_question quiz, response
%Mastery.Core.Quiz{...}
iex(13)> quiz.record
%{single_digit_addition: 1}

Perfect. We create a new question, check the question text and build a new
correct response. Next, we advance our token with answer_question/2 and check
the question record. Fortunately, we get a record of 1 for our :single_digit_addition
template.

It works! We’re tracking incorrect and correct answers correctly. We’ll work
through mastery in the next chapter. For now, we can take a deep breath and
wrap up.

Build Your Functional Core
In this chapter, we showed how to build a functional core. It’s mostly datatypes
and code made up of strictly functions in modules, with the same inputs
producing the same outputs as often as you can. The functional core has no
processes and invokes no external services. It encapsulates the bulk of the
business logic.

Chapter 4. Build a Functional Core • 72

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

We also built the functional core of our Mastery project. Along the way, we
embraced some core programming principles.

• Build single purpose functions
• Where possible, bring functions to data rather than bringing your data

to functions.
• Name concepts with functions
• Shape functions for composition
• Build functions at a single level of abstraction
• Make decisions in function heads where possible

We’ll try to keep as much business logic and complexity as possible in the
functional core. Building code this way makes it much easier to reason about
functions, since the same inputs will always have the same outputs making
testing much simpler.

In the next chapter, we’ll exercise our functions in tests. We’ll be getting some
tests in while the system is easy to understand and tests are easy to shape,
without any external interfaces or processes. When you’re ready, turn the
page!

report erratum • discuss

Build Your Functional Core • 73

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

CHAPTER 5

Test Your Core
If you’re like us, you’ve been continuously asking a nagging question as we
wrestled the data design and functional core to the ground. Where are the
tests?

Here’s a confession. We don’t write code the way it’s presented in this book.
In real life, we make more mistakes, switch between data, functions and tests
often. We have debates, spike on feature branches and we almost always
create a test baseline as we go.

That coding style is a great way to work, but a lousy way to write a book like
this, and with good reason. A book about layers can’t jerk its readers
breathlessly from layer to layer and still hope to teach the core concepts of
each one. That’s why we are going to present the tests, fully formed, line by
line giving you the usual commentary of supporting theory and our thought
process as we go.

We believe strongly that tests matter, test designs impact product designs
and testing as a whole has a tremendous impact on everything a development
organization does. Rather than distributing bits of knowledge throughout the
book, we decided to consolidate all of the testing philosophy and discussion
to two different chapters, one for the core layers and one for the boundary
layers.

Tests are the “T” for “things” in “Do fun things with big loud wildebeests.”
You can see how they fit into the big picture in the following figure:

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

API

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Do Fun Things with Big Loud Wildebeests

Loud: Lifecycle
(OTP supervisors)

In this chapter, we’ll lay out tests for the whole functional core. We will pay
special attention to setup and composition. That strategy will allow us to
build much more concise tests that tell a story. Later, our boundary tests will
handle our boundary, lifecycle and worker layers in the (as yet) unwritten
Chapter 9, Test the Boundary, .

If you’re writing tests, you already know about ExUnit, Elixir’s sole framework
for running unit tests. We’re not going to tell you how it works because we
want to spend time on concepts rather than mechanics. We’ll suggest tools
for coverage and property testing but we won’t show you those in practice.
We believe in those concepts, but it would take a whole book to cover all of
them. Instead, we’ll mention the tools and techniques that will let you build
your own testing philosophy.

When you’re done, you’ll be able to raise your thought process from individual
tests to building systems of tests with supporting functions that compose.
You’ll be able to take a chaotic mix of code and refactor it so that the story
beneath shines true. It all starts with a plan.

In broad strokes, this is our plan. We will focus as much effort as possible
on composable functions for setup. Though we can test simple functions in
isolation, the complex ones will require composition. We’ll test the harder
concepts with pipelines and custom test functions called fixtures.

A fixture is simply a bit of code in a test that sets up project code for conve-
nient testing. In the core layer, fixtures return data. Investing in this setup
code will take longer at first, but as our project grows in complexity our test
cases will have the organizational structure to grow with the rest of our
codebase.

Let’s look at that plan in the context of ExUnit. Consider a typical test. Testing
frameworks typically separate the tests into three broad pieces:

Chapter 5. Test Your Core • 76

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

• Shared setup code prepares tests for execution. Their job is to lay a com-
mon foundation for experiments.

• A typical test compares expectations with actual results.
• Shared teardown code cleans up any side effects, so one test does not

impact the rest.

Since we’re testing our functional core which is mostly pure, we won’t need
teardown code. All of our effort in this chapter will be on the setup and tests.
As we go, we’ll point out where to focus our attention. Let’s put that plan into
action.

Simplify Tests with Common Setup Functions
When we decided to write this book, one of our strongest desires was to solve
a nontrivial problem. Recall that Mastery is the project we’ve been working
on throughout this book. The project illustrates tests well because it has an
intricate structure with many moving parts. Mastery quiz designers need to
build complex structures. Mastery end users will answer questions with wrong
and right answers, and the sequencing of questions will change based on
those responses. Testing this flow is nontrivial, and here’s why.

Writing tests is about establishing a flow. In each test, we prepare a question,
ask the question, and compare the actual response with our expectations.
As the domain grows in complexity, preparing for a question will take more
and more effort.

In specific terms, for Mastery we must create quizzes with templates, as a
teacher would, and then answer the questions those quizzes generate, as a
user would. It’s not just enough for our tests to answer questions in isolation.
We must prove that users repeat sections until they achieve mastery by getting
enough answers right. A substantial amount of this work is creating quizzes
in the first place.

Here’s the point. You must get setup right to get the rest of your tests right.
Creating complex data structures to prepare for a test takes space on your
editor page and space in your brain. Both are limited. Tests that pack too
much into the test function itself obscure the purpose of the test so we’ll put
substantial effort into extracting common code from tests into setup.

We’re going to use two primary types of setup. One type, called fixtures, are
functions that return data structures. We can call fixtures from anywhere in
our tests. The second kind of setup code, called named setups, are functions
that create project-specific data and place it into data structures that we’ll

report erratum • discuss

Simplify Tests with Common Setup Functions • 77

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

pass directly into our tests as formal parameters. Let’s look at each one in
greater detail.

Fixtures are constructors. They are convenience functions that return complex
data project-specific structures for the purposes of tests. We’ll build fixtures
to create quizzes, templates and the other kinds of data structures we’ll need
to put Mastery through its paces. A convenient place to put such data is the
test context.

Whether you need it or not, ExUnit has a special argument, called a context,
to track metadata about each individual test. The context is a Map that has
all of the data Elixir needs to run a test such as the name of the test case
and so on. Conveniently, developers can add test-specific data to the context
as well. Since contexts are simply maps, they are easy to work with.

Rather than giving each test the responsibility of creating all of its own test
data, we will use named setup functions to build a common set of data that
works across several tests and load it into the context. Named setups are
essentially test fixtures. Like other fixtures for the core layer, they return
data. Named setups are special because:

• They are functions with a specific signature. They take a context and return
an {:ok, context} tuple.

• They return test data that they put into the context.

Tests can then invoke named setups by name to set up specific scenarios.
We’ll go into them in detail in the sections that follow, but first we will look
at a trick for making our tests less noisy by stripping away unnecessary cer-
emony. To do so, we’ll need to make a brief detour into the ExUnit test helpers.

Improve the ExUnit Infrastructure
Improving our setup is important, but it’s not enough. We can also improve
our tests by stripping away ceremony and organizing our infrastructure.
Things like common aliases and helper functions can quickly cut a couple of
dozen characters in half. In a nutshell, these tiny bits of infrastructure will
make it easier for our users to invoke the setups that improve our tests.

Normally, we’d add a few aliases to the top of a file and call it a day, but we’ll
often have several different test files that need to use the same lines. Instead
of tacking the same aliases to multiple files, we need a way to reuse these
lines. Let’s pay a visit to the man behind the curtain to see how we’ll do that
work.

Chapter 5. Test Your Core • 78

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

When mix new project_name creates a new project, it builds a test directory with
two files. One is a simple test with a single line of consequence: use ExUnit.Case.
That statement is a macro that includes all the macros and functions our
tests will need. One of the things that macro does is include the file
test/test_helper.exs. Let’s open it up and see what’s inside:

ExUnit.start()

This helper simply starts the ExUnit process that will run our tests. It’s an
ideal place to put the additional ceremony our project will need, things like
aliases or imports for our project modules or setup functions. We’ll use
test/test_helper.ex to import the testing fixtures our project will need, like this:

Tests/test/test_helper.exs
Code.require_file "support/quiz_builders.exs", __DIR__

ExUnit.start()

We require support/quiz_builders.exs, which will have our fixtures that build quizzes,
templates and the like. Let’s begin to build out our fixtures, and all of the
machinery they will need to conveniently create quizzes. Crack that file open
and let’s get it started by adding a __USING__ macro, like this:

Tests/test/support/quiz_builders.exs
defmodule QuizBuilders do

defmacro __using__(_options) do
quote do
alias Mastery.Core.{Template, Response, Quiz}
import QuizBuilders, only: :functions

end
end

alias Mastery.Core.{Template, Question, Quiz}

We could easily just make this file a stand alone module. That’s not good
enough for our tests. We want to remove the obstacle of processing the full
module name, a test support name that’s meaningless to our user, each of
the hundreds of times we need to create test data. That means using a macro.

This one does two simple things. First, it aliases key modules so the user can
use the abbreviated names. Then, it inserts the functions into the test module
as if those functions had been defined there. Now, our quizzes can do

assert Quiz.function(build_data())

instead of

assert Mastery.Core.Quiz.function(Mastery.QuizBuilder.build_data())

report erratum • discuss

Improve the ExUnit Infrastructure • 79

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/test_helper.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Don’t worry about the build_data function right now. It’s just a placeholder as
we work out the details.

Saving that bit of ceremony with the fully qualified Mastery.QuizBuilder is important
since the test setup is such a big part of our overall testing experience.
Alternatively, the test user could explicitly add an alias to the top of the test
file to save that ceremony, but that strategy comes with its own limitations
because you’d need to add the aliases to each test file. Either way, it’s a
substantial win.

With the machinery out of the way, let’s add the constructors to QuizBuilders
that will smooth out our tests.

Provide Test Data With Fixtures
We’ll focus on fixtures in this section. Recall that in our functional core, test
fixtures are functions that create data so we can write repeatable tests without
the extra ceremony. Our quizzes are complex, so the job of our fixtures is to
focus on building data — the various structs and maps that make up our
data layer — so we can keep those details out of the tests.

Recall that our quizzes have the following structure:

defstruct title: nil,
mastery: 3,
templates: %{ },
used: [],
current_question: nil,
record: %{ },
mastered: []

We’ll need to set those first three fields. The rest are computed. The best way
to populate the templates field is to call our add_template function with a set of
template fields.

That means our strategy is going to look something like this:

build_quiz
|> add_template(template_fields_1)
|> add_template(template_fields_2)

Templates are also complex, so we’ll start with those. While you’ve got sup-
port/quiz_builders.exs open, add this code:

Tests/test/support/quiz_builders.exs
def template_fields(overrides \\ []) do

Keyword.merge(
[
name: :single_digit_addition,

Chapter 5. Test Your Core • 80

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

category: :addition,
instructions: "Add the numbers",
raw: "<%= @left %> + <%= @right %>",
generators: addition_generators(single_digits()),
checker: &addition_checker/2

],
overrides

)
end

That code looks nasty, but most of the job is delegated to other functions.
The rest simply sets up the raw fields our templates will need. Those fields
set up a template for single digit addition. We have functions to set up the
generators and checkers we need. We wrap those fields in a Keyword.merge so
the user can customize our default templates with fields of their own.

Now we can look ahead to the functions that support these fields. Add the
following to support/quiz_builders.exs, like this:

Tests/test/support/quiz_builders.exs
def double_digit_addition_template_fields() do

template_fields(
name: :double_digit_addition,
generators: addition_generators(double_digits())

)
end

def addition_generators(left, right \\ nil) do
%{left: left, right: right || left}

end

def double_digits() do
Enum.to_list(10..99)

end

def single_digits() do
Enum.to_list(0..9)

end

We have a function that provides template fields for double digit addition. It
uses a helper function to build out the generators. A generator is a map where
the keys are fields and the values are substitutions for those fields.

Next we have three trivial helper functions to help build generators. The first
builds a generator map we’ll use for all addition templates. It has :left and
:right substitutions. If the user provides only one list, the function will use the
same list for both :left and :right. The next two functions provide single digit
and double digit lists for addition substitutions.

report erratum • discuss

Provide Test Data With Fixtures • 81

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

The last piece of templates is the checkers. Let’s add them to support/quiz_builders
now:

Tests/test/support/quiz_builders.exs
def addition_checker(substitutions, answer) do

left = Keyword.fetch!(substitutions, :left)
right = Keyword.fetch!(substitutions, :right)
to_string(left + right) == String.trim(answer)

end

They simply fetch :left and :right from the template and then add them together,
and compare the result to a string. We use Map.fetch! because we want to know
immediately if the field is missing, and it will raise an error rather than
returning a nil value.

Now with the templates out of the way, the heavy lifting is mostly done. We
can focus on building quizzes. That’s nearly trivial now:

Tests/test/support/quiz_builders.exs
def quiz_fields(overrides) do

Keyword.merge([title: "Simple Arithmetic"], overrides)
end

def build_quiz(quiz_overrides \\ []) do
quiz_overrides
|> quiz_fields
|> Quiz.new

end

def build_question(overrides \\ []) do
overrides
|> template_fields
|> Template.new
|> Question.new

end

Our quiz_fields function returns some default attributes and merges in overrides.
Then all build_quiz has to do is take the overrides, pipe them into quiz_fields, and
pipe that into Quiz.new. Lovely.

Building a question is also easy. Since we need only a template to generate
a question, we have all we need. We take our overrides, pipe them into tem-
plate_fields, pipe that into Template.new and pipe that into Question.new. Our work
to keep our functions composable is paying off.

It’s time to see the benefits of all of our hard work. We’re going to build a quiz
with two templates. That code looks like this:

Tests/test/support/quiz_builders.exs
def build_quiz_with_two_templates(quiz_overrides \\ []) do

Chapter 5. Test Your Core • 82

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

build_quiz(quiz_overrides)
|> Quiz.add_template(template_fields())
|> Quiz.add_template(double_digit_addition_template_fields())

end
end

That uses the composition tools we’ve already built to construct a template.
Let’s try our shiny new QuizBuilders module.

Use Fixture Functions Directly
We have a single test we’ll need for templates. We want to make sure templates
get compiled correctly. That test would be difficult if we had to do all of the
setup work in the test block itself. Instead, we’ll use the helper functions in
QuizBuilders to bang our test out quickly.

Open up test/template_test.exs and add your new test, like this:

Tests/test/template_test.exs
defmodule TemplateTest do

use ExUnit.Case
use QuizBuilders

test "building compiles the raw template" do
fields = template_fields()
template = Template.new(fields)

assert is_nil(Keyword.get(fields, :compiled))
assert not is_nil(template.compiled)

end
end

The test is pretty tight. We get our default template fields for single digit
addition. Then we use those to build a template. Finally, we check to make
sure the compiled keyword is nil in fields, but set in the template. The purpose
of our test shines through and we can be confident in our new tools.

Simplify Tests With Custom Data Fixtures
Here’s what we’ve done so far. Our testers can now build a large quiz in parts.
They can provide overrides for the overall quiz. If they need to build something
more custom, they can simply use the composable tools to generate template
fields and add those in whatever combinations they choose. So our data layer
has three main properties, and all are important.

• It allows one-shot creation of complex concepts, our quiz.
• It supports composition of complex options by exposing the constructors

for the simple ones.

report erratum • discuss

Provide Test Data With Fixtures • 83

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/template_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

• It exposes overrides to all core functions so that individual fields can be
changed.

In short, we moved the tedious repeated setup features out of the line of sight
of a typical test and into a custom toolbox that all tests can use. Now let’s
put those tools to work.

Prime Tests With Named Setups
You’ve just seen the first type of setup function, fixtures. In this section, we’ll
cover the next kind of reusable setup function, ExUnit’s named setup feature.
To understand how it works, let’s take a more detailed look at the flow of a
typical ExUnit testcase.

In version 1.3, Elixir released a describe block. Tests within a block could
share common setup code. When you specified a block of tests within a
describe, you could also specify the names of one or more functions to create
common setup data. Here’s how that would look, in our test layer:

API

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Loud: Lifecycle
(OTP supervisors)

Setup

Describe

Named Setups

Tests

Fixtures

You can see how tests with describe work. Each test runs common setup
code, then a describe block, then any named setups specified by that describe
block, and then the test itself. Each one of those functions takes a common
context, a simple map that has all of the metadata required to run a test.

Describe blocks add a little bit of ceremony to the ExUnit flow, but this extra
little bit of complexity in the framework can go a long way toward simplifying
individual tests by moving common setup code into one or more named setups.

Chapter 5. Test Your Core • 84

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

A named setup is a function that does one thing. It takes an ExUnit context
and adds project-specific data to it. Here’s what a named setup function looks
like:

def setup_function(context) do
{:ok, Map.put(context, :test_data, build_your_test_data())}

end

It takes a context and returns a success tuple with a revised context. Every
named setup will have this same shape.

Now, if many functions need access to the same value in :test_data, you can
block those tests into a describe, like this:

describe "a group of tests needing :test_data" do
setup [:setup_function]

test "a test", %{test_data: data} do
assert MyModule.my_function(data) == :ok

end

test "another test", %{test_data: data} do
assert MyModule.another_function(data) == :ok

end
end

Keep in mind that the context is just a map. It’s the common data structure
that ties ExUnit together, just as Quiz ties Mastery together. It contains the
private and custom data each test needs.

You might have noticed that the setup function takes a list rather than an
atom. That means you can pass multiple named setup functions, like this:

describe "a group of tests needing :test_data" do
setup [:setup_function, :another_setup_function]

Since all named setups have the same signature and they all compose over
the same token, you can have as many setups as you want. It’s a wonderful
way to name the preconditions your tests need to run.

We now have some fixtures we’ve established in our QuizBuilders module and
know about the named setup feature, so we can apply those tools to our tests.

All of this setup code may seem like too much boiler plate for such a small
test suite. Keep in mind that our test suite is not complete. We’re building
enough tests to make sure we’re giving you a book with code that works—a
full production test suite would usually be much larger. The investments
we’ve made will increasingly pay off as the test suite grows. Each new test
multiplies these benefits:

report erratum • discuss

Prime Tests With Named Setups • 85

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

• you have less duplication
• the purpose for each test becomes more clear across teams
• your code base will grow much more slowly

With the tradeoffs in mind, we’re going to choose to write some named setups
to control duplication and to simplify each test block. Let’s start with
test/response_test.exs since it’s complex enough to need named setups but simple
enough to illustrate the concept. The first step is to create the file with the
basic heading, like this:

Tests/test/response_test.exs
defmodule ResponseTest do

use ExUnit.Case
use QuizBuilders

We use the QuizBuilders macro to build in our fixtures. Next, we’ll build a simple
local function to build a quiz with the exact quiz and templates we need, like
this:

Tests/test/response_test.exs
defp quiz() do

fields = template_fields(generators: %{left: [1], right: [2]})

build_quiz()
|> Quiz.add_template(fields)
|> Quiz.select_question

end

defp response(answer) do
Response.new(quiz(), "mathy@example.com", answer)

end

Since we’re testing for correct responses, we want a repeatable template with
only one possible correct answer, "3". That means we’ll build a custom addition
template with single item lists containing [1] and [2]. When our generator fires,
it will create a question with the problem 1 + 2.

We also create a response using the answer provided by the user, our custom
quiz function and a hard-coded email address.

Now we can use those functions to create trivial named setups, like this:

Tests/test/response_test.exs
defp right(context) do

{ :ok, Map.put(context, :right, response("3")) }
end

defp wrong(context) do
{ :ok, Map.put(context, :wrong, response("2")) }

end
end

Chapter 5. Test Your Core • 86

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/response_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/response_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/response_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

We have a right setup and a wrong one. The names right and wrong are impor-
tant, both as function names and keys in the context map. They clearly indicate
the types of responses in the context.

All that remains is the need to use those keys in the context. Add this code
after the use macros:

Tests/test/response_test.exs
describe "a right response and a wrong response" do

setup [:right, :wrong]

test "building responses checks answers", %{right: right, wrong: wrong} do
assert right.correct
refute wrong.correct

end

test "a timestamp is added at build time", %{right: response} do
assert %DateTime{ } = response.timestamp
assert response.timestamp < DateTime.utc_now()

end
end

The describe serves two purposes. It puts tests in a named group and also
provides the scope for the named setups. The group of tests will have a right
and a wrong response in the context. Not every test will use every value in
the context, and that’s OK. Presumably as we add tests to this script to make
our suite more robust, we’ll be able leverage these same setup details for at
least some of them.

Next, let’s explore the tests themselves, even though there’s not much to say.
The line assert right.correct is beautifully descriptive—we expect right answers
to be correct. We pattern match to get the assignments out the the body of
the test block and into the function head. We can assert different things about
each response: that we’re correctly firing the checker functions, that we’re
creating appropriate timestamps and the like.

Notice how clear the purpose of each test becomes. Building a response is
complicated. It requires a question, which requires a template, which requires
generators, checkers and a quiz. We hide the complexity from the user and
let them slowly dig into the details, one layer of abstraction at a time.

Also notice that we needed a completely custom quiz with predictable answers.
That quiz was easy to build because we got the abstraction right. We build a
base quiz and pipe that through add_template with our overrides to give us
exactly what we need.

Finally notice that changes to new Response structs are limited to a few lines
of code in our code base. This abstraction feels right so far. We still need to

report erratum • discuss

Prime Tests With Named Setups • 87

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/response_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

see how our setup functions deal with both very simple tests and more com-
plicated ones in the tests to come.

With our QuizBuilders working, we can shift our attention to other tests. Let’s
deal with a sticky problem, dealing with functions that are not pure.

Make Tests Repeatable
All of our tests are inside our functional core. In the core, calling a function
with the same arguments will almost always result in the same output. That
word “almost” is a killer because our whole strategy involves comparing our
expectations to actual values. When we can’t have expectations from run to
run, we must change our approach.

Sometimes, functions are not perfectly pure. Functions that create timestamps
or random numbers are famously difficult to test. We have both types of
functions in our codebase. For example, recall the response test:

test "a timestamp is added at build time", %{right: response} do
assert %DateTime{ } = response.timestamp
assert response.timestamp < DateTime.utc_now

end

We deal with that problem by changing the way we think about expectations.
Rather than testing against an explicit value, we make sure the timestamp
is in fact a timestamp, and that it’s before the present moment, utc_now.

Random numbers will be a little trickier. As we build out the tests in our
test/question_test.exs file, we’ll dodge the random problem in most of them by
building tests that restrict choices in one way or another. Let’s solve the easy
problems first and save the toughest for last.

First, we need the typical test directives:

Tests/test/question_test.exs
defmodule QuestionTest do

use ExUnit.Case
use QuizBuilders

Next, we’ll make sure generators make a choice from a list. Rather than deal
with random numbers right off the bat, we’ll restrict the template to two lists
of one, like this:

Tests/test/question_test.exs
test "building chooses substitutions" do

question = build_question(generators: addition_generators([1], [2]))

assert question.substitutions == [left: 1, right: 2]
end

Chapter 5. Test Your Core • 88

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

We generate a template for single digit addition with two lists of a single item.
Then we test against the expected substitutions.

Here’s a trivial approach to dealing with our random number nemesis. Lists
of one certainly simplify the test because we know exactly what the result
should be. In this case, we can tell whether the choices get plugged into the
substitutions correctly. We essentially stacked the deck.

We’ll deal with a more complete test for the specific random problem in a bit.
For now, let’s make sure other types of generators work, like this:

Tests/test/question_test.exs
test "function generators are called" do

generators = addition_generators(fn -> 42 end, [0])
substitutions = build_question(generators: generators).substitutions

assert Keyword.fetch!(substitutions, :left) == generators.left.()
end

That’s an interesting test. We pass in a function as one of the generators for
a custom template. We’ll include a function that returns the most important
number in the universe, 42. Then, we fire the generator, and compare the
value of the substitution to the value the function returns. Once again, we
stack the deck in our favor by picking a very simple function to use in our
generator.

The test is simple because we already know Elixir can reliably compute custom
functions, so we don’t need to test that. We need only test that our generator
fires a function, so a simple one works fine.

With function and list generators in our pocket, we can move on to computing
the asked field for questions. Once again, we don’t really care how the values
are chosen. We only care that the correct values get plugged in. We’ll use a
simple template once again, like this:

Tests/test/question_test.exs
test "building creates asked question text" do

question = build_question(generators: addition_generators([1], [2]))

assert question.asked == "1 + 2"
end

Once again, we provide two lists of one item, making the generated text easy
to compare. The test becomes trivial.

We’ve successfully dodged the idea of random numbers, but it’s time to pay
the piper. We have to pay for the fact that we don’t have repeatable results

report erratum • discuss

Make Tests Repeatable • 89

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

when we generate a question using random numbers, so we’ll have to
improvise.

We can use streams to generate many random numbers, and then narrow
that value to the one we need, like this:

Tests/test/question_test.exs
test "a random choice is made from list generators" do

generators = addition_generators(Enum.to_list(1..9), [0])

assert eventually_match(generators, 1)
assert eventually_match(generators, 9)

end

def eventually_match(generators, number) do
Stream.repeatedly(fn ->
build_question(generators: generators).substitutions

end)
|> Enum.find(fn substitution ->
Keyword.fetch!(substitution, :left) == number end)

end
end

This time, our generator picks a random number from a list from one to nine.
That means we need to get creative. We don’t want to test that Elixir creates
a specific number, because that defeats the nature of the tool we built. We
want to test that Elixir eventually picks a number we expect. We’ll choose to
pick the edges of our random function, the digits 1 and 9.

Here’s the magic. We start from the same foundation, the generators created
at the top of the test. Building on the same foundation is important, and what
makes this test a strong one. We want to make sure that this exact generator
will eventually generate a specific number we’re calling answer. We use
Stream.repeatedly to let our generator build an endless stream of substitutions,
and we then convert the stream to an enumerable with Enum.find. That means
we’ll get random numbers until we hit the one we’re looking for. Keep in mind
that this approach is not the only one that we could have chosen:

• We could have reseeded our random number generator so that our random
function generated a predictable list.

• We could have made our random function pluggable and picked a deter-
ministic function for our tests and a random one for our other environ-
ments.

• We could have checked ranges.

The point is not which solution we chose but that we made a tradeoff. We
chose to complicate our tests to build the impure function random into our
functional core and had to deal with some extra complexity in our tests as a

Chapter 5. Test Your Core • 90

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

result. We think the tradeoff is a good one, but you can choose to make a
different one.

We’ll make one more point before moving on. We could have solved this
problem in several other ways. Instead of using a stream, we could have
tested for a range rather than explicit values, locked our random number
generator to a specific seed, or replaced the random function with another
one in the test environment. The particular solution we chose isn’t the point.
Rather, we wanted to show that you can choose to have a functional core
that’s less than pure, and then when you do so, you’ll pay a price for doing
so. It’s up to you to decide whether the benefits are worth the price.

With this tricky random-number problem out of the way, it’s time to look to
the next significant challenge. Let’s take on the six-headed hydra, the beast
we call Quiz.

Compose Within Tests
The most complex module is Quiz because that’s the module that holds state
as we progress through a test. It needs to generate questions from templates,
cycle through templates, track mastery and finish when mastery is complete.
We’ve put it off as long as we can. We need to slay this beast. We’ll attack it
with our setups and by composing through our token, the Quiz.

Crack open test/quiz_test.exs to construct our quiz. Start with the typical cere-
mony, the module plus the two use directives, like this:

Tests/test/quiz_test.exs
defmodule QuizTest do

use ExUnit.Case
use QuizBuilders

Next, we’ll need helper functions, one that handles random question generation
and one to build a convenient short cut to return the template for a quiz, like
this:

Tests/test/quiz_test.exs
defp eventually_pick_other_template(quiz, template) do

Stream.repeatedly(fn ->
Quiz.select_question(quiz).current_question.template

end)
|> Enum.find(fn other -> other != template end)

end

defp template(quiz) do
quiz.current_question.template

end

report erratum • discuss

Compose Within Tests • 91

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

After we build a question, we know the generators will eventually build
another one. Just as we did in our Question test, we Stream.repeatedly, creating
questions until we eventually find a question that is different from the one
that’s passed in.

The next function, template, is just to save typing because we’re lazy. Let’s
make a few more helpers, this time to answer questions like this:

Tests/test/quiz_test.exs
defp right_answer(quiz), do: answer_question(quiz, "3")
defp wrong_answer(quiz), do: answer_question(quiz, "wrong")

defp answer_question(quiz, answer) do
email = "mathy@example.com"
response = Response.new(quiz, email, answer)
Quiz.answer_question(quiz, response)

end

The first two functions generate right and wrong answers using a third
function. It just passes data straight through to the quiz. Notice that these
functions all take and return a Quiz. This trick will help us compose complex
flows.

Now, we’ll add a few more functions to serve as named setups, like this:

Tests/test/quiz_test.exs
defp quiz(context) do

{:ok, Map.put(context, :quiz, build_quiz_with_two_templates())}
end

defp quiz_always_adds_one_and_two(context) do
fields = template_fields(generators: addition_generators([1], [2]))

quiz =
build_quiz(mastery: 2)
|> Quiz.add_template(fields)

{:ok, Map.put(context, :quiz, quiz)}
end

They simply build quizzes using the functions we created in QuizBuilders, and
returns the :ok tuple. The first builds the default quiz with two templates.
We’ll use that one to make sure our quiz cycles through templates as it should.
The second builds a template with predictable answers. We’ll use that one to
test mastery.

We need one more piece before we write our tests. We’d like to compose our
tests with long, simple pipelines that tell a story, but we want to do some
assertions in the midst of the pipeline. We build a couple of helper functions
that just change the shape of assertions, like this:

Chapter 5. Test Your Core • 92

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Tests/test/quiz_test.exs
defp assert_more_questions(quiz) do

refute is_nil(quiz)
quiz

end

defp refute_more_questions(quiz) do
assert is_nil(quiz)
quiz

end
end

These functions are dead simple, but they will have a tremendous impact on
our tests. They take a quiz and return one, but do an assertion in the middle.
An assertion is effectively a side effect. This technique will let us put together
a longer flow when we want to test a mastery.

It’s finally time to write some tests. Add these tests at the top of the file, after
the use directives. First, we need to make sure we’re generating random
questions. Here’s the approach:

Tests/test/quiz_test.exs
describe "when a quiz has two templates" do

setup [:quiz]

test "the next question is randomly selected", %{quiz: quiz} do
%{current_question: %{template: first_template}} =
Quiz.select_question(quiz)

other_template = eventually_pick_other_template(quiz, first_template)
assert first_template != other_template

end

This is the first of two tests that use named setups to hide the complexity of
data creation by creating our quiz outside of the test block. Our tests are
primed with the correct templates, and we have a function that will take the
same template and keep generating questions with that same template until
it eventually finds a question that doesn’t match the first one. It’s the same
technique we used when testing random substitution generation.

Next, we have a test that makes sure we cycle through all templates until
we’ve exhausted them. Remember, it’s still in the describe block with the
same named setup that calls quiz:

Tests/test/quiz_test.exs
test "templates are unique until cycle repeats", %{quiz: quiz} do

first_quiz = Quiz.select_question(quiz)
second_quiz = Quiz.select_question(first_quiz)
reset_quiz = Quiz.select_question(second_quiz)

assert template(first_quiz) != template(second_quiz)

report erratum • discuss

Compose Within Tests • 93

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

assert template(reset_quiz) in [template(first_quiz), template(second_quiz)]
end

end

This test is tricky because once again we have random generation. We expect
our quiz to generate two questions and then reset, but we don’t know in which
order. We generate the first and second questions, and make sure the first
two templates for those questions are different. Then, we make sure that the
third question’s template, the one we expect to be reset, is from the list of the
first two. It may take you a while to follow the logic, but it’s correct.

Finally, we need to test mastery. Since we have one template with a mastery
of two, and since a wrong question resets mastery, we need to generate a test
that goes something like quiz |> right |> wrong |> right |> right, and that should finish
the quiz. We can generate a test that’s almost as clear, like this:

Tests/test/quiz_test.exs
describe "a quiz that always adds one and two" do

setup [:quiz_always_adds_one_and_two]

test "a wrong answer resets mastery", %{quiz: quiz} do
quiz
|> Quiz.select_question
|> assert_more_questions
|> right_answer
|> Quiz.select_question
|> assert_more_questions
|> wrong_answer
|> Quiz.select_question
|> assert_more_questions
|> right_answer
|> Quiz.select_question
|> assert_more_questions
|> right_answer
|> Quiz.select_question
|> refute_more_questions

end
end

These kinds of tests can get difficult to read without composition, but with
it, the story we’re trying to tell comes through beautifully.

We have taken this test as far as we should in this single chapter, but there
are still a couple more details to cover.

Take Tests Beyond the Elixir Base
Testing is a broad topic and a controversial one. The Elixir community has
so far shown pretty basic tastes as far as testing tools go. In this section, we’ll

Chapter 5. Test Your Core • 94

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

look at a couple of interesting places where Elixir programmers are using
more cutting edge techniques for testing a functional core.

The first idea, code coverage, is that you should understand what’s tested
and what’s not. Elixir has built in tools to help you do so.

The second is that you can use tools to let your system generate many different
test inputs automatically and test those inputs against known properties of
your code. The technique, called property based testing, has been around for
a while but is picking up momentum in the Elixir community.

Consider Measuring the Reach of your Tests
Many teams think it’s important to know the reach of their tests. The mix tool
allows coverage tracking. We suggest that you have a coverage threshold as
a metric for your project. If the coverage falls below the metric, you can react
accordingly.

We don’t need to do anything to check coverage for the code we’ve built so
far. Run mix test --cover in a console that’s in the root directory of mastery, like
this:

~/mastery ➔ mix test --cover
...
Cover compiling modules ...
...

Percentage	Module

100.00% | Mastery.Core.Quiz
100.00% | Mastery.Application
100.00% | Mastery.Core.Template
100.00% | Mastery
87.50% | Mastery.Core.Response
87.50% | Mastery.Core.Question

-----------|--------------------------
77.50% | Total

Generated HTML coverage results in 'cover' directory

Notice that two of the lines are showing uncovered. Those lines have defstruct
macros on them, and they are not showing that they are covered, though we
clearly defined those structs and exercised them in our functions. If you are
looking for a threshold below 100%, that’s OK. If you’re trying to maintain
full coverage, you’ll often need a tool with a little more configurability.

report erratum • discuss

Take Tests Beyond the Elixir Base • 95

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

The ExCoveralls tool1 can work as a replacement for the default coverage
provided by ExUnit. All you need to do is add the hex dependency, and add
this line to your mix.exs:

test_coverage: [tool: ExCoveralls]

Then you can run it with mix coveralls. See the documentation for more details.
One of the nice things about ExCoveralls is that you can build a configuration
file to control what’s counted and what’s ignored. As always, use the tool that
works best for you.

Now that you know how to find out whether all of your lines are covered, we
can look at another advanced testing technique. Property based tests show
how to automate your test creation.

Consider Property Based Tests
In these examples, we’ve focused on unit testing. These kinds of tests pass
predetermined values to our functional core and measure the impact with
assertions. Another testing strategy is property based testing. Fred Hebert
has an excellent book on property based testing, PropEr Testing [Héb18]. The
PropEr framework is an Erlang framework with good support for Elixir too.

In property based testing, you’ll define assumptions about the inputs called
properties and outputs of a function and let the computer generate values to
run through your tests. If the property holds true for all values, the test
passes. If it does not, the test fails, and simplifies the set of inputs that break
the assumptions. Here’s an example from Fred’s book:

property "a sorted list keeps its size" do
forall l <- list(number()) do

length(l) == length(Enum.sort(l))
end

end

That test is much more powerful than the tests you see written in this chapter.
list(number()) is a generator that creates a random list of numbers. For each
list, we make sure the length of the sorted list is the same as the length of
the inbound list.

For token-based solutions like ours, these tests are especially powerful. We
can generate a much more diverse set of inputs and outputs to run against
our program. The topic is beyond the scope of this book. To learn more, please
see PropEr Testing [Héb18] by Fred Hebert.

1. https://github.com/parroty/excoveralls/blob/master/README.md

Chapter 5. Test Your Core • 96

report erratum • discussPrepared exclusively for Correl Roush

https://github.com/parroty/excoveralls/blob/master/README.md
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Test Your Functional Core
In this chapter, we’ve been busy. We’ve tested our functional core from end
to end. Here’s how we did it.

We started with setup functions to build our test data. Since our quiz is a
complex model with many complex transitions, we needed some functions to
let us quickly set up quizzes to simulate a variety of conditions. We used
simple functions, and paid careful attention to composition. We also gave our
functions the ability to override defaults.

Once we had those functions, we used them in named setups. Those functions
are small composable purpose-built testing functions that layer complexity
for tests. We tested templates, questions and responses in this way.

Once we moved to the QuizTest, we needed more help. We leaned on the com-
posable design of the quiz and the data helpers we built to write tests that
told a story. We made sure our tests communicated our intent from the
beginning.

Finally, we looked at some additional topics. We looked at the value of code
coverage and property based tests. We pointed out a few projects that are
useful in that context.

This chapter concludes Part 1. In Part 2, we’re going to look into how to use
our functional cores to preserve state reliably but simply. Let’s get busy!

report erratum • discuss

Test Your Functional Core • 97

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Part II

with Big, Loud Wildebeests

In this part of the book, we’ll deal with the second
part of the sentence "Do Fun Things with Big, Loud
Wildebeests." When you hear "big, loud, wilde-
beests", think "boundaries, lifecycles and workers."

We will start with a boundary layer. We will use a
boundary to add processes where they’re needed.
Processes have features functions don’t. They’ll
allow us to maintain state and share work. They
contain error to a limited subsystem and provide a
convenient anchor point for dealing with the lifecy-
cle issues in the next chapter.

Prepared exclusively for Correl Roush

CHAPTER 6

Isolate Process Machinery in a Boundary
Boundaries are the “b” for “big” in the sentence “Do fun things with big, loud
wildebeests”. In part one of this book, we handled the first half of that sen-
tence. We built and tested the functional core that serves to isolate as much
code as possible from processes. Remember, many projects will not need any
layers beyond these three.

Part two of the book deals with “big, loud, wildebeests”, the outer layers.
These layers include all of the process machinery, message passing, and
recursion that form the heart of concurrency in Elixir systems. The boundary
cleanly executes core code in a process and wraps it in a generic API. The
lifecycle layer provides tools to start and stop the boundary layer, even in the
context of a larger project. Workers divide work for performance, isolation, or
reliability. You’ll see all of these layers in the following figure.

API

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)
Things: Tests

Wildebeests:
Workers

(pools, etc)

Do Fun Things with Big Loud Wildebeests

Loud: Lifecycle
(OTP supervisors)

In this chapter, we focus on the boundary, the process that wraps the business
logic defined in the core. Our boundaries might share common state with
other processes, communicate with remote servers, or isolate a critical service
from failures in the rest of the system.

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

We will use OTP to implement our outer layers because it bakes in many of
the concepts we’ll need: a common API for dealing with initialization and
messages we’ll need in our boundary layer, the supervisors we’ll need to build
the lifecycle layer, and patterns we’ll use to spin up workers.

Boundaries introduce additional complexity and uncertainty. The inputs and
outputs of functions in the core are often trusted and well-defined, but the
boundary machinery must deal with uncertainty because our boundary API
must process unsanitized user input and the external systems our boundary
might uses can fail. Let’s look at some of the techniques our boundary can
use to deal with uncertainty.

Maintain Composition Through Uncertainty
External services such as databases or network requests can unexpectedly
slow down or fail; well-meaning users can make mistakes; malicious users
can try to cause mischief with inputs shaped to attack our systems.

Though Elixir programmers depend on pipes, dealing with errors midstream
in piped compositions is awkward and unreliable. As we build our boundary,
we will need strategies for maintaining a composable architecture through
this uncertainty.

Because our services may struggle under load, we may need to use back
pressure, a technique to slow requests to those services under duress. Since
the data will come from untrusted sources we must consider validations as
we wrap our functional core in an API.

You may have noticed that we make heavy use of Elixir’s |> operator. Often
pipes rely on functions we expect to succeed. Since the boundary can’t rely
on this kind of certainty, we need to adopt new techniques.

Before we get back into the Mastery project we’re building to take complex
quizzes, let’s address some of the techniques you might use to smooth out
our boundary in spite of all of that uncertainty. We’ll work with errors as
data, and dig into the with function, which will let us compose with functions
that might fail.

Treat Errors as Data
Functional programs are simpler when we can use pipelines to simplify code.
Transforming data is one of the fundamental tenants of Elixir, but there’s a
problem. Functions that fail often raise exceptions. When we don’t handle
errors, they transition to code execution in the form of exceptions.

Chapter 6. Isolate Process Machinery in a Boundary • 102

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Exceptions don’t compose neatly and the resulting error codes aren’t always
informative. In this section, we’ll examine ways to transform exceptions to
data.

There’s another problem with relying on pipes that fail midstream. You can
often lose context. If you can treat errors as data, managing flows in pipelines
gets a little bit simpler. With error data structures, later functions in a pipeline
can decide how to handle them. You can report partial success, or even halt
on an error with context, just as the Plug framework from Phoenix does.

Here’s how it works. Let’s define a worker with some artificial failure.

defmodule Worker do
def work(n) do

if :rand.uniform(10) == 1 do
raise "Oops!"

else
{:result, :rand.uniform(n * 100)}

end
end

We write an intentionally buggy worker. A failure means an exception. We
can turn that exception into data, like this:

def make_work_safe(dangerous_work, arg) do
try do

apply(dangerous_work, [arg])
rescue

error ->
{:error, error, arg} # include any needed context here

end
end

It’s a simple rescue. Now we can stream the work, like this:

def stream_work do
Stream.iterate(1, &(&1 + 1))
|> Stream.map(fn i -> make_work_safe(&work/1, i) end)

end
end

That function will iterate on our work forever. We map over the stream making
the work function safe.

Now, let’s put it to use, using the techniques we mentioned. First, let’s report
partial success as we go, until there’s an error, like this:

IO.puts "Report partial success:"
Worker.stream_work
|> Enum.take(10)

report erratum • discuss

Maintain Composition Through Uncertainty • 103

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

|> IO.inspect

We can now report on a block of work, with some successes and some errors.

Alternatively, we can report successes until we get to a failure, like this:

IO.puts "Halt on error with context:"
Worker.stream_work
|> Enum.reduce_while([], fn

{:error, _error, _context} = error, _results ->
{:halt, error}

result, results ->
{:cont, [result | results]}

end)
|> case do

{:error, _error, _context} = error ->
error

results ->
Enum.reverse(results)

end
|> IO.inspect

In the first pipe block, we reduce over the code using Enum.reduce_while. This
function will reduce until the function returns a {:halt, error} tuple. If there’s
an error, we return an error tuple. Otherwise, we collect the results.

In the second pipe block, we either return an error or reverse the results.

Running this code will give you something like this:

$ elixir pipeline_errors.exs
Report partial success:
[
{:result, 58},
{:result, 127},
{:error, %RuntimeError{message: "Oops!"}, 3},
{:result, 275},
{:result, 488},
{:error, %RuntimeError{message: "Oops!"}, 6},
{:result, 511},
{:result, 608},
{:result, 238},
{:result, 751}

]
Halt on error with context:
{:error, %RuntimeError{message: "Oops!"}, 5}

Mastery works with two versions of this problem. The first is collecting all of
the validation errors related to a single piece of input. The second is composing
over functions that might fail with validation errors. We’ve talked about the

Chapter 6. Isolate Process Machinery in a Boundary • 104

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

first, translating errors to data. Let’s address the second, composing over
functions that might fail.

Use with to Compose Uncertain Structures
The philosophy of with is simple. It allows you to specify pattern matches at
each step of composition. If the match succeeds, the composition proceeds.
If it fails, the composition halts and falls through to an else condition.

Here’s an example from later in this chapter. We will build an API layer that
has to validate data. The functions will have to have ugly if-then logic rather
than simple compositions. We’ll use with to smooth out the rough edges.

Here’s how the approach works. First, let’s say we’re building a new quiz with
data provided by the user. We’d like to pass validated data to a service that
stores quizzes like this:

def new(quiz_fields) do
quiz_fields
|> validate_quiz
|> QuizManager.build_quiz

end

The problem is that the output of validate_quiz will have a different shape, and
will need different logic to support the data. Also, our validation API doesn’t
compose the way we want it to. If validation fails, we want to deal with the
error, like this:

def new(quiz_fields) do
errors = QuizValidator.errors(quiz_fields)

case do
{:error, message} ->
{:error, message}

_ ->
QuizManager.build_quiz(quiz_fields)

end
end

This function is relatively small, but the service layers must often compose
across more steps. When each individual step has its own error condition,
you’ll have to nest these case statements each time you deal with a separate
error. Any notion that you’re dealing with a composition is completely lost.

The solution is to use with to build the composition, like this:

def new(quiz_fields) do
with :ok <- QuizValidator.errors(quiz_fields),

{:ok, quiz} <- QuizManager.build_quiz(quiz_fields)

report erratum • discuss

Maintain Composition Through Uncertainty • 105

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

do
quiz

else
error -> error

end
end

The with function does two things for us. It allows us to compose through the
“happy path” of the code by letting us delay error handling. with also lets us
clearly separate what to do if the composition succeeds or fails.

Now that we have a couple of strategies for dealing with errors, let’s start to
work on our own boundary layer. Remember, the first part of winning the
boundary game is deciding whether to play.

Build Your Optional Server
One of the trickiest parts of learning a concurrency-based language like Elixir
is understanding when to use processes at all. Here’s a little guidance. Con-
sider processes when these use cases show up:

• Sharing state across processes
• Presenting a uniform API for external services such as databases or

communications
• Managing side effects such as logging or file IO
• Monitoring system-wide resources or performance metrics
• Isolating critical services from failure

This short list is not exhaustive, but it should give you the sense of the types
of things that should prompt you to think about a boundary. In short, our
boundary is an optional layer of impure integration code that make the core
fast, robust and reliable.

For our mastery project, a couple of those use cases ring true. We will need
to share data across two types of state including a repository of quizzes as
well as the data for an individual quiz session. We also want to isolate failure
because our overall quiz repository is a critical system and a single point of
failure. If it fails, no one will be taking any quizzes!

Now that we’ve decided to use processes, we can decide whether to use our
own machinery or to rely on other infrastructure. We might choose the Phoenix
web server because it already has excellent process infrastructure. In our
case, we’d like to preserve the freedom to provide other types of user interfaces
beyond the web, such as a possible native user interface, so we’ll go ahead
and flesh out our boundary layer.

Chapter 6. Isolate Process Machinery in a Boundary • 106

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Let’s look back at an example. In Chapter 1, Build Your Project in Layers, on
page 1, recall our simple counter that wrapped a tiny core with processes
and recursion to manage state. That wrapper is our service layer. We then
took that ad hoc server and wrapped it in an API. This last layer exists as a
convenience.

We’re going to follow the same pattern. Think about the boundary in two
parts: the service layer and the API layer. A boundary needs a service layer
around each individual process type and an external API for clean, direct
access across services. In Mastery, we’ll first need to decide what our
GenServers are. We’ll need a service layer for each of two GenServers: a quiz
session where users can take a quiz and a quiz manager where we’ll hold the
state for individual quizzes. Then we’ll put an API, like this:

Do: Data

Fun: Functional Core

Big: Boundaries (OTP)

Wildebeests:
Workers

(pools, etc)

Do Fun Things with Big Loud Wildebeests

Loud: Lifecycle
(OTP supervisors)

Quiz
Manager

API

Session
Manager

Things: Tests

The previous figure tells the story nicely. Our QuizManager and SessionManager
will be separate services and we’ll tie them together with a unified API.

The OTP framework is pretty expansive. We’ll work primarily with GenServers,
a short name for generic server. It’s the most basic OTP abstraction with the
features most users need. The original documentation says you’ll use
GenServers to establish a client-server relationship. You can use them to
write state machines, build process-based services such as web servers, or
even share common, independent state. Your main three APIs will be init/1,
handle_call/3 and handle_cast/2. You’ll use them this way.

init(initial_state) will establish the state of a new GenServer. Indirectly we’ll invoke
initial_state each time we start a server. More precisely, it comes from the

report erratum • discuss

Build Your Optional Server • 107

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

supervisor, which we’ll explore in more detail in the (as yet) unwritten Chapter
7, Lifecycle, . It returns a tuple that looks like {:ok, initial_state}.

handle_call(message, from, state) processes a synchronous two way message. Think
phone call because phone calls are two way. When your code sends a
GenServer a call message, OTP will invoke the handle_call callback with the
message, a tuple describing the caller, and the current state of the server.
Then, your handle_call callback returns a value in a predetermined format. For
example, to reply, use {:reply, message_to_client, new_state}. The GenServer sends
the value message_to_client to the client process, and sets the new value of the
GenServer to new_state with a recursive function call.

handle_cast(message, state) processes a one way asynchronous message. Think
pod cast because podcasts are one way. You’ll sometimes use cast messages
as a fire-and-forget mechanism to change state. A cast will typically respond
with a {:noreply, new_state} tuple to change the server’s state to new_state. There
are other callbacks and specialized responses you can find in the documen-
tation, but that’s all of the background we need to write a basic server API.

The main decision we need to make to start with is which servers we’ll need.
Intuitively, we’ll need two of them. One server will handle all of the quizzes
as users create and store them, and another server will let each user take a
quiz. That strategy makes sense because many users could take each quiz,
and each will need their own process because each has its own state. We only
need one server to hold our collection of quizzes. Let’s make it so.

Implement the QuizManager With Processes
The quiz manager will start with an empty map. We’ll add quizzes to it through
a call to :build_quiz. Then, we’ll add templates to a quiz in the store through a
call to :add_template, and we’ll add a function to let our users lookup a quiz by
name.

Open a new editor session in lib/mastery/boundary/quiz_manager.ex. It’s a straight
Elixir module that looks like this:

Boundary/lib/mastery/boundary/quiz_manager.ex
defmodule Mastery.Boundary.QuizManager do

alias Mastery.Core.Quiz
use GenServer

We declare the module, set up our initial aliases for Quiz. Then we use GenServer.
use is an Elixir macro. As you know, macros are code that writes code. This
one adds the GenServer callbacks our component will need, and some

Chapter 6. Isolate Process Machinery in a Boundary • 108

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

machinery the server needs to run that we don’t need to worry about quite
yet.

The first order of business is to establish an external API for our GenServer.

Boundary/lib/mastery/boundary/quiz_manager.ex
def init(quizzes) when is_map(quizzes) do

{:ok, quizzes}
end

def init(_quizzes), do: {:error, "quizzes must be a map"}

Next is the simple init callback to initialize our server. That callback takes
some inbound arguments and translates those to an initial state for our
server. We want the initial state for for QuizManager to be a map called quizzes.
If it’s not a map, we’ll return a descriptive error.

Let’s write our first cast callback, the one to build a quiz:

Boundary/lib/mastery/boundary/quiz_manager.ex
def handle_call({:build_quiz, quiz_fields}, _from, quizzes) do

quiz = Quiz.new(quiz_fields)
new_quizzes = Map.put(quizzes, quiz.title, quiz)
{:reply, :ok, new_quizzes}

end

This is our first handle_call callback. We use the word “callback” because a
GenServer implements all of the boilerplate for a generic server, including a
recursive loop to manage state. The generic implementation has a few hooks
that let users fill in the project-specific knowledge. In our case, our callback
builds and stores a quiz.

OTP invokes handle_call whenever our GenServer receives a call message. Rather
than handling all messages from one function, we’ll generally break up the
handle_call endpoints with pattern matching so we can keep each message in
its own function block.

This call takes the form {:build_quiz, quiz_fields}. The work is simple: we call our
functional core to create a new quiz from these fields, and then add that quiz
to our map.

When we’re done, we return a three-tuple. The first one instructs OTP to send
a reply to the user, the second has the value for the reply, and the third is
the new state for the GenServer, in our case the map new_quizzes containing
our new quiz.

That first call is a little tricky, but the rest will look the same. Let’s add a
template, like this:

report erratum • discuss

Build Your Optional Server • 109

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Boundary/lib/mastery/boundary/quiz_manager.ex
def handle_call(

{:add_template, quiz_title, template_fields},
_from,
quizzes

) do
new_quizzes = Map.update!(quizzes, quiz_title, fn quiz ->

Quiz.add_template(quiz, template_fields)
end)
{:reply, :ok, new_quizzes}

end

This callback uses the same technique to add templates to a quiz. We invoke
Quiz.add_template from our core and store that result to our map using Map.update.
We return :ok to the user and set the new server state to new_quizzes.

Now that we can add quizzes with templates to our simple store, let’s support
fetches:

Boundary/lib/mastery/boundary/quiz_manager.ex
def handle_call({:lookup_quiz_by_title, quiz_title}, _from, quizzes) do

{:reply, quizzes[quiz_title], quizzes}
end

end

This final cast looks up a quiz and return it to the user. It’s a trivial Map.get.

We now have all of the machinery we need, but we could surface a cleaner
API. Let’s add more convenient functions to use that callback, like this:

Boundary/lib/mastery/boundary/quiz_manager.ex
def build_quiz(manager \\ __MODULE__, quiz_fields) do

GenServer.call(manager, {:build_quiz, quiz_fields})
end

def add_template(manager \\ __MODULE__, quiz_title, template_fields) do
GenServer.call(manager, {:add_template, quiz_title, template_fields})

end

def lookup_quiz_by_title(manager \\ __MODULE__, quiz_title) do
GenServer.call(manager, {:lookup_quiz_by_title, quiz_title})

end

Notice that most of the machinery for GenServer is pretty compact, but it
provides too many implementation details. We leak through the exact format
of each call message, unnecessary coupling our GenServer to any code that
invokes it. We provide a cleaner API with these three client functions.

In this layer, you can see the consumer side of the GenServer module. For each
of the messages in our API, we call a GenServer.call function to send a message.

Chapter 6. Isolate Process Machinery in a Boundary • 110

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

We first pass the name of the GenServer which we’ll default to the module
name, then the message we’re sending. The message we send will match one
of the handle_call function clauses in our server. We expect clients to invoke
these three APIs and the handle_call callbacks to run on the server.

Now that we’re done, users can interact with our server with plain old func-
tions rather than messages, and we’ve sufficiently hidden the details of each
message. Let’s take this server for a test drive.

Try the Quiz Manager
In this section, we’re going to put the quiz through its paces. Part of writing
good code is building the infrastructure to support learning and exploration.
We’re going to create a trivial module to let new users and developers alike
explore our features in the console.

Let’s create a simple math quiz with mastery of two and a template for single
digit addition. None of this code will be new to you:

Boundary/lib/mastery/examples/math.ex
defmodule Mastery.Examples.Math do

alias Mastery.Core.Quiz
def template_fields() do

[
name: :single_digit_addition,
category: :addition,
instructions: "Add the numbers",
raw: "<%= @left %> + <%= @right %>",
generators: addition_generators(),
checker: &addition_checker/2

]
end

def addition_checker(substitutions, answer) do
left = Keyword.fetch!(substitutions, :left)
right = Keyword.fetch!(substitutions, :right)
to_string(left + right) == String.trim(answer)

end

def addition_generators() do
%{left: Enum.to_list(0..9), right: Enum.to_list(0..9)}

end

def quiz_fields() do
%{ mastery: 2, title: :simple_addition}

end

def quiz() do
quiz_fields()
|> Quiz.new
|> Quiz.add_template(template_fields())

report erratum • discuss

Build Your Optional Server • 111

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/examples/math.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

end
end

We have separate functions for quiz and template fields. We also have a
function to roll that up into a new quiz. Now we have a few tools that will
make our module easy to test. Open up a new IEx session, or at least
recompile. Then, you can alias the modules we’ll need, like this:

iex(1)> alias Mastery.Examples.Math
Mastery.Examples.Math
iex(2)> alias Mastery.Boundary.QuizManager
Mastery.Boundary.QuizManager

We aliases Math, the example quiz we just built for convenience, and QuizManager,
the server layer for building quizzes. Now, we need to start the quiz:

iex(3)> GenServer.start_link QuizManager, %{}, name: QuizManager
{:ok, #PID<0.123.0>}

We need to be able to access our server, perhaps from a web layer so we’ll
need to be able to reference it by name. We’ll use the name of the module,
which means we’ll only have one copy of QuizManager. The start_link has three
arguments, the module that has the GenServer implementation, the empty
map that will eventually contain our quizzes, and options. We use the :name
option to specify the name for our new server. Now, we can use it:

iex(4)> QuizManager.build_quiz title: :quiz
:ok
iex(5)> QuizManager.add_template :quiz, Math.template_fields
:ok

You can see the smoother API we offer from this layer. We build a quiz,
strictly with functions.

iex(6)> QuizManager.lookup_quiz_by_title :quiz
%Mastery.Core.Quiz{ ... }

Nice! That much works. We can see the individual fields of the quiz we added.
That’s more than half of our server. Now admin users can establish new
quizzes. It’s time to switch to the rest of our server layer, the part for taking
quizzes and answering questions.

Implement the QuizSession With Processes
The quiz session will use the code we implemented in our functional core,
the code that answers and selects questions for a given user. Our core
implements the the business functions that advance the state of the quiz

Chapter 6. Isolate Process Machinery in a Boundary • 112

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

based on mastery. The quiz session will add the process machinery we’ll need
to independently manage state.

Each of our users will need the state for the quiz they’re working through as
well as their own email address for their answers. The state for our
GenServer will be a tuple with quiz email.

For now, we won’t worry about starting and stopping that server. We’ll just
make sure it works with a single process. Let’s start with the quiz session.
Open the new file lib/mastery/boundary/quiz_session.ex, and key this in:

Boundary/lib/mastery/boundary/quiz_session.ex
defmodule Mastery.Boundary.QuizSession do

alias Mastery.Core.{Quiz, Response}
use GenServer

We declare the module, set up our initial aliases for Quiz and Response. Once
again we use GenServer.

Next, let’s write a simple callback to initialize our server and our first callback,
like this:

Boundary/lib/mastery/boundary/quiz_session.ex
def init({quiz, email}) do

{:ok, {quiz, email}}
end

This init function looks like the first one we coded. We take the expected {quiz,
email} tuple and return it to our server. We don’t validate here, except making
sure we’re using the API in the right way with an inbound tuple. We’ll check
data integrity at the API layer.

Next, let’s process a callback to select a question, like this:

Boundary/lib/mastery/boundary/quiz_session.ex
def handle_call(:select_question, _from, {quiz, email}) do

quiz = Quiz.select_question(quiz)
{:reply, quiz.current_question.asked, {quiz, email}}

end

The task is complex, but we already handled the difficult part in the functional
core. This callback just calls that layer directly, and formats the :reply tuple.
We return the question to ask the user, and set our {quiz, email} tuple.

Now, a user can start a quiz with a start_link and a call to :select_question. What
remains is to answer a question, like this:

Boundary/lib/mastery/boundary/quiz_session.ex
def handle_call({:answer_question, answer}, _from, {quiz, email}) do

quiz

report erratum • discuss

Build Your Optional Server • 113

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

|> Quiz.answer_question(Response.new(quiz, email, answer))
|> Quiz.select_question
|> maybe_finish(email)

end

defp maybe_finish(nil, _email), do: {:stop, :normal, :finished, nil}
defp maybe_finish(quiz, email) do

{
:reply,
{quiz.current_question.asked, quiz.last_response.correct},
{quiz, email}

}
end

end

This function calls answer_question to answer the question and then advances
the quiz. It returns the presentation data that we will need later to show to
the user: the question text and whether the answer is right or wrong.

This is the first handle_call that has significant logic in it, a pattern match to a
private function called maybe_finish. The logic actually belongs in the server
layer because it interprets the select_question response. When a quiz is through,
it is set to nil.

Our first maybe_finish clause does a lot of heavy lifting in a tiny amount of code.
By replying with a :stop tuple, we can tell the GenServer how to terminate and
what to send to the user, and the new state for the server. We want a :normal
termination, :finished goes to the user and the server gets nil as the new state.

If the quiz is not nil, we return the question.asked text and response.correct so the
user knows the next question and whether the previous question was right
or wrong.

Now we have the bare metal GenServer, but we still need to wrap up our
external API. That’s easy since there are only two functions to provide, like
this:

Boundary/lib/mastery/boundary/quiz_session.ex
def select_question(session) do

GenServer.call(session, :select_question)
end

def answer_question(session, answer) do
GenServer.call(session, {:answer_question, answer})

end

We’re processing two call functions, one to call :select_question and one to call
:answer_question. The concepts are exactly the same as the client functions we
added to the QuizManager server. It’s complete, and we can take it for a spin.

Chapter 6. Isolate Process Machinery in a Boundary • 114

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Test Drive the Quiz Manager
We will connect to our server with the GenServer module and the various
functions we’ve built in the QuizManager module. Open up IEx with iex -S mix or
use recompile in your existing session. We’ll want to set up the aliases and start
up the server:

iex(1)> alias Mastery.Boundary.QuizSession
Mastery.Boundary.QuizSession
iex(2)> alias Mastery.Examples.Math
Mastery.Examples.Math

We alias the only two functions we need, the Math example quiz and the
QuizSession server layer. Next, it’s an easy step to spin up a QuizSession process
with a GenServer.start_link, like this:

iex(3)> {:ok, session} = \
GenServer.start_link QuizSession, {Math.quiz(), "mathy@example.com"}

{:ok, #PID<0.114.0>}

Having the Math.quiz function ready to go made this easy. We started a QuizSession
GenServer with a quiz and email address, to match the QuizSession.init/1 function
we coded earlier. We got an :ok tuple, so we’re ready to proceed.

This time, we’ll need the session value; it contains our pid.

iex(4)> QuizSession.select_question session
"0 + 4"

We call our GenServer’s client API to select_question, providing our session, and
it picked a question for us. Now, we can answer a couple of questions right
twice in a row and finish our quiz as masters of the universe, or at least
masters of single digit addition, like this:

iex(5)> QuizSession.answer_question session, "4"
{"2 + 8", true}
iex(6)> QuizSession.answer_question session, "10"
:finished

Marvelous! We answer two questions correctly in a row. The first time, the
QuizSession returns the question text and true, meaning we got the previous
question right. After two successive right answers, we have mastery and the
quiz is finished.

The GenServer API works, but we still have a little work to do. So far, our
servers have isolated client APIs which only do isolated jobs, and with
potentially corrupt user data. We’ll also need a layer to stitch together the
two concepts of making a quiz and taking the quiz. We’ll do that work now.

report erratum • discuss

Build Your Optional Server • 115

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Wrap the Server in an API
The API layer’s job is to insulate the server layer from inconsistent data and
to stitch together independent concepts from the individual GenServer
implementations. It will also hide internal implementations from the user,
such as the Quiz struct we make available from our QuizManager server. Any
implementation details from server layers or the functional cores will be off
limits.

Though our internal details may be radically different, the API-wrapped
server will share many characteristics of an OOP object. It will hide implemen-
tation details, including state, behind an API of functions. It will allow complex
interactions between components with message passing, and will allow con-
venient state tracking.

Before we dive into the API, we’ll need some validations that assist us in our
work. Let’s do that now.

Build Validations
For validations, we want to pick the closest common access point to the user.
Right now, we’re imagining a quiz as service that can run without persistence,
say on an educational website or as a database-backed quiz engine in a more
formal classroom setting. In either case, we want to keep the code in our
server clean, and implement validations exactly once. Given those constraints,
we will validate at the API level.

Our strategy for building validations is simple. Each validator, whether it
works with a nested list or a simple field with a single validator, must reduce
over a list of errors. These errors serve as an accumulator. If the errors are
empty after fully validating each field, then the model is valid.

We could use changesets, but introducing changesets brings all of Ecto along
with them, at least as we write this. Rather than introduce database concepts
to a stateless layer, we’ll build a rough feature to do the work. It’s a surpris-
ingly easy task.

Rough Out Generic Tools

Let’s start with a validation library with a couple of useful common functions.
We’ll start with the required function to validate all required fields and an
optional function, in lib/mastery/boundary/validator.ex like this:

Boundary/lib/mastery/boundary/validator.ex
defmodule Mastery.Boundary.Validator do

def require(errors, fields, field_name, validator) do

Chapter 6. Isolate Process Machinery in a Boundary • 116

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

present = Map.has_key?(fields, field_name)
check_required_field(present, fields, errors, field_name, validator)

end

def optional(errors, fields, field_name, validator) do
if Map.has_key?(fields, field_name) do
require(errors, fields, field_name, validator)

else
errors

end
end

For both required and optional fields, we check to see if a field is present. We
pass the present through to the underlying check_required_field. It may seem strange
to pass optional fields through to this function, but if you think about it,
optional and required fields that are present behave exactly the same way.

Let’s look at a quick convenience function, check:

Boundary/lib/mastery/boundary/validator.ex
def check(true=_valid, _message), do: :ok
def check(false=_valid, message), do: message

This function just adds a little sugar to custom validations. Each check request
first makes some type of conditional test, indicating whether the field is valid.
If it is, we return :ok. If not we return the supplied tuple. This trivial function
will lighten up the individual validators considerably.

Now, let’s look at the functions that do the physical generic validations. First,
let’s look at the check_required_field function that looks like this:

Boundary/lib/mastery/boundary/validator.ex
defp check_required_field(true=_present, fields, errors, field_name, f) do

valid = fields |> Map.fetch!(field_name) |> f.()
check_field(valid, errors, field_name)

end
defp check_required_field(_present, _fields, errors, field_name, _f) do

errors ++ [{field_name, "is required"}]
end

defp check_field(:ok, _errors, _field_name), do: :ok
defp check_field({:error, message}, errors, field_name) do

errors ++ [{field_name, message}]
end
defp check_field({:errors, messages}, errors, field_name) do

errors ++ Enum.map(messages, &{field_name, &1})
end

end

report erratum • discuss

Wrap the Server in an API • 117

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

If a function is present, we just fire the underlying validator, passing the
result through to check_field. If not, we add a {field_name, "is required"} tuple to the
list of errors.

Since we’ve already fired the validation function, check_field is surprisingly lean.
It needs only match against expected results, which may be a single error,
multiple errors, or :ok. In either error case, we add the errors to the list of
errors and continue until all fields are validated.

Now we can put these tools to work.

Validate Quizzes

We first need to validate a quiz. We are creating a module per validator, and
we only add models that take complex user data. In lib/mastery/boundary/quiz_val-
idator.ex, write this code:

Boundary/lib/mastery/boundary/quiz_validator.ex
defmodule Mastery.Boundary.QuizValidator do

import Mastery.Boundary.Validator

def errors(fields) when is_map(fields) do
[]
|> require(fields, :title, &validate_title/1)
|> optional(fields, :mastery, &validate_mastery/1)

end
def errors(_fields), do: [{nil, "A map of fields is required"}]

We have a core errors function that does the lions share of the work. We have
only two fields that have external input, an optional :mastery field and a required
:title field. We pipe through those, and return the responses.

Now let’s work on the individual fields.

Boundary/lib/mastery/boundary/quiz_validator.ex
def validate_title(title) when is_binary(title) do

check(String.match?(title, ~r{\S}), {:error, "can't be blank"})
end
def validate_title(_title), do: {:error, "must be a string"}

def validate_mastery(mastery) when is_integer(mastery) do
check(mastery >= 1, {:error, "must be greater than zero"})

end
def validate_mastery(_mastery), do: {:error, "must be an integer"}

end

Elixir’s pattern matching and our check function makes individual validations
strikingly simple. We first match on the datatype and then call check to do
individual checks. Then, we add a catchall for other datatypes and return an
appropriate error.

Chapter 6. Isolate Process Machinery in a Boundary • 118

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

With the simplest validation out of the way, we can shift to the trickier valida-
tion layer, templates. It’s a little tricker because it has some complex datatypes
like functions and lists of generators. Let’s see how we can structure those
concepts next.

Validate Templates

The template fields represent a sterner test. The checker and generators fields
will require us to validate lists and functions. Still, our simple framework
that’s based on composition will make quick work of them.

Let’s start with the basic errors function that composes validations over each
field. As before, we’ll enumerate required and optional fields, in lib/mastery/bound-
ary/template_validator.ex, like this:

Boundary/lib/mastery/boundary/template_validator.ex
defmodule Mastery.Boundary.TemplateValidator do

import Mastery.Boundary.Validator

def errors(fields) when is_list(fields) do
fields = Map.new(fields)
[]
|> require(fields, :name, &validate_name/1)
|> require(fields, :category, &validate_name/1)
|> optional(fields, :instructions, &validate_instructions/1)
|> require(fields, :raw, &validate_raw/1)
|> require(fields, :generators, &validate_generators/1)
|> require(fields, :checker, &validate_checker/1)

end
def errors(_fields), do: [{nil, "A keyword list of fields is required"}]

The technique works exactly as it did in the QuizValidator. Now, let’s work on
the individual fields. These are the easy ones:

Boundary/lib/mastery/boundary/template_validator.ex
def validate_name(name) when is_atom(name), do: :ok
def validate_name(_name), do: {:error, "must be an atom"}

def validate_instructions(instructions) when is_binary(instructions), do: :ok
def validate_instructions(_instructions), do: {:error, "must be a binary"}

def validate_raw(raw) when is_binary(raw) do
check(String.match?(raw, ~r{\S}), {:error, "can't be blank"})

end
def validate_raw(_raw), do: {:error, "must be a string"}

The :name, :raw and :instructions fields work exactly as they did in QuizValidator. We
use a combination of pattern matching and the check function to do all of the
validation we need. Let’s see if our concepts extend to the generators and
checkers:

report erratum • discuss

Wrap the Server in an API • 119

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/template_validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/template_validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Boundary/lib/mastery/boundary/template_validator.ex
def validate_generators(generators) when is_map(generators) do

generators
|> Enum.map(&validate_generator/1)
|> Enum.reject(&(&1 == :ok))
|> case do

[] ->
:ok

errors ->
{:errors, errors}

end
end
def validate_generators(_generators), do: {:error, "must be a map"}

Recall that we’re leaning on the composition of our validators. You can see
the benefits of this approach as we validate all generators. To validate the
list, we map over the list of generators, validating each one and filtering out
the :ok results. If the whole list is empty, we return :ok; otherwise, we return
the errors.

That code is complex, but our composition strategy does not break down.
We’re almost done. Let’s validate the individual generators, like this:

Boundary/lib/mastery/boundary/template_validator.ex
def validate_generator({name, generator})
when is_atom(name) and is_list(generator) do

check(generator != [], {:error, "can't be empty"})
end
def validate_generator({name, generator})
when is_atom(name) and is_function(generator, 0) do

:ok
end
def validate_generator(_generator),

do: {:error, "must be a string to list or function pair"}

def validate_checker(checker) when is_function(checker, 2), do: :ok
def validate_checker(_checker), do: {:error, "must be an arity 2 function"}

end

To validate a single generator, we use pattern matching and guards to make
sure that:

• the generator list is not empty
• the generator is a two tuple with an atom as a name and a function of

the form &generator/0.

If so we return :ok; if not we return an error tuple. And we’re done. We built
our own validations and it was not nearly as complicated as you might have

Chapter 6. Isolate Process Machinery in a Boundary • 120

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/template_validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/template_validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

guessed. Our validator is easy to extend and each specialized validator
implements a single update scenario, much like Ecto changesets.

With the validations out of the way, it’s time to push out beyond the server
layer. It’s time to build the API. We’ll finally remove the hello world code and
use the mastery.ex file. Let’s make it happen.

Build the API Layer
Our API layer will name the concepts of the GenServer and also smooth out
some of the rough edges. We’ll build a lightweight API that uses the GenServer
module to do starts, calls and casts. The first step is to do the typical imports
we need. In lib/mastery.ex we’ll delete the default implementation and set up the
aliases we need:

Boundary/lib/mastery.ex
defmodule Mastery do

alias Mastery.Boundary.{QuizSession, QuizManager}
alias Mastery.Boundary.{TemplateValidator, QuizValidator}
alias Mastery.Core.Quiz

If possible, we’d like to build a service layer where the only functions we need
are in the service layer. Unfortunately, we also have to manage the validations,
so we’ll add those aliases as well. We also need to alias the Core.Quiz module
to pass that data between the QuizManager and QuizSession modules. This is the
right place to do that job because this layer exists to stitch together these
disparate concepts. The main thing is to keep the API layer as thin as possible,
and take on as little of the business logic as we can.

Validation belongs here because we want to reduce the need for dealing with
the uncertainty of the outside world from the API layer as we can.

Our first job is to kick off the manager, like this:

Boundary/lib/mastery.ex
def start_quiz_manager() do

GenServer.start_link(QuizManager, %{}, name: QuizManager)
end

The GenServer.start_link does the heavy lifting. We need to name the server so
that in the event of a crash, we’ll be able to find it again. Since we’ll only ever
need one, we’ll name it after the module. You may have noticed we defaulted
our client APIs to use the module name as well, so we’ll be able to keep the
ceremony in this layer low.

Now, let’s build a quiz:

report erratum • discuss

Wrap the Server in an API • 121

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Boundary/lib/mastery.ex
def build_quiz(fields) do

with :ok <- QuizValidator.errors(fields),
:ok <-GenServer.call(QuizManager, {:build_quiz, fields}),

do: :ok, else: (error -> error)
end

The real work starts when we add a quiz. Now, we have imperfect user data
that we need to validate. Earlier, we learned that composition with pipes is
elegant and beautiful, but pipes do not deal well with midstream errors. To
solve that problem, we used with to validate the fields and do a GenServer call
to :quiz.build. Notice we use a one-line syntax for the do: :ok, else: (error -> error)
clauses. We do this strictly because we are passing values straight through.
We don’t want to distract from the purpose of this function, which is the
composition of the actions in the first clause.

We’ll use a similar technique to add the templates.

Boundary/lib/mastery.ex
def add_template(title, fields) do

with :ok <- TemplateValidator.errors(fields),
:ok <- GenServer.call(QuizManager, {:add_template, title, fields}),

do: :ok, else: (error -> error)
end

We compose two functions with with, one to validate the templates and the
second to invoke our server layer with GenServer.call.

With that, the QuizManager has set up the quiz and can pass the baton to the
QuizSession server.

Boundary/lib/mastery.ex
def take_quiz(title, email) do

with %Quiz{}=quiz <- QuizManager.lookup_quiz_by_title(title),
{:ok, session} <- GenServer.start_link(QuizSession, {quiz, email})

do
session

else
error -> error

end
end

This code does the handoff from one system to the next. The take_quiz function
first looks up a quiz and then uses a GenServer.start_link to create a new server
with that quiz and an email. We return the session pid so other functions can
call it later.

Next, we build a function each to select a question, like this:

Chapter 6. Isolate Process Machinery in a Boundary • 122

report erratum • discussPrepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Boundary/lib/mastery.ex
def select_question(session) do

GenServer.call(session, :select_question)
end

def answer_question(session, answer) do
GenServer.call(session, {:answer_question, answer})

end
end

They are straight calls to GenServer, with no intervening logic. That’s about
as thin a layer around a GenServer as we could hope to have. The API is easy
to understand and about as easy as it could be to use.

The layer may seem unnecessary, but it’s not. This API layer is the first point
of access for developers investigating our function. A simple API layer that
handles only external concerns is the secret to good client-server design.
Presenting a public-facing API makes it crystal clear that changes to these
functions comes at a cost.

It’s also an anchor point for public facing ceremony. If we were to build docu-
mentation, this file is where it would go. It’s the first place we would add type
specs, module docs, and the like.

Our goal is to make the maintenance on the borders between APIs explicit.
The secret to doing so is decoupling. Let’s see how we did. Our first test of
this public interface will be an in-console session.

Test Drive the API
This exercise is the culmination of everything we’ve done in the boundary
layer. We’ll roll up all the work we’ve done so far. This quiz flow will depend
on the data structures we defined and make use of the functions we estab-
lished in the functional core.

The service layers will use that functional core to track state in two pieces,
the quiz maker we call the manager and the quiz taker we call the session.
We’ll use the client APIs from those GenServers that hide those details. We
won’t see the shapes of internal call or cast messages. All of the data flowing
out of the API will be pure Elixir data structures, with no custom structs.
Aside from lifecycle details, this layer will show data exactly as we’ll present
it to the outside world.

Rev up iex -S mix. If you’ve left it open from last time you’ll need to issue the
recompile command. Then we can start to use our API.

iex(1)> alias Mastery.Examples.Math

report erratum • discuss

Wrap the Server in an API • 123

Prepared exclusively for Correl Roush

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Mastery.Examples.Math

Notice that the only piece of information we need to alias is the Math module
that has the raw data we’ll use to create a quiz. That’s a good sign. We really
don’t need anything else to use our API because none of the inner details are
exposed.

Let’s fire up the manager and create a quiz, like this:

iex(2)> Mastery.start_quiz_manager
{:ok, #PID<0.113.0>}
iex(3)> Mastery.build_quiz Math.quiz_fields
:ok
iex(4)> Mastery.add_template Math.quiz.title, Math.template_fields
:ok

With the example data, establishing a new quiz with exactly what we need is
trivial. We build a quiz and add a template.

Now we can take a quiz, like this:

iex(5)> session = Mastery.take_quiz Math.quiz.title, "mathy@email.com"
#PID<0.117.0>
iex(6)> Mastery.select_question session
"8 + 7"

We get the session, which is a pid, and use it to select the first question.

iex(7)> Mastery.answer_question session, "wrong"
{"9 + 5", false}
iex(8)> Mastery.answer_question session, "14"
{"0 + 2", true}
iex(9)> Mastery.answer_question session, "2"
:finished

We get the first answer wrong. With a mastery of two and a single template,
we need only get two consecutive questions correct to finish the quiz. We can
tell that the process is dead, like this:

iex(10)> Process.alive? session
false

Boom. The server is stopped, as it should be. In all, we’ve done good work.
We’re using the top-level Mastery module as it should be, and the concepts are
well named. We don’t have to worry about sending messages. We simply call
functions.

Now that the service layer is in, let’s review some of the main decisions we
made. You might have noticed that we used call several times when we simply
returned an :ok value. You might be wondering why we chose not to use cast

Chapter 6. Isolate Process Machinery in a Boundary • 124

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

messages instead. The answer is not as simple as it may seem on the surface.
Let’s find out why.

Prefer Call Over Cast to Provide Back Pressure
Intuitively, you might think that it’s best to use the one-way handle_cast to send
messages that don’t need responses. For example, the :add_template message
doesn’t really need a response. We just trust that the template was added
successfully. If it’s not, something has gone horribly wrong. There’s nothing
we can do beyond crashing the server and reporting the reasons for the crash
back to the user.

Interestingly, handle_cast is rarely the best option for sending messages. In this
section, we’ll look at one of the reasons why. They are called serializability
and back pressure. Let’s explore why.

As you probably know, each Elixir process has a message queue. We’ll call it
the mailbox. Unlike a physical mailbox, Elixir processes only receive messages
from it; they don’t send from the mailbox. Like a true mailbox, if the receiving
process for a given message is struggling, the mailbox can overflow, often
leading to severe problems that are hard to debug.

A good example is the Elixir logger. If your production code is sending log
messages quicker than the logger can handle them, either because the sender
is logging too many log requests or because the logger’s disk I/O is somehow
compromised, we don’t want the logger to immediately stop logging messages.

The Elixir logger has an excellent solution for this problem. It’s called selective
back-pressure. That means that when the logger gets into trouble, it will
detect this problem and start slowing the clients down by switching from cast
to call.

Making the logger’s client wait for every request to finish before sending the
next one relieves the pressure on the logger itself by slowing down the flow
of messages. If the logger still can’t keep up, it announces this failure as a
log message and begins to discard messages until the logger gets to a more
manageable threshold.

Let’s dive into some specific details. We’ll start with configuration.

Users can configure options to represent thresholds. These thresholds specify
when a healthy logger becomes sick because it’s message logger gets too long.
Two of these thresholds specify when to go from cast to call, or when to start
shedding messages.

report erratum • discuss

Prefer Call Over Cast to Provide Back Pressure • 125

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Users can also configure thresholds defining when the system goes from sick
to healthy. When an unhealthy system has a message queue that shrinks
below these thresholds, the logger can stop discarding messages, or go back
to cast from call.

The logger code then uses that configuration to implement three different
modes to implement the cast, call and shedding modes. They are called :async,
:sync and :discard, respectively.

Now, let’s look at the specific Elixir implementation. As a general metric for
system health, sometimes it helps to look at the number of messages in a
processes mail box. Here’s the code that does that job:

defp message_queue_length() do
{:message_queue_len, messages} = Process.info(self(), :message_queue_len)
messages

end

Process.info(self(), :message_queue_length) does the magic. It returns an integer value
that is the number of messages in the queue. The logger can then make use
of it.

Now we can see how the logger switches modes. In logger/config.ex, the logger
computes the right mode, like this:

case mode do
_ when messages >= discard_threshold -> :discard
:discard when messages > keep_threshold -> :discard
_ when messages >= sync_threshold -> :sync
:sync when messages > async_threshold -> :sync
_ -> :async

end

This snippet computes the mode given the message queue length in messages.
The thresholds in this function all come from the logger configuration. These
thresholds work in pairs. One threshold in each pair marks the transition
from healthy to sick, and one marks the transition from sick to healthy.

We shed messages if the function is greater than discard_threshold; we stay in
discard mode if we stay above the keep_threshold. Otherwise, we switch to sync
mode if we are over the sync_threshold, and stay in that mode if it’s already in
sync mode and the messages are above the async_threshold. If none of those things
are true, we’re healthy, so we send async.

Now, we can compare the configured mode with the computed one, like this:

def handle_event(_event, {state, thresholds}) do
%{mode: mode} = state

Chapter 6. Isolate Process Machinery in a Boundary • 126

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

case compute_mode(mode, thresholds) do
^mode ->

{:ok, {state, thresholds}}

If the mode matches the mode that was configured, do nothing. Otherwise:

new_mode ->
if new_mode == :discard do

message =
"Logger has #{message_queue_length()} messages in its queue, " <>

"which is above :discard_threshold. Messages will be discarded " <>
"until the message queue goes back to 75% of the threshold size"

log(:warn, message, state)
end

if mode == :discard do
log(:warn, "Logger has stopped discarding messages", state)

end

If things are very bad and we’re beyond the discard limit, we set the :discard
state so we can shed messages until we’re healthy. We log a message to tell
the user we’re no longer logging, pending improvements.

All that remains is to set the new mode in the logger, like this:

state = persist(%{state | mode: new_mode})
{:ok, {state, thresholds}}

end

We simply set the new mode and let the logger lose. Let’s see :discard in action.

def __should_log__(level) when level in @levels do
...
if compare_levels(level, min_level) != :lt and mode != :discard do

{level, config, pdict}
else

:error
end
...

end

In a function called __should_log__ we check the mode for :discard. If it’s set,
regardless of log level, we’ll return :error.

In logger.ex, the bare log looks like this:

def bare_log(level, chardata_or_fun, metadata \\ []) do
case __should_log__(level) do

:error -> :ok
info -> __do_log__(info, chardata_or_fun, metadata)

end
end

report erratum • discuss

Prefer Call Over Cast to Provide Back Pressure • 127

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

If the mode is :error, we do nothing, shedding the messages. Otherwise we call
do_log, a long function which eventually does this:

notify(mode, {level, Process.group_leader(), tuple})

We’re finally at the magic moment. We choose call or cast to handle back
pressure. At the very bottom of logger.ex, you’ll see these functions:

defp notify(:sync, msg), do: :gen_event.sync_notify(Logger, msg)
defp notify(:async, msg), do: :gen_event.notify(Logger, msg)

This means Elixir will log messages as a call (sync) or cast (async).

Here’s the point. If your code uses handle_call instead of handle_cast, you don’t
need to worry as much because you can only send messages as fast as your
server can process them. It’s a great automatic governor on a server.

Rarely, you’ll want to use cast messages to start multiple workers at once, or
to notify multiple workers simultaneously. Try to be judicious with this
approach, though.

Back pressure is one reason to avoid cast messages. It’s not the only reason,
though. Let’s look at the next one.

Extend Your APIs Safely
So far, we’ve strongly advocated building many small components and man-
aging those components through dependencies. When this strategy is working
well, it simplifies your job by limiting the scope of what you need to understand
to make any given change.

This strategy can go to a special hell fueled by cascading dependencies in a
hurry, if you’re not careful with how you build your APIs. Specifically, main-
taining a healthy ecosystem is difficult if each release of an API breaks com-
patibility to old versions of the API. Breaking changes have several different
forms:

• An API can add requirements to input parameters such as adding a new
required field to our Quiz.

• An API can change the shape of the output such as changing all of our
quiz functions to {:ok, quiz}.

• An API can change their behavior in unexpected ways such as treating
an amount as dollars rather than cents.

Let’s look quickly at an approach to APIs that will improve compatibility as
you improve the various independent components in your system. We’ll
honor three rules.

Chapter 6. Isolate Process Machinery in a Boundary • 128

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Don’t Add New Requirements to Existing APIs, Only Options
Many beginning developers tend to validate all arguments for a remote API.
Then, as those APIs need to be extended, they require those as well. There’s
a problem with that approach.

If servers provide requests that require all parameters, each new parameter
means you’ll have to upgrade the client and server simultaneously. With just
one client and one server component, that strategy may seem viable but as
dependencies like this cascade through a system, upgrades get exponentially
more difficult. Then, you lose all of the advantages you were seeking by
building decoupled components in the first place.

If you want to extend an API, extend it with options. Then, servers can provide
new API functionality to the same endpoints without requiring all clients to
change. Later, clients can upgrade to take advantage of these new options.

Ignore Anything You Don’t Understand
The “no new requirements” rule pertains to public facing APIs. There’s a
similar rule for dealing with data. Ignoring everything you don’t understand
makes it possible to slowly add new fields, request options that may not yet
be supported, and to upgrade your systems incrementally.

These first two rules work together well. For example, say there’s an export
program that’s expecting a fixed set of fields representing a product. The
server makes new fields optional. The server does two things:

• It ignores optional fields that are empty
• It ignores fields it doesn’t know about

This way, the system will function well through change. It doesn’t matter
which system deploys first. The server exports the new fields only when both
the client and server provide them. This is the ideal behavior.

Don’t Break Compatibility; Provide a New Endpoint
Here’s the punch line. Don’t break users of an endpoint, ever. Rather than
extending an existing endpoint in incompatible ways, provide a new endpoint
to do the new thing. Modern languages have many ways to scope and delegate
functions, and these features give us infinite flexibility with naming.

We’ll go one step further. Server endpoints are not the only APIs that could
stand to benefit from this approach. Everyday function libraries break these
rules every day. There’s a concept called semantic versioning that says minor
versions are compatible, and major versions are possibly incompatible. These

report erratum • discuss

Extend Your APIs Safely • 129

Prepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

rules might look wise, but a far better way is to adopt rules that don’t break
compatibility in the first place.

It’s been a busy chapter, and it’s time to wrap up.

Wrap Your Core in a Boundary API
In this chapter, we left our safe bubble of the functional core and ventured
out to the real world to deal with state, processes and communication between
components. Here’s how we did it.

To begin our exploration, we dove into some techniques to handle composition
with inputs and outputs that were less certain. We looked at ways to transform
executing errors to data. We also encountered composition using with.

Next, we built a server layer in two pieces, the QuizManager and the QuizSession.
We used a GenServer to build a quiz and another to let a user take a quiz. The
server layer used start_link and handle_call functions to encapsulate state and
handle communication between processes. We eschewed handle_cast to handle
back pressure issues.

We built validations to make sure our servers will work on consistent data,
and then we built an API layer to access our server layer in a convenient way.

It’s all starting to come together, but we know our boundary layer supports
only one running quiz at a time. In the next chapter, we’ll build a dynamic
supervisor to allow each user to run a process per quiz. We’ll also build a
quiz manager to let users build and store multiple quizzes.

You’ve reached the crux of the book, so turn the page and let’s get busy!

Chapter 6. Isolate Process Machinery in a Boundary • 130

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

CHAPTER 7

Lifecycle
Content to be supplied later.

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

CHAPTER 8

Workers
Content to be supplied later.

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

CHAPTER 9

Test the Boundary
Content to be supplied later.

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

CHAPTER 10

Put Them Together As Components
Content to be supplied later.

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Bibliography

[Héb18] Frédéric Trottier- Hébert. PropEr Testing. The Pragmatic Bookshelf, Raleigh,
NC, 2018.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, Englewood Cliffs, NJ, 2008.

[Tat18] Ben Marx, José Valim, Bruce Tate. Adopting Elixir. The Pragmatic Bookshelf,
Raleigh, NC, 2018.

[Tho18] Dave Thomas. Programming Elixir ≥ 1.6. The Pragmatic Bookshelf, Raleigh,
NC, 2018.

[TV18] Chris McCord, Bruce Tate and José Valim. Programming Phoenix ≥ 1.4.
The Pragmatic Bookshelf, Raleigh, NC, 2018.

[WM18] Darin Wilson and Eric Meadows-Jönsson. Programming Ecto. The Pragmatic
Bookshelf, Raleigh, NC, 2018.

report erratum • discussPrepared exclusively for Correl Roush

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2019 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2019

Prepared exclusively for Correl Roush

https://pragprog.com

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/jgotp
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/jgotp

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

Prepared exclusively for Correl Roush

https://pragprog.com/book/jgotp
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/jgotp
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Change History
	Beta 1—April 17, 2019

	Introduction
	Wildebeest Driven Design
	Who Should Read This Book
	Online Resources

	1. Build Your Project in Layers
	We Must Reimagine Design Choices
	Choose Your Layers
	Begin with the Right Data Types
	Build Your Functional Core
	Establish Your Boundaries
	Test Your Code
	Plan Your Lifecycle
	Invoke your Workers
	Do Fun Things with Big, Loud Wildebeests

	Part I—Do Fun Things
	2. Know Your Elixir Datatypes
	Primitive Types
	Lists
	Maps and Structs
	Strings
	Tuples
	Functions As Data
	When To Leave Elixir
	Know Your Elixir Datatypes

	3. Start With The Right Data Layer
	Access Patterns Shape Data Structures
	Immutability Drives Everything
	Try It Out
	Start With the Right Data

	4. Build a Functional Core
	Organize Core Functions by Purpose
	Compose a Quiz From Functions
	Build At a Single Level of Abstraction
	Keep the Left Margin Skinny
	Try Out the Core
	Build Your Functional Core

	5. Test Your Core
	Simplify Tests with Common Setup Functions
	Improve the ExUnit Infrastructure
	Provide Test Data With Fixtures
	Prime Tests With Named Setups
	Make Tests Repeatable
	Compose Within Tests
	Take Tests Beyond the Elixir Base
	Test Your Functional Core

	Part II—with Big, Loud Wildebeests
	6. Isolate Process Machinery in a Boundary
	Maintain Composition Through Uncertainty
	Build Your Optional Server
	Wrap the Server in an API
	Prefer Call Over Cast to Provide Back Pressure
	Extend Your APIs Safely
	Wrap Your Core in a Boundary API

	7. Lifecycle
	8. Workers
	9. Test the Boundary
	10. Put Them Together As Components

	Bibliography

