The .
Pragmatic
Ogrammers

Domain Modeling
Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

- ! . Scott Wlaschin

edited by Brian MacDonald

Prepared exclusively for Correl Roush

Early praise for Domain Modeling Made Functional

Scott Wlaschin is one of the most important communicators in practical, applied
programming today. In this book, he brings clarity and simplicity to the process
of bridging the gap between requirements, customers, and concrete designs and
code. Enjoy!
» Don Syme

Researcher, Microsoft U.K.

Many books explain functional programming, but few describe domain modeling
from a functional perspective. Scott Wlaschin’s book is a brilliant extension of the
concepts of domain-driven design to a contemporary context.
» Michael Feathers

Director, R7K Research and Conveyance

A few years ago, Scott’s blog was my first encounter with domain modeling in a
functional language—and it’s still my favorite. He has a knack for expressing ab-
stract topics in a clear and approachable way.
» Mathias Verraes

Domain-Driven Design Europe

This is a fantastic book that takes you through the process of making software
from start to finish, both on a technical and a functional level. I loved reading it!
» Gien Verschatse

Owner, Eight Point Squared

Domain Modeling Made Functional is easy to read and engaging—but it doesn’t
miss a beat for technical thoroughness or depth. I highly recommend this book
as an introduction to both functional programming and domain-driven design.
» Chris Krycho

Senior Software Engineer, Olo

This book crystallizes Domain-Driven Design in a refreshingly pragmatic way.
The author’s ability to present key ideas by example rather than theory make this
a must-read for any developer interested in DDD.
» Devon Burriss

Technical Pathfinder, Coolblue B.V.

Domain Modeling Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

Scott Wlaschin

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Molly McBeath

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-254-1

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Preface ix

Part | — Understanding the Domain

w

Introducing Domain-Driven Design

AN

14
16
21
22
23

25
25
29
30
31
33
36
42

43
44
45
48
50
52
55
55

Contents ® vi

Part Il — Modeling the Domain

Understanding Types 512
59
61
64
66
67
69
73
75

77
77
78
79
82
85
88
89
94
98
101

103
104
106
107
108
112
117

119
120
122
124
128
134
136
137

10.

11.

The Complete Pipeline

Part lll — Implementing the Model

Understanding Functions

Contents ® vii

138
140
142
142

147
147
149
154
156
160

161
162
163
165
172
178
180
185
187
190

191
191
192
196
203
205
209
217
218
220

221
221
222
223
224

Contents ® viii

How to Translate Domain Types to DTOs 229
238

12. 239
239
244
248
250
251
262

263

13. 265
266
270
273
280
281
282

283

285

Preface

Many people think of functional programming as being all about mathematical
abstractions and incomprehensible code. In this book, I aim to show that
functional programming is in fact an excellent choice for domain modeling,
producing designs that are both clear and concise.

Who Is This Book For?

This book is for experienced software developers who want to add some new
tools to their programming tool belt. You should read this book if:

* You are curious to see how you can model and implement a domain using
only types and functions.

¢ You want a simple introduction to domain-driven design and want to learn
how it is different from object-oriented design or database-first design.

* You are an experienced domain-driven design practitioner who wants to
learn why DDD is a great fit with functional programming.

e You want to learn about functional programming, but have been put off
by too much theory and abstraction.

* You want to see how F# and functional programming can be applied to
real-world domains.

You don’t need to have prior knowledge of domain-driven design or functional
programming in order to read this book. This is an introductory book and all
the important concepts will be explained as we need them.

What's in This Book?
This book is divided into three parts:

e Understanding the domain
e Modeling the domain
¢ Implementing the model

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Preface ® x

Each part builds on the previous one, so it’s best if you read them in order.

In the first part, Understanding the Domain, we’ll look at the ideas behind
domain-driven design and the importance of having a shared understanding
of a domain. We’ll have a brief look at techniques that help to build this shared
understanding, such as Event Storming, and then we’ll look at decomposing
a large domain into smaller components that we can implement and evolve
independently.

To be clear, this book is not meant to be a thorough exploration of domain-
driven design. That's a large topic that many excellent books and websites
cover in detail. Instead, the goal of this book is to introduce you to domain-
driven design as a partner to functional domain modeling. We will cover the
most important concepts of domain-driven design, of course, but rather than
diving deeply into the subject, we’ll stay at a high level and stress two things:
(@) the importance of communication with domain experts and other non-
technical team members and (b) the value of a shared domain model based
on real-world concepts.

In the second part, Modeling the Domain, we’ll take one workflow from the
domain and model it in a functional way. We’ll see how the functional
decomposition of a workflow differs from an object-oriented approach, and
we’ll learn how to use types to capture requirements. By the end, we’ll have
written concise code that does double-duty: first as readable documentation
of the domain but also as a compilable framework that the rest of the imple-
mentation can build upon.

In the third part, Implementing the Model, we’ll take that same modeled
workflow and implement it. In the process of doing that, we’ll learn how to
use common functional programming techniques such as composition, partial
application, and the scary-sounding “monad.”

This book is not intended to be a complete guide to functional programming.
We'll cover just what we need in order to model and implement the domain,
and we won’t cover more advanced techniques. Nevertheless, by the end of
Part III, you’ll be familiar with all the most important functional programming
concepts and you’ll have acquired a toolkit of skills that you can apply to
most programming situations.

As sure as the sun rises, requirements will change, so in the final chapter
we’ll look at some common directions in which the domain might evolve and
how our design can adapt in response.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Other Approaches to Domain Modeling ® xi

Other Approaches to Domain Modeling

This book focuses on the “mainstream” way of doing domain modeling, by
defining data structures and the functions that act on them, but other
approaches might be more applicable in some situations. I'll mention two of
them here in case you want to explore them further.

e If the domain revolves around semistructured data, then the kinds of
rigid models discussed in this book are not suitable and a better approach
would be to use flexible structures such as maps (also known as dictio-
naries) to store key-value pairs. The Clojure community has many good
practices here.

e If the emphasis of the domain is on combining elements together to
make other elements, then it's often useful to focus on what these
composition rules are (the so-called “algebra”) before focusing on the data.
Domains like this are widespread, from financial contracts to graphic
design tools, and the principle of “composition everywhere” makes them
especially suitable for being modeled with a functional approach. Unfor-
tunately, due to space limitations, we will not be covering these kinds of
domains here.

Working with the Code in This Book

This book will use the F# programming language to demonstrate the concepts
and techniques of functional programming. The code has been tested with
the latest version of F# as of June 2017, which is F# 4.1 (available in Visual
Studio 2017 or installable separately). All the code will work with earlier
versions of F# as well, and any important differences will be pointed out in
the text.

One of the great features of F# is that it can be used like a scripting lan-
guage. If you are playing with the example code in conjunction with reading
this book, I suggest that you type it into a file and evaluate it interactively
rather than compiling it. For how to do this, search the Internet for “F#
scripting tips.”

All the code in this book is available on this book’s page on the Pragmatic
Programmers website. '

1. https://pragprog.com/titles/swdddf/source_code

https://pragprog.com/titles/swdddf/source_code
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Preface * xii

Getting Started with F#

If you are new to F#, here’s some helpful information:

e F# is an open-source, cross-platform language. Details of how to download
and install it are available at fsharp.org.”

e Many free development environments are available for F#. The most
popular are Visual Studio® (for Windows and Mac) and Visual Studio Code
with the Ionide plugin.* (all platforms)

e For help learning F#, there is StackOverflow (using the “F#” tag) as well
as the Slack forums run by the F# Software Foundation.’ The F# commu-
nity is very friendly and will be happy to help if you have questions.

e For F# news, follow the “#fsharp” tag on Twitter and read the F# Weekly
newsletter.’

This book uses only a small set of features from F#, and most of the syntax
will be explained as we go. If you need a fuller overview of F# syntax, I suggest
searching the Internet for “F# cheat sheet” or “F# syntax.”

Questions or Suggestions?

I would love to get your feedback, so if you have questions or suggestions,
please participate in the PragProg community forum for this book.” And if
you find any specific problems with the text, please use the errata submission
form there.

Credits

All diagrams were created by the author using Inkscape. The clipart is from
openclipart.org. The script typeface (“KitType”) used in the diagrams was
created by Kenneth Lamug.®

http://fsharp.org/

PN A RN

http://fsharp.org/
https://code.visualstudio.com/
http://ionide.io/
http://fsharp.org/guides/slack/
https://sergeytihon.com/category/f-weekly/
https://forums.pragprog.com/forums/457
https://www.dafont.com/kittype.font
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Acknowledgments ® xiii

Acknowledgments

I'd like to thank the reviewers of this book for their very helpful comments
and feedback: Gien Verschatse, Mathias Brandewinder, Jérémie Chassaing,
Clément Boudereau, Brian Schau, Nick McGinness, Tibor Simic, Vikas
Manchanda, Stephen Wolff, Colin Yates, Gabor Hajba, Jacob Chae, Nouran
Mhmoud and the early access commenters on the book’s forum page.

I'd also like to thank my editor, Brian MacDonald, for his editorial feedback
and for keeping me on track, and the rest of the PragProg team for making
the publishing process so smooth.

Finally, I'd like to thank you, dear reader, for devoting some of your precious
time to this book. I hope you find it useful.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Part I

Understanding the Domain

In this first part, we’ll look at the ideas behind do-
main-driven design and the importance of a shared
understanding of a domain. We’ll have a brief look
at techniques that help to build this shared under-
standing, such as Event Storming, and then we’ll
look at decomposing a large domain into smaller
components that we can implement and evolve
independently.

CHAPTER 1

Introducing Domain-Driven Design

As a developer, you may think that your job is to write code.

I disagree. A developer’s job is to solve a problem through software, and coding
is just one aspect of software development. Good design and communication
are just as important, if not more so.

If you think of software development as a pipeline with an input (requirements)
and an output (the final deliverable), then the “garbage in, garbage out” rule
applies. If the input is bad (unclear requirements or a bad design), then no
amount of coding can create a good output.

In the first part of this book we’ll look at how to minimize the “garbage in”
part by using a design approach focused on clear communication and shared
domain knowledge: domain-driven design, or DDD.

In this chapter, we’ll start by discussing the principles of DDD and by showing
how they can be applied to a particular domain. DDD is a large topic, so we
won’t be exploring it in detail (for more detailed information on DDD, visit
dddcommunity.org'). However, by the end of this chapter you should at least
have a good idea of how domain-driven design works and how it is different
from database-driven design and object-oriented design.

Domain-driven design is not appropriate for all software development, of
course. There are many types of software (systems software, games, and so
on) that can be built using other approaches. However, it is particularly useful
for business and enterprise software, where developers have to collaborate
with other nontechnical teams, and that kind of software will be the focus of
this book.

1. http://dddcommunity.org

http://dddcommunity.org
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ® 4

The Importance of a Shared Model

Before attempting to solve a problem it’s important that we understand the
problem correctly. Obviously, if our understanding of the problem is incomplete
or distorted, then we won't to be able to provide a useful solution. And sadly,
of course, it’s the developers’ understanding, not the domain experts’ under-
standing, that gets released to production!

So how can we ensure that we, as developers, do understand the problem?

Some software development processes address this by using written specifi-
cations or requirements documents to try to capture all the details of a
problem. Unfortunately, this approach often creates distance between the
people who understand the problem best and the people who will implement
the solution. We'll call the latter the “development team,” by which we mean
not just developers but also UX and UI designers, testers, and so on. And
we'll call the former “domain experts.” I won’t attempt to define “domain
expert” here—I think you’ll know one when you see one!

Pomaiin Pusiness
experts analyst

T 5

; Requirements
Pesign Architect | document
document

Code |
—_—
Pevelopment

team

In a children’s game called “Telephone,” a message is whispered from person
to person along a chain of people. With each retelling the message gets more
and more distorted, with comic results.

It’s not so funny in a real-world development project. A mismatch between
the developer’s understanding of the problem and the domain expert’s
understanding of the problem can be fatal to the success of the project.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

The Importance of a Shared Model ¢ 5

A much better solution is to eliminate the intermediaries and encourage the
domain experts to be intimately involved with the development process,
introducing a feedback loop between the development team and the domain
expert. The development team regularly delivers something to the domain
expert, who can quickly correct any misunderstandings for the next iteration.

Pomain Pevelopment
experts team
dehvembte

Code

This kind of iterative process is at the core of “agile” development processes.

However, even this approach has its problems. The developer acts as a
translator, translating the domain expert’s mental model into code. But as
in any translation, this process can result in distortion and loss of important
subtleties. If the code doesn’t quite correspond to the concepts in the domain,
then future developers working on the codebase without input from a domain
expert can easily misunderstand what's needed and introduce errors.

But there is a third approach. What if the domain experts, the development
team, other stakeholders, and (most importantly) the source code itself all
share the same model? In this case, there is no translation from the domain
expert’s requirements to the code. Rather, the code is designed to reflect the
shared mental model directly.

And that is the goal of domain-driven design.

Pomain Pevelopment
experts team

Other \
stakeholders Code '

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ® 6

Aligning the software model with the business domain has a number of
benefits:

e Faster time to market. When the developer and the codebase share the
same model as the person who has the problem, the team is more likely
to develop an appropriate solution quickly.

e More business value. A solution that is accurately aligned with the problem
means happier customers and less chance of going offtrack.

e Less waste. Clearer requirements means less time wasted in misunder-
standing and rework. Furthermore, this clarity often reveals which com-
ponents are high value so that more development effort can be focused
on them and less on the low-value components.

¢ Easier maintenance and evolution. When the model expressed by the code
closely matches the domain expert’s own model, making changes to the
code is easier and less error-prone. Furthermore, new team members are
able to come up to speed faster.

The Insanely Effective Delivery Machine

Dan North, the well-known developer and promoter of Behavior-Driven Development,
described his experience with a shared mental model in his talk “Accelerating Agile.”
He joined a small team at a trading firm, which he described as the most insanely
effective delivery machine he’d ever been a part of. In that firm, a handful of program-
mers produced state-of-the-art trading systems in weeks rather than months or years.

One of the reasons for the success of this team was that the developers were trained
to be traders alongside the real traders. That is, they became domain experts them-
selves. This in turn meant that they could communicate very effectively with the
traders, due to the shared mental model, and build exactly what their domain experts
(the traders) wanted.

So we need to create a shared model. How can we do this? The domain-driven
design community has developed some guidelines to help us here. They are
as follows:

e Focus on business events and workflows rather than data structures.

e Partition the problem domain into smaller subdomains.

e Create a model of each subdomain in the solution.

¢ Develop a common language (known as the “Ubiquitous Language”) that
is shared between everyone involved in the project and is used everywhere
in the code.

Let’s look at these in turn.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Understanding the Domain Through Business Events ¢ 7

Understanding the Domain Through Business Events

A DDD approach to gathering requirements will emphasize building a shared
understanding between developers and domain experts. But where should
we start in order to develop this understanding?

Our first guideline says to focus on business events rather than data struc-
tures. Why is that?

Well, a business doesn’t just have data, it transforms it somehow. That is,
you can think of a typical business process as a series of data or document
transformations. The value of the business is created in this process of
transformation, so it is critically important to understand how these transfor-
mations work and how they relate to each other.

Static data—data that is just sitting there unused—is not contributing any-
thing. So what causes an employee (or automated process) to start working
with that data and adding value? Often it's an outside trigger (a piece of mail
arriving or your phone ringing), but it can also be a time-based trigger (you
do something every day at 10 a.m.) or an observation (there are no more
orders in the inbox to process, so do something else).

Whatever it is, it's important to capture it as part of the design. We call these
things Domain Events.

Domain Events are the starting point for almost all of the business processes
we want to model. For example, “new order form received” is a Domain Event
that will kick off the order-taking process.

Domain Events are always written in the past tense—something hap-
pened—because it’s a fact that can’t be changed.

Using Event Storming to Discover the Domain

There are a number of ways to discover events in a domain, but one that is
particularly suitable for a DDD approach is Event Storming, which is a collab-
orative process for discovering business events and their associated workflows.

In Event Storming, you bring together a variety of people (who understand
different parts of the domain) for a facilitated workshop. The attendees should
include not just developers and domain experts but all the other stakeholders
who have an interest in the success of the project: as event stormers like to
say, “anyone who has questions and anyone who has answers.” The workshop
should be held in a room that has a lot of wall space, and the walls should
be covered with paper or whiteboard material so that the participants can

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ¢ 8

post sticky notes or draw on them. At the end of a successful session, the
walls will be covered with hundreds of these notes.

During the workshop, people write down business events on the sticky notes
and post them on the wall. Other people may respond by posting notes
summarizing the business workflows that are triggered by these events. These
workflows, in turn, often lead to other business events being created. In
addition, the notes can often be organized into a timeline, which may well
trigger further discussion in the group. The idea is to get all the attendees to
participate in posting what they know and asking questions about what they
don’t know. It’s a highly interactive process that encourages everyone to be
involved. For more detail on Event Storming in practice, see the EventStorming
book by Alberto Brandolini,” the creator of this technique.

Discovering the Domain: An Order-Taking System

In this book, we’ll take a realistic business problem—an order-taking sys-
tem—and use it to explore design, domain modeling, and implementation.

Say that we are called in to help a small manufacturing company, Widgets

Inc, to automate its order-taking workflow. Max, the manager at Widgets,

explains:
“We're a tiny company that manufactures parts for other companies: widgets,
gizmos, and the like. We've been growing quite fast, and our current processes
are not able to keep up. Right now, everything we do is paper-based, and we’d like
to computerize all that so that our staff can handle larger volumes of orders. In
particular, we’d like to have a self-service website so that customers can do some
tasks themselves. Things like placing an order, checking order status, and so on.”

Sounds good. So now what do we do? Where should we start?

The first guideline says “focus on business events,” so let’'s use an event-
storming session for that. Here’'s how one might start out at Widgets.
You: “Someone start by posting a business event!”

Ollie: “I'm Ollie from the order-taking department. Mostly we deal with orders and
quotes coming in.”

You: “What triggers this kind of work?”
Ollie: “When we get forms sent to us by the customer in the mail.”

You: “So the events would be something like ‘Order form received’ and ‘Quote
form received’?”

2. http://eventstorming.com

http://eventstorming.com
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Understanding the Domain Through Business Events ¢ 9

Ollie: “Yes. Let me put those up on the wall then.”

Sam: “I'm Sam from the shipping department. We fulfill those orders when they're
signed off.”

You: “And how do you know when to do that?”

Sam: “When we get an order from the order-taking department.”
You: “What would you call that as an event?”

Sam: “How about ‘Order available’?”

Ollie: “We call an order that’s completed and ready to ship a ‘Placed order.” Can
we agree on using that term everywhere?”

Sam: “So ‘Order placed’ would be the event we care about, yes?”
You get the idea. After a while, we might have list of posted events like this:

e Order form received

e Order placed

e Order shipped

¢ Order change requested

e Order cancellation requested

e Return requested

¢ Quote form received

¢ Quote provided

e New customer request received
e New customer registered

Here’s what the wall might look like at this point:

order form| [place | |order [Spio 1 [order
received ! Order } placed IO,. - I Shipped
I 74 e 7
change ted
requested s
— cancellation
requested
quote {orm quote
received provided
P
new new customer
customer reqistered

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ¢ 10

Some of the events have business workflows posted next to them, such as
“Place order” and “Ship order,” and we're beginning to see how the events
connect up into larger workflows.

We can’t cover a full event-storming session in detail, but let’s look at some
of the aspects of requirements gathering that Event Storming facilitates:

e A shared model of the business

As well as revealing the events, a key benefit of Event Storming is that the par-
ticipants develop a shared understanding of the business, because everyone is
seeing the same thing on the big wall. Just like DDD, Event Storming has an
emphasis on communication and shared models and avoiding “us” vs. “them”
thinking. Not only will attendees learn about unfamiliar aspects of the domain,
but they might realize that their assumptions about other teams are wrong or
perhaps even develop insights that can help the business improve.

e Awareness of all the teams

Sometimes it’s easy to focus on just one aspect of the business—the one that
you are involved in—and forget that other teams are involved and may need
to consume data that you produce. If all the stakeholders are in the room,
anyone who is being overlooked can speak out.

“I'm Blake from the billing department. Don’t forget about us. We need to know
about completed orders too, so we can bill people and make money for the com-
pany! So we need to get an ‘order placed’ event as well.”

e Finding gaps in the requirements

When the events are displayed on a wall in a timeline, missing requirements
often become very clear:

Max: “Ollie, when you've finished preparing an order, do you tell the customer?
I don’t see that on the wall.”

Ollie: “Oh, yes. I forgot. When the order has been placed successfully, we send
an email to the customer saying that we got it and are about to ship it. That’s
another event, I suppose: ‘Order acknowledgment sent to customer’.”

If the question doesn’t have a clear answer, then the question itself should be
posted on the wall as a trigger for further discussion. And if a particular part of
the process creates debate or disagreement, don'’t treat it as a problem, treat it
as an opportunity! You'll learn a lot by drilling into these areas. It's common for
the requirements to be fuzzy at the beginning of a project, so documenting the
questions and debate in this visible way makes it clear more work needs to be
done, and it discourages starting the development process prematurely.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Understanding the Domain Through Business Events ¢ 11

e Connections between teams

The events can be grouped in a timeline, which often makes it clear that one
team’s output is another team’s input.

For example, when the order-taking team has finished processing an order,
they need to signal that a new order has been placed. This “Order placed”
event becomes the input for the shipping and billing teams:

Order-taking team Shipping team

order form
received

————— Pispatch
message sent
to customer

customer

quote form
received

The technical details of how the teams are connected is not relevant at this
stage. We want to focus on the domain, not the pros and cons of message
queues vs. databases.

e Awareness of reporting requirements

It's easy to focus only on processes and transactions when trying to under-
stand the domain. But any business needs to understand what happened in
the past—reporting is always part of the domain! Make sure that reporting
and other read-only models (such as view models for the Ul) are included in
the event-storming session.

Expanding the Events to the Edges

It is often useful to follow the chain of events out as far as you can, to the
boundaries of the system. To start, you might ask if any events occur before
the leftmost event.

You: “Ollie, what triggers the ‘Order form received’ event? Where does that come
from?”

Ollie: “We open the mail every morning, and the customers send in order forms
on paper, which we open up and classify as orders or quotes.”

You: “So it looks like we need a ‘Mail received’ event as well?”

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ¢ 12

Workflows, Scenarios, and Use Cases

”

We have many different words to describe business activities: “workflows,” “scenarios,”
“use cases,” “processes,” and so on. They're often used interchangeably; but in this

book, we'll try to be a bit more precise.

* A scenario describes a goal that a customer (or other user) wants to achieve,
such as placing an order. It is similar to a “story” in agile development. A use
case is a more detailed version of a scenario, which describes in general terms
the user interactions and other steps that the user needs to take to accomplish
a goal. Both scenario and use case are user-centric concepts, focused on how
interactions appear from the user’s point of view.

¢ A business process describes a goal that the business (rather than an individual
user) wants to achieve. It’s similar to a scenario but has a business-centric focus
rather than a user-centric focus.

e A workflow is a detailed description of part of a business process. That is, it lists
the exact steps that an employee (or software component) needs to do to
accomplish a business goal or subgoal. We'll limit a workflow to what a single
person or team can do, so that when a business process is spread over multiple
teams (as the ordering process is), we can divide the overall business process
into a series of smaller workflows, which are then coordinated in some way.

In the same way, we might extend the events on the shipping side of the
business.

You: “Sam, are there any possible events after you ship the order to the customer?”

Sam: “Well, if the order is “Signed for delivery,” we’ll get a notification from the
courier service. So let me add a ‘Shipment received by customer’ event.”

Extending the events out as far as you can in either direction is another great
way of catching missing requirements. You might find that the chain of events
ends up being longer than you expect.

Order-taking team

Shipping team

order form| [place | [Ship | oo For
received delivery
order form | Order or } -
. . atch
receved in | Quote? I Acknowledgment| ?vl\zgsacge sent
mil P Z ff;:o,ﬁ;, to customer

quote form
received

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Understanding the Domain Through Business Events ® 13

Notice that the domain expert is talking about paper forms and printed mail.
The system that we want to replace this with will be computerized, but we
can learn a lot by thinking about paper-based systems in terms of workflow,
prioritization, edge cases, and so on. Let’s focus on understanding the domain
for now; only when we understand it thoroughly should we think about how
to implement a digital equivalent.

Indeed, in many business processes the whole paper vs. digital distinction is
irrelevant—understanding the high-level concepts of the domain does not
depend on any particular implementation at all. The domain of accounting
is a good example; the concepts and terminology have not changed for hun-
dreds of years.

Also, when converting a paper-based system to a computerized system, there’s
often no need to convert all of it at once. We should look at the system as a
whole and start by converting only the parts that would benefit most.

Documenting Commands

Once we have a number of these events on the wall, we might ask, “What
made these Domain Events happen?” Somebody or something wanted an
activity to happen. For example, the customer wanted us to receive an order
form, or your boss asked you to do something.

We call these requests commands in DDD terminology (not be confused with
the Command pattern used in OO programming). Commands are always
written in the imperative: “Do this for me.”

Of course, not all commands actually succeed—the order form might have
gotten lost in the mail, or you're too busy with something more important
to help your boss. But if the command does succeed, it will initiate a work-
flow that in turn will create corresponding Domain Events. Here are some
examples:

e If the command was “Make X happen,” then, if the workflow made X
happen, the corresponding Domain Event would be “X happened.”

e If the command was “Send an order form to Widgets Inc,” then, if the
workflow sent the order, the corresponding Domain Event would be “Order
form sent.”

e Command: “Place an order”; Domain Event: “Order placed.”

e Command: “Send a shipment to customer ABC”; Domain Event: “Ship-
ment sent.”

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ® 14

In fact, we will try to model most business processes in this way. An event
triggers a command, which initiates some business workflow. The output of
the workflow is some more events. And then, of course, those events can
trigger further commands.

Event Command business Event

> WorkPLow\-

triggers D/ v
Y
i Input: Output: Frent
data needed List of events
for workflow

This way of thinking about business processes—a pipeline with an input and
some outputs—is an excellent fit with the way that functional programming
works, as we will see later.

Using this approach, then, the order-taking process looks like this:

Order Placed

: (for shipping)
Order form Place Place K}
received trigeers order Order _ Order Placed
I > e

Vg CFor billing)
Input: Output:
data needed List of events
to place order arising from a

placed order

For now, we’ll assume that every command succeeds and the corresponding
event happens. Later on, in Chapter 10, Implementation: Working with Errors,

things go wrong and commands do not succeed.

By the way, not all events need be associated with a command. Some events
might be triggered by a scheduler or monitoring system, such as MonthEndClose
for an accounting system or OutOfStock for a warehouse system.

Partitioning the Domain into Subdomains

We now have a list of events and commands, and we have a good understand-
ing of what the various business processes are. But the big picture is still
quite chaotic. We’ll have to tame it before we start writing any code.

This brings us to our second guideline: “Partition the problem domain into
smaller subdomains.” When faced with a large problem, it’s natural to break
it into smaller components that can be addressed separately. And so it is
here. We have a large problem: organizing the events around order taking.
Can we break it into smaller pieces?

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Partitioning the Domain into Subdomains ¢ 15

Yes, we can. It’s clear that various aspects of the “order-taking process” can
be separated: the order taking, the shipping, the billing, and so on. As we
know, the business already has separate departments for these areas, and
that’s a pretty strong hint that we can follow that same separation in our
design. We will call each of these areas a domain.

Now domain is a word with many meanings, but in the world of domain-
driven design, we can define a “domain” as “an area of coherent knowledge.”
Unfortunately that definition is too vague to be useful, so here’s an alternative
definition of a domain: a “domain” is just that which a “domain expert” is
expert in! This is much more convenient in practice: rather than struggling
to provide a dictionary definition of what “billing” means, we can just say that
“billing” is what people in the billing department—the domain experts—do.

We all know what a “domain expert” is; as programmers we ourselves are
often experts in a number of domains. For example, you could be an expert
in the use of a particular programming language or in a particular area of
programming, such as games or scientific programming. And you might have
knowledge of areas such as security or networking or low-level optimizations.
All these things are “domains.”

Within a domain might be areas that are distinctive as well. We call these sub-
domains—a smaller part of a larger domain that has its own specialized knowl-
edge. For example, “web programming” is a subdomain of “general program-
ming.” And “JavaScript programming” is a subdomain of web programming
(at least, it used to be).

Here’s a diagram showing some programming-related domains:

General programming

Web programming

b desi
JavaScript Web design

. ¢SS
programming

Rails

wg programmin d ‘,_/J

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ® 16

You can see that domains can overlap. For example, the “CSS” subdomain
could be considered part of the “web programming” domain but also part of
the “web design” domain. So we must be careful when partitioning a domain
into smaller parts: it's tempting to want clear, crisp boundaries, but the real
world is fuzzier than that.

If we apply this domain-partitioning approach to our order-taking system, we
have something like this:

Order-taking

Shipping

domaiin domain

Billin g

domain

The domains overlap a little bit. An order-taker must know a little bit about
how the billing and shipping departments work, a shipper must know a little
bit about how the order-taking and billing departments work, and so on.

As we have stressed before, if you want be effective when developing a solution,
you need become a bit of a domain expert yourself. That means that, as
developers, we’ll need to make an effort to understand the domains above
more deeply than we have done so far.

But let’s hold off on that for now and move on to the guidelines for creating
a solution.

Creating a Solution Using Bounded Contexts

Understanding the problem doesn’t mean that building a solution is easy.
The solution can’t possibly represent all the information in the original domain,
nor would we want it to. We should only capture the information that is rele-
vant to solving a particular problem. Everything else is irrelevant.

We therefore need to create a distinction between a “problem space” and a
“solution space,” and they must be treated as two different things. To build
the solution we will create a model of the problem domain, extracting only
the aspects of the domain that are relevant and then re-creating them in our
solution space as shown in the figure on page 17.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Creating a Solution Using Bounded Contexts ® 17

Problem space Creal world) Solution space Cdomain model)

Order-taking Shipping
context context

Billing
context

In the solution space, you can see that the domains and subdomains in the
problem space are mapped to what DDD terminology calls bounded contexts—a
kind of subsystem in our implementation. Each bounded context is a mini
domain model in its own right. We use the phrase bounded context instead
of something like subsystem because it helps us stay focused on what’s
important when we design a solution: being aware of the context and being
aware of the boundaries.

design
process

Order-taking Sripping
domaiin _ domain
Billing

domatin

Why context? Because each context represents some specialized knowledge
in the solution. Within the context, we share a common language and the
design is coherent and unified. But, just as in the real world, information
taken out of context can be confusing or unusable.

Why bounded? In the real world, domains have fuzzy boundaries, but in the
world of software we want to reduce coupling between separate subsystems
so that they can evolve independently. We can do this using standard software
practices, such as having explicit APIs between subsystems and avoiding
dependencies such as shared code. This means, sadly, that our domain
model will never be as rich as the real world, but we can tolerate this in
exchange for less complexity and easier maintenance.

A domain in the problem space does not always have a one-to-one relationship
to a context in the solution space. Sometimes, for various reasons, a single
domain is broken into multiple bounded contexts—or more likely—multiple
domains in the problem space are modeled by only one bounded context in
the solution space. This is especially common when you need to integrate
with a legacy software system.

For example, in an alternate world, Widgets Inc might already have installed
a software package that did order taking and billing together in one system.
If you needed to integrate with this legacy system, you would probably need
to treat it as a single bounded context, even though it covers multiple domains
as shown in the figure on page 18.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ® 18

Problem space Creal world) Solution space Cdomain model)

Order-taking Shipping
context context

Billing
context

However you partition the domain, it's important that each bounded context
have a clear responsibility, because when we come to implement the model,
a bounded context will correspond exactly to some kind of software component.
The component could be implemented as a separate DLL, or as a standalone
service, or just as a simple namespace. The details don’t matter right now,
but getting the partitioning right is important.

design
process

Order-taking Sripping
domaiin _ domain
Billing

domatin

Getting the Contexts Right

Defining these bounded contexts sounds straightforward, but it can be tricky
in practice. Indeed, one of the most important challenges of a domain-driven
design is to get these context boundaries right. This is an art, not a science,
but here are some guidelines that can help:

e Listen to the domain experts. If they all share the same language and focus
on the same issues, they are probably working in the same subdomain
(which maps to a bounded context).

e Pay attention to existing team and department boundaries. These are strong
clues to what the business considers to be domains and subdomains. Of
course, this is not always true: sometimes people in the same department
are working at odds with each other. Conversely, people in different
departments may collaborate very closely, which in turn may mean they’re
working in the same domain.

e Don’t forget the “bounded” part of a bounded context. Watch out for scope
creep when setting boundaries. In a complex project with changing
requirements, you need to be ruthless about preserving the “bounded” part
of the bounded context. A boundary that is too big or too vague is no
boundary at all. As the saying goes, “Good fences make good neighbors.”

e Design for autonomy. If two groups contribute to the same bounded con-
text, they might end up pulling the design in different directions as it
evolves. Think of a three-legged race: two runners tied at the leg are much

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Creating a Solution Using Bounded Contexts ¢ 19

slower than two runners free to run independently. And so it is with a
domain model. It's always better to have separate and autonomous
bounded contexts that can evolve independently than one mega-context
that tries to make everyone happy.

e Design for friction-free business workflows. If a workflow interacts with
multiple bounded contexts and is often blocked or delayed by them, con-
sider refactoring the contexts to make the workflow smoother, even if the
design becomes “uglier.” That is, always focus on business and customer
value rather than any kind of “pure” design.

Finally, no design is static, and any model must need to evolve over time as
the business requirements change. We will discuss this further in Chapter

demonstrate various ways to adapt the order-taking domain to new demands.

Creating Context Maps

Once we have defined these contexts, we need a way to communicate the inter-
actions between them—the big picture—without getting bogged down in the
details of a design. In DDD terminology, these diagrams are called Context Maps.

Think of a route map used for traveling. A route map doesn’t show you every
detail: it focuses only on the main routes so that you can plan your journey.
For example, here’s a sketch of an airline route map:

United

United

This diagram doesn’t show the details of each city, just the available routes
between each city. The map’s only purpose is to help you plan your flights.
If you want to do something different, such as drive around New York, you're
going to need a different map (and some blood pressure pills).

In the same way, a context map shows the various bounded contexts and
their relationships at a high level. The goal is not to capture every detail but
to provide a view of the system as a whole. For example, this is what we have
so far for the order-taking system as shown in the figure on page 20.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ¢ 20

Order /Quote /~~------~
received
returned

Order-taking

context
Shippin Billin
contex context

In making this map, we are not concerned with the internal structure of the
shipping context, only that it receives data from the order-taking context. We
say informally that the shipping context is downstream and the order-taking
context is upstream.

Obviously the two contexts will need to agree on a shared format for the
messages that they exchange. In general, the upstream context has more
influence over the format, but sometimes the downstream context is inflexible
(such as working with a legacy system); and either the upstream context must
adapt to that, or some sort of translator component will be needed as an
intermediary. (This is discussed further in Contracts Between Bounded Con-
lexis, on page 48) T

Finally, it's worth pointing out that in our design we can fit everything into
one map (so far). In more complex designs, you'd naturally want to create a
series of smaller maps, each focusing on specific subsystems.

Focusing on the Most Important Bounded Contexts

We have a few obvious bounded contexts at this point, and we may find that
we discover more as we work with the domain. But are they all equally
important? Which ones should we focus on when we start development?

Generally, some domains are more important than others. These are the core
domains—the ones that provide a business advantage, the ones that bring
in the money.

Other domains may be required but are not core. These are called supportive
domains, and if they are not unique to the business they are called generic
domains.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Creating a Ubiquitous Language ® 21

For example, for Widgets Inc, the order-taking and shipping domains might
be core, because their business advantage is their excellent customer service.
The billing domain would be considered as supportive, and delivery of the ship-
ments could be considered generic, which means they can safely outsource it.

Of course, reality is never as simple. Sometimes the core domain is not what
you might expect. An e-commerce business might find that having items in
stock and ready to ship is critical to customer satisfaction, in which case
inventory management might become a core domain, just as important to the
success of the business as an easy-to-use website.

Sometimes there’s no consensus about what is the most important domain;
each department may think that its domain is the most important. And some-
times, the core domain is simply whatever your client wants you to work on.

In all cases though, it is important to prioritize and not to attempt to imple-
ment all the bounded contexts at the same time—that often leads to failure.
Focus instead on those bounded contexts that add the most value, and then
expand from there.

Creating a Ubiquitous Language

We said earlier the code and the domain expert must share the same model.

That means that things in our design must represent real things in the domain
expert’s mental model. That is, if the domain expert calls something an “order,”
then we should have something called an Order in the code that corresponds
to it and that behaves the same way.

And conversely, we should not have things in our design that do not represent
something in the domain expert’s model. That means no terms like OrderFactory,
OrderManager, OrderHelper, and so forth. A domain expert wouldn’t know what
you meant by these words. Of course, some technical terms will have to occur
in the codebase, but you should avoid exposing them as part of the design.

The set of concepts and vocabulary that is shared between everyone on the
team is called the Ubiquitous Language—the “everywhere language.” This is
the language that defines the shared mental model for the business domain.
And, as its name implies, this language should used everywhere in the project,
not just in the requirements but in the design and, most importantly, in the
source code.

The construction of the ubiquitous language is not a one-way process dictated
by the domain expert, it is a collaboration between everyone on the team. Nor
should you expect the ubiquitous language to be static: it’s always a work in

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ¢ 22

progress. As the design evolves, be prepared to discover new terms and new
concepts, and let the ubiquitous language evolve correspondingly. We'll see
this happen in the course of this book.

Finally, it's important to realize that you often cannot have a single Ubiquitous
Language that covers all domains and contexts. Each context will have a
“dialect” of the Ubiquitous Language, and the same word can mean different
things in different dialects. For example, “class” means one thing in the object-
oriented programming domain but a completely different thing in the CSS
domain. Trying to make a word like “Customer” or “Product” mean the same
in different contexts can lead to complex requirements at best, and serious
design errors at worst.

Indeed, our event-storming session demonstrates this exact issue. All the
attendees used the word “order” when describing events. But we might well
find that the shipping department’s definition of “order” is subtly different
definition than the billing department’s definition. The shipping department
probably cares about inventory levels, the quantity of items, and so on, while
the billing department probably cares more about prices and money. If we
use the same word “order” everywhere without specifying the context for its
use, we might well run into some painful misunderstandings.

Summarizing the Concepts of Domain-Driven Design

We've been introduced to a lot of new concepts and terminology, so let’s
quickly summarize them in one place before moving on.

* A domain is an area of knowledge associated with the problem we are
trying to solve, or simply, that which a “domain expert” is expert in.

¢ A Domain Model is a set of simplifications that represent those aspects of
a domain that are relevant to a particular problem. The domain model is
part of the solution space, while the domain that it represents is part of
the problem space.

e The Ubiquitous Language is a set of concepts and vocabulary that is
associated with the domain and is shared by both the team members and
the source code.

e A bounded context is a subsystem in the solution space with clear
boundaries that distinguish it from other subsystems. A bounded context
often corresponds to a subdomain in the problem space. A bounded con-
text also has its own set of concepts and vocabulary, its own dialect of
the Ubiquitous Language.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Wrapping Up ¢ 23

e A Context Map is a high-level diagram showing a collection of bounded
contexts and the relationships between them.

e A Domain Event is a record of something that happened in the system.
It’s always described in the past tense. An event often triggers additional
activity.

* A Command is a request for some process to happen and is triggered by
a person or another event. If the process succeeds, the state of the system
changes and one or more Domain Events are recorded.

Wrapping Up

At the beginning of the chapter, we emphasized the importance of creating a
shared model of the domain and solution—a model that is the same for the
development team and the domain experts.

We then discussed four guidelines to help us do that:

e Focus on events and processes rather than data.

e Partition the problem domain into smaller subdomains.

¢ Create a model of each subdomain in the solution.

¢ Develop an “everywhere language” that can be shared between everyone
involved in the project.

Let’s see how we applied them to the order-taking domain.

Events and Processes

The event-storming session quickly revealed all the major Domain Events in
the domain. For example, we learned that the order-taking process is triggered
by receiving an order form in the mail, and that there are workflows for pro-
cessing a quote, for registering a new customer, and so on.

We also learned that when the order-taking team finished processing an order,
that event triggered the shipping department to start the shipping process
and the billing department to start the billing process.

Many more events and processes could be documented, but we’ll focus pri-
marily on this one workflow for the rest of this book.

Subdomains and Bounded Contexts

It appears that we have discovered three subdomains so far: “Order Taking,”
“Shipping,” and “Billing.” Let’s check our sense of this by using our “a domain
is what a domain expert is expert in” rule.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 1. Introducing Domain-Driven Design ® 24

You: “Hey Ollie, do you know how the billing process works?”
Ollie: “A little bit, but you should really ask the billing team if you want the details.”
Billing is a separate domain? Confirmed!

We then defined three bounded contexts to correspond with these subdomains
and created a context map that shows how these three contexts interact.

Which one is the core domain that we should focus on? We should really
consult with Max the manager to decide where automation can add the most
value, but for now, let's assume that we will implement the order-taking
domain first. If needed, the output of the domain can be converted to paper
documents so that the other teams can continue with their existing processes
without interruption.

The Ubiquitous Language

So far we have terms like “order form,” “quote,” and “order,” and no doubt we
will discover more as we drill into the design. To help maintain a shared
understanding, it would be a good idea to create a living document or wiki
page that lists these terms and their definitions. This will help keep everyone
aligned and help new team members get up to speed quickly.

What's Next?

We now have an overview of the problem and an outline of a solution, but we
still have many questions that need answering before we can create a low-
level design or start coding.

What happens, exactly, in the order-processing workflow? What are the inputs
and outputs? Are there any other contexts that this workflow interacts with?
How does the shipping team’s concept of an “order” differ from the billing
team’s? And so on.

In the next chapter, we’ll dive deeply into the order-placing workflow and
attempt to answer these questions.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 2

Understanding the Domain

In the previous chapter, we looked at the big picture—an overview of the
domain and the key business events—and we divided the solution space into
a number of bounded contexts. Along the way, we learned about domain-
driven design and the importance of a shared model.

In this chapter, we're going to take one particular workflow and try to under-
stand it deeply. What exactly triggers it? What data is needed? What other
bounded contexts does it need to collaborate with?

We'll see that careful listening is a key skill in this process. We want to avoid
imposing our own mental model on the domain.

Interview with a Domain Expert

In order to get the understanding we want, let’s do an in-depth interview with
a domain expert: Ollie from the order-taking department.

Now, domain experts tend to be busy and generally can’t spend too much
time with developers. But one nice thing about the commands/events
approach is that rather than needing all-day meetings, we can have a series
of short interviews, each focusing on only one workflow, so a domain expert
is more likely to be able to make time for this.

In the first part of the interview, we want to stay at a high level and focus
only on the inputs and outputs of the workflow. This will help us avoid getting
swamped with details that are not (yet) relevant to the design.

You: “Ollie, let’s talk about just one workflow, the order-placing process. What
information do you need to start this process?”

Ollie: “Well, it all starts with this piece of paper: the order form that customers
fill out and send us in the mail. In the computerized version, we want the customer
to fill out this form online.”

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain ® 26

Ollie shows you something that looks like this:

Order Form
Customer Name:

Billing Address:

Order:[] Quote:[] Express Delivery:[]

Product Code Quantity

Cost

Subtotal

Shipping
Total

At this point you might think that this is a typical e-commerce model.

You: “I see. So the customers will browse the product pages on the website, then
click to add items to the shopping cart, and then check out?”

Ollie: “No, of course not. Our customers already know exactly what they want to
order. We just want a simple form where they can type in the product codes and
quantities. They might order two or three hundred items at once, so clicking
around in product pages to find each item first would be terribly slow.”

This is an important lesson. You're supposed to be learning about the domain,
so resist the urge to jump to conclusions about anything, such as (in this
case) how the customers will use the system. Good interviewing means doing
lots of listening! The best way to learn about a domain is to pretend you're
an anthropologist and avoid having any preconceived notions. Ideally, we
would do in-depth research (such as observing people at work, usability
testing, and so on) before we commit to a design. In this case, though, we’ll
take the risk and skip these steps, trusting that Ollie understands the cus-
tomer’s needs well enough to represent them to us.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Interview with a Domain Expert ® 27

Understanding the Non-functional Requirements

This would be a good time to take a step back and discuss the context and
scale of the workflow.

You: “Sorry, I misunderstood who the customer was. Let me get some more
background information. For example, who uses this process and how often?”

Ollie: “We're a B2B company,l so our customers are other businesses. We have
about 1000 customers, and they typically place an order every week.”

You: “So about two hundred orders per business day. Does it ever get much
busier than that, say in the holiday season?”

Ollie: “No. It’s pretty consistent all year.”

This is good—we know that we don’t need to design for massive scale, nor do
we have to design for spiky traffic. Now, what about customer expectations
of the system?

You: “And you say that the customers are experts?”

Ollie: “They spend all day purchasing things, so yes, they are experts in that
domain. They know what they want; they just need an efficient way to get it.”

This information affects how we think about the design. A system designed
for beginners will often be quite different from a system designed for experts.
If the customers are experts, then we don’t want to put barriers in their way
or anything else that will slow them down.

You: “What about latency? How quickly do they need a response?”

Ollie: “They need an acknowledgment by the end of the business day. For our
business, speed is less important than consistency. Our customers want to know
that we will respond and deliver in a predictable way.”

These are typical requirements for a B2B application: needs like predictability,
robust data handling, and an audit trail of everything that happens in case
there are any questions or disputes.

Understanding the Rest of the Workflow
Let’s keep going with the interview.
You: “OK, what do you do with each form?”

Ollie: “First we check that the product codes are correct. Sometimes there are
typos or the product doesn’t exist.”

You: “How you know if a product doesn’t exist?”

1. https://en.wikipedia.org/wiki/Business-to-business

https://en.wikipedia.org/wiki/Business-to-business
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain ® 28

Ollie: “I look it up in the product catalog. It’s a leaflet listing all the products and
their prices. A new one is published every month. Look, here’s the latest one sitting
on my desk.”

The product catalog sounds like another bounded context. We’'ll make a note
to revisit it in detail later. For now, we’ll skip it and just keep track of what
this workflow needs from that context: the list of products and their prices.

You: “And then?”

Ollie: “Then we add up the cost of the items, write that into the Total field at the
bottom, and then make two copies: one for the shipping department and one for
the billing department. We keep the original in our files.”

You: “And then?”

Ollie: “Then we scan the order and email it to the customer so that they can see
the prices and the amount due. We call this an ‘order acknowledgment.”

OK, that makes sense so far. At some point you will want to go deeper into
understanding how the validation is done and how the orders are transmitted
to the other departments. One more question, though.

You: “What are those boxes marked ‘Quote’ and ‘Order’ for?”

Ollie: “If the ‘Order’ box is checked, then it’s an order and if the ‘Quote’ box is
checked, then it's a quote. Obviously.”

You: “So what’s the difference between a quote and an order?”

Ollie: “A quote is when the customer just wants us to calculate the prices but not
actually dispatch the items. With a quote, we just add prices to the form and send
it back to the customer. We don’t send copies to the shipping and billing depart-
ments because there’s nothing for them to do.”

You: “I see. Orders and quotes are similar enough that you use the same order
form for both, but they have different workflows associated with them.”

Thinking About Inputs and Outputs

Let’s pause to document what we've learned about the inputs and outputs of
the workflow so far.

First, the input is clearly an order form (the exact definition of which we need
to flesh out soon).

But what'’s the output? We've seen the concept of a “completed order” (based on
the input but validated and with prices calculated). But that can’t be the output,
because we don’t do anything with it directly. What about the “order acknowl-
edgment” then? Could that be the output? Probably not. Sending the order
acknowledgment is a side effect of the order-placing workflow, not an output.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Fighting the Impulse to Do Database-Driven Design ® 29

The output of a workflow should always be the events that it generates, the
things that trigger actions in other bounded contexts. In our case, the output
of the workflow would be something like an “OrderPlaced” event, which is then
sent to the shipping and billing contexts. (How the event actually gets to those
departments is a discussion for later; it’s not relevant to the design right now.)

Let’s diagram the “Place Order” workflow with its inputs and outputs:
Other input:
Product catalog

Input: Workflow: i Output:

Order form [===3-i Place Order Il OrderPlaced event
[; l = Cto notify Shipping

______ -\\ ond W-Ling contexts)

Side Effects:
Send ‘order acknowledgment'
to customer >

Fighting the Impulse to Do Database-Driven Design

At this point, if you are like most developers, you can’'t help but start
sketching out a low-level design and implementation immediately.

For example, you might look at that order form and see that it consists of
customer information, some addresses, a list of order lines, and so on.

If you have a lot of database Order Table

i . first instinet |7 —— | Customer
expenence yo.ur irst instinc Costomerld —]) S
might be to think about tables ShippingAddressld —

and the relationships between BillingAddressld \Q:

them. You might envision an | IsQuote

Order table, an OrderLine table,

and Customer, Address, and Product \ 1n
tables. And then you’ll proba-
bly want to describe the rela- M

tionships between them as Orderld /1r Product
n.

shown in the figure. Produqtld
Quantity

Address

But if you do this, you are
making a mistake. In domain-
driven design we let the domain drive the design, not a database schema.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain ¢ 30

It’s better to work from the domain and to model it without respect to any
particular storage implementation. After all, in a real-world, paper-based
system, there is no database. The concept of a “database” is certainly not part
of the ubiquitous language. The users do not care about how data is persisted.

In DDD terminology this is called persistence ignorance. It is an important
principle because it forces you to focus on modeling the domain accurately,
without worrying about the representation of the data in a database.

Why is this important? Well, if you design from the database point of view all
the time, you often end up distorting the design to fit a database model.

As an example of the distortion that a database-driven model brings, we have
already ignored the difference between an order and a quote in the diagram
above. Sure, in the database we can have a flag to distinguish them, but the
business rules and validation rules are different. For example, we might later
learn that an Order must have a billing address but a Quote doesn’t. This is hard
to model with a foreign key. This subtlety has been lost in database design
because the same foreign key does dual duty for both types of relationships.

Of course, the design can be corrected to deal with it, and in the chapter on

a relational database. But for now we really want to concentrate on listening
to the requirements without prejudice.

Fighting the Impulse to Do Class-Driven Design

If you're an experienced object-oriented developer, then the idea of not being
biased to a particular database model will be familiar, Indeed, object-oriented
techniques such as dependency injection encourage you to separate the
database implementation from the business logic.

But you, too, may end up introducing bias into the design if you think in
terms of objects rather than the domain.

For example, as Ollie is talking, you may be creating classes in your head,
like the figure on page 31.

Letting classes drive the design can be just as dangerous as letting a database
drive the design—again, you're not really listening to the requirements.

In the preliminary design above we have separated orders and quotes, but
we have introduced an artificial base class, OrderBase, that doesn’t exist in the
real world. This is a distortion of the domain. Try asking the domain expert
what an OrderBase is!

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Documenting the Domain ® 31

Orderbase
Customer
ni
Address
Order
Quote
Orderline
1n
Quantitg L _— Product

The lesson here is that we should keep our minds open during requirements
gathering and not impose our own technical ideas on the domain.

Documenting the Domain

OK, we want to avoid biasing ourselves with technical implementations, but
then how should we record these requirements?

We could use visual diagrams (such as UML), but these are often hard to
work with and not detailed enough to capture some of the subtleties of the
domain.

Later in this book we’ll see how to create an accurate domain model in code,
but for now, let’s just create a simple text-based language that we can use to
capture the domain model:

¢ For workflows, we’ll document the inputs and outputs and then just use
some simple pseudocode for the business logic.

e For data structures, we’ll use AND to mean that both parts are required,
such as in Name AND Address. And we’ll use OR to mean that either part is
required, such as in Email OR PhoneNumber.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain ® 32

Using this mini-language, then, we can document the Place Order workflow
like this:

Bounded context: Order-Taking

Workflow: "Place order"
triggered by:
"Order form received" event (when Quote is not checked)
primary input:
An order form
other input:
Product catalog
output events:
"Order Placed" event
side-effects:
An acknowledgment is sent to the customer,
along with the placed order

And we can document the data structures associated with the workflow
like this:

bounded context: Order-Taking

data Order =
CustomerInfo
AND ShippingAddress
AND BillingAddress
AND list of OrderLines
AND AmountToBill

data OrderLine =
Product
AND Quantity
AND Price

data CustomerInfo = ??? // don't know yet
data BillingAddress = ??? // don't know yet

The Provide Quote workflow and its associated data structures can be docu-
mented in a similar way.

Note that we have not attempted to create a class hierarchy or database tables
or anything else. We have just tried to capture the domain in a slightly
structured way.

The advantage of this kind of text-based design is that it’s not scary to non-
programmers, which means it can be shown to the domain expert and worked
on together.

The big question is whether can we make our code look as simple as this, too.
In a following chapter, Domain Modeling with Types, we'll try to do just that.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Diving Deeper into the Order-Taking Workflow ¢ 33

Diving Deeper into the Order-Taking Workflow

We've got the inputs and outputs documented, so let’'s move on to understand-
ing the order-taking workflow in detail.

You: “Ollie, could you go into detail on how you work with an order form?”

Ollie: “When we get the mail in the morning, the first thing I do is sort it. Order
forms are put on one pile, and other correspondence is put on another pile. Then,
for each form, I look at whether the Quote box has been checked; if so, I put the
form on the Quotes pile to be handled later.”

You: “Why is that?”

Ollie: “Because orders are always more important. We make money on orders.
We don’t make money on quotes.”

Ollie has mentioned something very important when gathering requirements.
As developers, we tend to focus on technical issues and treat all requirements
as equal. Businesses do not think that way. Making money (or saving money)
is almost always the driver behind a development project. If you are in doubt
as to what the most important priority is, follow the money! In this case, then,
we need to design the system so that (money-making) orders are prioritized
over quotes.

Moving on...
You: “What’s the first thing you do when processing an order form?”

Ollie: “The first thing I do is check that the customer’s name, email, shipping
address, and billing address are valid.”

After further discussion with Ollie, we learn that addresses are checked using
a special application on Ollie’s computer. Ollie types in the addresses, and
the computer looks up whether they exist or not. It also puts them into a
standard format that the delivery service likes.

We learned something new again. The workflow requires communication
outside the context to some third-party address checking service. We missed
that in the Event Storming, so we’ll have to make a note of that.

If the name and addresses are not valid, Ollie marks the problems on the
form with a red pen and puts it on the pile of invalid forms. Later on, Ollie
will call the customer and ask to correct that information.

We are now aware of three piles: incoming order forms (from the mail),
incoming quotes (to be processed later), and invalid order forms (also to be
processed later).

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain © 34

Piles of paper are a very important part of most business processes. And let’s
reiterate that some piles are more important than other piles; we must not
forget to capture this in our design. When we come to the implementation
phase, a “pile of paper” corresponds nicely with a queue, but again we have
to remind ourselves to stay away from technical details right now.

Ollie: “After that, I check the product codes on the form. Sometimes they are
obviously wrong.”

You: “How can you tell?”

Ollie: “Because the codes have certain formats. The codes for widgets start with
a Wand then four digits. The codes for gizmos start with a G and then three digits.”

You: “Are there any other types of product codes? Or likely to be soon?”
Ollie: “No. The product code formats haven't changed in years.”

You: “What about product codes that look right? Do you check that they are real
products?”

Ollie: “Yes. I look them up in my copy of the product catalog. If any codes are not
there, I mark the form with the errors and put it in the pile of invalid orders.”

Let’s pause and look at what’s going on with the product codes here:

¢ First, Ollie looks at the format of the code: does it start with a Wor a G,
and so on. In programming terms, this is a purely syntactic check. We
don’t need access to a product catalog to do that.

e Next, Ollie checks to see that the code exists in the product catalog. In
Ollie’s case, this involves looking something up in a book. In a software
system, this would be a database lookup.

You: “Here's a silly question. Let’s say that someone on the product team could
respond instantly to all your questions. Would you still need your own copy of
the product catalog?”

Ollie: “But what if they are busy? Or the phones were down? It’s not really about
speed, it’s about control. I don’t want my job to be interrupted because somebody
else isn’t available. If I have my own copy of the product catalog, I can process
almost every order form without being dependent on the product team.”

So this is really about dependency management, not performance. We dis-
cussed the importance of autonomy in relation to bounded contexts earlier
(Getting the Contexts Right, on page 18). This may be important to model in

the domain—or not—but either way you should be aware of the requirement
for the departments to work independently.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Diving Deeper into the Order-Taking Workflow ¢ 35

You: “OK, now say that all the product codes are good. What next?”
Ollie: “I check the quantities.”

You: “Are the quantities integers or floats?”

Ollie: “Float? Like in water?”

Ubiquitous language time! Pro tip: Domain experts do not use programming
terms like “float.”

You: “What do you call those numbers then?”
Ollie: “I call them ‘order quantities,” duh!”
OK, we can see that OrderQuantity will need to be a word in the ubiquitous lan-
guage, along with ProductCode, AmountToBill, and so on.
Let’s try again:
You: “Do the order quantities have decimals, or are they just whole numbers?”
Ollie: “It depends.”
“It depends.” When you hear that, you know things are going to get complicated.
You: “It depends on what?”

Ollie: “It depends on what the product is. Widgets are sold by the unit, but gizmos
are sold by the kilogram. If someone has asked for 1.5 widgets, then of course
that’s a mistake.”

You scribble some notes down furiously.
You: “OK, say that all the product codes and order quantities are good. What next?”

Ollie: “Next, I write in the prices for each line on the order and then sum them
up to calculate the total amount to bill. Next, as I said earlier, I make two copies
of the order form. I file the original and I put one copy in the shipping outbox and
a second copy in the billing outbox. Finally, I scan the original, attach it to a
standard acknowledgment letter, and email it back to the customer.”

You: “One last question. You have all these order forms lying around. Do you ever
accidentally mix up ones you have processed with ones that are still unvalidated?”

Ollie: “No. Every time I do something with them I mark them somehow. For
example, when a form has been validated, I put a mark up here in the corner, so
I know I've done that. I can tell when I've calculated the prices because the “total”
box is filled out. Doing this means I can always tell order forms at different
stages apart.”

This is a good point to stop and digest what we've learned.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain ¢ 36

Representing Complexity in Our Domain Model

As we have drilled down into this one workflow, the domain model has become
a lot more complicated. That's good. Better to spend time on understanding
complexity now rather than later, when we are in the middle of coding. “A
few weeks of programming can save you hours of planning,” as they say.

Here’s a diagram of the workflow now:

Uncate gorized
mail
Unvalidated
order form

Unvalidated
quote form

o | Address checking
\alidation "\-/I____s_er_vige_ - g woﬁt&?ﬂw".
Product ,'
Validated catalog |

order

— i o —— —

———

| send acknowledgmentl
I to customer |

But this diagram doesn’t reflect everything that we've learned. Let’s see if we
can do better and capture all this new information in our text-based language.

Representing Constraints

We'll start with the most primitive values first: the product codes and quanti-
ties, which we've learned are not just simple strings and integers but are
constrained in various ways.

context: Order-Taking

data WidgetCode = string starting with "W" then 4 digits
data GizmoCode = string starting with "G" then 3 digits
data ProductCode = WidgetCode OR GizmoCode

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Representing Complexity in Our Domain Model ¢ 37

In the fragment above, the words that Ollie used (such as WidgetCode) have
also been used for the design, and we are treating them as part of the Ubiqui-
tous Language. Furthermore, we have documented the constraints on Widget-
Code and GizmoCode and then defined a ProductCode as a choice between those
two types.

But isn’t that being too strict? What happens if a new type of product needs
to be handled? This is a problem we frequently run into. If we are too strict,
we make things harder to change. But if we have too much freedom, we don’t
have a design at all.

The right answer depends on the context, as always. Generally though, it's
important to capture the design from the domain expert’s point of view.
Checking the different kinds of codes is an important part of the validation
process, and so it should be reflected in the design of the domain, which aims
to be self-documenting. And if we didn’t document the different kinds of
product codes here, as part of the model, we’d have to document them
somewhere else anyway.

Also, if the requirements do change, our model is very easy to change; adding
a new kind of product code would only require an extra line.

Finally, remember that just because the design is strict doesn’t mean that
the implementation has to be strict. For example, an automated version of
the validation process might just flag a strange code for human approval,
rather than rejecting the whole order outright.

Now, what about documenting the requirements for the quantities? Here’s

the proposed design:

data OrderQuantity = UnitQuantity OR KilogramQuantity

data UnitQuantity = integer between 1 and ?
data KilogramQuantity = decimal between ? and ?

Just as we did with product codes, we’ll define OrderQuantity as a choice—in
this case between UnitQuantity and KilogramQuantity.

Writing this down, though, we realize that we don’t have upper bounds for
UnitQuantity and KilogramQuantity. Surely UnitQuantity can’t be allowed to be in the
billions?

Let’s check with the domain expert. Ollie gives us the limits we need:

e The largest number of units allowed for an order quantity is 1000.
¢ The lowest weight is 0.05 kg and the highest is 100 kg.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain ® 38

These kinds of constraints are important to capture. We never want a situ-
ation in production where the units are accidentally negative, or the weight
is hundreds of kilotons. Here is the updated spec, with these constraints
documented:

data UnitQuantity = integer between 1 and 1000
data KilogramQuantity = decimal between 0.05 and 100.00

Representing the Life Cycle of an Order

Now let’s move on to the Order. In our earlier design sketch, we had a simple
definition for Order:

data Order =
CustomerInfo
AND ShippingAddress
AND BillingAddress
AND list of OrderLines
AND AmountToBill

But now it’s clear that this design is too simplistic and doesn’t capture how
Ollie thinks of orders. In Ollie’s mental model, orders have a life cycle. They
start off as unvalidated (straight from the mail), then they get “validated,” and
then they get “priced.”

In the beginning, an order doesn’t have a price, but by the end it does. The
simple Order definition above erases that distinction.

With the paper forms, Ollie distinguishes between these phases by putting
marks on the order after each phase, so an unvalidated order is immediately
distinguishable from a validated one, and a validated one from a priced one.

We need to capture these same phases in our domain model, not just for
documentation but to make it clear that (for example) an unpriced order
should not be sent to the shipping department.

The easiest way to do that is by creating new names for each phase: Unvalidated-
Order, ValidatedOrder, and so on. It does mean that the design becomes longer and
more tedious to write out, but the advantage is that everything is crystal clear.

Let’s start with the initial unvalidated orders and quotes that arrive. We can
document them like this:

data UnvalidatedOrder =
UnvalidatedCustomerInfo
AND UnvalidatedShippingAddress
AND UnvalidatedBillingAddress
AND list of UnvalidatedOrderLine

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Representing Complexity in Our Domain Model ¢ 39

data UnvalidatedOrderLine =
UnvalidatedProductCode
AND UnvalidatedOrderQuantity

This documentation makes it explicit that at the beginning of the workflow,
the Customerinfo is not yet validated, the ShippingAddress is not yet validated,
and so on.

The next stage is when the order has been validated. We can document it
like this:

data ValidatedOrder =
ValidatedCustomerInfo
AND ValidatedShippingAddress
AND ValidatedBillingAddress
AND list of ValidatedOrderLine

data ValidatedOrderLine =
ValidatedProductCode
AND ValidatedOrderQuantity

This shows that all the components have now been checked and are valid.

The next stage is to price the order. A Priced Order is just like a validated order
except for the following:

e Each line now has a price associated with it. That is, a PricedOrderLine is a
ValidatedOrderLine plus a LinePrice.

e The order as a whole has an AmountToBill associated with it, calculated as
the sum of the line prices.

Here’s the model for this:

data PricedOrder =
ValidatedCustomerInfo
AND ValidatedShippingAddress
AND ValidatedBillingAddress
AND list of PricedOrderLine // different from ValidatedOrderLine

AND AmountToBill // new
data PricedOrderLine =

ValidatedOrderLine

AND LinePrice // new

The final stage is to create the order acknowledgment.

data PlacedOrderAcknowledgment =
PricedOrder
AND AcknowledgmentLetter

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain ® 40

You can see now that we've captured quite a lot of the business logic in this
design already—rules such as these:

e An unvalidated order does not have a price.
e All the lines in a validated order must be validated, not just some of them.

The model is a lot more complicated than we originally thought. But we are
just reflecting the way that the business works. If our model wasn't this
complicated, we wouldn’t be capturing the requirements properly.

Now if we can preserve these distinctions in our code as well, then our code
will reflect the domain accurately and we will have a proper “domain-driven”
design.

Fleshing out the Steps in the Workflow

It should be apparent that the workflow can be broken down into smaller
steps: validation, pricing, and so on. Let’'s apply the same input/output
approach to each of these steps.

First, the output of the overall workflow is a little more complicated than we
thought earlier. Originally the only output was a “Order placed” event, but
now the possible outcomes for the workflow are as follows:

¢ We send a “Order placed” event to shipping/billing, OR
e We add the order form to the invalid order pile and skip the rest of the
steps.

Let’s document the whole workflow in pseudocode, with steps like ValidateOrder
broken out into separate substeps:

workflow "Place Order" =
input: OrderForm
output:
OrderPlaced event (put on a pile to send to other teams)
OR InvalidOrder (put on appropriate pile)

// step 1

do ValidateOrder

If order is invalid then:
add InvalidOrder to pile
stop

// step 2
do PriceOrder

// step 3
do SendAcknowledgmentToCustomer

// step 4
return OrderPlaced event (if no errors)

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Representing Complexity in Our Domain Model ¢ 41

With the overall flow documented, we can now add the extra details for each
substep.

For example, the substep that validates the form takes an UnvalidatedOrder as
input, and its output is either a ValidatedOrder or a ValidationError. We will also
document the dependencies for the substep: it needs input from the product
catalog (we'll call this the CheckProductCodeExists dependency) and the external
address checking service (the CheckAddressExists dependency).

substep "ValidateOrder" =
input: UnvalidatedOrder
output: ValidatedOrder OR ValidationError
dependencies: CheckProductCodeExists, CheckAddressExists

validate the customer name
check that the shipping and billing address exist
for each line:

check product code syntax

check that product code exists in ProductCatalog

if everything is 0K, then:
return ValidatedOrder
else:
return ValidationError

The substep that calculates the prices takes a ValidatedOrder as input and has
a dependency on the product catalog (which we’ll call GetProductPrice). The output
is a PricedOrder.

substep "PriceOrder" =
input: ValidatedOrder
output: PricedOrder
dependencies: GetProductPrice

for each line:
get the price for the product
set the price for the line
set the amount to bill (= sum of the line prices)

Finally, the last substep takes a PricedOrder as input and then creates and
sends the acknowledgment.

substep "SendAcknowledgmentToCustomer" =
input: PricedOrder
output: None

create acknowledgment letter and send it
and the priced order to the customer

This documentation of the requirements is looking a lot more like code now,
but it can still be read and checked by a domain expert.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 2. Understanding the Domain ® 42

Wrapping Up

We'll stop gathering requirements now, as we’ll have plenty to work with when
we move to the modeling phase in the second part of this book. But first let’s
review what we've learned in this chapter.

We saw that it’s important not to dive into implementation details while doing
design: DDD is neither database-driven nor class-driven. Instead, we focused
on capturing the domain without assumptions and without assuming any
particular way of coding.

And we saw that listening to the domain expert carefully reveals a lot of
complexity, even in a relatively simple system like this. For example, we
originally thought that there would be a single “Order,” but more investigation
uncovered many variants of an order throughout its life cycle, each with
slightly different data and behavior.

What's Next

We'll be looking shortly at how we can model this order-taking workflow using
the F# type system. But before we do that, let’s step back and look at the big
picture again and discuss how to translate a complete system into a software
architecture. That will be the topic of the next chapter.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 3

A Functional Architecture

Here’s our next challenge: how should we translate our understanding of the
domain into a software architecture, especially one that is based on functional
programming principles?

We really shouldn’t be doing too much thinking about architecture at this
point, because we still don’t really understand the system yet—we are at the
peak of our ignorance! The best use of our time is to do things that reduce
this ignorance: Event Storming, interviews, and all the other best practices
around requirements gathering.

On the other hand, it's good to have a rough idea of how we are going to
implement our domain model as software. In a fast-paced development cycle,
we often need to start implementing some of the domain before we have
understood the rest of it, so we’ll need to have some plan for fitting the various
components together even before they’re built. And there’s a lot to be said for
creating a crude prototype—a “walking skeleton”—that demonstrates how
the system will work as a whole. Early feedback on a concrete implementation
is a great way to discover gaps in your knowledge.

In this chapter we’ll take a brief look at a typical software architecture for a
functionally oriented domain model. We’ll look at how DDD concepts such
as bounded contexts and Domain Events might be translated into software,
and we’ll sketch out the approach to implementation that we’ll use in the rest
of this book.

Software architecture is a domain in its own right, of course, so let’s follow
our own advice and use a “ubiquitous language” when talking about it. We’'ll
use the terminology from Simon Brown’s “C4” approach,' whereby a software
architecture consists of four levels that can be described as follows:

1. http://static.codingthearchitecture.com/c4.pdf

http://static.codingthearchitecture.com/c4.pdf
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 3. A Functional Architecture ® 44

e The “system context” is the top level, representing the entire system.

e The system context comprises a number of “containers,” which are
deployable units such as a website, a web service, a database, and so on.

¢ Each container in turn comprises a number of “components,” which are
the major structural building blocks in the code.

¢ Finally, each component comprises a number of “classes” (or in a func-
tional architecture, “modules”) that contain a set of low-level methods or
functions.

One of the goals of a good architecture is to define the various boundaries
between containers, components, and modules, such that when new
requirements arise, as they will, the “cost of change” is minimized.

Bounded Contexts as Autonomous Software Components

Let’s start with the concept of a “bounded context” and how it relates to an
architecture. As we saw earlier, it's important that a context is an autonomous
subsystem with a well-defined boundary. Even with those constraints, though,
we have a number of common architectural styles to choose from.

If the entire system is implemented as a single monolithic deployable (a single
container using the C4 terminology above), a bounded context could be as
simple as a separate module with a well-defined interface, or preferably, a
more distinct component such as a .NET assembly. Alternatively, each
bounded context could be deployed separately in its own container—a classic
service-oriented architecture. Or we could go even more fine-grained and
make each individual workflow into a standalone deployable container—a
microservice architecture.

At this early stage, however, we do not need to commit to a particular
approach. The translation from the logical design to the deployable equivalent
is not critical, as long as we ensure that the bounded contexts stay decoupled
and autonomous.

We stressed earlier that it's important to get the boundaries right, but of
course, this is hard to do at the beginning of a project, and we should expect
that the boundaries will change as we learn more about the domain. It’s a lot
easier to refactor a monolith, so a good practice is to build the system as a
monolith initially and refactor to decoupled containers only as needed. There’s
no need to jump straight to microservices and pay the “microservice premium”

2. https://www.martinfowler.com/bliki/MicroservicePremium.html

https://www.martinfowler.com/bliki/MicroservicePremium.html
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Communicating Between Bounded Contexts ® 45

(the extra burden on operations) unless you are sure the benefits outweigh
the drawbacks. It’s tricky to create a truly decoupled microservice architecture:
if you switch one of the microservices off and anything else breaks, you don’t
really have a microservice architecture, you just have a distributed monolith!

Communicating Between Bounded Contexts

How do bounded contexts communicate with each other? For example, when
the order-taking context has finished processing the order, how does it tell
the shipping context to actually ship it? As we've seen earlier, the answer is
to use events. For example, the implementation might look like this:

e The Place-Order workflow in the order-taking context emits an OrderPlaced event.

e The OrderPlaced event is put on a queue or otherwise published.

e The shipping context listens for OrderPlaced events.

e When an event is received, a ShipOrder command is created.

e The ShipOrder command initiates the Ship-Order workflow.

e When the Ship-Order workflow finishes successfully, it emits an OrderShipped
event.

Here’s a diagram for this example:

{ Order-Toking | Snerg
3" s OrderSigped
—| Place-Order Workflow I~ Ship-Order Workflow —
ShipOrder
‘ command '
------------------------ OrderPlaced
event
queue

You can see that this is a completely decoupled design: the upstream compo-
nent (the order-taking subsystem) and the downstream component (the
shipping subsystem) are not aware of each other and are communicating only
through events. This kind of decoupling is critical if we want to have truly
autonomous components.

The exact mechanism for transmitting events between contexts depends on the
architecture we choose. Queues are great for buffered asynchronous communi-
cation and so would be the first choice for an implementation with microservices
or agents. In a monolithic system, we can use the same queuing approach
internally, or just use a simple direct linkage between the upstream component
and the downstream component via a function call. As always, we don’'t need
to choose right now, as long as we design the components to be decoupled.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 3. A Functional Architecture ® 46

As for the handler that translates events (such as OrderPlaced) to commands
(such as ShipOrder), it can be part of the downstream context (living at the
boundary of the context), or it can be done by a separate router’ or process
manager’ running as part of the infrastructure, depending on your architecture
and where you want to do the coupling between events and commands.

Transferring Data Between Bounded Contexts

In general, an event used for communication between contexts will not be
just a simple signal but will also contain all the data that the downstream
components need to process the event. For example, the OrderPlaced event might
contain the complete order that was placed. That gives the shipping context
all the information it needs to construct a corresponding ShipOrder command.
(If the data is too large to be contained in the event, some sort of reference to
a shared data storage location can be transmitted instead.)

The data objects that are passed around may be superficially similar to the
objects defined inside the bounded context (which we’ll call domain objects),
but they are not the same; they are specifically designed to be serialized and
shared as part of the intercontext infrastructure. We will call these objects
Data Transfer Objects or DTOs (although that term originated outside of DDD,”
and I am using it slightly differently here). In other words, the OrderDTO con-
tained in an OrderPlaced event will contain most of the same information as an
Order domain object, but it will be structured differently to suit its purpose.
(The Serialization chapter goes into detail on how to define DTOs.)

At the boundaries of the upstream context then, the domain objects are
converted into DTOs, which are in turn serialized into JSON, XML, or some
other serialization format:

----------- 1
I
gz'(:\::jlgrgi —> To downstream context
1
Pomain _| Domain Type |___[PTO _| Serialize | _|Json/XML|
Type i to DT | Type - i
___________ d

At the downstream context, the process is repeated in the other direction:
the JSON or XML is deserialized into a DTO, which in turn is converted into
a domain object as shown in the figure on page 47.

3. http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html

http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
https://www.slideshare.net/BerndRuecker/long-running-processes-in-ddd
https://martinfowler.com/eaaCatalog/dataTransferObject.html
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Communicating Between Bounded Contexts ® 47

Fre—————————
I

From upstream context — | Domain
1 Boundary
1

Json/XML| | Deserialize | _|PTO PTO to Pomain

i | Type | Pomain Type | Type

I
e

In practice, the top-level DTOs that are serialized are typically event DTOs,
which in turn contain child DTOs, such as a DTO for Order, which in turn
contains additional child DTOs (such as a list of DTOs representing OrderLines).

Trust Boundaries and Validation

The perimeter of a bounded context acts as a “trust boundary.” Anything
inside the bounded context will be trusted and valid, while anything outside
the bounded context will be untrusted and might be invalid. Therefore, we
will add “gates” at the beginning and end of the workflow that act as interme-
diaries between the trusted domain and the untrusted outside world.

Untrusted 7 beautiful, clean Untrusted
outside world domain model outside world
—»Q Workf‘ LOW <> —

inpue ™. ~“butput
gate Bate

At the input gate, we will always validate the input to make sure that it con-
forms to the constraints of the domain model. For example, say that a certain
property of an Order must be non-null and less than fifty characters. The
incoming OrderDTO will have no such constraints and could contain anything,
but after validation at the input gate, we can be sure that the Order domain
object is valid. If the validation fails, then the rest of the workflow is bypassed
and an error is generated. (The Serialization chapter covers this kind of DTO

validation.)

The job of the output gate is different. Its job is to ensure that private infor-
mation doesn’t leak out of the bounded context, both to avoid accidental
coupling between contexts and for security reasons. For example, there’s no
need for the shipping context to know the credit card number used to pay for
an order. In order to do this, the output gate will often deliberately “lose”
information (such as the card number) in the process of converting domain

objects to DTOs.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 3. A Functional Architecture ® 48

Contracts Between Bounded Contexts

We want to reduce coupling between bounded contexts as much as possible,
but a shared communication format always induces some coupling: the events
and related DTOs form a kind of contract between bounded contexts. The
two contexts will need to agree on a common format for them in order for
communication to be successful.

So who gets to decide the contract? There are various relationships between
the contexts, and the DDD community has developed some terms for the
common ones:

e A Shared Kernel relationship is where two contexts share some common
domain design, so the teams involved must collaborate. In our domain,
for example, we might say that the order-taking and shipping contexts
must use the same design for a delivery address: the order-taking context
accepts an address and validates it, while the shipping context uses the
same address to ship the package. In this relationship, changing the
definition of an event or a DTO must be done only in consultation with
the owners of the other contexts that are affected.

* A Customer/Supplier or Consumer Driven Contract® relationship is where
the downstream context defines the contract that they want the upstream
context to provide. The two domains can still evolve independently, as
long as the upstream context fulfills its obligations under the contract.
In our domain, the billing context might define the contract (“this is what
I need in order to bill a customer”) and then the order-taking context
provides only that information and no more.

e A Conformist relationship is the opposite of consumer-driven. The down-
stream context accepts the contract provided by the upstream context
and adapts its own domain model to match. In our domain, the order-
taking context might just accept the contract defined by the product cat-
alog and adapt its code to use it as is.

Anti-Corruption Layers

Often when communicating with an external system, the interface that is
available does not match our domain model at all. In this case, the interactions
and data need to be transformed into something more suitable for use inside

6. https://www.infog.com/articles/consumer-driven-contracts

https://www.infoq.com/articles/consumer-driven-contracts
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Contracts Between Bounded Contexts ® 49

the bounded context, otherwise our domain model will become “corrupted”
by trying to adapt to the external system’s model.

This extra level of decoupling between contexts is called an Anti-Corruption
Layer in DDD terminology, often abbreviated as “ACL.” In the diagram above,
the “input gate” often plays the role of the ACL—it prevents the internal, pure
domain model from being “corrupted” by knowledge of the outside world.

That is, the Anti-Corruption Layer is not primarily about performing validation
or preventing data corruption, but instead acts as a translator between two
different languages—the language used in the upstream context and the
language used in the downstream context. In our order-taking example, then,
we might have an Anti-Corruption Layer that translates from “order-taking”
vocabulary to “shipping” vocabulary, allowing the two contexts, each with
their own vocabulary, to evolve independently.

A Context Map with Relationships

Let’s say that we have progressed with our design and have now decided what
the relationships between our contexts are:

e The relationship between the order-taking and shipping contexts will be
a “Shared Kernel,” meaning that they will jointly own the communications
contract.

¢ The relationship between order-taking and billing will be a “Consumer-
Driven Contract” one, meaning that the billing context determines the
contract and the order-taking system will supply the billing context with
exactly the data it needs.

e The relationship between order-taking and the product catalog will be a
“Conformist” one, meaning that the order-taking context will submit to
using the same model as the product catalog.

¢ Finally, the external address checking service has a model that’s not at
all similar to our domain, so we’ll insert an explicit Anti-Corruption Layer
into our interactions with it. This is a common pattern when using a third-
party component. It helps us avoid vendor lock-in and lets us swap to a
different service later.

A context map of our domain showing these kinds of intercontext relationships
is shown in the figure on page 50.

You can see that the context map is no longer just showing purely technical
relationships between contexts, but is now also showing the relationships
between the teams that own the contexts and how we expect them to

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 3. A Functional Architecture ® 50

Address
Checkin 9

collaborate (or not!). Deciding on how the domains interact is often just as
much an organizational challenge as it is a technical one, and some teams
have used the so-called “inverse Conway maneuver”’ to ensure that the
organization structure is aligned with the architecture.

Workflows Within a Bounded Context

In our discovery process, we treated business workflows as a mini-process initi-
ated by a command, which generated one or more Domain Events. In our func-
tional architecture, each of these workflows will be mapped to a single function,
where the input is a command object and the output is a list of event objects.

When we create diagrams of the design, we represent workflows as little pipes
with an input and output. Public workflows (those that are triggered from
outside the bounded context) are shown as “sticking out” a little over the
boundary as shown in the figure on page 51.

A workflow is always contained within a single bounded context and never
implements a scenario “end-to-end” through multiple contexts. The Modeling

Workflow Inputs and Outputs

The input to a workflow is always the data associated with a command, and the
output is always a set of events to communicate to other contexts. In our order-
placing workflow, for example, the input is the data associated with a PlaceOrder
command and the output is a set of events such as the OrderPlaced event.

7. http://bit.ly/InverseConwayManeuver

http://bit.ly/InverseConwayManeuver
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Workflows Within a Bounded Context ® 51

......................

-’ ~

Bounded Context ™.

’
I
[l
1

-

=

Command —| Public Workflow —> Fvents

Command —| Public Workflow L Fvents

i—- Internal Workflow — ,'

......................

But remember that we have now determined that there is a “customer/sup-
plier” relationship with the billing context. That means that, rather than
sending a generic OrderPlaced event to the billing context, we need to send only
the information that billing needs and no more. For example, this might just
be the billing address and the total amount to bill but not the shipping address
or the list of items.

This means we will need to emit a new event (BillableOrderPlaced say) from our
workflow, with a structure that might look something like this:

data BillableOrderPlaced =
OrderlId
AND BillingAddress
AND AmountToBill

We might also want to emit an OrderAcknowledgmentSent event as well. With these
changes, our earlier diagram of the workflow on page 29 is misleading and

we need to update it:

Order Acknowled gment Sent

)~

Input: 'TN;rEFE;'____-'

gf;& form —>I Place Order g(dergtf_lcgd)event 5

___P I____ —_— or |ppm3
BillableOrderPlaced event
(for PBilling) 5

Side Effects:
Send ‘order acknowledgment'
to customer

In the preceding diagram, it’s important to note that a workflow function does
not “publish” Domain Events—it simply returns them. How they get published
is a separate concern.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 3. A Functional Architecture ® 52

Avoid Domain Events Within a Bounded Context

In an object-oriented design, it is common to have Domain Events raised
internally within a bounded context. In that approach, a workflow object
raises an OrderPlaced event. Next a handler listens for that event and sends the
order acknowledgment, then another handler generates a BillableOrderPlaced
event, and so on. It might look like this:

(N
Event listener: iﬁ’ OrderAcknowled gment Sent

P
‘ Dounded Context
o3 Acknowledge Order
' = T
Input: Workf low: OrderPlaced Side Effects:
O“fder Forg-* Place Order e\:e:{ Place | Send order
I = - acknowled gment

1
I "') Event listener: BillableOrderPlaced
Create BillableOr dg

L”
\ 7
In a functional design, we prefer not to use this approach because it creates

hidden dependencies. Instead, if we need a “listener” for an event, we just
append it to the end of workflow like this:

-~
L\

‘fbounded Context

| 7
Input: Workflow: | Acknowledge Order |Create BillableOrder I OrderPlaced
Order form Place Order event
. 2 e Vg
I \ billableOrderPlaced
Send order
\ acknowledgment

This approach is more explicit—there are no global event managers with
mutable state—and therefore it’'s easier to understand and maintain. We’'ll
see how this works in practice in the Implementation chapter on page 161 and

OrderAcknowled gment Sent

Side Effects:

Code Structure Within a Bounded Context

Now let’s look at how the code is structured within a bounded context.

In a traditional “layered approach,” the code is divided into layers: a core domain
or business logic layer, a database layer, a services layer, and an API or user
interface layer (or some variant of these). A workflow will start at the top layer,
work its way down to the database layer, and then return back to the top as
shown in the figure on page 53.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Code Structure Within a Bounded Context ® 53

Workflow Workflow

AP1/Interface Layer

Services Layer

Pomain Layer

Patabase Layer J J
This approach has many problems, however. One Workflow — Workflow
particular issue is that it breaks the important _—}T—_ _—}T—_
design principle of “code that changes together

belongs together.” Because the layers are assembled — - 4 —

“horizontally,” a change to the way that the workflow

works means that you need to touch every layer. A — - 5 -

better way is to switch to “vertical” slices, where

each workflow contains all the code it needs to get - & - k -
J J

its job done, and when the requirements change for
a workflow, only the code in that particular vertical - - L =
slice needs to change as shown in the figure.

This is still not ideal, though. To see this, let’s stretch a workflow into a hori-
zontal pipe and look at the layers in that way.

Services /ﬁ
Patabase
[

\ S
/

- \Work{low

AP1/Interface

Pomaiin
It's clear that the layers are intermingled in a way that makes understanding
the logic (and testing it) unnecessarily complicated.

The Onion Architecture

Let’s instead put the domain code at the center and then have the other
aspects be assembled around it using the rule that each layer can only depend

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 3. A Functional Architecture ® 54

on inner layers, not on layers further out. That is, all dependencies must
point inward. This is called the “Onion Architecture.”®

Workflow

Other similar approaches exist, such as the Hexagonal Architecture® and the
Clean Architecture. '’

In order to ensure that all dependencies point inward, we will have to use the
functional equivalent of dependency injection, which is discussed in Imple-
mentation: Composing a Pipeline.

Keep I/0 at the Edges

A major aim of functional programming is to work with functions that are
predictable and easy to reason about without having to look inside them. In
order to do this, we will try to work with immutable data wherever possible
and try to ensure that our functions have explicit dependencies instead of
hidden dependencies. Most importantly, we will try to avoid side effects in
our functions, including randomness, mutation of variables outside the
function, and most importantly, any kind of I/0.

For example, a function that reads or writes to a database or file system would
be considered “impure,” so we would try to avoid these kinds of functions in
our core domain.

But then how do we read or write data? The answer is to push any I/O to the
edges of the onion—to access a database, say, only at the start or end of a
workflow, not inside the workflow. This has the additional benefit of forcing
us to separate different concerns: the core domain model is concerned only
with business logic, while persistence and other I/O is an infrastructural
concern.

8. http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://alistair.cockburn.us/Hexagonal+architecture
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Wrapping Up ® 55

In fact, the practice of shifting I/O and database access to the edges combines
very nicely with the concept of persistence ignorance that we introduced in
the previous chapter. You can’t model your domain using a database if you
can’t even access the database from inside the workflow! (The Persistence
chapter discusses the use of databases in more detail)

Wrapping Up

We've been introduced to a few more DDD-related concepts and terminology
in this chapter, so let’s summarize them in one place:

e A Domain Object is an object designed for use only within the boundaries
of a context, as opposed to a Data Transfer Object.

e A Data Transfer Object, or DTO, is an object designed to be serialized and
shared between contexts.

e Shared Kernel, Customer/Supplier, and Conformist are different kinds of
relationships between bounded contexts.

e An Anti-Corruption Layer, or ACL, is a component that translates concepts
from one domain to another in order to reduce coupling and allow domains
to evolve independently.

¢ Persistence Ignorance means that the domain model should be based only
on the concepts in the domain itself and should not contain any awareness
of databases or other persistence mechanisms.

What's Next

We've now got an understanding of the domain and a general approach to
designing a solution for it, so we can move on to the challenge of modeling
and implementing the individual workflows. In the next few chapters, we’ll
be using the F# type system to define a workflow and the data that it uses,
creating compilable code that is still understandable by domain experts and
non-developers.

To start with, though, we need to understand what type means to functional
programmers and how it is different from class in object-oriented design.
That’s the topic of the next chapter.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Part II

Modeling the Domain

In this second part, we’ll take one worlflow from
the domain and model it in a functional way. We’ll
see how the functional decomposition of a domain
differs_from an object-oriented approach, and we’ll
learn how to use types to capture requirements. By
the end of this part, you'll know how to write con-
cise code that does double-duty: first as readable
documentation of the domain but also as a compil-
able frameworlk that the rest of the implementation
can build upon.

CHAPTER4

Understanding Types

In the second chapter, we captured the domain-driven requirements for a
single workflow of the order-taking system. The next challenge is to convert
those informal requirements into compilable code.

The approach we are going to take is to represent the requirements using
F#’s “algebraic type system.” In this chapter we’ll learn what algebraic types
are, how they are defined and used, and how they can represent a domain
model. Then, in the next chapter, we’ll use what we've learned to accurately
model the order-placing workflow.

Understanding Functions

Before we can understand types, we need to understand the most basic con-
cept in functional programming—a function.

If you remember your high-school mathematics, a function is a kind of black
box with an input and an output. You can imagine it as a bit of railroad track,
with a Tunnel of Transformation sitting on it. Something goes in, is trans-
formed somehow, and comes out the other side.

== The Tumnel of F———=—
— Transformation ————
For example, let’s say that this particular function turns apples into bananas.

We describe a function by writing down the input and output, separated by
an arrow, as shown in the figure on page 60.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 4. Understanding Types ® 60

) Function
———— agple = banana

Type Signatures

The apple -> banana description is called a type signature (also known as a
function signature). This particular signature is simple, but type signatures
can get very complicated. Understanding and using type signatures is a crit-
ical part of coding with F#, so let’s make sure we understand how they work.

Here are two functions: addl adds 1 to its single input x, and add adds its two
inputs, x and y:

let addl x = x + 1 // signature is: int -> int

let add x y = x +y // signature is: int -> int -> int

As you can see, the let keyword is used to define a function. The parameters
are separated by spaces, without parentheses or commas. Unlike C# or Java,
there is no return keyword. The last expression in the function definition is the
output of the function.

Even though F# cares about the types of the inputs and outputs, you rarely
need to explicitly declare what they are, because in most cases the compiler
will infer the types for you automatically.'

e For addl, the inferred type of x (before the arrow) is int and the inferred type
of the output (after the arrow) is also int, so the type signature is int -> int.

e For add, the inferred type of x and y is int and the inferred type of the output
(after the last arrow) is also int. add has two parameters, and each
parameter is separated by an arrow, so the type signature is int-> int-> int.

If you are using an IDE such as Visual Studio, hovering over the definition
of a function will show you its type signature, but since this is a book, we’ll
put the type signature in a comment above the definition when we need to
make it clear. It’s just a comment and isn’t used by the compiler.

Functions that consist of more than one line are written with an indent (like
Python). There are no curly braces. Here’s an example:

1. https://fsharpforfunandprofit.com/posts/type-inference/

https://fsharpforfunandprofit.com/posts/type-inference/
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Types and Functions ® 61

// squarePlusOne : int -> int
let squarePlusOne x =

let square = x * x

square + 1

This example also shows that you can define subfunctions within a function

(let square = ...) and again, that the last line (square + 1) is the return value.

Functions with Generic Types

If the function will work with any type, then the compiler will automatically
infer a generic type, as in this areEqual function.

// areEqual : 'a -> 'a -> bool
let areEqual x y =
(x =y)

For areEqual the inferred type of x and y is 'a. A tick-then-letter is F#’s way of
indicating a generic type. And it’s true, since x and y could be any type as
long as they are the same type.

And by the way, this code shows that the equality test is = in F#, not == like
in C-like languages. For comparison, the code for areEqual in C#, using generics,
might look something like this:

static bool AreEqual<T>(T x, T vy)
{

return (x ==y);

}

Types and Functions

In a programming language like F#, types play a key role, so let’s look at what
a functional programmer means by type.

A type in functional programming is not the same as a class in object-oriented
programming. It’s much simpler. In fact, a type is just the name given to the
set of possible values that can be used as inputs or outputs of a function:

Function

S
g input —> output

S
valid inputs e

valid outputs

For example, we might take the set of numbers in the range -32768 to +32767
and give them the label intl6. There is no special meaning or behavior to a
type beyond that.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 4. Understanding Types ® 62

Here is an example of a function with an intl6 input:

32168, 32161 ______| Eunction e
2 4,81, 2| THTT]incle==attput ST TTTT

32166, 32761

Set of
valid outputs

this is type int1c’

The type is what determines the function’s signature, so the signature for
this function might look like this:

intlé -> someOutputType

Here is an example of a function with an output consisting of the set of all
possible strings, which we will call the string type:

) ab CI
|——— Ibut’

'cobol’

imEmE 'double’
) en dl

'float!

Function

el input —> string

valid inputs

This is type 'string’
The signature for this function would be this:
someInputType -> string
The set of things in a type do not have to be primitive objects. For example,

we may have a function that works with a set of objects that collectively we
call Person:

Porna. R .
.]D\Vzey:‘ MeL oza —— F unction —— S, ot OP
actnal a EEEEER - IEBEEN .
hawna:\ Iv\o mv;ﬂ mEEEEE Person —> output | valid outputs
12 ——— e
Lenc\ Kobbms

This is type 'Person’

From a conceptual point of view, the things in the type can be any kind of thing,
real or virtual. The figure on page 63 shows a function that works with “Fruit.”

Whether these are real fruit or a virtual representation isn’t important right now.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Types and Functions ® 63

©
&)
&
@,

Set of E—— funCtiOV\)
valid inputs input —> Fruit

This is type 'Fruit’

And finally, functions are things too, so we can use sets of functions as a type
as well. The function below outputs something that is a Fruit-to-Fruit function:

— FUV\CtiOV\ g {E
= input —> CFruit—>Friit) o E&

&= EC

This is type 'Fruit—> Fruit’

Set of
valid inputs

Each element in the output set is a Fruit -> Fruit function, so the signature of
the function as a whole is this:

someInputType -> (Fruit -> Fruit)

In a functional programming language, most things are called “values.” In an object-
oriented language, most things are called “objects.” So what is the difference between
a “value” and an “object”?

A value is just a member of a type, something that can be used as an input or an
output. For example, 1 is a value of type int, "abc" is a value of type string, and so on.

Functions can be values too. If we define a simple function such as let addl x = x + 1,
then addl is a (function) value of type int->int.

Values are immutable (which is why they are not called “variables”). And values do
not have any behavior attached to them, they are just data.

In contrast, an object is an encapsulation of a data structure and its associated
behavior (methods). In general, objects are expected to have state (that is, be mutable),
and all operations that change the internal state must be provided by the object itself
(via “dot” notation).

So in the world of functional programming (where objects don’t exist), you should
use the term “value” rather than “variable” or “object.”

report erratum -« discuss

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 4. Understanding Types ® 64

Composition of Types

You'll hear the word “composition” used a lot in functional programming—it’s
the foundation of functional design. Composition just means that you can
combine two things to make a bigger thing, like using Lego blocks.

In the functional programming world, we use composition to build new
functions from smaller functions and new types from smaller types. We'll talk
about composition of types right now, and we’ll talk about function composi-
tion later, in Chapter 8, Understanding Functions, on page 147.

In F#, new types are built from smaller types in two ways:
e By _AND_ing them together
¢ By _OR _ing them together

“AND” Types

Let’s start with building types using AND. For example, we might say that to
make fruit salad you need an apple and a banana and some cherries:

FruitSalad |=
One each from | @) and|) and | Z&

In F# this kind of type is called a record. Here’s how the definition of a FruitSalad
record type would be written in F#:

type FruitSalad = {
Apple: AppleVariety
Banana: BananaVariety
Cherries: CherryVariety

}

The curly braces indicate that it is a record type, and the three fields are Apple,
Banana, and Cherries.

“OR” Types

The other way of building new types is by using OR. For example, we might
say that for a fruit snack you need an apple or a banana or some cherries:

FruitSnack |=

Choice oFm or | D or &

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Composition of Types ® 65

These kinds of “choice” types will be incredibly useful for modeling (as we
will see throughout this book). Here is the definition of a FruitSnack using a
choice type:

type FruitSnack =
| Apple of AppleVariety
| Banana of BananaVariety
| Cherries of CherryVariety

A choice type like this is called a discriminated union in F#. It can be read
like this:

e A FruitSnack is either an AppleVariety (tagged with Apple) or a BananaVariety (tagged
with Banana) or a CherryVariety (tagged with Cherries).

The vertical bar separates each choice, and the tags (such as Apple and Banana)
are needed because sometimes the two or more choices may have the same
type and so tags are needed to distinguish them.

The varieties of fruit are themselves defined as OR types, which in this case
is used similarly to an enum in other languages.

type AppleVariety =
| GoldenDelicious
| GrannySmith
| Fuji

type BananaVariety
| Cavendish
| GrosMichel
| Manzano

type CherryVariety
| Montmorency
| Bing

This can be read as:
e An AppleVariety is either a GoldenDelicious or a GrannySmith or a Fuji,

and so on.

The types that are built using AND are called product types.

The types that are built using OR are called sum types or tagged unions or, in F#
terminology, discriminated unions. In this book I will often call them choice types,
because I think that best describes their role in domain modeling.

report erratum - discuss

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 4. Understanding Types ® 66

Simple Types
We will often define a choice type with only one choice, such as this:

type ProductCode =
| ProductCode of string

This type is almost always simplified to this:
type ProductCode = ProductCode of string

Why would we create such a type? Because it’s an easy way to create a “wrap-
per’—a type that contains a primitive (such as a string or int) as an inner value.

We'll be seeing a lot of these kinds of types when we do domain modeling. In
this book I will label these single-case unions as “simple types,” as opposed
to compound types like records and discriminated unions. More discussion
of them is available in the section on Simple Types on page 79.

Algebraic Type Systems

Now we can define what we mean by an “algebraic type system.” It’s not as
scary as it sounds—an algebraic type system is simply one where every
compound type is composed from smaller types by AND-ing or OR-ing them
together. F#, like most functional languages (but unlike OO languages), has
a built-in algebraic type system.

Using AND and OR to build new data types should feel familiar—we used the
same kind of AND and OR to document our domain. We’'ll see shortly that an
algebraic type system is indeed an excellent tool for domain modeling.

Working with F# Types

In F#, the way that types are defined and the way that they are constructed
are very similar.

For example, to define a record type, we use curly braces and then name:type
definitions for each field, like this:

type Person = {First:string; Last:string}

To construct a value of this type, we use the same curly braces but use = to
assign a value to a field, like this:

let aPerson = {First="Alex"; Last="Adams"}

And to deconstruct a value of this type using pattern matching, we use the
same syntax but this time on the left side of the equation, like this:

let {First=first; Last=last} = aPerson

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Building a Domain Model by Composing Types ¢ 67

This code says that the values first and last will be set to the corresponding
fields in the record. With records, we can also use the more familiar dot syntax
as well. So the code above is equivalent to this:

let first = aPerson.First
let last = aPerson.last

The symmetry between construction and deconstruction applies to discrimi-
nated unions as well. To define a choice type, we use the vertical bar to sepa-
rate each choice, with each choice defined as caselabel of type, like this:

type OrderQuantity =
| UnitQuantity of int
| KilogramQuantity of decimal

A choice type is constructed by using any one of the case labels as a constructor
function, with the associated information passed in as a parameter, like this:

let anOrderQtyInUnits = UnitQuantity 10
let anOrderQtyInKg = KilogramQuantity 2.5

Cases are not the same as subclasses—UnitQuantity and KilogramQuantity are not
types themselves, just distinct cases of the OrderQuantity type. In the example
above, both these values have the same type: OrderQuantity.

To deconstruct a choice type, we must use pattern matching (the match..with
syntax) with a test for each case, like this:
let printQuantity aOrderQty =
match aOrderQty with
| UnitQuantity uQty ->
printfn "%i units" uQty
| KilogramQuantity kgQty ->
printfn "%g kg" kgQty

As part of the matching process, any data associated with a particular case
is also made available. In the example above, the uQty value will be set if the
input matches the UnitQuantity case.

Here’s the result of the pattern matching when we pass in the two values we
defined above:

printQuantity anOrderQtyInUnits // "10 units"
printQuantity anOrderQtyInKg // "2.5 kg"

Building a Domain Model by Composing Types

A composable type system is a great aid in doing domain-driven design
because we can quickly create a complex model simply by mixing types

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 4. Understanding Types ® 68

together in different combinations. For example, say that we want to track
payments for an e-commerce site. Let’s see how this might be sketched out
in code during a design session.

First, we start with some wrappers for the primitive types, such as CheckNumber.
These are the “simple types” we discussed above. Doing this gives them
meaningful names and makes the rest of the domain easier to understand.

type CheckNumber = CheckNumber of int
type CardNumber = CardNumber of string

Next, we build up some low-level types. A CardType is an OR type—a choice
between Visa or Mastercard, while CreditCardinfo is an AND type, a record containing
a CardType and a CardNumber:

type CardType =
Visa | Mastercard // 'OR' type

type CreditCardInfo = { // 'AND' type (record)
CardType : CardType
CardNumber : CardNumber

}

We then define another OR type, PaymentMethod, as a choice between Cash or
Check or Card. This is no longer a simple “enum” because some of the choices
have data associated with them: the Check case has a CheckNumber and the Card
case has CreditCardinfo:

type PaymentMethod =
| Cash
| Check of CheckNumber
| Card of CreditCardInfo

We can define a few more basic types, such as PaymentAmount and Currency:

type PaymentAmount = PaymentAmount of decimal
type Currency = EUR | USD

And finally, the top-level type, Payment, is a record containing a PaymentAmount
and a Currency and a PaymentMethod:
type Payment = {

Amount : PaymentAmount

Currency: Currency

Method: PaymentMethod

}

So there you go. In about 25 lines of code, we have defined a pretty useful
set of types already.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Optional Values, Errors, and Collections ® 69

Of course, there is no behavior directly associated with these types because
this is a functional model, not an object-oriented model. To document the
actions that can be taken, we instead define types that represent functions.

So, for example, if we want to show there is a way to use a Payment type to pay
for an unpaid invoice, where the final result is a paid invoice, we could define
a function type that looks like this:

type Paylnvoice =
UnpaidInvoice -> Payment -> PaidInvoice

Which means this: Given an Unpaidinvoice and then a Payment, we can create a
Paidlnvoice.

Or, to convert a payment from one currency to another:

type ConvertPaymentCurrency =
Payment -> Currency -> Payment

where the first Payment is the input, the second parameter (Currency) is the
currency to convert to, and the second Payment—the output—is the result after
the conversion.

Modeling Optional Values, Errors, and Collections

While we are discussing domain modeling, let’s talk about some common
situations and how to represent them with the F# type system, namely:

e Optional or missing values

e Errors

¢ Functions that return no value
e Collections

Modeling Optional Values

The types that we have used so far—records and choice types—are not allowed
to be null in F#. That means that every time we reference a type in a domain
model, it’s a required value.

So how can we model missing or optional data?

The answer is to think about what missing data means: it’s either present or
absent. There’s something there, or nothing there. We can model this with a
choice type called Option, defined like this:

type Option<'a> =

| Some of 'a
| None

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 4. Understanding Types ® 70

The Some case means that there is data stored in the associated value 'a. The
None case means there is no data. Again, the tick in 'a is F#’s way of indicating
a generic type—that is, the Option type can be used to wrap any other type.
The C# or Java equivalent would be something like Option<T>.

You don’t need to define the Option type yourself. It’s part of the standard F#
library, and it has a rich set of helper functions that work with it.

To indicate optional data in the domain model then, we wrap the type in
Option<..>, just as we would in C# or Java. For example, if we have a PersonalName
type and the first and last names are required but the middle initial is
optional, we could model it like this:

type PersonalName = {
FirstName : string
MiddleInitial: Option<string> // optional
LastName : string

}

F# also supports using the option label after the type, which is easier to read
and more commonly used:

type PersonalName = {
FirstName : string
MiddleInitial: string option
LastName : string

}

Modeling Errors

Let’s say we have a process with a possible failure: “The payment was made suc-
cessfully, or it failed because the card has expired.” How should we model this?
F# does support throwing exceptions, but we’ll often want to explicitly document
in the type signature the fact that a failure can happen. This calls out for a choice
type with two cases, so let’s define a type Result:

type Result<'Success, 'Failure> =
| Ok of 'Success
| Error of 'Failure

We'll use the Ok case to hold the value when the function succeeds and the Error case
to hold the error data when the function fails. And of course we want this type to
be able to contain any kind of data, hence the use of generic types in the definition.

If you are using F# 4.1 and above (or Visual Studio 2017), then you
don’t need to define the Result type yourself, since it’s part of the standard
F# library. If you are using an earlier version of F#, you can easily define
it and its helper functions in a few lines.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Optional Values, Errors, and Collections ® 71

To indicate that a function can fail, we wrap the output with a Result type.
For example, if the Paylnvoice function could fail, then we might define it
like this:

type PayInvoice =
UnpaidInvoice -> Payment -> Result<PaidInvoice,PaymentError>

This shows that the type associated with the Ok case is Paidlnvoice and the type
associated with the Error case is PaymentError. We could then define PaymentError
as a choice type with a case for each possible error:

type PaymentError =
| CardTypeNotRecognized
| PaymentRejected
| PaymentProviderOffline

This approach to documenting errors will be covered in detail in Chapter 10,
Implementation: Working with Errors, on page 191.

Modeling No Value at All

Most programming languages have a concept of void, used when a function
or method returns nothing.

In a functional language like F#, every function must return something, so
we can’t use void. Instead we use a special built-in type called unit. There is
only one value for unit, written as a pair of parentheses: ().

Let’s say that you have a function that updates a customer record in a
database. The input is a customer record, but there’s no useful output. In
F#, we would write the type signature using unit as the output type, like this:

type SaveCustomer = Customer -> unit

(In practice it would be more complex than this, of course! See Chapter 12,

Alternatively, let’s say you have a function that has no input yet returns
something useful, such as a function that generates random numbers. In F#,
you would indicate “no input” with unit as well, like this:

type NextRandom = unit -> int

When you see the unit type in a signature, that’s a strong indication that there
are side effects. Something somewhere is changing state, but it’s hidden from
you. Generally, functional programmers try to avoid side effects, or at least
limit them to restricted areas of code.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 4. Understanding Types ® 72

Modeling Lists and Collections

F# supports a number of different collection types in the standard libraries:
e list is a fixed-size immutable collection (implemented as a linked list).

e array is a fixed-size mutable collection, where individual elements can be
fetched and assigned to by index.

* ResizeArray is a variable size array. That is, items can be added or removed
from the array. It is the F# alias for the C# List<T> type.

¢ seq is a lazy collection, where each element is returned on demand. It is
the F# alias for the C# IEnumerable<T> type.

e There are also built-in types for Map (similar to Dictionary) and Set, but these
are rarely used directly in a domain model.

For domain modeling, I suggest always using the list type. Just like option, it
can be used as a suffix after a type (which makes it very readable), like this:
type Order = {

OrderId : OrderId

Lines : OrderLine list // a collection

}

To create a list, you can use a list literal, with square brackets and semicolons
(not commas!) as separators:

let alList = [1; 2; 3]

or you can prepend a value to an existing list using the :: (also known as
“cons”) operator:

let aNewlList = 0 :: aList // new list is [0;1;2;3]

To deconstruct a list in order to access elements in it, you use similar patterns.
You can match against list literals like this:

let printListl alist =
// matching against list literals
match alList with
| 1 ->
printfn "list is empty"

| [x] ->
printfn "list has one element: %A" X
| [x;y] -> // match using list literal

printfn "list has two elements: %A and %A" x y
| longerList -> // match anything else
printfn "list has more than two elements"

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Organizing Types in Files and Projects ® 73

Or you can match using the “cons” operator, like this:

let printlList2 alist =
// matching against "cons"
match aList with
[[1 ->
printfn "list is empty"
| first::rest ->
printfn "list is non-empty with the first element being: S%A" first

Organizing Types in Files and Projects

There’s one last thing you should know. F# has strict rules about the order
of declarations. A type higher in a file cannot reference another type further
down in a file. And a file earlier in the compilation order cannot reference a
file later in the compilation order. This means that when you are coding your
types, you have to think about how you organize them.

A standard approach is to put all the domain types in one file, say Types.fs or
Domain.fs, and then have the functions that depend on them be put later in
the compilation order. If you have a lot of types and you need to split them
across multiple files, put the shared ones first and the subdomain-specific
ones after. Your file list might look something like this:

Common.Types.fs
Common.Functions.fs
OrderTaking.Types.fs
OrderTaking.Functions.fs
Shipping.Types.fs
Shipping.Functions.fs

Within a file, that rule means you need to put the simple types at the top and the
more complex types (that depend on them) further down, in dependency order:
module Payments =

// simple types at the top of the file
type CheckNumber = CheckNumber of int

// domain types in the middle of the file
type PaymentMethod =

| Cash
| Check of CheckNumber // defined above
| Card of ...

// top-level types at the bottom of the file
type Payment = {

Amount:

Currency:

Method: PaymentMethod // defined above

}

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 4. Understanding Types ® 74

When you are developing a model from the top down, the dependency order
constraint can sometimes be inconvenient, because you often will want to
write the lower-level types below the higher-level types. In F# 4.1 you can use
the “rec” keyword at the module or namespace level to solve this. The rec key-
word allows types to reference each other anywhere in the module.

module rec Payments =
type Payment = {

Amount:
Currency:
Method: PaymentMethod // defined BELOW
}
type PaymentMethod =
| Cash
| Check of CheckNumber // defined BELOW
| Card of ...

type CheckNumber = CheckNumber of int

For earlier versions of F# you can use the “and” keyword to allow a type defi-
nition to reference a type directly underneath it.
type Payment = {

Amount:

Currency: .

Method: PaymentMethod // defined BELOW

}

and PaymentMethod =
| Cash
| Check of CheckNumber // defined BELOW
| Card of ...

and CheckNumber = CheckNumber of int

This out-of-order approach is fine for sketching, but once the design has
settled and is ready for production, it’s generally better to put the types in
the correct dependency order. This makes it consistent with other F# code
and makes it easier for other developers to read.

For a real-world example of how to organize types in a project, see the code
repository for this book.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Wrapping Up ¢ 75

Wrapping Up

In this chapter, we looked at the concept of type and how it relates to func-
tional programming, and we also saw how the composition of types could be
used to create larger types from smaller types using F#'s algebraic type
system. We were introduced to record types, built by AND-ing data together,
and choice types (also known as discriminated unions), built by OR-ing
data together, as well as other common types based on these, such as Option
and Result.

Now that we understand how types work, we can revisit our requirements
and document them using what we've learned.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 5

Domain Modeling with Types

In the first chapter, when we were talking about the importance of a shared
mental model, we emphasized that the code must also reflect this shared
model and that a developer should not have to do lossy translations between
the domain model and the source code. Ideally, we would like the source
code to also act as documentation, which means that the domain expert and
other non-developers should be able to review the code and check on the
design.

Is that a realistic goal? Can we use the source code directly like this and avoid
the need for UML diagrams and the like?

The answer is yes. In this chapter you'll learn how to use the F# type system
to capture the domain model accurately enough for code but also in a way
that can be read and understood by domain experts and other non-developers.
We'll see that types can replace most documentation, and that ability has a
powerful benefit: the implementation can never get out of sync with the design
because the design is represented in code itself.

Reviewing the Domain Model

Let’s review the domain model that we created previously on page 36:

context: Order-Taking

[/ e
// Simple types
[/ e

// Product codes

data ProductCode = WidgetCode OR GizmoCode

data WidgetCode = string starting with "W" then 4 digits
data GizmoCode = ...

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 78

// Order Quantity

data OrderQuantity = UnitQuantity OR KilogramQuantity
data UnitQuantity = ...

data KilogramQuantity = ...

A R L

// Order life cycle

A T

/] ----- unvalidated state -----

data UnvalidatedOrder =
UnvalidatedCustomerInfo
AND UnvalidatedShippingAddress
AND UnvalidatedBillingAddress
AND list of UnvalidatedOrderLine

data UnvalidatedOrderLine =
UnvalidatedProductCode
AND UnvalidatedOrderQuantity

/] ----- validated state -----
data ValidatedOrder = ...
data ValidatedOrderLine =

/] - priced state -----
data PricedOrder = ...
data PricedOrderLine = ...

// ----- output events -----

data OrderAcknowledgmentSent = ...
data OrderPlaced = ...

data BillableOrderPlaced = ...

[/ -
// Workflows
[/ - -

workflow "Place Order" =
input: UnvalidatedOrder
output (on success):
OrderAcknowledgmentSent
AND OrderPlaced (to send to shipping)
AND BillableOrderPlaced (to send to billing)
output (on error):
InvalidOrder

// etc

The goal of this chapter is to turn this model into code.

Seeing Patterns in a Domain Model

Although each domain model is different, many patterns occur repeatedly.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Simple Values ¢ 79

Let’s look at some of the patterns of a typical domain and see how we can
relate components of our model to them.

e Simple values. These are the basic building blocks represented by primitive
types such as strings and integers. But note that they are not actually
strings or integers. A domain expert does not think in terms of int and
string, but instead thinks in terms of Orderld and ProductCode—concepts that
are part of the ubiquitous language.

e Combinations of values with AND. These are groups of closely linked data.
In a paper-based world, these are typically documents or subcomponents
of a document: names, addresses, orders, and so forth.

¢ Choices with OR. We have things that represent a choice in our domain:
an Order or a Quote, a UnitQuantity or a KilogramQuantity.

e Workflows. Finally, we have business processes that have inputs and
outputs.

In the next few sections, we’ll look at how we can represent these different
patterns using F# types.

Modeling Simple Values
Let’s first look at the building blocks of a domain: simple values.

As we found out when we gathered the requirements on page 33, a domain
expert does not generally think in terms of int and string but instead in terms
of domain concepts such as Orderld and ProductCode. Furthermore, it’s important
that Orderlds and ProductCodes don’t get mixed up. Just because they're both
represented by ints, say, doesn’t mean that they are interchangeable. So to
make it clear that these types are distinct, we’ll create a “wrapper type”—a

type that wraps the primitive representation.

As we mentioned earlier, the easiest way to create a wrapper type in F# is to
create a “single-case” union type, a choice type with only one choice.

Here’s an example:

type CustomerId =
| CustomerId of int

Since there’s only one case, we invariably write the whole type definition on
one line, like this:

type CustomerId = CustomerId of int

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 80

We'll call these kinds of wrapper types “simple types” to distinguish them
both from compound types (such as records) and the raw primitive types
(such as string and int) that they contain.

In our domain, the simple types would be modeled this way:

type WidgetCode = WidgetCode of string
type UnitQuantity = UnitQuantity of int
type KilogramQuantity = KilogramQuantity of decimal

The definition of a single case union has two parts: the name of the type and
the “case” label:

type CustomerId = CustomerId of int
// ~“type name “case label

As you can see from the examples above, the label of the (single) case is typi-
cally the same as the name of the type. This means that when using the type,
you can also use the same name for constructing and deconstructing it, as
we’ll see next.

Working with Single Case Unions

To create a value of a single case union, we use the case name as a constructor
function. That is, we've defined a simple type like this:

type CustomerId = CustomerId of int
// ~“this case name will be the constructor function

Now we can create it by using the case name as a constructor function:

let customerId = CustomerId 42
// ~this is a function with an int parameter

Creating simple types like this ensures that we can’t confuse different types
by accident. For example, if we create a Customerld and an Orderld and try to
compare them, we get a compiler error:

// define some types
type CustomerId = CustomerId of int
type OrderId = OrderId of int

// define some values
let customerId = CustomerId 42
let orderId = OrderId 42

// try to compare them -- compiler error!
printfn "%b" (orderId = customerlId)
// ~ This expression was expected to

// have type 'OrderId'

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Simple Values ¢ 81

Or if we have defined a function that takes a Customerld as input, then trying
to pass it an Orderld is another compiler error:

// define a function using a CustomerId
let processCustomerId (id:CustomerId) = ...

// call it with an OrderId -- compiler error!
processCustomerId orderId

// ~ This expression was expected to
// have type 'CustomerId' but here has
// type 'OrderId'

To deconstruct or unwrap a single case union, we can pattern-match using
the case label:

// construct
let customerId = CustomerId 42

// deconstruct
let (CustomerId innerValue) = customerlId
// ~ innerValue is set to 42

printfn "%i" innerValue // prints "42"

It’s very common to deconstruct directly in the parameter of a function defi-
nition. When we do this, we not only can access the inner value immediately
but the F# compiler will also infer the correct type for us. For example, in the
code below, the compiler infers the input parameter is a Customerld:

// deconstruct
let processCustomerId (CustomerId innerValue) =
printfn "innerValue is %i" innerValue

// function signature
// val processCustomerId: CustomerId -> unit

Constrained Values

Almost always, the simple types are constrained in some way, such as having
to be in a certain range or match a certain pattern. It’s very rare to have an
unbounded integer or string in a real-world domain.

We'll discuss how to enforce these constraints in the next chapter (The
Integrity of Simple Values, on page 104).

Avoiding Performance Issues with Simple Types

Wrapping primitive types into simple types is a great way to ensure type-
safety and prevent many errors at compile time. However, it does come at a
cost in memory usage and efficiency. For typical business applications a small
decrease in performance shouldn’t be a problem, but for domains that require

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 82

high performance, such as scientific or real-time domains, you might want
to be more careful. For example, looping over a large array of UnitQuantity values
will be slower than looping over an array of raw ints.

But there are a couple of ways you can have your cake and eat it too.

First, you can use type aliases instead of simple types to document the
domain. This has no overhead, but it does mean a loss of type-safety.

type UnitQuantity = int

Next, as of F# 4.1, you can use a value type (a struct) rather than a reference
type. You'll still have overhead from the wrapper, but when you store them
in arrays the memory usage will be contiguous and thus more cache-friendly.

[<Struct>]
type UnitQuantity = UnitQuantity of int

Finally, if you are working with large arrays, consider defining the entire col-
lection of primitive values as a single type rather than having a collection of
simple types:

type UnitQuantities = UnitQuantities of int[]

This will give you the best of both worlds. You can work efficiently with the
raw data (such as for matrix multiplication) while preserving type-safety at a
high level. Extending this approach further leads you to data-oriented design,’
as used in modern game development.

You might even find that there is a word in the ubiquitous language for these
kinds of collections that are treated as a unit, such as “DataSample” or
“Measurements.” If so, use it!

As always, performance is a complex topic and depends on your specific code
and environment. It's generally best to model your domain in the most
straightforward way first and only then work on tuning and optimization.

Modeling Complex Data

When we documented our domain on page 31, we used AND and OR to repre-

algebraic type system and saw that it also used AND and OR to create complex
types from simple ones.

Let’'s now take the obvious step and use the algebraic type system to model

our domain.

1. https://en.wikipedia.org/wiki/Data-oriented_design

https://en.wikipedia.org/wiki/Data-oriented_design
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Complex Data ® 83

Modeling with Record Types

In our domain, we saw that many data structures were built from AND rela-
tionships. For example, our original, simple Order was defined like this:

data Order =
CustomerInfo
AND ShippingAddress
AND BillingAddress
AND list of OrderLines
AND AmountToBill

This translates directly to an F# record structure, like this:

type Order = {
CustomerInfo : CustomerInfo
ShippingAddress : ShippingAddress
BillingAddress : BillingAddress
OrderLines : OrderLine list
AmountToBill :
}

We have given each field a name (“CustomerInfo,” “ShippingAddress”) and a
type (Customerinfo, ShippingAddress).

Doing this shows a lot of still-unanswered questions about the domain—we
don’t know what these types actually are right now. Is ShippingAddress the same
type as BillingAddress? What type should we use to represent “AmountToBill”?

Ideally, we can ask our domain experts to help with this. For example, if your
experts talk about billing addresses and shipping addresses as different
things, it’s better to keep these logically separate, even if they have the same
structure. They may evolve in different directions as your domain understand-
ing improves or as requirements change.

Modeling Unknown Types

During the early stages of the design process, you often won’'t have definitive
answers to some modeling questions. For example, youll know the names of
types that you need to model, thanks to the ubiquitous language, but not
their internal structure.

This isn’t a problem—you can represent types of unknown structure with
best guesses, or alternatively you can model them as a type that's explicitly
undefined, one that acts as a placeholder, until you have a better understand-
ing later in the design process.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 84

If you want to represent an undefined type in F#, you can use the exception
type exn and alias it to Undefined:

type Undefined = exn

You can then use the Undefined alias in your design model, like this:

type CustomerInfo = Undefined
type ShippingAddress = Undefined
type BillingAddress = Undefined
type OrderLine = Undefined

type BillingAmount = Undefined

type Order = {
CustomerInfo : CustomerInfo
ShippingAddress : ShippingAddress
BillingAddress : BillingAddress
OrderLines : OrderLine list
AmountToBill : BillingAmount
}

This approach means that you can keep modeling the domain with types and
compile the code. But when you try to write the functions that process the
types, you will be forced to replace Undefined with something a bit better.

Modeling with Choice Types

In our domain, we also saw many things that were choices between other
things, such as these:

data ProductCode =
WidgetCode
OR GizmoCode

data OrderQuantity =
UnitQuantity
OR KilogramQuantity

How can we represent these choices with the F# type system? With choice
types, obviously!
type ProductCode =

| Widget of WidgetCode
| Gizmo of GizmoCode

type OrderQuantity =
| Unit of UnitQuantity
| Kilogram of KilogramQuantity

Again, for each case we need to create two parts: the “tag” or case label (before
the “of’) and the type of the data that is associated with that case. The

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Workflows with Functions ¢ 85

example above shows that the case label (such as Widget) doesn’'t have to be
the same as the name of the type (WidgetCode) associated with it.

Modeling Workflows with Functions

We've now got a way to model all the data structures—the “nouns” of the
ubiquitous language. But what about the “verbs,” the business processes?
In this book, we will model workflows and other processes as function types.
For example, if we have a workflow step that validates an order form, we might
document it like this:

type ValidateOrder = UnvalidatedOrder-> ValidatedOrder

It’s clear from this code that the ValidateOrder process transforms an unvalidated
order into a validated one.

Working with Complex Inputs and Outputs

Every function has only one input and one output, but some workflows might
have multiple inputs and outputs. How can we model that? We'll start with
the outputs. If a workflow has an outputA and an outputB, then we can create a
record type to store them both. We saw this with the order-placing workflow:
the output needs to be three different events, so let’s create a compound type
to store them as one record:

type PlaceOrderEvents = {
AcknowledgmentSent : AcknowledgmentSent
OrderPlaced : OrderPlaced
BillableOrderPlaced : BillableOrderPlaced
}

Using this approach, the order-placing workflow can be written as a function
type, starting with the raw UnvalidatedOrder as input and returning the Place-
OrderEvents record:

type PlaceOrder = UnvalidatedOrder -> PlaceOrderEvents

On the other hand, if a workflow has an outputA or an outputB, then we can
create a choice type to store them both. For example, we briefly talked about
categorizing the inbound mail as quotes or orders on page 33. That process

had at least two different choices for outputs:

workflow "Categorize Inbound Mail" =
input: Envelope contents
output:
QuoteForm (put on appropriate pile)
OR OrderForm (put on appropriate pile)
OR ...

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 86

It’'s easy to model this workflow: just create a new type, say CategorizedMail, to
represent the choices, and then have CategorizelnboundMail return that type. Our
model might then look like this:

type EnvelopeContents = EnvelopeContents of string
type CategorizedMail =

| Quote of QuoteForm

| Order of OrderForm

// etc

type CategorizeInboundMail = EnvelopeContents -> CategorizedMail

Now let’s look at modeling inputs. If a workflow has a choice of different inputs
(OR), then we can create a choice type. But if a process has multiple inputs
that are all required (AND), such as “Calculate Prices” (below), we can choose
between two possible approaches.

"Calculate Prices" =
input: OrderForm, ProductCatalog
output: PricedOrder

The first and simplest approach is just to pass each input as a separate
parameter, like this:

type CalculatePrices = OrderForm -> ProductCatalog -> PricedOrder

Alternatively, we could create a new record type to contain them both, such
as this CalculatePricesInput type:

type CalculatePricesInput = {
OrderForm : OrderForm
ProductCatalog : ProductCatalog
}

And now the function looks like this:
type CalculatePrices = CalculatePricesInput -> PricedOrder

Which approach is better? In the cases above, where the ProductCatalog is a
dependency rather than a “real” input, we want to use the separate parameter
approach. This lets us use the functional equivalent of dependency injection.
We'll discuss this in detail in Injecting Dependencies, on page 180, when we

implement the order-processing pipeline.

On the other hand, if both inputs are always required and are strongly con-
nected with each other, then a record type will make that clear. (In some sit-
uations, you can use tuples as an alternative to simple record types, but it's
generally better to use a named type.)

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Workflows with Functions ¢ 87

Documenting Effects in the Function Signature
We just saw that the ValidateOrder process could be written like this:

type ValidateOrder = UnvalidatedOrder -> ValidatedOrder

But that assumes that the validation always works and a ValidatedOrder is always
returned. In practice, of course, this would not be true, so it would better to
indicate this situation by returning a Result type (introduced on page 70) in

the function signature:

type ValidateOrder =
UnvalidatedOrder -> Result<ValidatedOrder,ValidationError list>

and ValidationError = {
FieldName : string
ErrorDescription : string

}

This signature shows us that the input is an UnvalidatedOrder and, if successful,
the output is a ValidatedOrder. But if validation failed, the result is a list of Vali-
dationError, which in turn contains a description of the error and which field it
applies to.

Functional programming people use the term effects to describe things that
a function does in addition to its primary output. By using Result here, we've
now documented that ValidateOrder might have “error effects.” This makes it
clear in the type signature that we can’t assume the function will always
succeed and that we should be prepared to handle errors.

Similarly, we might want to document that a process is asynchronous—it will
not return immediately. How can we do that? With another type of course!

In F#, we use the Async type to show that a function will have “asynchronous
effects.” So if ValidateOrder had async effects as well as error effects, then we
would write the function type like this:

type ValidateOrder =
UnvalidatedOrder -> Async<Result<ValidatedOrder,ValidationError list>>

This type signature now documents (a) when we attempt to fetch the contents
of the return value, the code won't return immediately and (b) when it does
return, the result might be an error.

Listing all the effects explicitly like this is useful, but it does make the type
signature ugly and complicated, so we would typically create a type alias for
this to make it look nicer.

type ValidationResponse<'a> = Async<Result<'a,ValidationError list>>

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 88

Then the function could be documented like this:

type ValidateOrder =
UnvalidatedOrder -> ValidationResponse<ValidatedOrder>

A Question of Identity: Value Objects

We've now got a basic understanding of how to model the domain types and
workflows, so let's move on and look at an important way of classifying data
types based on whether they have a persistent identity or not.

In DDD terminology, objects with a persistent identity are called Entities and
objects without a persistent identity are called Value Objects. Let’s start by
discussing Value Objects first.

In many cases, the data objects we're dealing with have no identity—they're
interchangeable. For example, one instance of a WidgetCode with value “W1234”
is the same as any other WidgetCode with value “W1234.” We don’t need to keep
track of which one is which—they’re equal to each other.

In F# we might demonstrate this as follows:

let widgetCodel = WidgetCode "W1234"
let widgetCode2 = WidgetCode "W1234"
printfn "%b" (widgetCodel = widgetCode2) // prints "true"

The concept of “values without identity” shows up frequently in a domain
model, and for complex types as well as simple types. For example, a Personal-
Name record type might have two fields—FirstName and LastName— so it’s more
complex than a simple string; but it’s also a Value Object, because two per-
sonal names with the same fields are interchangeable. We can see that with
the following F# code:

let namel = {FirstName="Alex"; LastName="Adams"}

let name2 = {FirstName="Alex"; LastName="Adams"}
printfn "%b" (namel = name2) // prints "true"

An “address” type is also a Value Object. If two values have the same street
address, city, and zip code, they are the same address:
let addressl = {StreetAddress="123 Main St"; City="New York"; Zip="90001"}

let address2 = {StreetAddress="123 Main St"; City="New York"; Zip="90001"}
printfn "%b" (addressl = address2) // prints "true"

You can tell that these are Value Objects in the domain because when dis-
cussing them, you would say something like, “Chris has the same name as
me.” That is, even though Chris and I are different people, our names are the
same. They don’t have a unique identity. Similarly, “Pat has the same postal

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

A Question of Identity: Entities ® 89

address as me” means that my address and Pat’s address have the same
content and are thus equal.

Implementing Equality for Value Objects

When we model the domain using the F# algebraic type system, the types we
create will implement this kind of field-based equality testing by default. We
don’t need to write any special equality code ourselves, which is nice.

To be precise, two record values (of the same type) are equal in F# if all their
fields are equal, and two choice types are equal if they have the same choice
case and the data associated with that case is also equal. This is called
structural equality.

A Question of Identity: Entities

However, we often model things that, in the real world, do have a unique
identity, even as their components change. For example, even if I change my
name or my address, I am still the same person.

In DDD terminology, we call such things Entities.

In a business context, Entities are often a document of some kind: orders,
quotes, invoices, customer profiles, product sheets, and so on. They have a
life cycle and are transformed from one state to another by various business
processes.

The distinction between “Value Object” and “Entity” is context-dependent.
For example, consider the life cycle of a cell phone. During manufacturing,
each phone is given a unique serial number—a unique identity—so in that
context, the phone would be modeled as an Entity. When they’re being sold,
however, the serial number isn’t relevant—all phones with the same specs
are interchangeable—and they can be modeled as Value Objects. But once a
particular phone is sold to a particular customer, identity becomes relevant
again and it should be modeled as an Entity: the customer thinks of it as the
same phone even after replacing the screen or battery.

Identifiers for Entities

Entities need to have a stable identity despite any changes. Therefore, when
modeling them we need to give them a unique identifier or key, such as an
“Order ID” or “Customer ID.”

For example, the Contact type below has a Contactld that stays the same even if
the PhoneNumber or EmailAddress fields change:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 90

type ContactId = ContactId of int

type Contact = {
ContactId : ContactlId
PhoneNumber :
EmailAddress:

}

Where do these identifiers come from? Sometimes the identifier is provided
by the real-world domain itself—paper orders and invoices have always had
some kind of reference written on them—but sometimes we’ll need to create
an artificial identifier ourselves using techniques such as UUIDs, an auto-
incrementing database table, or an ID-generating service. This is a complex
topic, so in this book we’ll just assume that any identifiers have been provided
to us by the client.

Adding Identifiers to Data Definitions

Given that we have identified a domain object as an Entity, how do we add
an identifier to its definition?

Adding an identifier to a record type is straightforward—just add a field—but
what about adding an identifier to a choice type? Should we put the identifier
inside (associated with each case) or outside (not associated with any of the
cases)?

For example, say that we have two choices for an ‘Invoice’: paid and unpaid. If
we model it using the "outside" approach, we’ll have a record containing the
‘Invoiceld’, and then within that record we’ll have a choice type ‘Invoicelnfo’ that
has information for each type of invoice. The code will look something like this:

// Info for the unpaid case (without id)
type UnpaidInvoiceInfo = ...

// Info for the paid case (without 1id)
type PaidInvoicelInfo = ...

// Combined information (without id)
type Invoicelnfo =

| Unpaid of UnpaidInvoiceInfo

| Paid of PaidInvoiceInfo

// Id for invoice
type Invoiceld = ...

// Top level invoice type

type Invoice = {
InvoiceId : Invoiceld // "outside" the two child cases
InvoiceInfo : Invoicelnfo

}

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

A Question of Identity: Entities ® 91

The problem with this approach is that it’s hard to work with the data for one
case easily because it’s spread between different components.

In practice, it's more common to store the ID using the “inside” approach,
where each case has a copy of the identifier. Applied to our example, we would
create two separate types, one for each case (Unpaidinvoice and Paidlnvoice), both
of which have their own Invoiceld, and then a top-level Invoice type, which is a
choice between them. The code will look something like this:
type UnpaidInvoice = {

InvoiceId : Invoiceld // id stored "inside"

// and other info for the unpaid case

}

type PaidInvoice = {
InvoiceId : Invoiceld // id stored "inside"
// and other info for the paid case

}

// top level invoice type
type Invoice =
| Unpaid of UnpaidInvoice
| Paid of PaidInvoice

The benefit of this approach is that now, when we do our pattern matching,
we have all the data accessible in one place, including the ID:

let invoice = Paid {Invoiceld = ...}

match invoice with
| Unpaid unpaidInvoice ->
printfn "The unpaid invoiceId is %A" unpaidInvoice.Invoiceld
| Paid paidInvoice ->
printfn "The paid invoiceld is %A" paidInvoice.Invoiceld

Implementing Equality for Entities

We saw earlier that, by default, equality testing in F# uses all the fields of a
record. But when we compare Entities we want to use only one field, the
identifier. That means that in order to model Entities correctly in F#, we must
change the default behavior.

One way of doing this is to override the equality test so that only the identifier
is used. To change the default we have to do the following:

1. Override the Equals method
2. Override the GetHashCode method

3. Add the CustomEquality and NoComparison attributes to the type to tell the
compiler that we want to change the default behavior

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 92

When we do all this to the Contact type, we get this result:

[<CustomEquality; NoComparison>]
type Contact = {
ContactId : ContactId
PhoneNumber : PhoneNumber
EmailAddress: EmailAddress
}
with
override this.Equals(obj) =
match obj with
| :? Contact as c -> this.ContactId = c.ContactId
| -> false
override this.GetHashCode() =
hash this.ContactId

This is a new kind of syntax we haven’'t seen yet: F#’s object-
oriented syntax. We are only using it here to demonstrate equality
overriding, but object-oriented F# is out of scope, so we won’t use
it elsewhere in the book.

With the type defined, we can create one contact:

let contactId = ContactId 1

let contactl = {
ContactId = contactId
PhoneNumber = PhoneNumber "123-456-7890"
EmailAddress = EmailAddress "bob@example.com"

}
And create a different contact with the same Contactld:

// same contact, different email address

let contact2 = {
ContactId = contactlId
PhoneNumber = PhoneNumber "123-456-7890"
EmailAddress = EmailAddress "robert@example.com"

}
Finally, when we compare them using =, the result is true:

// true even though the email addresses are different
printfn "%b" (contactl = contact2)

This is a common approach in object-oriented designs, but by changing the
default equality behavior silently it can trip you up on occasion. Therefore,
an (often preferable) alternative is to disallow equality testing on the object
altogether by adding a NoEquality type annotation like this:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

A Question of Identity: Entities ® 93

[<NoEquality; NoComparison>]
type Contact = {
ContactId : ContactlId
PhoneNumber : PhoneNumber
EmailAddress: EmailAddress

}

Now when we attempt to compare values with this annotation, we get a
compiler error:

// compiler error!

printfn "%b" (contactl = contact2)

// ~ the Contact type does not
// support equality

Of course we can still compare the Contactld fields directly, like this:

// no compiler error
printfn "%b" (contactl.ContactId = contact2.ContactId) // true

The benefit of the “NoEquality” approach is that it removes any ambiguity
about what equality means at the object level and forces us to be explicit.

Finally, in some situations, you might have multiple fields that are used for
testing equality. In this case, you can easily expose a synthetic Key property
that combines them:

[<NoEquality;NoComparison>]
type OrderLine = {
OrderId : OrderId
ProductId : ProductId
Qty : int
}
with
member this.Key =
(this.OrderId,this.ProductId)

And then, when you need to do a comparison, you can use the Key field, like this:

printfn "%b" (linel.Key = line2.Key)

Immutability and Identity

As we saw in Understanding Types, values in functional programming lan-

guages like F# are immutable by default, which means that none of the objects
defined so far can be changed after being initialized.

How does this affect our design?

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 94

e For Value Objects, immutability is required. Think of how we use them
in common speech: if we change any part of a personal name, say, we
call it a new, distinct name, not the same name with different data.

e For Entities, it's a different matter. We expect the data associated with
Entities to change over time; that’s the whole point of having a constant
identifier. So how can immutable data structures be made to work this
way? The answer is that we make a copy of the Entity with the changed
data while preserving the identity. All this copying might seem like a lot
of extra work but isn’t an issue in practice. In fact, throughout this book
we will be using immutable data everywhere, and you will see that
immutability is rarely a problem.

Here’s an example of how an Entity can be updated in F#. First, we’ll start
with an initial value:

let initialPerson = {PersonlId=PersonlId 42; Name="Joseph"}

To make a copy of the record while changing only some fields, F# uses the
with keyword, like this:

let updatedPerson = {initialPerson with Name="Joe"}

After this copy, the updatedPerson value has a different Name but the same Personld
as the initialPerson value.

A benefit of using immutable data structures is that any changes have to be
made explicit in the type signature. For example, if we want to write a function
that changes the Name field in a Person, we can’t use a function with a signature,
like this:

type UpdateName = Person -> Name -> unit

That function has no output, which implies that nothing changed (or that
the Person was mutated as a side effect). Instead, our function must have a
signature with the Person type as the output, like this:

type UpdateName = Person -> Name -> Person

This clearly indicates that, given a Person and a Name, some kind of variant of
the original Person is being returned.

Aggregates

Let’s take a closer look at two data types that are especially relevant to our
design: Order and OrderLine.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Aggregates ® 95

First, is Order an Entity or a Value Object? Obviously it's an Entity—the details
of the order may change over time, but it’'s the same order.

What about an Orderline, though? If we change the quantity of a particular
order line, for example, is it still the same order line? In most designs, it would
make sense to say yes, it is still the same order line, even though the quantity
or price has changed over time. So OrderLine is an Entity too, with its own
identifier.

But now here’s a question: if you change an order line, have you also changed
the order that it belongs to?

In this case, it’s clear that the answer is yes: changing a line also changes
the entire order. In fact, having immutable data structures makes this
unavoidable. If I have an immutable Order containing immutable OrderLines,
then just making a copy of one of the order lines does not also make a copy
of the Order as well. In order to make a change to an OrderlLine contained in an
Order, I need to make the change at the level of the Order, not at the level of the
OrderLine.

For example, here’s some pseudocode for updating the price of an order line:

/// We pass in three parameters:

/// * the top-level order

/// * the id of the order line we want to change

/// * the new price

let changeOrderLinePrice order orderLineld newPrice =

// 1. find the line to change using the orderLineId
let orderLine = order.OrderLines |> findOrderLine orderlLineld

// 2. make a new version of the OrderLine with the new price
let newOrderLine = {orderLine with Price = newPrice}

// 3. create a new list of lines, replacing
// the old line with the new line
let newOrderlLines =
order.OrderLines |> replaceOrderLine orderLineId newOrderLine

// 4. make a new version of the entire order, replacing
// all the old lines with the new lines
let newOrder = {order with OrderLines = newOrderLines}

// 5. return the new order
newOrder

The final result, the output of the function, is a new Order containing a new
list of lines, where one of the lines has a new price. You can see that
immutability causes a ripple effect in a data structure, whereby changing one
low-level component can force changes to higher-level components too.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 96

Therefore, even though we're just changing one of its “subentities” (an OrderLine),
we always have to work at the level of the Order itself.

This is a very common situation: we have a collection of Entities, each with
their own ID and also some “top-level” Entity that contains them. In DDD
terminology, a collection of Entities like this is called an aggregate, and the
top-level Entity is called the aggregate root. In this case, the aggregate com-
prises both the Order and the collection of OrderLines, and the aggregate root is
the Order itself.

Aggregates Enforce Consistency and Invariants

An aggregate plays an important role when data is updated. The aggregate
acts as the consistency boundary: when one part of the aggregate is updated,
other parts might also need to be updated to ensure consistency.

For example, we might extend this design to have an additional “total price”
stored in the top-level Order. Obviously, if one of the lines changes price, the
total must also be updated in order to keep the data consistent. This would
be done in the changeOrderLinePrice function above. It’s clear that the only com-
ponent that “knows” how to preserve consistency is the top-level Order—the
aggregate root—so this is another reason for doing all updates at the order
level rather than at the line level.

The aggregate is also where any invariants are enforced. Say that you have
a rule that every order has at least one order line. Then if you try to delete
multiple order lines, the aggregate ensures there is an error when there’s only
one line left.

We'll discuss this further in Chapter 6, Integrity and Consistency in the Domain,
on page 103.

Aggregate References

Let’s say we need information about the customer to be associated with an Order.
The temptation might be to add the Customer as a field of an Order, like this:

type Order = {
OrderId : OrderlId
Customer : Customer // info about associated customer
OrderLines : OrderLine list
// etc
}

But think about the ripple effect of immutability. If I change any part of the
customer, I must also change the order as well. Is that really what we want?

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Aggregates ® 97

A much better design is just to store a reference to the customer, not the
whole customer record itself. That is, we would just store the Customerld in the
Order type, like this:
type Order = {

OrderId : OrderId

CustomerId : CustomerId // reference to associated customer

OrderLines : OrderLine list

// etc

}

In this approach, when we need the full information about the customer,
we would get the Customerld from the Order and then load the relevant cus-
tomer data from the database separately, rather than loading it as part of
the order.

In other words, the Customer and the Order are distinct and independent aggre-
gates. They each are responsible for their own internal consistency, and the
only connection between them is via the identifiers of their root objects.

This leads to another important aspect of aggregates: they are the basic unit
of persistence. If you want to load or save objects from a database, you should
load or save whole aggregates. Each database transaction should work with
a single aggregate and not include multiple aggregates or cross aggregate
boundaries. See Transactions, on page 262, for more information.

Similarly, if you want to serialize an object to send it down the wire, you
always send whole aggregates, not parts of them.

Just to be clear, an aggregate is not just any collection of Entities. For example,
a list of Customers is a collection of Entities, but it's not a DDD “aggregate,” because
it doesn’t have a top-level Entity as a root and it isn’t trying to be a consistency
boundary.

Here’s a summary of the important role of aggregates in the domain model:

e An aggregate is a collection of domain objects that can be treated as a
single unit, with the top-level Entity acting as the “root.”

¢ All of the changes to objects inside an aggregate must be applied via the
top level to the root, and the aggregate acts as a consistency boundary
to ensure that all of the data inside the aggregate is updated correctly
at the same time.

e An aggregate is the atomic unit of persistence, database transactions,
and data transfer.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 98

As you can see, defining the aggregates is an important part of the design
process. Sometimes Entities that are used together are part of the same
aggregate (OrderLine and Order) and sometimes they’re not (Customer and Order).
This is where collaborating with domain experts is critical: only they can help
you understand the relationships between Entities and the consistency
boundaries.

We'll be seeing lots of aggregates in the course of this modeling process, so
we’ll be using this terminology from now on.

Here are the new DDD terms that we've introduced in this chapter:

¢ A Value Object is a domain object without identity. Two Value Objects containing
the same data are considered identical. Value Objects must be immutable: if any
part changes, it becomes a different Value Object. Examples of Value Objects
are names, addresses, locations, money, and dates.

e An Entity is a domain object that has an intrinsic identity that persists even as
its properties change. Entity objects generally have an ID or key field, and two
Entities with the same ID/key are considered to be the same object. Entities
typically represent domain objects that have a life-span and a history of changes,
such as a document. Examples of Entities are customers, orders, products, and
invoices.

¢ An aggregate is a collection of related objects that are treated as a single compo-
nent both to ensure consistency in the domain and to be used as an atomic unit
in data transactions. Other Entities should only reference the aggregate by its
identifier, which is the ID of the “top-level” member of the aggregate, known as
the “root.”

.
Putting It All Together

We've created a lot of types in the chapter, so let’s step back and look at how
they fit together as a whole, as a complete domain model.

First, we put all these types in a namespace called OrderTaking.Domain, which is
used to keep these types separate from other namespaces. In other words,
we're using a namespace in F# to indicate a DDD bounded context, at least
for now.

namespace OrderTaking.Domain

// types follow

Then let’s add the simple types.

report erratum -« discuss

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Putting It All Together ¢ 99

// Product code related
type WidgetCode = WidgetCode of string

// constraint: starting with "W" then 4 digits
type GizmoCode = GizmoCode of string

// constraint: starting with "G" then 3 digits
type ProductCode =

| Widget of WidgetCode

| Gizmo of GizmoCode

// Order Quantity related
type UnitQuantity = UnitQuantity of int
type KilogramQuantity = KilogramQuantity of decimal
type OrderQuantity =
| Unit of UnitQuantity
| Kilos of KilogramQuantity

These are all Value Objects and don’t need an identifier.

The order, on the other hand, has an identity that’s maintained as it changes—
it’s an Entity—so we must model it with an ID. We don’t know whether the
ID is a string or an int or a Guid, but we know we need it, so let’s use Undefined
for now. We'll treat other identifiers the same way.

type OrderId = Undefined
type OrderLineld = Undefined
type CustomerId = Undefined

The order and its components can be sketched out now:

type CustomerInfo = Undefined
type ShippingAddress = Undefined
type BillingAddress = Undefined
type Price = Undefined

type BillingAmount = Undefined

type Order = {
Id : OrderlId // 1id for entity
CustomerId : CustomerId // customer reference
ShippingAddress : ShippingAddress
BillingAddress : BillingAddress
OrderLines : OrderLine list
AmountToBill : BillingAmount
}

and OrderLine = {
Id : OrderLineld // id for entity
OrderId : OrderlId
ProductCode : ProductCode
OrderQuantity : OrderQuantity
Price : Price

}

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 100

In the snippet above, we're using the and keyword to allow forward references
to undeclared types. See the explanation in Organizing Types in Files and
Projects, on page 73.

Let’s now conclude with the workflow itself. The input for the workflow, the
UnvalidatedOrder, will be built from the order form “as is,” so it will contain only
primitive types such as int and string.

type UnvalidatedOrder = {
OrderId : string
CustomerInfo :
ShippingAddress :

}

We need two types for the output of the workflow. The first is the events type
for when the workflow is successful:

type PlaceOrderEvents = {
AcknowledgmentSent :
OrderPlaced :
BillableOrderPlaced :
}

The second is the error type for when the workflow fails:

type PlaceOrderError =
| ValidationError of ValidationError list
| ... // other errors

and ValidationError = {
FieldName : string
ErrorDescription : string

}

Finally, we can define the top-level function that represents the order-placing
workflow:

/// The "Place Order" process
type PlaceOrder =
UnvalidatedOrder -> Result<PlaceOrderEvents,PlaceOrderError>

Obviously, lots of details still need to be fleshed out, but the process for doing
that should now be clear.

Our model of the order-taking workflow isn’t complete, though. For example,
how are we going to model the different states of the order: validated, priced,
and so on?

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Wrapping Up ® 101

The Challenge Revisited: Can Types Replace Documentation?

At the beginning of this chapter, we gave ourselves a challenge: could we
capture the domain requirements in the type system and in such a way that
it can be reviewed by domain experts and other non-developers?

Well, if we look at the domain model listed above, we should be pleased. We
have a complete domain model, documented as F# types rather than as text,
but the types that we have designed look almost identical to the domain
documentation that we developed earlier using AND and OR notation.

Imagine that you are a non-developer. What would you have to learn in order
to understand this code as documentation? You'd have to understand the
syntax for simple types (single-case unions), AND types (records with curly
braces), OR types (choices with vertical bars), and “processes” (input, output,
and arrows), but not much more. It certainly is more readable than a conven-
tional programming language such as C# or Java.

Wrapping Up

In this chapter, we learned how to use the F# type system to model the domain
using simple types, record types, and choice types. Throughout, we used the
ubiquitous language of the domain, such as ProductCode and OrderQuantity, rather
than developer-centric words such as string and int. Not once did we define a
Manager or Handler type!

We also learned about different kinds of identity and how to model the DDD
concepts of Value Object and Entity using types. And we were introduced to
the concept of an “aggregate” as a way to ensure consistency.

We then created a set of types that looked very similar to the textual docu-
mentation at the beginning of this chapter. The big difference is that all these
type definitions are compilable code and can be included with the rest of the
code for the application. This in turn means that the application code is
always in sync with the domain definitions, and if any domain definition
changes, the application will fail to compile. We don’t need to try to keep the
design in sync with the code—the design is the code!

This approach, using types as documentation, is very general, and it should
be clear how you can apply it to other domains as well. Because there’s no
implementation at this point, it's a great way to try ideas out quickly when
you are collaborating with domain experts. And of course, because it is just

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 5. Domain Modeling with Types ¢ 102

text, domain experts can review it easily without needing special tools, and
maybe even write some types themselves!

We haven’t yet addressed a few aspects of the design, though. How do we
ensure that simple types are always constrained correctly? How can we enforce
the integrity of aggregates? How are we going to model the different states of
the order? These topics will be addressed in the next chapter.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 6

Integrity and Consistency in the Domain

In the previous chapter, we looked at the basics of domain modeling using
the F# type system. We built up a rich set of types that represented the domain
but were also compilable and could be used to guide the implementation.

Since we've gone to this trouble to model the domain properly, we should take
some precautions to make sure that any data in this domain is valid and
consistent. The goal is to create a bounded context that always contains data
we can trust as distinct from the untrusted outside world. If we can be sure
that all data values are always valid, the implementation can stay clean and
we can avoid having to do defensive coding.

Dounded Context

Nasty, unclean Beautiful, clean Nasty, unclean
outside world domain model outside world

Yo o R

In this chapter, we’ll look at modeling two aspects of a trusted domain:
integrity and consistency.

Integrity (or validity) in this context means that a piece of data follows the
correct business rules. For example:

e We said that a UnitQuantity is between 1 and 1000. Do we have to check
this multiple times in our code, or can we rely on this to always be true?

e An order must always have at least one order line.

¢ An order must have a validated shipping address before being sent to the
shipping department.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 6. Integrity and Consistency in the Domain ¢ 104

Consistency here means that different parts of the domain model agree about
facts. Here are some examples:

e The total amount to bill for an order should be the sum of the individual
lines. If the total differs, the data is inconsistent.

e When an order is placed, a corresponding invoice must be created. If the
order exists but the invoice doesn’t, the data is inconsistent.

¢ If a discount voucher code is used with an order, the voucher code must
be marked as used so it can’t be used again. If the order references that
voucher but the voucher is not marked as used, the data is inconsistent.

How can we ensure this kind of data integrity and consistency? These are
the kinds of questions we’ll look at in this chapter. As always, the more
information we can capture in the type system, the less documentation is
needed and the more likely the code will be implemented correctly.

The Integrity of Simple Values

In the earlier discussion on modeling simple values on page 79, we saw that

they should not be represented by string or int but by domain-focused types
such as WidgetCode or UnitQuantity.

But we shouldn’t stop there, because it’s very rare to have an unbounded
integer or string in a real-world domain. Almost always, these values are
constrained in some way:

e An OrderQuantity might be represented by a signed integer, but it's very
unlikely that the business wants it to be negative, or four billion.

¢ A CustomerName may be represented by a string, but that doesn’t mean that
it should contain tab characters or line feeds.

In our domain, we've seen some of these constrained types already. WidgetCode
strings had to start with a specific letter, and UnitQuantity had to be between 1 and
1000. Here’s how we've defined them so far, with a comment for the constraint.

type WidgetCode = WidgetCode of string // starting with "W" then 4 digits
type UnitQuantity = UnitQuantity of int // between 1 and 1000
type KilogramQuantity = KilogramQuantity of decimal // between 0.05 and 100.00

Rather than having the user of these types read the comments, we want to
ensure that values of these types cannot be created unless they satisfy the
constraints. Thereafter, because the data is immutable, the inner value never
needs to be checked again. You can confidently use a WidgetCode or a UnitQuan-
tity everywhere without ever needing to do any kind of defensive coding.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

The Integrity of Simple Values ¢ 105

Sounds great. So how do we ensure that the constraints are enforced?

Answer: The same way we would in any programming language—make the
constructor private and have a separate function that creates valid values
and rejects invalid values, returning an error instead. In FP communities,
this is sometimes called the smart constructor approach. Here’s an example
of this approach applied to UnitQuantity:

type UnitQuantity = private UnitQuantity of int
// ~ private constructor

So now a UnitQuantity value can’t be created from outside the containing module
due to the private constructor. However, if we write code in the same module that
contains the type definition above, then we can access the constructor.

Let’s use this fact to define some functions that will help us manipulate the
type. We'll start by creating a submodule with exactly the same name
(UnitQuantity); and within that, we’ll define a create function that accepts an int
and returns a Result type (as discussed in Modeling Errors) to return a success

or a failure. These two possibilities are made explicit in its function signature:
int -> Result<UnitQuantity,string>.

// define a module with the same name as the type
module UnitQuantity =

/// Define a "smart constructor" for UnitQuantity
/// int -> Result<UnitQuantity,string>
let create qty =
if qty < 1 then
// failure
Error "UnitQuantity can not be negative"
else if qty > 1000 then

// failure

Error "UnitQuantity can not be more than 1000"
else

// success -- construct the return value

Ok (UnitQuantity qty)

Modules with the same name as a non-generic type will cause an error in versions
of F# before v4.1 (VS2017), so you'll need to change the module definition to include
a CompilationRepresentation attribute like this:

type UnitQuantity = ...

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
module UnitQuantity =

report erratum -« discuss

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 6. Integrity and Consistency in the Domain ¢ 106

One downside of a private constructor is that you can no longer use it to
pattern-match and extract the wrapped data. One workaround for this is to
define a separate value function, also in the UnitQuantity module, that extracts
the inner value.

/// Return the wrapped value
let value (UnitQuantity qty) = qty

Let’s see how this all works in practice. First, if we try to create a UnitQuantity
directly, we get a compiler error:
let unitQty = UnitQuantity 1

// ~ The union cases of the type 'UnitQuantity'
// are not accessible

But if we use the UnitQuantity.create function instead, it works and we get back
a Result, which we can then match against:

let unitQtyResult = UnitQuantity.create 1

match unitQtyResult with
| Error msg ->
printfn "Failure, Message is %s" msg
| Ok uQty ->
printfn "Success. Value is %A" uQty
let innerValue = UnitQuantity.value uQty
printfn "innerValue is %i" innerValue

If you have many constrained types like this, you can reduce repetition by
using a helper module that contains the common code for the constructors.
We don’t have space to show that here, but there’s an example in the
Domain.SimpleTypes.fs file in the sample code for this book.

Finally, it's worth saying that using private is not the only way to hide construc-
tors in F#. There are other techniques, such as using signature files, but we
won't discuss them here.

Units of Measure

For numeric values, another way of documenting the requirements while
ensuring type-safety is to use units of measure. With a units of measure
approach, numeric values are annotated with a custom “measure.” For
example, we might define some units of measure for kg (kilogram) and m
(meter) like this:

[<Measure>]
type kg

[<Measure>]
type m

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Enforcing Invariants with the Type System ¢ 107

And then we annotate some values with those units of measure like this:

let fiveKilos = 5.0<kg>
let fiveMeters = 5.0<m>

You don’t need to define measure types for all the SI units. They
are available in the Microsoft.FSharp.Data.UnitSystems.S| namespace.

Once this is done, the compiler will enforce compatibility between units of
measure and present an error if they don’t match.

// compiler error
fiveKilos = fiveMeters
// ~ Expecting a float<kg> but given a float<m>

let listOfWeights = [
fiveKilos
fiveMeters // <-- compiler error
// The unit of measure 'kg'
// does not match the unit of measure 'm'

]

In our domain, we could use units of measure to enforce that KilogramQuantity
really was kilos, so that you couldn’t accidentally initialize it with a value in
pounds. We could encode this in the type like this:

type KilogramQuantity = KilogramQuantity of decimal<kg>

We've now got two checks: <kg> ensures that the number has the right unit,
and KilogramQuantity enforces the constraints on the maximum and minimum
values. This is probably design overkill for our particular domain, but it might
be useful in other situations.

Units of measure need not just be used for physical units. You could use
them to document the correct unit for timeouts (to avoid mixing up seconds
and milliseconds) or for spatial dimensions (to avoid mixing up x- and y-axes),
or for currency, and so on.

There’s no performance hit from using units of measure. They're only used
by the F# compiler and have no overhead at runtime.

Enforcing Invariants with the Type System

An invariant is a condition that stays true no matter what else happens. For
example, at the beginning of the chapter, we said that a UnitQuantity must
always be between 1 and 1000. That’s an example of an invariant.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 6. Integrity and Consistency in the Domain ¢ 108

We also said that there must always be at least one order line in an order.
Unlike the UnitQuantity case, this is an example of an invariant that can be
captured directly in the type system. To make sure that a list isn’t empty, we
just need to define a NonEmptyList type. It’s not built into F#, but it’s easy to
define yourself:
type NonEmptyList<'a> = {

First: 'a

Rest: 'a list
}

The definition itself requires that there must always be at least one element,
so a NonEmptyList is guaranteed never to be empty.

Of course, you'll also need some helper functions, such as add, remove, and so
on. You can define these yourself or use one of the third-party libraries that
provide this type, such as FSharpx.Collections."

The Order type can now be rewritten to use this type instead of the normal list type:

type Order = {
OrderLines : NonEmptyList<OrderLine>

}

With this change, the constraint that “there is always at least one order line
in an order” is now enforced automatically. Self-documenting code, and we've
just eliminated any need to write unit tests for the requirement.

Capturing Business Rules in the Type System

Let’s look at another modeling challenge: can we document business rules
using just the type system? That is, we’d like to use the F# type system to
represent what is valid or invalid so that the compiler can check it for us,
instead of relying on runtime checks or code comments to ensure the rules
are maintained.

Here’s a real-world example. Suppose our company, Widgets Inc, stores email
addresses for its customers. Butlet’s also suppose not all email addresses should
be treated the same way. Some email addresses have been verified—that is, the
customer got a verification email and clicked on the verification link—while
other email addresses aren’t verified and we can't be sure they're valid. Further-
more, say some business rules are based on this difference, such as these:

https://fsprojects.github.io/FSharpx.Collections/
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Capturing Business Rules in the Type System ¢ 109

* You should only send verification emails to unverified email addresses (to
avoid spamming existing customers).

* You should only send password-reset emails to verified email addresses
(to prevent a security breach).

Now, how can we represent the two different situations in the design? A
standard approach is to use a flag to indicate whether verification happened,
like this:

type CustomerEmail = {
EmailAddress : EmailAddress
IsVerified : bool
}

But this approach has a number of serious problems. First, it’s not clear
when or why the IsVerified flag should be set or unset. For example, if the cus-
tomer’s email address changes, it should be set back to false (because the
new email is not yet verified). However, nothing in the design makes that rule
explicit. It would be easy for a developer to accidentally forget to do this when
the email is changed, or worse, be unaware of the rule altogether (because
it’s buried in some comments somewhere).

There’s also the possibility of a security breach. A developer could write code
that accidentally set the flag to true, even for an unverified email, which would
allow password reset emails to be sent to unverified addresses.

So, what’s a better way of modeling this?

The answer is, as always, to pay attention to the domain. When domain
experts talk about “verified” and “unverified” emails, you should model them
as separate things. In this case, when a domain expert says “a customer’s
email is either verified or unverified,” we should model that as a choice between
two types, like this:

type CustomerEmail =
| Unverified of EmailAddress
| Verified of EmailAddress

But that still doesn’t prevent us from accidentally creating the Verified case by
passing in an unverified EmailAddress. To solve that problem, we’ll do what we
always do and create a new type! In particular, we’ll create a type VerifiedEmailAd-
dress, which is different from the normal EmailAddress type. Now our choice looks
like this:

type CustomerEmail =
| Unverified of EmailAddress
| Verified of VerifiedEmailAddress // different from normal EmailAddress

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 6. Integrity and Consistency in the Domain ¢ 110

Here’s the clever part: we can give VerifiedEmailAddress a private constructor so
normal code can’t create a value of that type—only the verification service
can create it.

That means that if I have a new email address, I have to construct a Customer-
Email using the Unverified case because I don’t have a VerifiedEmailAddress. The only
way I can construct the Verified case is if I have a VerifiedEmailAddress, and the
only way I can get a VerifiedEmailAddress is from the email verification service
itself.

This is an example of the important design guideline, “Make illegal states
unrepresentable.” We're trying to capture business rules in the type system. If
we do this properly, invalid situations can’t ever exist in the code and we never
need to write unit tests for them. Instead, we have “compile-time” unit tests.

Another important benefit of this approach is that it actually documents the
domain better. Rather than having a simplistic EmailAddress that tries to serve
two roles, we have two distinct types with different rules around them. And
typically, once we have created these more fine-grained types, we immediately
find uses for them.

For example, I can now explicitly document that the workflow that sends a
password-reset message must take a VerifiedEmailAddress parameter as input
rather than a normal email address.

type SendPasswordResetEmail = VerifiedEmailAddress -> ...

With this definition, we don’t have to worry about someone accidentally
passing in a normal EmailAddress and breaking the business rule because they
haven’t read the documentation.

Here’s another example. Let’s say we have a business rule that we need some
way of contacting a customer:

e “A customer must have an email or a postal address.”

How should we represent this? The obvious approach is just to create a record
with both an Email and an Address property, like this:

type Contact = {
Name: Name
Email: EmailContactInfo
Address: PostalContactInfo

}

But this is an incorrect design. It implies both Email and Address are required.
So let’s make them optional:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Capturing Business Rules in the Type System ® 111

type Contact = {
Name: Name
Email: EmailContactInfo option
Address: PostalContactInfo option
}

But this isn’t correct either. As it stands, Email and Address could both be
missing, and that would break the business rule.

Now, of course, we could add special runtime validation checks to make sure
that this couldn’t happen. But can we do better and represent this in the type
system? Yes, we can!

The trick is to look at the rule closely. It implies that a customer has the
following;:

e An email address only
e A postal address only
e Both an email address and a postal address

That’s only three possibilities. How can we represent these three? With a
choice type, of course!

type BothContactMethods = {
Email: EmailContactInfo
Address : PostalContactInfo
}

type ContactInfo =
| EmailOnly of EmailContactInfo
| AddrOnly of PostalContactInfo
| EmailAndAddr of BothContactMethods

And then we can use this choice type in the main Contact type, like this:

type Contact = {
Name: Name
ContactInfo : ContactInfo
}

Again what we've done is good for developers (we can’t accidentally have no
contact information—one less test to write), but it’s also good for the design.
The design makes it very clear that only three cases are possible and exactly
what those three cases are. We don’t need to look at documentation; we can
just look at the code itself.

Making lllegal States Unrepresentable in Our Domain

Are there any places in our design where we can put this approach into
practice?

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 6. Integrity and Consistency in the Domain ¢ 112

I can think of one aspect of the design that is very similar to the email valida-
tion example. In the validation process, we documented that there were
unvalidated postal addresses (such as UnvalidatedAddress) and validated postal
addresses (ValidatedAddress).

We could ensure that we never mix up these two cases and also ensure that
we use the validation function properly by doing the following:

e Create two distinct types: UnvalidatedAddress and ValidatedAddress
¢ Give the ValidatedAddress a private constructor and then ensure that it can
only be created by the address validation service.

type UnvalidatedAddress = ...

type ValidatedAddress = private ...

The validation service takes an UnvalidatedAddress and returns an optional Vali-
datedAddress (optional to show that validation might fail).

type AddressValidationService =
UnvalidatedAddress -> ValidatedAddress option

To enforce the rule that an order must have a validated shipping address
before being sent to the shipping department, we’ll create two more distinct
types (UnvalidatedOrder and ValidatedOrder) and require that a ValidatedOrder record
contain a shipping address that is a ValidatedAddress.

type UnvalidatedOrder = {
ShippingAddress : UnvalidatedAddress

}
type ValidatedOrder = {

ShippingAddress : ValidatedAddress

}
And now we can guarantee, without ever writing a test, that addresses in a

ValidatedOrder have been processed by the address validation service.

Consistency

So far in this chapter we've looked at ways to enforce the integrity of the data
in the domain, so now let’s finish up by taking a look at the related concept
of consistency.

We saw some examples of consistency requirements at the beginning of the
chapter:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Consistency ® 113

e The total amount for an order should be the sum of the individual lines.
If the total differs, the data is inconsistent.

e When an order is placed, a corresponding invoice must be created. If the
order exists but the invoice doesn’t, the data is inconsistent.

¢ If a discount voucher code is used with an order, the voucher code must
be marked as used so it can’t be used again. If the order references that
voucher but the voucher is not marked as used, the data is inconsistent.

As described here, consistency is a business term, not a technical one, and what
consistency means is always context-dependent. For example, if a product price
changes, should any unshipped orders be immediately updated to use the new
price? What if the default address of a customer changes? Should any
unshipped orders be immediately updated with the new address? There’s no
right answer to these questions—it depends on what the business needs.

Consistency places a large burden on the design, though, and can be costly,
so we want to avoid the need for it if we can. Often during requirements
gathering, a product owner will ask for a level of consistency that is undesir-
able and impractical. In many cases, however, the need for consistency can
be avoided or delayed.

Finally, it’s important to recognize that consistency and atomicity of persis-
tence are linked. There’s no point, for example, in ensuring that an order is
internally consistent if the order is not going to be persisted atomically. If
different parts of the order are persisted separately and then one part fails to
be saved, then anyone loading the order later will be loading an order that is
not internally consistent.

Consistency Within a Single Aggregate

In Domain Modeling with Types, we introduced the concept of an aggregate

and noted that it acts both as a consistency boundary and as a unit of persis-
tence. Let’s see how this works in practice.

Let’s say that we require that the total amount for an order should be the
sum of the individual lines. The easiest way to ensure consistency is simply
to calculate information from the raw data rather than storing it. In this case
then, we could just sum the order lines every time we need the total, either
in memory or using a SQL query.

If we do need to persist the extra data (say an additional AmountToBill stored in
the top-level Order), then we need to ensure that it stays in sync. In this case
then, if one of the lines is updated, the total must also be updated in order

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 6. Integrity and Consistency in the Domain ¢ 114

to keep the data consistent. It’s clear that the only component that “knows”
how to preserve consistency is the top-level Order. This is a good reason for
doing all updates at the order level rather that at the line level—the order is
the aggregate that enforces a consistency boundary. Here’s some code that
demonstrates how this might work:

/// We pass in three parameters:

/// * the top-level order

/// * the id of the order line we want to change

/// * the new price

let changeOrderLinePrice order orderLineld newPrice =

// find orderLine in order.OrderLines using orderLineId
let orderLine = order.OrderLines |> findOrderLine orderlLineld

// make a new version of the OrderLine with new price
let newOrderLine = {orderLine with Price = newPrice}

// create new list of lines, replacing old line with new line
let newOrderlLines =
order.OrderLines |> replaceOrderLine orderLineId newOrderLine

// make a new AmountToBill
let newAmountToBill = newOrderLines |> List.sumBy (fun line -> line.Price)

// make a new version of the order with the new lines
let newOrder = {
order with
OrderLines = newOrderLines
AmountToBill = newAmountToBill
}

// return the new order
newOrder

Aggregates are also the unit of atomicity, so if we save this order to a relational
database, say, we must ensure that the order header and the order lines are
all inserted or updated in the same transaction.

Consistency Between Different Contexts

What if we need to coordinate between different contexts? Let’s look at the
second example on the list above:

e When an order is placed, a corresponding invoice must be created. If the
order exists but the invoice doesn’t, the data is inconsistent.

Invoicing is part of the billing domain, not the order-taking domain. Does
that mean we need to reach into the other domain and manipulate its objects?
No, of course not. We must keep each bounded context isolated and decoupled.

What about using the billing context’s public API, like this:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Consistency ® 115

Ask billing context to create invoice
If successfully created:
create order in order-taking context

This approach is much trickier than it might seem, because you need to
handle either update failing. There are ways to synchronize updates across
separate systems properly (such as a two-phase commit), but in practice it’s
rare to need this. In his article “Starbucks Does Not Use Two-Phase Commit,”
Gregor Hohpe points out that in the real world businesses generally do not
require that every process move in lockstep, waiting for all subsystems to
finish one stage before moving to the next stage. Instead, coordination is done
asynchronously using messages. Occasionally, things will go wrong, but the
cost of dealing with rare errors is often much less than the cost of keeping
everything in sync.

For example, let’s say that instead of requiring an invoice be created immedi-
ately, we just send a message (or an event) to the billing domain and then
continue with the rest of the order processing.

So now what happens if that message gets lost and no invoice is created?

e One option is to do nothing. Then the customer gets free stuff and the
business has to write off the cost. That might be a perfectly adequate
solution if errors are rare and the costs are small (as in a coffee shop).

e Another option is to detect that the message was lost and resend it. This
is basically what a reconciliation process does: compare the two sets of
data, and if they don’t match up, fix the error.

¢ A third option is to create a compensating action that “undoes” the previous
action or fixes the error. In an order-taking scenario, this would be
equivalent to cancelling the order and asking the customer to send the
items back! More realistically, a compensating action might be used to
do things such as correct mistakes in an order or issue refunds.

In all three cases, there’s no need for rigid coordination between the bounded
contexts.

If we have a requirement for consistency, then we need to implement the second
or third option. But this kind of consistency won’t take effect immediately.
Instead, the system will become consistent only after some time has passed—
“eventual consistency.” Eventual consistency is not “optional consistency”: it’s
still very important that the system be consistent at some point in the future.

2. http://www.enterpriseintegrationpatterns.com/ramblings/18 _starbucks.html

http://www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 6. Integrity and Consistency in the Domain ¢ 116

Here’s an example. Let’s say that if a product price has changed, we want to
update the price for all orders that haven’t shipped yet. If we need immediate
consistency, then when we update the price in the product record, we also have
to update all affected orders and do all this within the same transaction. This
could take some time. But if we don’'t require instant consistency when a
product price has changed, we might instead create a PriceChanged event that in
turn triggers a series of UpdateOrderWithChangedPrice commands to update the out-
standing orders. These commands will be processed some time after the price
in the product record has changed, perhaps seconds later, perhaps hours later.
Eventually the orders will be updated and the system will be consistent.

Consistency Between Aggregates in the Same Context

What about ensuring consistency between aggregates in the same bounded
context? Let’s say that two aggregates need to be consistent with each other.
Should we update them together in the same transaction or update them
separately using eventual consistency? Which approach should we take?

As always, the answer is that it depends. In general, a useful guideline is
“only update one aggregate per transaction.” If more than one aggregate is
involved, we should use messages and eventual consistency as described
above, even though both aggregates are within the same bounded context.
But sometimes—and especially if the workflow is considered by the business
to be a single transaction—it might be worth including all affected entities in
the transaction. A classic example is transferring money between two accounts,
where one account increases and the other decreases.

Start transaction

Add X amount to accountA
Remove X amount from accountB
Commit transaction

If the accounts are represented by an Account aggregate, then we would be
updating two different aggregates in the same transaction. That’s not neces-
sarily a problem, but it might be a clue that you can refactor to get deeper
insights into the domain. In cases like this, for example, the transaction often
has its own identifier, which implies that it’s a DDD Entity in its own right.
In that case, why not model it as such?

type MoneyTransfer = {
Id: MoneyTransferlId
ToAccount : AccountId
FromAccount : AccountId
Amount: Money

}

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Wrapping Up ® 117

After this change, the Account entities would still exist, but they would no
longer be directly responsible for adding or removing money. Instead the
current balance for an Account would now be calculated by iterating over the
MoneyTransfer records that reference it. We've not only refactored the design,
but we've also learned something about the domain.

This also shows that you shouldn’t feel obligated to reuse aggregates if it
doesn’t make sense to do so. If you need to define a new aggregate just for
one use case, go ahead.

Multiple Aggregates Acting on the Same Data

We stressed earlier that aggregates act to enforce integrity constraints, so
how can we ensure that the constraints are enforced consistently if we have
multiple aggregates that act on the same data? For example, we might have
an Account aggregate and a MoneyTransfer aggregate that are both acting on
account balances and both needing to ensure that a balance doesn’t become
negative.

In many cases constraints can be shared between multiple aggregates if they
are modeled using types. For example, the requirement that an account bal-
ance never be below zero could be modeled with a NonNegativeMoney type. If this
is not applicable, then you can use shared validation functions. This is one
advantage of functional models over object-oriented models: validation func-
tions are not attached to any particular object and don’t rely on global state,
so they can easily be reused in different workflows.

Wrapping Up

In this chapter, we learned how to ensure that data inside our domain could
be trusted.

We saw that the combination of “smart constructors” for simple types, and
“making illegal states unrepresentable” for more complex types, meant that
we could enforce many kinds of integrity rules using the type system itself,
leading to more self-documenting code and less need for unit tests.

We also looked at maintaining consistent data within one bounded context
and between bounded contexts, concluding that, unless you are working
within a single aggregate, you should design for eventual consistency rather
that immediate consistency.

In the next chapter, we’ll put all this into practice as we model our order-
placing workflow.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 7

Modeling Workflows as Pipelines

In the previous two chapters, we saw how we could use types to do domain
modeling in a general way. In this chapter, we’ll apply what we've learned
there to our order-placing workflow. Along the way, we’ll look at a number of
techniques that are useful for modeling any workflow. The goal, as always,
is to have something that is readable by a domain expert.

So let’s revisit the steps in the Place Order workflow on page 40. Here’s the

summary of what we need to model:

workflow "Place Order" =
input: UnvalidatedOrder
output (on success):
OrderAcknowledgmentSent
AND OrderPlaced (to send to shipping)
AND BillableOrderPlaced (to send to billing)
output (on error):
ValidationError

// step 1

do ValidateOrder

If order is invalid then:
return with ValidationError

// step 2
do PriceOrder

// step 3
do AcknowledgeOrder

// step 4
create and return the events

Clearly the workflow consists of a series of substeps: ValidateOrder, PriceOrder,
and so on. This is extremely common, of course. Many business processes
can be thought of as a series of document transformations, and we will see
that we can model the workflow in the same way. We'll create a “pipeline” to

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 120

represent the business process, which in turn will be built from a series of
smaller “pipes.” Each smaller pipe will do one transformation, and then we’ll
glue the smaller pipes together to make a bigger pipeline. This style of pro-
gramming is sometimes called “transformation-oriented programming.”

iy . N On success:
," Order’takms COY\teXt \‘ -Order Acknowled gment Sent
H 3 —Q[{ieLLPLaced .
Place order workflow billabledrderPlaced

Unvalidated
Orlder —~->I\lalida£e|—>| Price |—>| Ackrnowledge I:
AN

Side Effects:
Send order
9 acknowled gment

===}

error list

——/

Following functional programming principles, we’ll ensure each step in the
pipeline is designed to be stateless and without side effects, which means
each step can be tested and understood independently. Once we have designed
the pieces of the pipeline, we’ll just need to implement and assemble them.

The Workflow Input

Let’s start by looking at the input of the workflow.

The input to a workflow should always be a domain object (we’ll assume the
input has been deserialized from a Data Transfer Object already). In our case,
the object is the UnvalidatedOrder type, which we modeled earlier:

type UnvalidatedOrder = {
OrderId : string
CustomerInfo : UnvalidatedCustomerInfo
ShippingAddress : UnvalidatedAddress

}

Commands as Input

We saw at the beglnnmg 9_{ ..t_lf.l.?.p.(f?.}f?f.l..l?ﬁg?._l.? that a workflow is associated

with the command that initiates it. In some sense then, the real input for the
workflow is not actually the order form but the command.

For the order-placing workflow, let’s call this command PlaceOrder. The com-
mand should contain everything that the workflow needs to process the
request, which in this case is the UnvalidatedOrder above. We probably also want
to track who created the command, the timestamp, and other metadata for
logging and auditing, so the command type might end up looking like this:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

The Workflow Input ® 121

type PlaceOrder = {
OrderForm : UnvalidatedOrder
Timestamp: DateTime
UserId: string
// etc
}

Sharing Common Structures Using Generics

This isn’t the only command we’ll be modeling, of course. Each command will
have the data needed for its own workflow, but it'll also share fields in common
with all the other commands, such as Userld and Timestamp. Do we really need to
implement the same fields over and over? Isn’t there some way of sharing them?

If we were doing object-oriented design, the obvious solution would be to use
a base class containing the common fields and then have each particular
command inherit from it.

In the functional world, we can achieve the same goal by using generics. We
first define a Command type that contains the common fields and a slot for the
command-specific data (which we’ll call Data), like this:
type Command<'data> = {

Data : 'data

Timestamp: DateTime

UserId: string

// etc

}

Then we can create a workflow-specific command just by specifying what type
goes in the Data slot:

type PlaceOrder = Command<UnvalidatedOrder>

Combining Multiple Commands in One Type

In some cases, all the commands for a bounded context will be sent on the
same input channel (such as a message queue), so we need some way of
unifying them into one data structure that can be serialized.

N

Pii"s\fggjr —><> PlaceOrder workflow Q—»
Sha;ed inlput T
::::c::?;\g?::: —_— Chg"\;\g'fgmer —>Q ChangeOrder workflow Q—>

\ CancelOrc;er —»Q CancelOrder workflow Q_’

comman

~. e

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 122

The solution is clear: just create a choice type containing all the commands.
For example, if we need to choose from PlaceOrder, ChangeOrder, and CancelOrder,
we could create a type like this:

type OrderTakingCommand =
| Place of PlaceOrder
| Change of ChangeOrder
| Cancel of CancelOrder

Note that each case has a command type associated with it. We've already
defined the PlaceOrder type, and ChangeOrder and CancelOrder would be defined in
the same way, containing the information needed to execute the command.

This choice type would be mapped to a DTO and serialized and deserialized
on the input channel. We just need to add a new “routing” or “dispatching”
input stage at the edge of the bounded context (the “infrastructure” ring of
the Onion Architecture on page 53).

" Order-taking context™.,

S ey

derTakina |—.| Co d |Z—, |ChangeOrder|__, I —
e N Eoiand” |~ Crongender wrkflon ()

CanceLOrc(ljer —»C) CancelOrder workflow <>—>

comman

Modeling an Order as a Set of States

Now let’s move on to the steps in the workflow pipeline. It’s clear from our
previous understanding of the workflow that the Order isn’t just a static docu-
ment but actually transitions through a series of different states:

Validated Priced
order order

Unvalidated
order

Unprocessed
order form

Unvalidated

quote Invalid Order

How should we model these states? A naive approach would be to create a
single record type that captures all the different states with flags, like this:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling an Order as a Set of States ® 123

type Order = {
OrderId : OrderlId

I
I

sValidated : bool // set when validated
sPriced : bool // set when priced

AmountToBill : decimal option // also set when priced

}
Bu

t this approach has lots of problems:

The system clearly has states, indicated by the various flags, but the
states are implicit and would require lots of conditional code in order to
be handled.

Some states have data that is not needed in other states, and putting
them all in one record complicates the design. For example, AmountToBill is
only needed in the “priced” state, but because it doesn’t exist in other
states, we have to make the field optional.

It’s not clear which fields go with which flags. AmountToBill is required to be
set when IsPriced is set, but the design does not enforce that, and we have
to rely on the comment to remind us to keep the data consistent.

A much better way to model the domain is to create a new type for each state
of the order. This allows us to eliminate implicit states and conditional fields.

The types can be defined directly from the domain documentation we created
earlier. For example, here’s the domain documentation for ValidatedOrder:

dat

a ValidatedOrder =
ValidatedCustomerInfo

AND ValidatedShippingAddress
AND ValidatedBillingAddress
AND list of ValidatedOrderLine

And here’s the corresponding type definition for ValidatedOrder. It’s a straightfor-
ward translation (with the addition of Orderld, needed because the order iden-
tity must be maintained throughout the workflow):

typ
0
C
S
B
0

}

e ValidatedOrder = {

rderId : OrderlId

ustomerInfo : CustomerInfo
hippingAddress : Address
illingAddress : Address

rderLines : ValidatedOrderLine list

We can create a type for PricedOrder in the same way, with extra fields for the
price information.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ® 124

type PricedOrder = {
OrderId :
CustomerInfo : CustomerInfo
ShippingAddress : Address
BillingAddress : Address
// different from ValidatedOrder
OrderLines : PricedOrderLine list
AmountToBill : BillingAmount
}

Finally, we can create a top-level type that’s a choice between all the states:

type Order =
| Unvalidated of UnvalidatedOrder
| Validated of ValidatedOrder
| Priced of PricedOrder
// etc

This is the object that represents the order at any time in its life cycle. And
this is the type that can be persisted to storage or communicated to other
contexts.

Note that we are not going to include Quote in this set of choices, because it
is not a state that an Order can get into—it’s a completely different workflow.

Adding New State Types as Requirements Change

One nice thing about using a separate type for each state is that new states
can be added without breaking existing code. For example, if we have a
requirement to support refunds, we can add a new RefundedOrder state with
any information needed just for that state. Because the other states are defined
independently, any code using them will not be affected by the change.

State Machines

In the section above, we converted a single type with flags into a set of separate
types, each designed for a specific workflow stage.

This is the second time we've done this. In the EmailAddress example dis-

choices, one for each state: “Unverified” and “Verified.”

These kinds of situations are extremely common in business modeling scenar-
ios, so let’'s pause and look at using “states” as a general domain modeling
tool. In a typical model, a document or record can be in one or more states,
with paths from one state to another (“transitions”) triggered by commands
of some kind as shown in the figure on page 125. This is known as a state
hine. e R

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

State Machines ® 125
Trangition
from A to B

State b
Transition
C

from b to

Trangition
from B to A
Now you might be familiar with complex state machines with tens or hundreds
of states, such as those used in language parsers and regular expressions.
We won't be talking about those. The kinds of state machines that we’ll be
discussing here are much, much simpler—just a few cases at the most, with
a small number of transitions.

Some examples:

¢ The one we just mentioned: an email address might have states that are
“Unverified” and “Verified,” where you can transition from the “Unverified”
state to the “Verified” state by asking the user to click a link in a confir-
mation email.

Clicked verification Link

\erified
email address

Unverified
email address

Changed email address

¢ A shopping cart might have states “Empty,” “Active,” and “Paid,” where
you can transition from the “Empty” state to the “Active” state by adding
an item to the cart and to the “Paid” state by paying.

Add item Add item

/)
9

Remove item Remove item

Paid
Pay cart

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 126

¢ A package delivery might have three states, “Undelivered,” “Out for Delivery,”
and “Delivered,” where you can transition from the “Undelivered” state to
the “Out for Delivery” state by putting the package on the delivery truck,
and so on.

Put on truck

Undelivered Pelivered
Customer
signs for

package

Customer not home

Why Use State Machines?

There are a number of benefits to using state machines in these cases:
e Each state can have different allowable behavior.

For instance, in the shopping cart example, only an active cart can be
paid for, and a paid cart cannot be added to. In the previous chapter,
when we discussed the unverified /verified email design, we saw a business
rule that said that you can only send password resets to verified email
addresses. By using distinct types for each state, we could encode that
requirement directly in the function signature, using the compiler to
ensure that that business rule was complied with.

e All the states are explicitly documented.

It’s easy to have important states that are implicit but never documented.
In the shopping cart example, the “empty cart” has different behavior from
the “active cart,” but it'd be rare to see this documented explicitly in code.

e Jtis a design tool that forces you to think about every possibility that could
occur.

A common cause of errors in a design is that certain edge cases are not
handled. A state machine forces all cases to be thought about. For example:

— What should happen if we try to verify an already verified email?

— What should happen if we try to remove an item from an empty
shopping cart?

— What should happen if we try to deliver a package that’s already in
the “Delivered” state?

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

State Machines ® 127

And so on. Thinking about a design in terms of states can force these
questions to the surface and clarify the domain logic.

How to Implement Simple State Machines in F#

Complex state machines, used in language parsers and so on, are generated
from rule sets or grammars and are quite complicated to implement. But the
simple business-oriented state machines described above can be coded
manually, without any need for special tools or libraries.

How should we implement these simple state machines, then? One thing we
don’t want to do is combine all the states into a common record, using flags,
enums, or other kinds of conditional logic to distinguish them.

A much better approach is to make each state have its own type, which stores
the data that is relevant to that state (if any). The entire set of states can then
be represented by a choice type with a case for each state. Here’s an example
using the shopping cart state machine:

type Item = ...
type ActiveCartData = { UnpaidItems: Item list }
type PaidCartData = { PaidItems: Item list; Payment: float }

type ShoppingCart =
| EmptyCart // no data
| ActiveCart of ActiveCartData
| PaidCart of PaidCartData

The ActiveCartData and PaidCartData states each have their own types. The EmptyCart
state has no data associated with it, so no special type is needed for it.

A command handler is then represented by a function that accepts the entire
state machine (the choice type) and returns a new version of it (the updated
choice type). Say we want to add an item to the cart. The state transition
function addltem takes a ShoppingCart parameter and the item to add, like this:

let addItem cart item =
match cart with
| EmptyCart ->
// create a new active cart with one item
ActiveCart {UnpaidItems=[item]}

| ActiveCart {UnpaidItems=existingItems} ->
// create a new ActiveCart with the item added
ActiveCart {UnpaidItems = item :: existingItems}

| PaidCart ->
// ignore
cart

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 128

The result is a new ShoppingCart that might be in a new state, or not (in the
case that it was in the “Paid” state).

Or say that we want to pay for the items in the cart. The state transition
function makePayment takes a ShoppingCart parameter and the payment informa-
tion, like this:

let makePayment cart payment =
match cart with
| EmptyCart ->
// ignore
cart

| ActiveCart {UnpaidItems=existingItems} ->
// create a new PaidCart with the payment
PaidCart {PaidItems = existingItems; Payment=payment}

| PaidCart ->
// ignore
cart

The result is a new ShoppingCart that might be in the “Paid” state, or not (in the
case that it was already in the “Empty” or “Paid” states).

You can see that from the caller’s point of view, the set of states is treated as
one thing for general manipulation (the ShoppingCart type), but when processing
the events internally, each state is treated separately.

Modeling Each Step in the Workflow with Types

The state machine approach is perfect for modeling our order-placing workflow,
so with that in hand, let’s now model the details of each step.

The Validation Step

Let’s start with validation. In the earlier discussion on page 40, we documented

the “ValidateOrder” substep like this:

substep "ValidateOrder" =
input: UnvalidatedOrder
output: ValidatedOrder OR ValidationError
dependencies: CheckProductCodeExists, CheckAddressExists

We'll assume that we've defined the input and output types (UnvalidatedOrder
and ValidatedOrder) in the same way as in the discussion earlier. In addition to
the input, we can see that the substep has two dependencies, one to check
that a product code exists and one to check that the address exists as shown
in the figure on page 129.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Each Step in the Workflow with Types ¢ 129

CheckProductCodeExists| | CheckAddressExists

dependencies

) \alidatedOrder
“’ \alidateOrder or

Invalid Order

We've been talking about modeling processes as functions with inputs and
outputs. But how do we model these dependencies using types? Simple, we
just treat them as functions, too. The type signature of the function will
become the “interface” that we need to implement later.

For example, to check that a product code exists, we need a function that
takes a ProductCode and returns true if it exists in the product catalog, or false
otherwise. We can define a CheckProductCodeExists type that represents this:
type CheckProductCodeExists =

ProductCode -> bool
// “~input ~output

Moving on to the second dependency, we need a function that takes an
UnvalidatedAddress and returns a corrected address if valid, or some kind of val-
idation error if the address is not valid.

We also want to distinguish between a “checked address” (the output of the
remote address checking service) and our Address domain object, and at some
point we’ll need to convert between them. For now, we might just say that a
CheckedAddress is just a wrapped version of an UnvalidatedAddress:

type CheckedAddress = CheckedAddress of UnvalidatedAddress

The service then takes an UnvalidatedAddress as input and returns a Result type,
with a CheckedAddress value for the success case and an AddressValidationError value
for the failure case:

type AddressValidationError = AddressValidationError of string

type CheckAddressExists =
UnvalidatedAddress -> Result<CheckedAddress,AddressValidationError>
// ~input ~output

With the dependencies defined, we can now define the ValidateOrder step as a
function with a primary input (the UnvalidatedOrder), two dependencies (the Check-
ProductCodeExists and CheckAddressExists services), and output (either a ValidatedOrder
or an error). The type signature looks scary at first glance, but if you think of it
as the code equivalent of the previous sentence, it should make sense.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 130

type ValidateOrder =
CheckProductCodeExists // dependency
-> CheckAddressExists // dependency
-> UnvalidatedOrder // input
-> Result<ValidatedOrder,ValidationError> // output

The overall return value of the function must be a Result because one of the
dependencies (the CheckAddressExists function) returns a Result. When Result is
used anywhere, it “contaminates” all it touches, and the “result-ness” needs
to be passed up until we get to a top-level function that handles it.

We have put the dependencies first in the parameter order and
the input type second to last, just before the output type. The
reason for this is to make partial application easier (the functional
< equivalent of dependency injection). We'll talk about how this
works in practice in the Implementation chapter on page 180.

M

The Pricing Step

Let’s move on and design the “PriceOrder” step. Here’s the original domain
documentation:

substep "PriceOrder" =
input: ValidatedOrder
output: PricedOrder
dependencies: GetProductPrice

Again, we see a dependency—a function returns the price given a product code.

| GetProductPrice !

l
dependency

\l%ifi;;tred —> [PriceOrder > PricedOrder

We can define a GetProductPrice type to document this dependency:

type GetProductPrice =
ProductCode -> Price

Again, pay attention to what we've done here. The PriceOrder function needs
information from the product catalog, but instead of passing some sort of
heavyweight IProductCatalog interface to it, we’ll just pass a_function (GetProductPrice)
that represents exactly what we need from the product catalog at this stage.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Each Step in the Workflow with Types ® 131

That is, GetProductPrice acts as an abstraction—it hides the existence of the
product catalog and exposes to us only the functionality needed and no more.

The pricing function itself will then look like this:

type PriceOrder =

GetProductPrice // dependency
-> ValidatedOrder // input
-> PricedOrder // output

This function always succeeds, so there’s no need to return a Result.

The Acknowledge Order Step

The next step creates an acknowledgment letter and sends it to the customer.

Let’s start by modeling the acknowledgment letter. For now just say that it
contains an HTML string that we are going to send in an email. We’ll model
the HTML string as a simple type and the OrderAcknowledgment as a record type
that contains the letter and the email address to send it to:

type HtmlString =
HtmlString of string

type OrderAcknowledgment = {
EmailAddress : EmailAddress
Letter : HtmlString
}

How do we know what the content of the letter should be? Chances are that
the letter will be created from some sort of template, based on the customer
information and the order details. Rather than embedding that logic into the
workflow, let’s make it someone else’s problem! That is, we’ll assume that a
service function will generate the content for us and that all we have to do is
give it a PricedOrder.

type CreateOrderAcknowledgmentLetter =
PricedOrder -> HtmlString

We'll then take a function of this type as a dependency for this step.

Once we have the letter, we need to send it. How should we do this? Should
we call some sort of API directly, or write the acknowledgment to a message
queue, or what?

Luckily, we don’t need to decide these questions right now. We can punt on
the exact implementation and just focus on the interface we need. As before,
all we need for the design at this point is to define a function that takes an
OrderAcknowledgment as input and sends it for us; we don’t care how.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 132

type SendOrderAcknowledgment =
OrderAcknowledgment -> unit

Here we are using the unit type to indicate that there’s some side effect that
we don’t care about, but that the function returns nothing.

But is that right, really? We want to return an OrderAcknowledgmentSent event
from the overall order-placing workflow if the acknowledgment was sent, but
with this design we can'’t tell if it was sent or not. So we need to change this.
An obvious choice is to return a bool instead, which we can then use to decide
whether or not to create the event:

type SendOrderAcknowledgment =
OrderAcknowledgment -> bool

Booleans are generally a bad choice in a design, though, because they are
very uninformative. It would be better to use a simple Sent/NotSent choice type
instead of a bool:

type SendResult = Sent | NotSent
type SendOrderAcknowledgment =
OrderAcknowledgment -> SendResult

Or perhaps we should have the service itself (optionally) return the OrderAc-
knowledgmentSent event itself?

type SendOrderAcknowledgment =
OrderAcknowledgment -> OrderAcknowledgmentSent option

If we do that, though, we have created a coupling between our domain and
the service via the event type. There’s no correct answer here, so for now we’ll
stick with the Sent/NotSent approach. We can always change it later.

Finally, what should the output of this “Acknowledge Order” step be? Simply
the “Sent” event, if created. Let’s define that event type now:
type OrderAcknowledgmentSent = {

OrderId : OrderlId

EmailAddress : EmailAddress

}

And finally, we can put all of this together to define the function type for
this step:

type AcknowledgeOrder =

CreateOrderAcknowledgmentLetter // dependency
-> SendOrderAcknowledgment // dependency
-> PricedOrder // input

-> OrderAcknowledgmentSent option // output

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Modeling Each Step in the Workflow with Types ® 133

As you can see, the function returns an optional event, because the acknowledg-
ment might not have been sent.

Creating the Events to Return

The previous step will have created the OrderAcknowledgmentSent event for us, but
we still need to create the OrderPlaced event (for shipping) and the BillableOrderPlaced
event (for billing). These are easy to define: the OrderPlaced event can just be an
alias for PricedOrder, and the BillableOrderPlaced event is just a subset of the PricedOrder:

type OrderPlaced = PricedOrder

type BillableOrderPlaced = {
OrderId : OrderId
BillingAddress: Address
AmountToBill : BillingAmount
}

To actually return the events, we could create a special type to hold them,
like this:
type PlaceOrderResult = {

OrderPlaced : OrderPlaced

BillableOrderPlaced : BillableOrderPlaced

OrderAcknowledgmentSent : OrderAcknowledgmentSent option

}

But it’s highly likely that we’ll be adding new events to this workflow over
time, and defining a special record type like this makes it harder to change.

Instead, why don’t we say that the workflow returns a list of events, where
an event can be one of OrderPlaced, BillableOrderPlaced, or OrderAcknowledgmentSent.

That is, we’ll define an OrderPlacedEvent that’s a choice type like this:

type PlaceOrderEvent =
| OrderPlaced of OrderPlaced
| BillableOrderPlaced of BillableOrderPlaced
| AcknowledgmentSent of OrderAcknowledgmentSent

And then the final step of the workflow will emit a list of these events:

type CreateEvents =
PricedOrder -> PlaceOrderEvent list

If we ever need to work with a new event, we can just add it to the choices,
without breaking the workflow as a whole.

And if we discover that the same events appear in multiple workflows in the
domain, we could even go up a level and create a more general OrderTakingDo-
mainEvent as a choice of all the events in the domain.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 134

Documenting Effects

Ina P_l_'_qy_ig__qg_@i_%s_gggs_@gg. on ngqﬂ@_’z , we talked about documenting effects in

the type signature: What effects could this function have? Could it return an
error? Does it do I/O?

Let’s quickly revisit all our dependencies and double-check if we need to be
explicit about any effects like this.

Effects in the Validation Step

The validation step has two dependencies: CheckProductCodeExists and CheckAddress
Exists.

Let’s start with CheckProductCodeExists:

type CheckProductCodeExists = ProductCode -> bool
Could it return an error, and is it a remote call?

Let’s assume it’s neither of these. Instead, we will expect that a local cached
copy of the product catalog is available (remember what Ollie said about
autonomy in Understanding the Domain) and that we can access it quickly.

On the other hand, we know that the CheckAddressExists function is calling a
remote service, not a local one inside the domain, and so it should also have
the Async effect as well as the Result effect. In fact, the Async and Result effects
are used together so often that we’ll generally combine them into one type
using the AsyncResult alias:

type AsyncResult<'success, 'failure> = Async<Result<'success, 'failure>>

With that, we can now change the return type of CheckAddressExists from Result
to AsyncResult to indicate that the function has both async and error effects:

type CheckAddressExists =
UnvalidatedAddress -> AsyncResult<CheckedAddress,AddressValidationError>

It's now clear from the type signature that the CheckAddressExists function is
doing I/O and that it might fail. Earlier, when talking about bounded contexts,
we said that autonomy was a key factor. So does that mean that we should
try to create a local version of the address validation service? If we bring this
up with Ollie, were assured that this service has very high availability.
Remember that the main reason for wanting autonomy was not for perfor-
mance but to allow you to commit to a certain level of availability and service.
If your implementation relies on a third party, then you really need to trust
them (or otherwise work around any service issues).

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Documenting Effects ® 135

Just as with Result, the Async effect is contagious for any code containing it.
So changing CheckAddressExists to return an AsyncResult means we must change
the whole ValidateOrder step to return an AsyncResult as well:

type ValidateOrder =
CheckProductCodeExists // dependency
-> CheckAddressExists // AsyncResult dependency
-> UnvalidatedOrder // input
-> AsyncResult<ValidatedOrder,ValidationError list> // output

Effects in the Pricing Step

The pricing step has only one dependency: GetProductPrice. We'll again assume
that the product catalog is local (for example, cached in memory), and so
there’s no Async effect. Nor can accessing it return an error as far as we can
tell. So no effects there.

However, the PriceOrder step itself might well return an error. Let’s say that an
item has been mispriced, and so the overall AmountToBill is very large (or nega-
tive). This is the kind of thing that we should catch when it happens. It might
be a very unlikely edge case, but many real-world embarrassments have been
caused by errors like this!

If we are going to return a Result now, then we also need an error type to go
with it. We'll call it PricingError. The PriceOrder function now looks like this:

type PricingError = PricingError of string

type PriceOrder =
GetProductPrice // dependency
-> ValidatedOrder // input
-> Result<PricedOrder,PricingError> // output

Effects in the Acknowledge Step

The AcknowledgeOrder step has two dependencies: CreateOrderAcknowledgmentLetter
and SendOrderAcknowledgment.

Can the CreateOrderAcknowledgmentLetter function return an error? Probably not.
And we’ll assume that it’s local and uses a template that’s cached. So, overall,
the CreateOrderAcknowledgmentLetter function does not have any effects that need
to be documented in the type signature.

On the other hand, we know that SendOrderAcknowledgment will be doing 1/0, so
it needs an Async effect. What about errors? In this case we don’t care about
the error details, and even if there is an error, we want to ignore it and con-
tinue on the happy path. So that means that a revised SendOrderAcknowledgment
will have an Async type but not a Result type:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 136

type SendOrderAcknowledgment =
OrderAcknowledgment -> Async<SendResult>

Of course, the Async effect ripples up to the parent function as well:

type AcknowledgeOrder =

CreateOrderAcknowledgmentlLetter // dependency
-> SendOrderAcknowledgment // Async dependency
-> PricedOrder // input

-> Async<OrderAcknowledgmentSent option> // Async output

Composing the Workflow from the Steps

We've now got definitions for all the steps; so when we have implementations
for each of them, we should be able to just wire the output of one step to the
input of the next one, building up the overall workflow.

But it won'’t be quite that simple! Let’s look at the definitions of all the steps
in one place, with the dependencies removed so that only the inputs and
outputs are listed.

type ValidateOrder =
UnvalidatedOrder // input
-> AsyncResult<ValidatedOrder,ValidationError list> // output

type PriceOrder =
ValidatedOrder // input
-> Result<PricedOrder,PricingError> // output

type AcknowledgeOrder =
PricedOrder // input
-> Async<OrderAcknowledgmentSent option> // output

type CreateEvents =
PricedOrder // input
-> PlaceOrderEvent list // output

The input of the PriceOrder step requires a ValidatedOrder, but the output of Valida-
teOrder is an AsyncResult<ValidatedOrder,...>, which doesn’t match at all.

Similarly, the output of the PriceOrder step cannot be used as the input for
AcknowledgeOrder, and so on.

In order to compose these functions then, we are going to have to juggle the
input and output types so that they are compatible and can be fitted together.
This is a common challenge when doing type-driven design, and we’ll see how
to do this in the implementation chapters.

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Are Dependencies Part of the Design? ® 137

Are Dependencies Part of the Design?

In the code above, we have treated calls to other contexts (such as CheckProduct-
CodeExists and ValidateAddress) as dependencies to be documented. Our design
for each substep added explicit extra parameters for these dependencies:

type ValidateOrder =
CheckProductCodeExists // explicit dependency
-> CheckAddressExists // explicit dependency
-> UnvalidatedOrder // input
-> AsyncResult<ValidatedOrder,ValidationError list> // output

type PriceOrder =
GetProductPrice // explicit dependency
-> ValidatedOrder // input
-> Result<PricedOrder,PricingError> // output

You might argue that how any process performs its job should be hidden
from us. Do we really care about what systems it needs to collaborate with
in order to achieve its goal?

If you take this point of view, the process definitions would be simplified down
to inputs and outputs only, looking like this:

type ValidateOrder =
UnvalidatedOrder // input
-> AsyncResult<ValidatedOrder,ValidationError list> // output

type PriceOrder =
ValidatedOrder // input
-> Result<PricedOrder,PricingError> // output

Which approach is better?

There’s never a right answer when it comes to design, but let’s follow this
guideline:

¢ For functions exposed in a public API, hide dependency information from
callers.

e For functions used internally, be explicit about their dependencies.

In this case, the dependencies for the top-level PlaceOrder workflow function
should not be exposed, because the caller doesn’'t need to know about them.
The signature should just show the inputs and outputs, like this:

type PlaceOrderWorkflow =

PlaceOrder // input
-> AsyncResult<PlaceOrderEvent list,PlaceOrderError> // output

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 138

But for each internal step in the workflow, the dependencies should be made
explicit, just as we did in our original designs. This helps to document what
each step actually needs. If the dependencies for a step change, then we can
alter the function definition for that step, which in turn will force us to change
the implementation.

The Complete Pipeline

We've made a first pass at the design, so let’'s review what we have so far.
First, we’ll write down the types for the public API. We'll typically put them
all in one file, such as DomainApi.fs or something similar.

Here are the inputs:

A R R
// Input data
[/ e

type UnvalidatedOrder = {
OrderId : string
CustomerInfo : UnvalidatedCustomer
ShippingAddress : UnvalidatedAddress
}
and UnvalidatedCustomer = {
Name : string
Email : string
}

and UnvalidatedAddress = ...

[/ mmmmm e
// Input Command
[/ s

type Command<'data> = {
Data : ‘'data
Timestamp: DateTime
UserId: string
// etc
}

type PlaceOrderCommand = Command<UnvalidatedOrder>

And here are the outputs and the workflow definition itself:

[/ e
// Public API
A LT TP TP

/// Success output of PlaceOrder workflow
type OrderPlaced = ...

type BillableOrderPlaced = ...

type OrderAcknowledgmentSent = ...

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

The Complete Pipeline ® 139

type PlaceOrderEvent =
| OrderPlaced of OrderPlaced
| BillableOrderPlaced of BillableOrderPlaced
| AcknowledgmentSent of OrderAcknowledgmentSent

/// Failure output of PlaceOrder workflow
type PlaceOrderError = ...

type PlaceOrderWorkflow =
PlaceOrderCommand // input command
-> AsyncResult<PlaceOrderEvent list,PlaceOrderError> // output events

The Internal Steps

We put the types used by the internal steps in a separate implementation file
(such as PlaceOrderWorkflow.fs). Later on, at the bottom of this same file, we’ll
add the implementation.

We'll start with the internal states that represent the order life cycle:

// bring in the types from the domain API module
open DomainApi

[/ mmmme e
// Order life cycle
[/ -

// validated state

type ValidatedOrderLine =

type ValidatedOrder = {
OrderId : OrderlId
CustomerInfo : CustomerInfo
ShippingAddress : Address
BillingAddress : Address
OrderLines : ValidatedOrderLine list
}

and OrderId = Undefined

and CustomerInfo = ...

and Address = ...

// priced state
type PricedOrderLine = ...
type PricedOrder = ...

// all states combined
type Order =
| Unvalidated of UnvalidatedOrder
| Validated of ValidatedOrder
| Priced of PricedOrder
// etc

And then we can add the definitions for each internal step:

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ¢ 140

[/ s

// Definitions of Internal Steps
[/ e

/] ----- Validate order -----

// services used by ValidateOrder
type CheckProductCodeExists =
ProductCode -> bool

type AddressValidationError = ...
type CheckedAddress = ...
type CheckAddressExists =
UnvalidatedAddress
-> AsyncResult<CheckedAddress,AddressValidationError>

type ValidateOrder =
CheckProductCodeExists // dependency
-> CheckAddressExists // dependency
-> UnvalidatedOrder // input
-> AsyncResult<ValidatedOrder,ValidationError list> // output
and ValidationError = ...

/] ----- Price order -----

// services used by PriceOrder
type GetProductPrice =
ProductCode -> Price

type PricingError = ...

type PriceOrder =
GetProductPrice // dependency
-> ValidatedOrder // input
-> Result<PricedOrder,PricingError> // output

// etc

We've now got all the types in one place, ready to guide the implementation.

Long-Running Workflows

Before we move on, though, let’s revisit an important assumption about the
pipeline. We're expecting that even though there are calls to remote systems,
the pipeline will complete within a short time, in the order of seconds.

But what if these external services took much longer to complete? For example,
what if validation was done by a person rather a machine, and it took that person
all day? Or what if pricing was done by a different department, and it took those
folks a long time as well. If these things were true, how would it affect the design?

First, we would need to save the state into storage before calling a remote
service, then we’d wait for a message telling us that the service had finished,

http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Long-Running Workflows ® 141

and then we’d have to reload the state from storage and continue on with the
next step in the workflow. This is much heavier than using normal asyn-
chronous calls, because we need to persist the state between each step.

1 1
Remote ServiceI Remote ServiceI

call wait for call wait for
response response
Start — Step 1 Step 2 Step 3 [~ Firish

save restore save restore
state state state state

Sl

By doing this, we have broken the original workflow into smaller, independent
chunks, each triggered by an event. Rather than one single workflow, you
could even think of it as a series of separate mini-workflows.

This is where the state machine model is a valuable framework for thinking
about the system. Before each step, the order is loaded from storage, having
been persisted as one of its states. The mini-workflow transitions the order

from the original state to a new state, and at the end the new state is saved
back to storage again.

Pricing Service

wait for
response

Address \alidation

wait for

response call

Event | > -| JalidateOrder
Handler ~__

| PriceOrder
etc

L
.

~~~~~~~~

restore" # save
state m state



http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 7. Modeling Workflows as Pipelines ® 142

These kinds of long-running workflows are sometimes called Sagas.' They're
common whenever slow humans are involved, but they can also be used
whenever you want to break a workflow into decoupled, stand-alone pieces
connected by events (cough...microservices).

In our example, the workflow is very simple. If the number of events and
states increases and the transitions get complicated, you may need to create
a special component, a Process Manager, that is in charge of handling
incoming messages, determining what action should be taken based on the
current state, and then triggering the appropriate workflow.

Wrapping Up
In this chapter, we learned how to model a workflow using only types.

We started by documenting the inputs to the workflow, and in particular,
how to model commands. We then looked at how we could use state machines
to model documents and other entities with life cycles. With our new under-
standing of states, we went back to the workflow, modeling each substep
using types to represent the input and output states, and we also went to
some effort to document the dependencies and effects of each step.

Along the way we created what seems like hundreds of types (actually only
about thirty). Was this really necessary? Is this too many types? It might seem
like a lot, but remember that we are trying to create executable documenta-
tion—code that communicates the domain. If we did not create these types,
we would still have to document the difference between a validated order and
a priced order, or between a widget code and a normal string. Why not let the
documentation be in the code itself?

Of course, there’s always a balance to be had. We've deliberately gone to an
extreme here to show what it looks like if everything is documented in this
way. If you find that this approach is overkill in your situation, feel free to
reduce it to match your needs. As always, you should do what serves the
domain and is most helpful for the task at hand.

What's Next

Having spent the last four chapters doing nothing but modeling, we have
reached the end at last and can finally start getting our hands dirty with a
real implementation!

1.  http://vasters.com/archive/Sagas.html


http://vasters.com/archive/Sagas.html
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

What's Next ® 143

Let’s just clarify something before we move on. In this book, we've separated
requirements gathering, modeling, and coding into distinct sections. This
may look like we are encouraging a linear “waterfall” model of development,
but this isn’t the intention at all. On a real project, we should be continually
mixing requirements gathering with modeling and modeling with prototyping,
whatever it takes to get feedback to the customer or domain expert as soon
as possible. In fact, the whole point of modeling with types is so we can go
from requirements to modeling and back again in minutes rather than days
because the domain expert can read the model directly.

We're ready to start the implementation chapters now. As a first step, let’s
make sure that we understand how functions work and how to build applica-
tions from them. We’'ll do that in the next chapter.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Part III

Implementing the Model

In this third part, we will take the worlkflow that
we modeled in Part II and implement it. In the pro-
cess of doing that, we’ll learn how to use common
functional programming techniques such as compo-
sition, partial application, and the scary-sounding
“monad.”



CHAPTER 8

Understanding Functions

In the preceding parts of the book, we have captured the requirements for an
order-placing workflow and then modeled it using types. The next task is to
implement that design using a functional programming (FP) approach.

But before we get to that, let’s make sure that we understand what functional
programming is and what tools and tactics we’ll need in order to create the
implementation. By the end of this chapter, you should have a good grasp of
the key concepts in FP, which are valuable for doing any kind of programming,
not just domain-driven design.

This book cannot possibly explain everything about functional programming,
so we'll just focus on the basics. We'll look at what functions are and how to
do function composition, which is the overarching design principle in FP.

We won’t be discussing scary-sounding concepts such as monads, functors,
and so on—at least not right now. We’ll come across these concepts later,
when the need for them arises naturally.

Finally, we won’t have space to cover all of F# syntax in this book. If you see
some construct you don’t understand, check out some of the helpful sum-
maries on the Internet: try searching for “F# cheat sheet” or “F# syntax.”

Functions, Functions, Everywhere

First, let’s look at why functional programming is so different from object-
oriented programming. There are many different definitions of functional
programming, but I'm going to pick a very simple one:

e Functional programming is programming as if functions really mattered.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 8. Understanding Functions ¢ 148

In most modern languages functions are first-class objects, but using functions
(or lambdas) occasionally doesn’t mean that you are “doing” functional pro-
gramming. The key thing about the functional programming paradigm is that
functions are used everywhere, for everything.

For example, say that we have a large program that is assembled from
smaller pieces.

¢ In an object-oriented approach, these pieces would be classes and objects.
¢ In a functional approach, these pieces would be functions.

Or say that we need to parameterize some aspect of the program, or we want
to reduce coupling between components.

¢ In an object-oriented approach, we would use interfaces and dependency
injection.

¢ In a functional approach, we would parameterize with functions.

Or let’s say that we want to follow the “don’t repeat yourself” principle and
reuse code between many components.

¢ In an object-oriented approach, we might use inheritance or a technique
like the Decorator pattern.

¢ In a functional approach, we put all the reusable code into functions and
glue them together using composition.

It's important to understand that functional programming is therefore not
just a stylistic difference, it's a completely different way of thinking about
programming. If you are new to it, you should approach learning FP with a
beginner’s mind.

That is, rather than asking a question from a different paradigm (such as
“How do I loop through a collection?” or “How do I implement the Strategy
pattern?”), you’ll be better off asking how to solve the same underlying problem
(“How can I perform an action for each element of a collection?” or “How can
I parameterize behavior?”). The problems we face as programmers are the
same, but the solutions used in functional programming are very different
from those used in object-oriented programming.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Functions Are Things ® 149

Functions Are Things

In the functional programming paradigm, functions are things in their own
right. And if functions are things, then they can be passed as input to other
functions:

( FUY\CtiOV\ s 0
oo =Y I [T Ouput
A Function can be an inp&t - -

Or they can be returned as the output of a function:

P Function

RLC i T 9= =9

a\ 7777777 // '\\\. —,
A function can be an output

e

Or they can be passed as a parameter to a function to control its behavior:
7

h e
A function can be a parometer

l

i
i

PN Function P >
Input 7 . Output
\\ i / | —— “«\ y /‘

Treating functions as things opens up a world of possibilities. It’s hard to get
your head around at first, but you can already see that even with this basic
principle you can build up complex systems quite quickly.

Functions that input or output other functions or take functions as parameters are

called higher-order functions, often abbreviated to HOFs.

report erratum -« discuss


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 8. Understanding Functions ® 150

Treating Functions as Things in F#

Let’'s take a look at how “functions as things” works in F#. Here are four
function definitions:

let plus3 x = x + 3 // plus3 : x:int -> int
let times2 x = x * 2 // times2 : x:int -> int
let square = (fun x -> x * x) // square : x:int -> int
let addThree = plus3 // addThree : (int -> int)

The first two definitions are just like the ones we’'ve seen before. In the third
definition, the let keyword is used to assign a name (square) to an anonymous
function, also known as a lambda expression. In the fourth definition, the let
keyword is used to assign a name (addThree) to a function defined earlier (plus3).
Each of these functions is an int -> int function that takes an int as input and
outputs a new int.

Now, because functions are things, we can put them in a list:

// listOfFunctions : (int -> int) list
let listOfFunctions =
[addThree; times2; squarel]

In F#, list literals use square brackets as delimiters, with semi-
colons (not commas!) as element separators.

We can now loop through the list and evaluate each function in turn:

for fn in listOfFunctions do
let result = fn 100 // call the function
printfn "If 100 is the input, the output is %i" result

// Result =>

// If 100 is the input, the output is 103
// If 100 is the input, the output is 200
// If 100 is the input, the output is 10000

The let keyword is not just for function definitions—it’'s used generally to
assign names to values. So for example, here is let used to assign a name to
the string "hello":

// myString : string
let myString = "hello"

The fact that the same keyword (let) is used to define both functions and
simple values is not an accident. Let’s look at an example to see why. In this
first snippet, I define a function called square:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Functions Are Things ® 151

// square : x:int -> int
let square x = x * x

And in this second snippet I'm assigning the name square to an anonymous
function. Is let defining a simple value here or a function?

// square : x:int -> int
let square = (fun x -> x * x)

The answer is both! A function is a thing and can be assigned a name. So the
second definition of square is essentially the same as the first, and they can
be used interchangeably.

Functions as Input

We said that “functions as things” means that they can be used for input and
output, so let’s see what that looks like in practice.

First, let’s look at using a function as an input parameter. Here’s a function
called evalWith5ThenAdd2, which takes a function fn, calls it with 5, and then
adds 2 to the result.

let evalWith5ThenAdd2 fn =
fn(5) + 2

// evalWith5ThenAdd2 : fn:(int -> int) -> int

If we look at the type signature at the bottom, we can see that the compiler
has inferred that fn must be an (int -> int) function.

Let’s test it now. First, we’ll define addl, which is an (int -> int) function, and
then pass it in.

let addl x = x + 1 // an int -> int function
evalWith5ThenAdd2 addl // fn(5) + 2 becomes addl(5) + 2
// // so output is 8

The result is 8, as we would expect.

We can use any (int -> int) function as a parameter. So let’s define a different
one, such as square and pass it as a parameter:

let square x = x * x // an int -> int function
evalWith5ThenAdd2 square // fn(5) + 2 becomes square(5) + 2
// // so output is 27

And this time the result is 27.

Functions as Output

Now let’s turn to functions as output. Why would you want to do that?


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 8. Understanding Functions ® 152

Well, one very important reason to return functions is that you can “bake in”
certain parameters to the function.

For example, say you have three different functions to add integers, like this:

let addl x = x + 1
let add2 x X + 2
let add3 x X + 3

Obviously, we would like to get rid of the duplication. How can we do that?

The answer is to create an “adder generator’—a function that returns an
“add” function with the number to add baked in:

Here’s what the code would look like:

let adderGenerator numberToAdd =
// return a lambda
fun x -> numberToAdd + x

// val adderGenerator :
// int -> (int -> int)

Looking at the type signature, it clearly shows us that it takes an int as input
and emits an (int -> int) function as output.

We could also implement adderGenerator by returning a named function instead
of an anonymous function, like this:

let adderGenerator numberToAdd =
// define a nested inner function
let innerFn x =
numberToAdd + X

// return the inner function
innerFn

As we've seen with the square example earlier, both implementations are
effectively the same. Which one do you prefer?

Finally, here’s how adderGenerator might be used in practice:

// test
let addl = adderGenerator 1
addl 2 // result => 3

let add1l00 = adderGenerator 100
add1l00 2 // result => 102

Currying

Using this trick of returning functions, any multiparameter function can be
converted into a series of one-parameter functions. This method is called currying.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Functions Are Things ® 153

For example, a two-parameter function such as add:

// int -> int -> int
let add x y = x +y

can be converted into a one-parameter function by returning a new function,
as we saw above:

// int -> (int -> int)
let adderGenerator x = funy -> x +y

In F#, we don’t need to do this explicitly—every function is a curried function!
That is, any two-parameter function with signature 'a -> 'b -> 'c can also be
interpreted as a one-parameter function that takes an 'a and returns a function
('b->"'c), and similarly for functions with more parameters.

Partial Application

If every function is curried, that means you can take any multiparameter
function and pass in just one argument, and you'll get a new function back
with that parameter baked in but all the other parameters still needed.

For example, the sayGreeting function below has two parameters:

// sayGreeting: string -> string -> unit
let sayGreeting greeting name =
printfn "%s %s" greeting name

But we can pass in just one parameter to create some new functions with the
greeting baked in:

// sayHello: string -> unit
let sayHello = sayGreeting "Hello"

// sayGoodbye: string -> unit
let sayGoodbye = sayGreeting "Goodbye"

These functions now have one remaining parameter, the name. If we supply
that, we get the final output:

sayHello "Alex"
// output: "Hello Alex"

sayGoodbye "Alex"
// output: "Goodbye Alex"

This approach of “baking in” parameters is called partial application and is a
very important functional pattern. For example, we’ll see it being used to do
dependency injection in Implementation: Composing a Pipeline when we start

implementing the order-taking workflow.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 8. Understanding Functions ¢ 154

Total Functions

A mathematical function links each possible input to an output. In functional
programming we try to design our functions the same way, so that every input
has a corresponding output. These kinds of functions are called total functions.

Why bother? Because we want to make things explicit as much as possible,
with all effects documented in the type signature.

Let’'s demonstrate the concept with a rather silly function, twelveDividedBy, which
returns the result of 12 divided by the input using integer division. In pseudo-
code, we could implement this with a table of cases, like this:

let twelveDividedBy n =
match n with

6 ->

5 ->

'
\"
AW NN

6
-> 12
-> ?77?

O N WA
'
\%

Now what should the answer be when the input is zero? Twelve divided by
zero is undefined.

If we didn’t care that every possible input had a corresponding output, we
could just throw an exception for the zero case, like this:

let twelveDividedBy n =
match n with
| 6 -> 2

| @ -> failwith "Can't divide by zero"
But let’s look at the signature of the function defined this way:
twelveDividedBy : int -> int

This signature implies that you can pass in an int and get back an int. But
that is a lie! You don’t always get back an int; sometimes you get an exception.
But that is not made explicit in the type signature.

It would be great if the type signature did not lie. In that case every input to
the function would have a valid output, with no exceptions (in both senses
of the word). Let’s look at how we can do that.

One technique is to restrict the input to eliminate values that are illegal. For
this example, we could create a new constrained type NonZerolnteger and pass


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Total Functions ® 155

that in. Zero wouldn’t be in the set of input values at all and so would never
need to be handled.

type NonZerolInteger =
// Defined to be constrained to non-zero ints.
// Add smart constructor, etc
private NonZeroInteger of int

/// Uses restricted input

let twelveDividedBy (NonZeroInteger n) =
match n with
| 6 -> 2

// 0 can't be in the input
// so doesn't need to be handled

Here’s the signature of this new version:
twelveDividedBy : NonZeroInteger -> int

This is much better than the previous version. You can immediately see what
the requirements for the input are without having to read documentation or
look at the source. This function does not lie. Everything is explicit.

Another technique is to extend the output. In this approach, we will be fine with
accepting zero as an input, but we extend the output to be a choice between a
valid int and an undefined value. We'll use the Option type to represent this
choice between “something” and “nothing.” Here’s the implementation:

/// Uses extended output
let twelveDividedBy n =
match n with
| 6 -> Some 2 // valid
| 5 -> Some 2 // valid
| 4 -> Some 3 // valid

| © -> None // undefined
The signature of this new version would be this:
twelveDividedBy : int -> int option

This means: you give me an int and I might give you an int back, if the input
is acceptable. Again, the signature is explicit and doesn’t mislead you.

Even in a silly example like this, we can see the benefit of using a total func-
tion. In both variants, the function signatures are explicit about what all the
possible inputs and outputs are. Later on in this book, especially in the
chapter on error handling, we’ll see some real-world uses of function signa-
tures to document all the possible outputs.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 8. Understanding Functions ® 156

Composition

We discussed “composition” in the context of types—creating new types by
combining other types. Now let’s talk about function composition, combining
functions by connecting the output of the first to the input of the second.

For example, here are two functions. The first takes an apple as input and
outputs a banana. The second takes a banana as input and outputs some
cherries. The output of the first is the same type as the input of the second,
and therefore we can compose them together like this:

@ <D > D
-

Composition

After we have composed them together, we have a new function:
el New Functi
@ ,;«J;ple —:cvlgrries E %

New composed function

An important aspect of this kind of composition is information hiding. You
cannot tell that the function was composed of smaller functions, nor what
the smaller functions operated on. In this case, where has the banana gone?
The user of this new function is not even aware that there ever was a banana.
We've successfully hidden that information from the user of the final, com-
posed function.

Function
apple — banana

unction
anana —> cherries E

Composition of Functions in F#

How does function composition work in F#?

In F#, any two functions can be glued together as long as the output type of
the first one is the same as the input type of the second one. This is typically
done using an approach called “piping.”

Piping in F# is very similar to piping in Unix. You start with a value, feed it
into the first function, take the output of the first function and feed it into
the next function, and so on. The output of the last function in the series is
the output of the pipeline as a whole.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Composition ® 157

The pipe operation in F# is |>. Using a pipe for the first example means the
code would look like this:

let addl x = x + 1 // an int -> int function
let square x = x * x // an int -> int function

let addlThenSquare x =
x |> addl |> square

// test
add1lThenSquare 5 // result is 36

We have defined a parameter x for add1ThenSquare. In the implementation, that
parameter is fed into the first function (add) to start the data flow through the
pipeline.

add1 ThenSquare
x b-addl |—|square|-~

Here’s another example. The first function is an int->bool function, the second
function is a bool->string function, and the combined function is int->string:

let isEven x =
(x %2) =0 // an int -> bool function

let printBool x =
sprintf "value is %b" x // a bool -> string function

let isEvenThenPrint x =
X |> isEven |> printBool

// test
isEvenThenPrint 2 // result is "value 1is true"

Building an Entire Application from Functions
This principle of composition can be used to build complete applications.

For example, start with a basic function at the bottom level of the application:

operation

— —



http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 8. Understanding Functions ® 158

Then we compose those to create a service function, say this:

[— N I YTH 7 R S— — YN Y7 I — e Low-level e
—— operation ——— >> — (operation ——— >> ] operation ———
Composition

Service

—
11

[}

We can then use these service functions and glue them together to create a
function that handles a complete workflow.

T Service >> Service T >> T Service T
Composition
Workflow [T

Finally we can build an application from these workflows by composing them
in parallel and creating a controller/dispatcher that selects the particular
workflow to call based on the input as shown in the figure on page 159.

And that is how you build a functional application. Each layer consists of a
function with an input and an output. It’s functions all the way up.

In Chapter 9, Implementation: Composing a Pipeline, on page 161, we'll see how

these ideas work in practice—we’ll implement the pipeline for the order-
placing workflow by assembling a series of smaller functions.

Challenges in Composing Functions

Composing functions is easy when the output of one matches the input of
another. But what happens if the functions don’t match up so easily?


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Composition ® 159

Workflow

Workflow

Workflow

Compose in
\oaral.l.el.

Application

=

—

—
Emaaa

A common case is when the underlying types would fit but the “shapes” of
the functions are different.

For example, one function might output an Option<int> but the second function
needs a plain int. Or conversely, one function might output an int but the
second function needs an Option<int>.

—[ Function A x function B |—
—[ function A}—(70) x function b |~

Similar mismatch issues arise with when working with lists, the success/fail-
ure Result type, async, and so on.

Many of the challenges in using composition involve trying to adjust the inputs
and outputs so that they match up, allowing the functions to be connected
together. A popular approach is to convert both sides to be the same type,
the “lowest common multiple” of each side, as it were.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 8. Understanding Functions ® 160

For example, if the output is an int and the input is an Option<int>, the “smallest”
type that can encompass both—the lowest common multiple—is Option. If we
convert the output of functionA to an Option using Some, the adjusted value can
now be used as the input for functionB, and composition can occur.

—| function A (—( int }—| Some |—(Dption<int>}—{ function b (—

Here’s a demonstration of that example using real code:

// a function that has an int as output
let addl x = x + 1

// a function that has an Option<int> as input
let printOption x =

match x with

| Some i -> printfn "The int is %i" i

| None -> printfn "No value"

To connect them, we convert the output of addl into an Option using the Some
constructor, and then that can be piped into the input of printOption:

5 |> addl |> Some |> printOption

This is a very simple example of the type-mismatch problem. We've already
seen a more complex example when we modeled the order-placing workflow
and then tried to compose them on page 136. In the two implementation

chapters following this one, we’ll spend quite a bit of time getting functions
into a uniform shape so that they can be composed.

Wrapping Up

In this chapter, we were introduced to the basic concepts of functional pro-
gramming in F#—using functions everywhere as building blocks and designing
them to be composable.

With these principles under our belt, we can finally start doing some real
coding! In the next chapter, we’ll put these concepts into practice, starting
with building a pipeline for the order-placing workflow.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 9

Implementation; Composing a Pipeline

So far, we've spent a lot of time modeling the domain using only types. We
haven’t yet implemented anything! Let’'s remedy that now.

In the next two chapters, we’ll work with the design that we did earlier
(Chapter 7, Modeling Workflows as Pipelines, on page 119) and implement it

using functional principles.

To recap the design in that chapter, the workflow can be thought of as a series
of document transformations—a pipeline—with each step in the pipeline
designed as a section of “pipe.”

From a technical point of view, we have the following stages in our pipeline:

e Start with an UnvalidatedOrder and convert it into a ValidatedOrder, returning
an error if the validation fails.

e Take the output of the validation step (a ValidatedOrder) and turn it into a
PricedOrder by adding some extra information.

e Take the output of the pricing step, create an acknowledgment letter from
it, and send it.

e Create a set of events representing what happened and return them.

We want to turn this into code, preserving the original requirements without
getting entangled in technical details.

Here’s an example of how we would like our code to look using the piping
approach we discussed earlier on page 156 to connect together the functions

for each step:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 162

let placeOrder unvalidatedOrder =
unvalidatedOrder
|> validateOrder
|> priceOrder
|> acknowledgeOrder
|> createEvents

This code—a series of steps—is easy to understand, even for a non-developer,
so let’'s see what's needed to make this happen. There are two parts to
implementing this workflow: creating the individual steps and then combining
them together.

First, we’ll implement each step in the pipeline as a stand-alone function,
making sure that it is stateless and without side effects so it can be tested
and reasoned about independently.

Next, we just compose these smaller functions into a single larger one. It
sounds simple in theory. But as we mentioned before, when we actually try
it, we run into a problem. The functions as designed don't fit together nice-
ly—the output of one doesn’t match the input of the next. To overcome that,
we’ll need to learn how to manipulate the inputs and outputs of each step so
that they can be composed.

The functions can’t be composed for two reasons:

¢ Some functions have extra parameters that aren’t part of the data pipeline
but are needed for the implementation—we called these “dependencies.”

e We explicitly indicated “effects” such as error handling by using a wrapper
type like Result in the function signatures. But that means that functions
with effects in their output cannot be directly connected to functions that
just have unwrapped plain data as their input.

In this chapter we’ll deal with the first problem, working with the inputs that
are dependencies, and we’ll see how to do the functional equivalent of
“dependency injection.” We’'ll hold off on looking at how to work with effects
until the next chapter.

For our first pass at writing some real code, then, we’ll implement all the
steps without worrying about effects like Result and Async. This will allow us to
focus on the basics of composition.

Working with Simple Types

Before we start implementing the steps of the workflow itself, we need to first
implement the “simple types,” such as Orderld and ProductCode.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Using Function Types to Guide the Implementation ® 163

Since most of the types are constrained in some way, we’ll follow the outline
for implementing constrained types discussed earlier on page 104.

So, for each simple type we’ll need at least two functions:

¢ A create function that constructs the type from a primitive such as string
or int—for example, Orderld.create will create an Orderld from a string, or raise
an error if the string is the wrong format.

¢ A value function that extracts the inner primitive value

We typically put these helper functions in the same file as the simple type,
using a module with the same name as the type they apply to. For example,
here’s the definition for Orderld in the Domain module, along with its helper
functions:

module Domain =
type OrderId = private OrderId of string

module Orderld =
/// Define a "Smart constructor" for OrderId
/// string -> OrderId
let create str =
if String.IsNullOrEmpty(str) then
// use exceptions rather than Result for now
failwith "OrderId must not be null or empty"
elif str.Length > 50 then
failwith "OrderId must not be more than 50 chars
else
OrderId str

/// Extract the inner value from an OrderId

/// OrderId -> string

let value (OrderId str) = // unwrap in the parameter!
str // return the inner value

e The create function is similar to the guideline version, except that because
we are avoiding effects for now, we’ll use an exception (failwith) for errors
rather than returning a Result.

e The value function demonstrates how you can pattern-match and extract
the inner value in one step, directly in the parameter.

Using Function Types to Guide the Implementation

In the modeling chapters, we defined special function types to represent each
step of the workflow. Now that it’s time for implementation, how can we ensure
that our code conforms to them?


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 164

The simplest approach is just to define a function in the normal way and
trust that when we use it later, we’ll get a type-checking error if we get it
wrong. For example, we could define the validateOrder function as below, with
no reference to the ValidateOrder type that we designed earlier:

let validateOrder
checkProductCodeExists // dependency
checkAddressExists // dependency
unvalidatedOrder = // input

This is the standard approach for most F# code, but if we want to make it
clear that we are implementing a specific function type, we can use a different
style. We can write the function as a value (with no parameters) annotated
with the function type, and with the body of the function written as a lambda.
It looks like this:

// define a function signature
type MyFunctionSignature = Paraml -> Param2 -> Result

// define a function that implements that signature
let myFunc: MyFunctionSignature =
fun paraml param2 ->

Applying this approach to the validateOrder function gives us this:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->
// ~dependency ~dependency ~input

What's nice about this is that all the parameters and the return value have
types determined by the function type, so if you make a mistake in the
implementation, you get an error locally, right inside the function definition,
rather than later, when you are trying to assemble the functions.

Here’s an example of type checking at work, where we accidentally pass an
integer to the checkProductCodeExists function:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->
if checkProductCodeExists 42 then
// compiler error *
// This expression was expected to have type ProductCode
// but here has type int


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Implementing the Validation Step ® 165

If we did not have the function type in place to determine the types of the
parameters, the compiler would use type inference and might conclude that
checkProductCodeExists works with integers, leading to (possibly confusing) com-
piler errors elsewhere.

Implementing the Validation Step

We can now start implementing the validation step. The validation step will
take the unvalidated order, with all its primitive fields, and transform it into
a proper, fully validated domain object.

We modeled the function types for this step like this:

type CheckAddressExists =
UnvalidatedAddress -> AsyncResult<CheckedAddress,AddressValidationError>

type ValidateOrder =
CheckProductCodeExists // dependency
-> CheckAddressExists // AsyncResult dependency
-> UnvalidatedOrder // input
-> AsyncResult<ValidatedOrder,ValidationError list> // output

As we said, we're going to eliminate the effects for this chapter, so we can
remove the AsyncResult parts, leaving us with this:

type CheckAddressExists =
UnvalidatedAddress -> CheckedAddress

type ValidateOrder =
CheckProductCodeExists // dependency
-> CheckAddressExists // dependency
-> UnvalidatedOrder // input
-> ValidatedOrder // output

Let’s convert this into an implementation. The steps to create a ValidatedOrder
from an UnvalidatedOrder will be as follows:

¢ Create an Orderld domain type from the corresponding Orderld string in the
unvalidated order.

¢ Create a Customerinfo domain type from the corresponding UnvalidatedCustomer-
Info field in the unvalidated order.

¢ Create an Address domain type from the corresponding ShippingAddress field
in the unvalidated order, which is an UnvalidatedAddress.

¢ Do the same for BillingAddress and all the other properties.

¢ Once we have all the components of the ValidatedOrder available, we can
then create the record in the usual way.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 166

Here’s what that looks like in code:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->

let orderld =
unvalidatedOrder.OrderId
|> OrderId.create

let customerInfo =
unvalidatedOrder.CustomerInfo
|> toCustomerInfo // helper function

let shippingAddress =
unvalidatedOrder.ShippingAddress
|> toAddress // helper function

// and so on, for each property of the unvalidatedOrder

// when all the fields are ready, use them to
// create and return a new "ValidatedOrder" record

{
OrderId = orderlId

CustomerInfo = customerInfo
ShippingAddress = shippingAddress
BillingAddress = ...

Lines = ...

}

You can see that we are using some helper functions, such as toCustomerinfo
and toAddress, that we have yet to define. These functions construct a domain
type from an unvalidated type. For example, toAddress will convert an Unvali-
datedAddress type to the corresponding domain type Address and will raise errors
if the primitive values in the unvalidated address don’t meet the constraints
(such as being non-null and less than 50 characters long).

Once we have all these helper functions in place, the logic to convert an
unvalidated order (or any non-domain type) to a domain type is straightfor-
ward: for each field of the domain type (in this case, ValidatedOrder) find the
corresponding field of the non-domain type (UnvalidatedOrder) and use one of
the helper functions to convert the field into a domain type.

We can use exactly the same approach when converting the subcomponents
of an order as well. For example, here is the implementation of toCustomerinfo,
which builds a Customerinfo from an UnvalidatedCustomerinfo:

let toCustomerInfo (customer:UnvalidatedCustomerInfo) : CustomerInfo =
// create the various CustomerInfo properties
// and throw exceptions if invalid
let firstName = customer.FirstName |> String50.create
let lastName = customer.LastName |> String50.create


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Implementing the Validation Step * 167

let emailAddress = customer.EmailAddress |> EmailAddress.create

// create a PersonalName

let name : PersonalName = {
FirstName = firstName
LastName = lastName

}

// create a CustomerInfo

let customerInfo : CustomerInfo = {
Name = name
EmailAddress = emailAddress
}

// ... and return it

customerInfo

Creating a Valid, Checked Address

The toAddress function is a bit more complex, since it not only needs to convert
the raw primitive types to domain objects but also has to check that the
address exists as well (using the CheckAddressExists service). Here’s the complete
implementation, with comments below:

let toAddress (checkAddressExists:CheckAddressExists) unvalidatedAddress =
// call the remote service
let checkedAddress = checkAddressExists unvalidatedAddress
// extract the inner value using pattern matching
let (CheckedAddress checkedAddress) = checkedAddress

let addressLinel =

checkedAddress.AddressLinel |> String50.create
let addressLine2 =

checkedAddress.AddressLine2 |> String50.createOption
let addressLine3 =

checkedAddress.AddressLine3 |> String50.createOption
let addressLined4 =

checkedAddress.AddressLine4 |> String50.createOption
let city =

checkedAddress.City |> String50.create
let zipCode =

checkedAddress.ZipCode |> ZipCode.create
// create the address
let address : Address = {

AddressLinel = addressLinel

AddressLine2 = addressLine2

AddressLine3 = addressLine3

AddressLine4 = addressLine4

City = city
ZipCode = zipCode
}

// return the address
address


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 168

Note that we’re referring to another constructor function in the String50 mod-
ule—String50.createOption—that allows the input to be null or empty, and returns
None for that case.

The toAddress function needs to call checkAddressExists, so we have added it as a
parameter; now pass that function along from the parent validateOrder function:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->

let orderId = ...

let customerInfo = ...

let shippingAddress =
unvalidatedOrder.ShippingAddress
|> toAddress checkAddressExists // new parameter

You might wonder why we are only passing in one parameter to toAddress when
it actually has two. The second parameter (the shipping address) is being
provided but via the piping process. This is an example of the partial applica-
tion technique that we talked about earlier on page 153.

Creating the Order Lines

Creating the list of order lines is more complex yet again. First, we need a
way to transform a single UnvalidatedOrderLine to a ValidatedOrderLine. Let’s call it
toValidatedOrderLine:

let toValidatedOrderLine checkProductCodeExists
(unvalidatedOrderLine:UnvalidatedOrderLine) =
let orderLineld =
unvalidatedOrderLine.OrderLineld
|> OrderLineId.create
let productCode =
unvalidatedOrderLine.ProductCode
|> toProductCode checkProductCodeExists // helper function
let quantity =
unvalidatedOrderLine.Quantity
|> toOrderQuantity productCode // helper function
let validatedOrderLine = {
OrderLineld = orderlLineld
ProductCode = productCode
Quantity = quantity
}

validatedOrderLine

This is similar to the toAddress function above. There are two helper functions,
toProductCode and toOrderQuantity, which we will discuss shortly.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Implementing the Validation Step ® 169

And now, since we have a way to transform each element in the list, we can
transform the whole list at once using List.map (the equivalent of Select in C#
LINQ), giving us a list of ValidatedOrderLines that we can use in a ValidatedOrder:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->

let orderld = ...
let customerInfo = ...
let shippingAddress = ...

let orderLines =
unvalidatedOrder.Lines
// convert each line using ‘toValidatedOrderLine’
|> List.map (toValidatedOrderLine checkProductCodeExists)

Let’s look at the helper function toOrderQuantity next. This is a good example of
validation at the boundary of a bounded context: the input is a raw unvalidat-
ed decimal from UnvalidatedOrderLine, but the output (OrderQuantity) is a choice
type with different validations for each case. Here’s the code:

let toOrderQuantity productCode quantity =
match productCode with
| Widget _ ->
quantity
|> int // convert decimal to int
|> UnitQuantity.create // to UnitQuantity
|> OrderQuantity.Unit // lift to OrderQuantity type
| Gizmo  ->
quantity
|> KilogramQuantity.create // to KilogramQuantity
|> OrderQuantity.Kilogram // lift to OrderQuantity type

We're using the case of the ProductCode choice type to guide the constructor.
For example, if the ProductCode is a Widget, then we cast the raw decimal into
an int and create a UnitQuantity from that. And similarly for the GizmoCode case.

But we can’t stop there. If we did, one branch would return a UnitQuantity and
the other would return a KilogramQuantity. These are different types, so we would
get a compiler error. By converting both branches into the choice type
OrderQuantity, we ensure that both branches return the same type and keep
the compiler happy!

The other helper function, toProductCode, should at first glance be straightforward
to implement. We want to write our functions using pipelines as much as
possible, so the code should look something like this:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 170

let toProductCode (checkProductCodeExists:CheckProductCodeExists) productCode
productCode
|> ProductCode.create
|> checkProductCodeExists
// returns a bool :(

But now we have a problem. We want the toProductCode function to return a
ProductCode, but the checkProductCodeExists function returns a bool, which means
the whole pipeline returns a bool. Somehow, then, we need to make checkPro-
ductCodeExists return a ProductCode instead. Oh dear, does that mean we have to
change our spec? Luckily, no. Let’s see how.

Creating Function Adapters

We have a function that returns a bool, but we really want a function that
returns the original ProductCode input (if everything goes well). Rather than
changing the spec, let’s create an “adapter” function that takes the original
function as input and emits a new function with the right “shape” to be used
in the pipeline.

Original function

Product iiiii == | Pool |

Input 5 T Output

dapted function

S

o
o
Q.
®
o
[\

Here’s the obvious implementation, with parameters for the bool-returning
predicate (checkProductCodeExists) and the value to check (productCode):

let convertToPassthru checkProductCodeExists productCode =
if checkProductCodeExists productCode then
productCode
else
failwith "Invalid Product Code"

What's interesting about this implementation is that the compiler has deter-
mined that it is completely generic—it’s not specific to our particular case at
all! If you look at the function signature, you'll see there’s no mention of the
ProductCode type anywhere:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Implementing the Validation Step ® 171

val convertToPassthru :
checkProductCodeExists:('a -> bool) -> productCode:'a -> 'a

In fact, we've accidentally created a generic adapter that will convert any
predicate function into a “passthrough” function suitable for a pipeline.
Calling the parameters “checkProductCodeExists” or “productCode” doesn’t
make sense now—they could be anything at all. This is the reason so many
standard library functions have such short parameter names, such as f and
g for function parameters, and x and y for other values.

Let’s rewrite the function to use more abstract names, then, like this:

let predicateToPassthru f x =
if f x then
X
else
failwith "Invalid Product Code"

And now the hard-coded error message sticks out, so let’s parameterize that
too. Here’s the final version:
let predicateToPassthru errorMsg f x =
if f x then
X

else
failwith errorMsg

Note that we have put the error message first in the parameter order so that
we can bake it in with partial application.

The signature of this function is this:

val predicateToPassthru : errorMsg:string -> f:('a -> bool) -> x:'a -> 'a

We can interpret this as, “You give me an error message and a function of
type 'a -> bool, and I'll give you back a function of type 'a -> 'a.” This predicate-
ToPassthru function is thus a “function transformer”—you feed it one function
and it'll transform it into another function.

This technique is extremely common in functional programming, so it's
important to understand what’s going on and to recognize the pattern when
you see it. Even the humble List. map function can be thought of as a function
transformer—it transforms a “normal” function 'a -> 'b into a function that
works on lists (‘a list -> 'b list).

OK, now let’s use this generic function to create a new version of toProductCode
that we can use in our implementation:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 172

let toProductCode (checkProductCodeExists:CheckProductCodeExists) productCode =

// create a local ProductCode -> ProductCode function

// suitable for using in a pipeline

let checkProduct productCode =
let errorMsg = sprintf "Invalid: %A" productCode
predicateToPassthru errorMsg checkProductCodeExists productCode

// assemble the pipeline
productCode

|> ProductCode.create

|> checkProduct

And that’s it—nmow we have a basic sketch of a validateOrder implementation
that we can build on. Notice that the low-level validation logic, such as “a
product must start with a W or a G,” is not explicitly implemented in our
validation functions but is built into the constructors of the constrained
simple types, such as Orderld and ProductCode. Using types can boost our confi-
dence that the code is correct—the very fact that we can successfully create
a ValidatedOrder from an UnvalidatedOrder means we can trust that it is validated!

Implementing the Rest of the Steps

Now that we've seen how to implement validateOrder, we can use the same
techniques to build the rest of the pipeline functions.

Here’s the original design of the pricing step function, with effects:

type PriceOrder =
GetProductPrice // dependency
-> ValidatedOrder // input
-> Result<PricedOrder, PlaceOrderError> // output

But again, we’ll eliminate the effects for now, leaving this design:

type GetProductPrice = ProductCode -> Price
type PriceOrder =

GetProductPrice // dependency
-> ValidatedOrder // input
-> PricedOrder // output

And here’s the outline of the implementation. It simply transforms each order
line to a PricedOrderLine and builds a new PricedOrder with them:

let priceOrder : PriceOrder =
fun getProductPrice validatedOrder ->
let lines =
validatedOrder.Lines
|> List.map (toPricedOrderLine getProductPrice)
let amountToBill =
lines


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Implementing the Rest of the Steps ® 173

// get each line price
|> List.map (fun line -> line.LinePrice)
// add them together as a BillingAmount
|> BillingAmount.sumPrices
let pricedOrder : PricedOrder = {
OrderId = validatedOrder.OrderId
CustomerInfo = validatedOrder.CustomerInfo
ShippingAddress = validatedOrder.ShippingAddress
BillingAddress = validatedOrder.BillingAddress
Lines = lines
AmountToBill = amountToBill

}
pricedOrder

By the way, if you have many steps in the pipeline and you don’t want to
implement them yet (or don’'t know how to), you can just fail with a “not
implemented” message, like this:

let priceOrder : PriceOrder =
fun getProductPrice validatedOrder ->
failwith "not implemented"

Using a “not implemented” exception can be convenient when sketching out
an implementation. It allows us to ensure that our project is fully compilable
at all times. For example, we could use this approach to build a dummy ver-
sion of a particular pipeline stage that conforms to the function type and then
use it with the other stages before a proper implementation is available.

Going back to the implementation of priceOrder, we've introduced two new
helper functions: toPricedOrderLine and BillingAmount.sumPrices.

We’ve added the BillingAmount.sumPrices function to the shared BillingAmount module
(along with create and value). It simply adds up a list of Prices and wraps it as a
BillingAmount. Why have we defined a BillingAmount type in the first place? Because
it’s distinct from a Price and the validation rules might be different.

/// Sum a list of prices to make a billing amount

/// Raise exception if total is out of bounds

let sumPrices prices =
let total = prices |> List.map Price.value |> List.sum
create total

The toPricedOrderLine function is similar to what we’'ve seen before. It’s a helper
function that converts a single line only:

/// Transform a ValidatedOrderLine to a PricedOrderLine

let toPricedOrderLine getProductPrice (line:ValidatedOrderLine) : PricedOrderLine =
let gty = line.Quantity |> OrderQuantity.value
let price = line.ProductCode |> getProductPrice
let linePrice = price |> Price.multiply qty


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 174

OrderLineld = line.OrderLineld
ProductCode = line.ProductCode
Quantity = line.Quantity
LinePrice = linePrice

}

And within this function, we've introduced another helper function, Price.multiply,
to multiply a Price by a quantity.

/// Multiply a Price by a decimal qty.
/// Raise exception if new price 1is out of bounds.
let multiply qty (Price p) =

create (qty * p)

The pricing step is now complete!

Implementing the Acknowledgment Step
Here’s the design for the acknowledgment step, with effects removed:

type HtmlString = HtmlString of string
type CreateOrderAcknowledgmentLetter =
PricedOrder -> HtmlString

type OrderAcknowledgment = {
EmailAddress : EmailAddress
Letter : HtmlString
}

type SendResult = Sent | NotSent

type SendOrderAcknowledgment =
OrderAcknowledgment -> SendResult

type AcknowledgeOrder =

CreateOrderAcknowledgmentLetter // dependency
-> SendOrderAcknowledgment // dependency
-> PricedOrder // input

-> OrderAcknowledgmentSent option // output

And here’s the implementation:

let acknowledgeOrder : AcknowledgeOrder =
fun createAcknowledgmentLetter sendAcknowledgment pricedOrder ->
let letter = createAcknowledgmentLetter pricedOrder
let acknowledgment = {
EmailAddress = pricedOrder.CustomerInfo.EmailAddress
Letter = letter
}

// 1f the acknowledgment was successfully sent,

// return the corresponding event, else return None
match sendAcknowledgment acknowledgment with

| Sent ->


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Implementing the Rest of the Steps ® 175

let event {
OrderlId pricedOrder.OrderId
EmailAddress = pricedOrder.CustomerInfo.EmailAddress
}
Some event
| NotSent ->
None

The implementation is straightforward. No helper functions were needed, so
that was easy!

What about the sendAcknowledgment dependency, though? At some point, we’ll
have to decide on an implementation for it. However, for now we can just
leave it alone. That’s one of the great benefits of using functions to parame-
terize dependencies—you can avoid making decisions until the last responsible
moment, yet you can still build and assemble most of the code.

Creating the Events

Finally, we just need to create the events to be returned from the workflow.
Let’s add a wrinkle to the requirements and say that the billing event should
only be sent when the billable amount is greater than zero. Here’s the design:

/// Event to send to shipping context
type OrderPlaced = PricedOrder

/// Event to send to billing context
/// Will only be created if the AmountToBill is not zero
type BillableOrderPlaced = {

OrderId : OrderlId

BillingAddress: Address

AmountToBill : BillingAmount

}

type PlaceOrderEvent =
| OrderPlaced of OrderPlaced
| BillableOrderPlaced of BillableOrderPlaced
| AcknowledgmentSent of OrderAcknowledgmentSent

type CreateEvents =

PricedOrder // input
-> OrderAcknowledgmentSent option // input (event from previous step)
-> PlaceOrderEvent list // output

We don’t need to create the OrderPlaced event because it’s just the same as the
PricedOrder event; and the OrderAcknowledgmentSent event will have been created
in the previous step, so we don’t need to create it either.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 176

The BillableOrderPlaced event is needed, though, so let’s make a createBillingEvent
function. And because we need to test for a non-zero billing amount, the
function must return an optional event.

// PricedOrder -> BillableOrderPlaced option
let createBillingEvent (placedOrder:PricedOrder) : BillableOrderPlaced option
let billingAmount = placedOrder.AmountToBill |> BillingAmount.value
if billingAmount > OM then
let order = {
OrderId = placedOrder.OrderId
BillingAddress = placedOrder.BillingAddress
AmountToBill = placedOrder.AmountToBill
}
Some order
else
None

So now we have an OrderPlaced event, an optional OrderAcknowledgmentSent event,
and an optional BillableOrderPlaced. How should we return them? We’ll use the
“lowest common multiple” approach on page 158 to convert everything to a

common type.

We decided earlier that we would create a choice type (PlaceOrderEvent) for each
one and then return a list of those. So first we need to convert each event to
the choice type. For the OrderPlaced event, we can just use the PlaceOrderEvent.Order-
Placed constructor directly, but for OrderAcknowledgmentSent and BillableOrderPlaced,
we need to use Option.map, since they are optional.

let createEvents : CreateEvents =
fun pricedOrder acknowledgmentEventOpt ->

let eventl =
pricedOrder
// convert to common choice type
|> PlaceOrderEvent.OrderPlaced

let event20pt =
acknowledgmentEventOpt
// convert to common choice type
|> Option.map PlaceOrderEvent.AcknowledgmentSent

let event30pt =
pricedOrder
|> createBillingEvent
// convert to common choice type
|> Option.map PlaceOrderEvent.BillableOrderPlaced

// return all the events how?


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Implementing the Rest of the Steps ¢ 177

Now they're all the same type, but some are optional. How should we deal
with that? Well, we’ll do the same trick again and convert them all to a more
general type—in this case, a list.

For OrderPlaced we can convert it to a list using List.singleton, and for the options
we can create a helper called listOfOption:

/// convert an Option into a List
let listOfOption opt =

match opt with

| Some x -> [x]

| None -> []

With that, all three event types are the same and we can return them inside
another list:

let createEvents : CreateEvents =
fun pricedOrder acknowledgmentEventOpt ->

let eventsl =
pricedOrder
// convert to common choice type
|> PlaceOrderEvent.OrderPlaced
// convert to list
|> List.singleton

let events2 =
acknowledgmentEventOpt
// convert to common choice type
|> Option.map PlaceOrderEvent.AcknowledgmentSent
// convert to list
|> listOfOption

let events3 =
pricedOrder
|> createBillingEvent
// convert to common choice type
|> Option.map PlaceOrderEvent.BillableOrderPlaced
// convert to list
|> listOfOption

// return all the events
[

yield! eventsl

yield! events2

yield! events3

1

This approach of converting or “lifting” non-compatible things to a shared
type is a key technique for handling composition problems. For example, in
the next chapter we’ll use it to deal with the mismatch between different kinds
of Result types.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 178

Composing the Pipeline Steps Together

Now we're ready to complete the workflow by composing the implementations
of the steps into a pipeline. We want the code to look something like this:

let placeOrder : PlaceOrderWorkflow =
fun unvalidatedOrder ->
unvalidatedOrder
|> validateOrder
|> priceOrder
|> acknowledgeOrder
|> createEvents

But we have a problem, which is that validateOrder has two extra inputs in
addition to UnvalidatedOrder. As it stands, there’s no easy way to connect the
input of the PlaceOrder workflow to the validateOrder function, because the inputs
and outputs don’t match.

From workflow dependencies
/input
Unvalidated CheckProduct | CheckAddress | Unvalidated 3 \alidated
Orider > Codekxists Exists Orlder \alidate Order Order

priceOrder has two inputs, so it can’t be connected to the output of validateOrder:

dependency

; Validated GetProduct | alidated i Priced
\alidate Order (V7590 —>x etPPrroceuct oo | Price Order | Frced

As we noted on page 136, composing functions with different “shapes” like this
is one of the main challenges in functional programming, and many techniques
have been developed to solve the problem. Most solutions involve the dreaded
“monad,” so for now we’ll use a very simple approach, which is to use partial
application, as presented on page 153. What we'll do is apply just two of the

three parameters to validateOrder (the two dependencies), giving us a new
function with only one input.

From workflow

J input
Unvalidated Unvalidated 3 \alidated
malidated| / proluges \alidate Order e
CheckProduct || CheckAddress
Codekxists Exists
X Pl

dey endev}cies baked in
with partial application


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Composing the Pipeline Steps Together ® 179

In code, it would look like this:

let validateOrderWithDependenciesBakedIn =
validateOrder checkProductCodeExists checkAddressExists

// new function signature after partial application:
// UnvalidatedOrder -> ValidatedOrder

Of course, that’s a horrible name! Luckily in F#, you can use the same name
(validateOrder) locally for the new function as well—this is called “shadowing”:

let validateOrder =
validateOrder checkProductCodeExists checkAddressExists

Alternatively, you can use a tick mark in the name (validateOrder') to show that
it’s a variant of the original function, like this:

let validateOrder' =
validateOrder checkProductCodeExists checkAddressExists

We can bake in the dependencies to priceOrder and acknowledgeOrder in the same
way, so that they also become functions with a single input parameter.

. Validated Validated g Priced
\alidate Order | V5 Rted | / sdated | Price Order | Priced

Get Product
Price

depend>\c boked in
with partial application

The main workflow function, placeOrder, would now look something like this:
let placeOrder : PlaceOrderWorkflow =

// set up local versions of the pipeline stages
// using partial application to bake in the dependencies
let validateOrder =
validateOrder checkProductCodeExists checkAddressExists
let priceOrder =
priceOrder getProductPrice
let acknowledgeOrder =
acknowledgeOrder createAcknowledgmentlLetter sendAcknowledgment

// return the workflow function
fun unvalidatedOrder ->

// compose the pipeline from the new one-parameter functions
unvalidatedOrder

|> validateOrder

|> priceOrder

|> acknowledgeOrder

|> createEvents


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ¢ 180

Sometimes, even by doing this, the functions don't fit together. In our case,
the output of acknowledgeOrder is just the event, not the priced order, so it doesn’t
match the input of createEvents.

We could write a little adapter for this, or we could simply switch to a more
imperative style of code, where the output of each step is explicitly assigned
to a value, like this:

let placeOrder : PlaceOrderWorkflow =
// return the workflow function
fun unvalidatedOrder ->
let validatedOrder =
unvalidatedOrder
|> validateOrder checkProductCodeExists checkAddressExists
let pricedOrder =
validatedOrder
|> priceOrder getProductPrice
let acknowledgmentOption =
pricedOrder
|> acknowledgeOrder createAcknowledgmentlLetter sendAcknowledgment
let events =
createEvents pricedOrder acknowledgmentOption
events

It's not quite as elegant as the pipeline, but it’s still easy to understand and
maintain.

Next issue: Where do checkProductCodeExists and checkAddressExists and priceOrder
and the other dependencies come from? We don’t want to have to define them
globally, so let’s look at how to “inject” these dependencies.

Injecting Dependencies

We have a number of low-level helper functions, such as toValidProductCode, that
take a function parameter representing a service. These are quite deep in the
design, so how do we get dependencies from the top level down to the functions
that need them?

If we were doing object-oriented programming, we would use dependency
injection, and possibly an IoC container. In functional programming, we don’t
want to do that because the dependencies become implicit. Instead we always
want to pass dependencies around as explicit parameters, which ensures
that the dependencies are obvious.

There are a number of techniques for doing this kind of thing in functional
programming, such as the “Reader Monad” and the “Free Monad,” but since
this is an introductory book, we’ll stick with the simplest approach, which is


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Injecting Dependencies ® 181

to pass all the dependencies into the top-level function, which then passes
them into the inner functions, which in turn passes them down to their inner
functions, and so on.

Let’s say that we implemented the helper functions as we defined them earlier:

// low-level helper functions
let toAddress checkAddressExists unvalidatedAddress =

let toProductCode checkProductCodeExists productCode =

They both have an explicit parameter for their dependency.

Now as part of creating an order line, we need to create a product code, so
that means that toValidatedOrderLine needs to use toProductCode, which implies
that toValidatedOrderLine also needs to have the checkProductCodeExists parameter:

// helper function
let toValidatedOrderLine checkProductExists unvalidatedOrderLine =
// ~ needed for toProductCode, below

// create the components of the line
let orderLineld = ...
let productCode =
unvalidatedOrderLine.ProductCode
|> toProductCode checkProductExists //use service

And moving one level up, the validateOrder function needs to use both toAddress
and toValidatedOrderLine, so it in turn needs both services to be passed in as extra
parameters:

let validateOrder : ValidateOrder =
fun checkProductExists // dependency for toValidatedOrderLine
checkAddressExists  // dependency for toAddress
unvalidatedOrder ->

// build the validated address using the dependency
let shippingAddress =
unvalidatedOrder.ShippingAddress
|> toAddress checkAddressExists

// build the validated order lines using the dependency
let lines =

unvalidatedOrder.Lines

|> List.map (toValidatedOrderLine checkProductExists)


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 182

And so on up the chain until you get to a top-level function that sets up all
the services and other dependencies. In object-oriented design this top-level
function is generally called the composition root, so let’s use that term here.

Should the placeOrder workflow function act as the composition root? No,
because setting up the services will typically involve accessing configuration,
and so on. Better that the placeOrder workflow itself be provided with the services
it needs as parameters, like this:

let placeOrder

checkProductExists // dependency
checkAddressExists // dependency
getProductPrice // dependency
createOrderAcknowledgmentlLetter // dependency
sendOrderAcknowledgment // dependency
: PlaceOrderWorkflow = // function definition

fun unvalidatedOrder ->

This has the added benefit that the entire workflow is easily testable because
all the dependencies are fake-able.

In practice, the composition root function should be as close as possible to
the application’s entry point—the main function for console apps or the
OnStartup/Application_Start handler for long-running apps such as web services.

Here’s an example of a composition root for a web service using the Suave
framework.' First the services are set up, then the workflows are passed all
their dependencies, and finally the routings are set up in order to direct the
input to the appropriate workflow:

let app : WebPart =

// set up the services used by the workflow
let checkProductExists = ...

let checkAddressExists = ...

let getProductPrice = ...

let createOrderAcknowledgmentLetter = ...
let sendOrderAcknowledgment = ...

let toHttpResponse = ...

// set up the "placeOrder" workflow
// by partially applying the services to it
let placeOrder =
placeOrder
checkProductExists
checkAddressExists

1. https://suave.io/


https://suave.io/
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Injecting Dependencies ® 183

getProductPrice
createOrderAcknowledgmentLetter
sendOrderAcknowledgment

// set up the other workflows
let changeOrder = ...
let cancelOrder = ...

// set up the routing
choose
[ POST >=> choose
[ path "/placeOrder"
>=> deserializeOrder // convert JSON to UnvalidatedOrder
>=> placeOrder // do the workflow
>=> postEvents // post the events onto queues
>=> toHttpResponse // return 200/400/etc based on the output
path "/changeOrder"
>=>
path "/cancelOrder"
>=> ...

]
]

You can see that if the path is /placeOrder, we start the “place order” process,
starting with deserializing the input, then calling the main placeOrder pipeline,
then posting the events, and then converting the output to an HTTP response.
We don’t have space to discuss the functions other than placeOrder, but dese-
rialization techniques are discussed in the Serialization chapter on page 221.

Too Many Dependencies?

validateOrder has two dependencies. What happens if it needs four or five, or
more? And if other steps need lots of other dependencies, you might have an
explosion of them. If this happens, what should you do?

First, it may be that your function is doing too many things. Can you split it
into smaller pieces? If that’s not possible, you could group the dependencies
into a single record structure, say, and pass that around as one parameter.

A common situation is when the dependencies for the child functions are par-
ticularly complicated in turn. For example, let’s say that the checkAddressExists
function is talking to a web service that requires a URI endpoint and credentials:

let checkAddressExists endPoint credentials =

Are we going to have to pass these extra two parameters into the caller of
toAddress as well, like this?


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 184

let toAddress checkAddressExists endPoint credentials unvalidatedAddress =
// only ”~ needed ~ for checkAddressExists

// call the remote service
let checkedAddress = checkAddressExists endPoint credentials unvalidatedAddress
// 2 extra parameters ”~ passed in *

Then we’d also have to pass these extra parameters into the caller of toAddress,
and so on, all the way to the top:

let validateOrder
checkProductExists
checkAddressExists
endPoint // only needed for checkAddressExists
credentials // only needed for checkAddressExists
unvalidatedOrder =

No, of course we shouldn’t do this. These intermediate functions shouldn’t
need to know anything about the dependencies of the checkAddressExists function.
A much better approach is to set up the low-level functions outside the top-
level function and then just pass in a prebuilt child function with all of its
dependencies already baked in.

For example, in the code below, we bake the URI and credentials into the
checkAddressExists function during setup so that it can be used as a one-
parameter function thereafter. This simplified function can be passed in
everywhere just as before:

let placeOrder : PlaceOrderWorkflow =

// initialize information (e.g from configuration)
let endPoint = ...
let credentials = ...

// make a new version of checkAddressExists

// with the credentials baked in

let checkAddressExists = checkAddressExists endPoint credentials
// etc

// set up the steps in the workflow
let validateOrder =
validateOrder checkProductCodeExists checkAddressExists

// the new checkAddressExists *
// is a one parameter function
// etc

// return the workflow function
fun unvalidatedOrder ->
// compose the pipeline from the steps


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Testing Dependencies ® 185

This approach of reducing parameters by passing in “prebuilt” helper functions
is a common technique that helps to hide complexity. When one function is
passed into another function, the “interface”—the function type—should be
as minimal as possible, with all dependencies hidden.

Testing Dependencies

One great thing about passing in dependencies like this is that it makes the
core functions very easy to test because it’s easy to provide fake, but working,
dependencies without any need for a special mocking library.

For example, say that we want to test whether the product code aspect of the
validation is working. One test should check that if the checkProductCodeExists
succeeds, the whole validation succeeds. And another test should check that
if the checkProductCodeExists fails, the whole validation fails. Let’s look at how to
write these tests now.

Here’s a tip before we start: F# allows you to create identifiers with spaces
and punctuation in them, as long as they are enclosed in double-backticks.
It’s not a good idea to do this for normal code, but for test functions it’s
acceptable because it makes the test output far more readable.

Here’s some sample code for the “success” case, using the Arrange/Act/Assert
model of testing:

open NUnit.Framework

[<Test>]
let " "If product exists, validation succeeds () =
// arrange: set up stub versions of service dependencies
let checkAddressExists address =
CheckedAddress address // succeed
let checkProductCodeExists productCode =
true // succeed

// arrange: set up input
let unvalidatedOrder = ...

// act: call validateOrder
let result = validateOrder checkProductCodeExists checkAddressExists ...

// assert: check that result is a ValidatedOrder, not an error

You can see that the stub versions of the checkAddressExists and checkProductCode-
Exists functions (that represent the services) are trivial to write and can be
defined right there in the test.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 186

We are using the NUnit framework to demonstrate testing here,
but you can use any .NET test framework, or even better, one of
the F#-friendly libraries, like FsUnit, Unquote, Expecto, or
FsCheck.

To write the code for the failure case, all we need to do is change the checkPro-
ductCodeExists function to fail for any product code:

let checkProductCodeExists productCode =
false // fail

Here’s the complete test:

[<Test>]
let " "If product doesn't exist, validation fails " () =
// arrange: set up stub versions of service dependencies
let checkAddressExists address = ...
let checkProductCodeExists productCode =
false // fail

// arrange: set up input
let unvalidatedOrder = ...

// act: call validateOrder
let result = validateOrder checkProductCodeExists checkAddressExists ...

// assert: check that result is a failure

Of course, for this chapter, we've said that a service failure will be indicated
by throwing an exception, which is something we want to avoid. We'll fix this
in the next chapter.

This is a tiny example, but already we can see the practical benefit of using
functional programming principles for testing:

e The validateOrder function is stateless. It’s not mutating anything, and if
you call it with the same input you get the same output. This makes the
function simple to test.

¢ All dependencies are explicitly passed in, making it easy to understand
how it works.

¢ All side effects are encapsulated in parameters, not directly in the function
itself. Again, this makes the function simple to test and simple to control
what the side effects are.

Testing is a large topic that we don’t have space to go into here. Here are some
popular F#-friendly testing tools that are worth investigating:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

The Assembled Pipeline ¢ 187

® FsUnit wraps standard test frameworks like NUnit and XUnit with F#-

friendly syntax.

e Unquote shows all the values leading up to a test failure (“unrolling the

stack,” as it were).

¢ If you're only familiar with “example-based” testing approaches such as

NUnit, you should definitely look into the “property-based” approach to
testing. FsCheck is the main property-based testing library for F#.

e Expecto is a lightweight F# testing framework that uses standard functions

as test fixtures instead of requiring special attributes like [<Test>].

The Assembled Pipeline

We've seen the code in scattered fragments throughout this chapter. Let's
gather it all together and show how the complete pipeline would be assembled.

1.

2.
3.
4.

We put all the code that implements a particular workflow in the same
module, named after the workflow (PlaceOrderWorkflow.fs, for example).

At the top of the file, we put the type definitions.
After that, we put the implementations for each step.

At the very bottom, we assemble the steps into the main workflow function.

In order to save space, we’ll just show an outline of the file content. If you
would like to see the complete file, all the code for this chapter is available

in the code repository associated with this book.

First, then, the types:

Now the types of the workflow that are “public” (part of the contract with the
caller of the workflow) will be defined elsewhere, perhaps in an APl module,
so we only need to include in this file the types (designed in Modeling Worl-

module PlaceOrderWorkflow =

// make the shared simple types (such as
// String50 and ProductCode) available.
open SimpleTypes

// make the public types exposed to the
// callers available
open API

//
// Part 1: Design
//



http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 188

// NOTE: the public parts of the workflow -- the API --

// such as the ‘PlaceOrderWorkflow™ function and its

// input ‘UnvalidatedOrder, are defined elsewhere.

// The types below are private to the workflow implementation.

/] - Validate Order -----

type CheckProductCodeExists =
ProductCode -> bool
type CheckedAddress =
CheckedAddress of UnvalidatedAddress
type CheckAddressExists =
UnvalidatedAddress -> CheckedAddress
type ValidateOrder =
CheckProductCodeExists // dependency
-> CheckAddressExists // dependency

-> UnvalidatedOrder // input
-> ValidatedOrder // output
// ----- Price order -----

type GetProductPrice = ...
type PriceOrder = ...
// etc

After the types, in the same file, we can put the implementations that are
based on those types. Here’s the first step, validateOrder, summarized from
implementation earlier in this chapter, on page 165.

//
// Part 2: Implementation
//

[/ s
// ValidateOrder implementation
[/ e

let toCustomerInfo (unvalidatedCustomerInfo: UnvalidatedCustomerInfo) =

let toAddress (checkAddressExists:CheckAddressExists) unvalidatedAddress =

let predicateToPassthru = ...

let toProductCode (checkProductCodeExists:CheckProductCodeExists) productCode =

let toOrderQuantity productCode quantity =

let toValidatedOrderLine checkProductExists (unvalidatedOrderLine:UnvalidatedOrderLine) =

/// Implementation of ValidateOrder step


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

The Assembled Pipeline ¢ 189

let validateOrder : ValidateOrder =

fun checkProductCodeExists checkAddressExists unvalidatedOrder ->
let orderld =
unvalidatedOrder.OrderId
|> OrderId.create
let customerInfo = ...
let shippingAddress = ...
let billingAddress = ...
let lines =
unvalidatedOrder.Lines
|> List.map (toValidatedOrderLine checkProductCodeExists)
let validatedOrder : ValidatedOrder = {
OrderId = orderlId
CustomerInfo = customerInfo
ShippingAddress = shippingAddress
BillingAddress = billingAddress
Lines = lines
}
validatedOrder

We'll skip over the implementations of the rest of the steps (again, you can

see all the code in the repository associated with this book) and jump to the

very bottom of the file, where the top-level PlaceOrder function is implemented:

// The complete workflow

let placeOrder

checkProductExists // dependency
checkAddressExists // dependency
getProductPrice // dependency
createOrderAcknowledgmentLetter // dependency
sendOrderAcknowledgment // dependency
: PlaceOrderWorkflow = // definition of function

fun unvalidatedOrder ->
let validatedOrder =
unvalidatedOrder
|> validateOrder checkProductExists checkAddressExists
let pricedOrder =
validatedOrder
|> priceOrder getProductPrice
let acknowledgmentOption =
pricedOrder

|> acknowledgeOrder createOrderAcknowledgmentLetter sendOrderAcknowledgment

let events =
createEvents pricedOrder acknowledgmentOption
events


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 9. Implementation: Composing a Pipeline ® 190

Wrapping Up

In this chapter, we concentrated entirely on implementing the steps in the
pipeline and working with dependencies. The implementation for each step
was narrowly focused on doing just one incremental transformation and was
easy to reason about and test in isolation.

When it came time to compose the steps, the types didn’t always match up,
so we introduced three important functional programming techniques:

e Using an “adapter function” to transform a function from one “shape” to
a different shape—in this case, to change the output of checkProductCodeExists
from a bool to a ProductCode

e “Lifting” disparate types into a common type, as we did with the events,
converting them all to the common PlaceOrderEvent type

* Using partial application to bake dependencies into a function, allowing
the function to be composed more easily and also hiding unneeded
implementation details from callers

We'll be using these same techniques again later in this book.

There’s one area we haven’t addressed yet. In this chapter we avoided working
with effects and instead used exceptions for error handling. That was conve-
nient for composition but horrible for documentation, leading to deceptive
function signatures rather than the more explicit ones that we’d prefer. In
the next chapter, we’ll rectify that. We’ll add all the Result types back into the
function types and learn how to work with them.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

cHAPTER 10

Implementation: Working with Errors

What happens if a product code is malformed, or a customer name is too
long, or the address validation service times out? Any system will have errors,
and how we handle them is important. Consistent and transparent error
handling is critical to any kind of production-ready system.

In the previous chapter, we deliberately removed the error “effect” (the Result
type) from the steps in the pipeline so that we could focus on composition
and dependencies.

But this effect is important! In this chapter, we’ll restore the Result to the type
signatures and learn how to work with them.

More generally, we’ll explore the functional approach to error handling,
developing a technique that allows you to capture errors elegantly, without
contaminating your code with ugly conditionals and try/catch statements.
We'll also see why we should treat certain kinds of errors as domain errors,
deserving of the same attention as the rest of the domain-driven design.

Using the Result Type to Make Errors Explicit

Functional programming techniques focus on making things explicit as much
as possible, and this applies to error handling, too. We want to create functions
that are explicit about whether they succeeded or not, and if they failed, what
the error cases are.

All too often, errors are treated as second-class citizens in our code. But in
order to have a robust, production-worthy system, we should treat errors as
first-class citizens. And that goes double for errors that are part of the domain.

In the previous chapter, we used exceptions to raise errors. That was conve-
nient, but it meant that all the function signatures were misleading. For
example, the function to check an address had this signature:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 192

type CheckAddressExists =
UnvalidatedAddress -> CheckedAddress

This is extremely unhelpful because it doesn’t indicate what could go wrong.
Instead, what we want is a total function (see Total Functions, on page 154)
where all possible outcomes are documented exp11c1tlybythetype51gnature
As we have already learned in Modeling Errors, on page 70, we can use the

Result type to make it clear that the function could succeed or fail, and then
the signature would look something like this:

type CheckAddressExists =
UnvalidatedAddress -> Result<CheckedAddress,AddressValidationError>

and AddressValidationError =
| InvalidFormat of string
| AddressNotFound of string

This tells us several important things:
e The input is an UnvalidatedAddress.

e If the validation was successful, the output is a (possibly different)
CheckedAddress.

¢ If the validation was not successful, the reason is because the format was
invalid or because the address was not found.

This shows how a function signature can act as documentation. If another
developer comes along and needs to use these functions, they can tell a lot
about them just by looking at the signature.

Working with Domain Errors

Software systems are complex, and we can’t handle every conceivable error
using types like this, nor would we want to. So before we do anything else,
let’s come up with a consistent approach to classifying and handling errors.

We can classify errors into three groups:

e Domain Errors. These are errors that are to be expected as part of the
business process and therefore must be included in the design of the
domain, such as an order that is rejected by billing or an order that con-
tains an invalid product code. The business will already have procedures
in place to deal with this kind of thing, and the code will need to reflect
these processes.

e Panics. These are errors that leave the system in an unknown state,
such as unhandleable system errors (such as “out of memory”) or errors


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Working with Domain Errors ® 193

caused by programmer oversight (for example, “divide by zero” or “null
reference”).

e Infrastructure Errors. These are errors that are to be expected as part of
the architecture but are not part of any business process and are not
included in the domain, such as a network timeout or an authentication
failure.

Sometimes it’s not clear whether something is a domain error or not. If you're
unsure, just ask a domain expert!

You: Hi, Ollie. Quick question: If we get a connection abort accessing the load
balancer, is that something you care about?

Ollie: ????
You: OK, let’s just call that an infrastructure error and tell the user to try again later.
These different kinds of errors require different implementations.

Domain errors are part of the domain, like anything else, and so should be
incorporated into our domain modeling, discussed with domain experts, and
documented in the type system, if possible.

Panics are best handled by abandoning the workflow and raising an exception
that is then caught at the highest appropriate level (such as the main function
of the application or equivalent). Here’s an example:

/// A workflow that panics if it gets bad input
let workflowPart2 input =
if input = 0 then
raise (DivideByZeroException())

/// Top level function for the application
/// which traps all exceptions from workflows.
let main() =

// wrap all workflows in a try/with block
try
let resultl = workflowPartl()
let result2 = workflowPart2 resultl
printfn "the result is %A" result2

// top level exception handling
with
| :? OutOfMemoryException ->

printfn "exited with OutOfMemoryException"
| :? DivideByZeroException ->

printfn "exited with DivideByZeroException"
| ex ->

printfn "exited with %s" ex.Message


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 194

Infrastructure errors can be handled using either of the above approaches.
The exact choice depends on the architecture you're using. If the code consists
of many small services, then exceptions might be cleaner, but if you have a
more monolithic app, you might want to make the error handling more
explicit. In fact, it’s often useful to treat many infrastructure errors in the
same way as domain errors, because it will force us as developers to think
about what can go wrong. Indeed, in some cases, these kinds of errors will
need to be escalated to a domain expert. For example, if the remote address
validation service is unavailable, how should the business process change?
What should we tell the customers? Those kinds of questions cannot be
addressed by the development team alone but must be considered by the
domain experts and product owners as well.

In the rest of this chapter, we're only going to focus on errors that we want
to explicitly model as part of the domain. Panics and errors that we don’t
want to model should just throw exceptions and be caught by a top-level
function, as shown above.

Modeling Domain Errors in Types

When we were modeling the domain, we avoided using primitives such as
strings and instead created types that were domain-specific, using domain
vocabulary (the Ubiquitous Language).

Well, errors deserve to get the same treatment. If certain kinds of errors come
up in a discussion about the domain, they should be modeled just like
everything else in the domain. Generally we’ll model errors as a choice type,
with a separate case for each kind of error that needs special attention.

For example, we might model the errors in our order-placing workflow
like this:

type PlaceOrderError =
| ValidationError of string
| ProductOutOfStock of ProductCode
| RemoteServiceError of RemoteServiceError

¢ The ValidationError case would be used for the validation of properties, such
as any length or format errors.

e The ProductOutOfStock case would be used when the customer attempts to
buy an out-of-stock product. There might be a special business process
to handle this.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Working with Domain Errors ® 195

* The RemoteServiceError case is an example of how to handle an infrastructure
error. Rather than just throwing an exception, we could handle this case
by, say, retrying a certain number of times before giving up.

What's nice about using a choice type like this is that it acts as explicit docu-
mentation in the code of all the things that might go wrong. And any extra
information associated with the error is shown explicitly as well. Furthermore,
it’s not only easy to expand (or contract) the choice type as requirements
change, but it’s safe as well, because the compiler will ensure that any code
that pattern-matches against this list will have warnings if it misses a case.

When we were designing the workflow earlier (Chapter 7, Modeling Worlflows

dig deeply into exactly what they could be. That was deliberate. There’s no
need to try to define all possible errors up front during the design stage.
Typically, error cases will arise as the application is developed, and then you
can make a decision whether to treat them as domain errors or not. If a case
is a domain error, you can then add it to the choice type.

Of course, adding a new case to the choice type will probably cause warnings
in some of your code, saying you haven’t handled all the cases. That’s great,
because now you are forced to have a discussion with the domain expert or
product owner on what exactly to do for that case. When choice types are
used like this, it’s hard to accidentally overlook an edge case.

Error Handling Makes Your Code Ugly

One nice thing about exceptions is that they keep your “happy path” code
clean. For example, our validateOrder function in the previous chapter looked
like this (in pseudocode):

let validateOrder unvalidatedOrder =

let orderId = ... create order id (or throw exception)

let customerInfo = ... create info (or throw exception)

let shippingAddress = ... create and validate shippingAddress...
// etc

If we return errors from each step, then the code gets much uglier. We would
typically have conditionals after each potential error, as well as try/catch
blocks to trap potential exceptions. Here’s some more pseudocode that
demonstrates this:

let validateOrder unvalidatedOrder =
let orderIdResult = ... create order id (or return Error)
if orderIdResult is Error then
return


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 196

let customerInfoResult = ... create name (or return Error)
if customerInfoResult is Error then
return
try
let shippingAddressResult = ... create valid address (or return Error)
if shippingAddress is Error then
return
/] ..
with

| ?: TimeoutException -> Error "service timed out"
| ?: AuthenticationException -> Error "bad credentials"

// etc

The problem with this approach is that two-thirds of the code is now devoted
to error handling—our original simple and clean code has now been ruined.
We have a challenge: how can we introduce proper error handling while pre-
serving the elegance of the pipeline model?

Chaining Result-Generating Functions

Before we deal with our specific situation, we should step back and look at
the big picture. In general, if we have some Result-generating functions, how
can we compose them together in a clean way?

Here’s a visual representation of the problem. A normal function can be
visualized as piece of railroad track:

But a function with a Result output can be visualized as a railroad track that

splits into two, like this:

Failure

Success

I'm going to call these kinds of functions switch functions, after the railroad
analogy. They're often called “monadic” functions as well.

So how should we connect two of these “switch” functions? Well, if the output
is successful, we want to go on to the next function in the series, but if the
output is an error, we want to bypass it as shown in the figure on page 197.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chaining Result-Generating Functions ® 197

n
On success -

How do we combine these two switches so that both failure tracks are con-
nected? It’s obvious—like this:

e

And if you connect all the steps in the pipeline in this way, you get what I
call the “two-track” model of error handling, or “railroad-oriented program-
ming,” which looks like this:

In this approach, the top track is the happy path, and the bottom track is
the failure path. You start off on the success track, and if you're lucky you
stay on it to the end. But if there is an error, you get shunted onto the failure
track and bypass the rest of the steps in the pipeline.

This looks great but there’s a big problem: we can’t compose these kinds of
result-generating functions together, because the type of the two-track output
is not the same as the type of the one-track input:

How can we solve this issue? How can we connect a two-track output to a

one-track input? Well, let’s observe that if the second function had a two-track
input, then there would be no problem connecting them:

Tl Ve e

report erratum - discuss


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ¢ 198

So we need to convert a “switch” function, with one input and two outputs, into
a two-track function. To do this, let’s create a special “adapter block” that has
a slot for a switch function and which converts it into a two-track function:

/ Slot for input \
function

If we then convert all our steps into two-track functions, we can compose
them together nicely after they have been converted:

W7
W
"

The final result is a two-track pipeline, with a “success” track and a “failure”
track, just as we want.

Implementing the Adapter Blocks

We discussed the concept of “function adapters” earlier on page 170. The
adapter that converts switch functions to two-track functions is a very
important one in the functional programming toolkit—it's commonly called
bind or flatMap in FP terminology. It’s surprisingly easy to implement. Here’s

the logic:

report erratum -« discuss


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chaining Result-Generating Functions ® 199

e The input is a “switch” function. The output is a new two-track-only
function, represented as a lambda that has a two-track input and a two-
track output.

¢ If the two-track input is a success, then pass that input to the switch
function. The output of the switch function is a two-track value, so we
don’t need to do anything further with it.

¢ If the two-track input is a failure, then bypass the switch function and
return the failure.

The implementation in code looks like this:

let bind switchFn =
fun twoTrackInput ->
match twoTrackInput with
| Ok success -> switchFn success
| Error failure -> Error failure

An equivalent but more common implementation is to have two input
parameters to bind—the “switch” function and a two-track value (a Result)—and
to eliminate the lambda, like this:

let bind switchFn twoTrackInput =
match twoTrackInput with
| Ok success -> switchFn success
| Error failure -> Error failure

Both implementations of bind are equivalent: the second implementation, when
curried, is the same as the first (see Currying, on page 152).

Another useful adapter block is one that converts single-track functions into
two-track functions.

/ Slot for input \
function

It's commonly called map in FP terminology. Here’s the logic:

¢ The input is a one-track function and a two-track value (a Result).

report erratum - discuss


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 200

e If the input Result is a success, then pass that input to the one-track
function and wrap the output in Ok to make it into a Result again (because
the output needs to be two-track).

¢ If the input Result is a failure, then bypass the function, as before.

The implementation in code looks like this:

let map f aResult =
match aResult with
| Ok success -> Ok (f success)
| Error failure -> Error failure

With bind, map, and a few other similar functions, we’ll have a powerful toolkit
that we can use to compose all sorts of mismatched functions.

Organizing the Result Functions

Where should we put these new functions in our code organization? The
standard approach is to put them in a module with the same name as the
type, in this case Result. The module would then look like this:

/// Define the Result type

type Result<'Success, 'Failure> =
| Ok of 'Success
| Error of 'Failure

/// Functions that work with Result
module Result =

let bind f aResult = ...

let map f aResult = ...

Since Result and its associated functions are used everywhere in the domain,
we would typically create a new utility module (such as Result.fs) and place it
before the domain types in our project structure.

Composition and Type Checking

We've focused on getting the “shapes” of the functions to match up by con-
verting a “switch” function into a “two-track” function. But of course, type
checking is also going on, so we need to make sure that the types are matched
up as well for composition to work.

On the success branch, the types can change along the track, as long as the
output type of one step matches the input type of the next step. For example,
the three functions below can be composed in a pipeline using bind because
the output (Bananas) of FunctionA matches the input of FunctionB and the output
(Cherries) of FunctionB matches the input of FunctionC.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chaining Result-Generating Functions ¢ 201

type FunctionA = Apple -> Result<Bananas,...>
type FunctionB = Bananas -> Result<Cherries,...>
type FunctionC = Cherries -> Result<Lemon,...>

The bind function would be used like this:

let functionA : FunctionA
let functionB : FunctionB
let functionC : FunctionC

let functionABC input =
input
|> functionA
|> Result.bind functionB
|> Result.bind functionC

@ i— X—% %X—O
——\\\\\\\EE;;;; ‘,// e "// e

On the other hand, FunctionA and FunctionC can’t be composed directly, even

with bind, because the types are different:

== F==0C

Converting to a Common Error Type

Unlike the success track, where the type can change at each step, the error
track has the same uniform type all the way along the track. That is, every
function in the pipeline must have the same error type.

In many cases, that means we’ll need to tweak the error types to make them
compatible with each other. To do that, let’s create a function that is similar
to map but which acts on the value in the failure track. That function is called
mapError and would be implemented like this:

let mapError f aResult =
match aResult with
| Ok success -> 0k success
| Error failure -> Error (f failure)

For example, let’s say that we have an AppleError and a BananaError and we have
two functions that use them as their error types.

type FunctionA = Apple -> Result<Bananas,AppleError>
type FunctionB = Bananas -> Result<Cherries,BananaError>


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ¢ 202

The mismatch in the error types means that FunctionA and FunctionB cannot be
composed. What we need to do is create a new type that both AppleError and
BananaError can be converted to—a choice between the two. Let’s call this FruitError:

type FruitError =
| AppleErrorCase of AppleError
| BananaErrorCase of BananaError

We can then convert functionA to have a result type of FruitError like this:

let functionA : FunctionA = ...
let functionAWithFruitError input =
input
|> functionA
|> Result.mapError (fun appleError -> AppleErrorCase appleError)

This can be simplified as follows:

let functionAWithFruitError input =
input
|> functionA
|> Result.mapError AppleErrorCase

Here’s a diagram of the transformation:

_\: Applekrror

FruitError

maptrror

If we look at the signatures of functionA and functionAWithFruitError, we can see that
they now have different types in the error case, just as we want:

// type of functionA

Apple -> Result<Bananas,AppleError>

// type of functionAWithFruitError

Apple -> Result<Bananas,FruitError>

Similarly we can convert the error case of functionB from a BananaError to a
FruitError as well. When we put it all together, the code would look something
like this:

let functionA : FunctionA
let functionB : FunctionB

// convert functionA to use "FruitError"
let functionAWithFruitError input =
input |> functionA |> Result.mapError AppleErrorCase

report erratum -

discuss


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Using bind and map in Our Pipeline ® 203

// convert functionB to use "FruitError"
let functionBWithFruitError input =
input |> functionB |> Result.mapError BananaErrorCase

// and now we can compose the new versions with "bind"
let functionAB input =

input

|> functionAWithFruitError

|> Result.bind functionBWithFruitError

The signature of the combined functionAB is this:

val functionAB : Apple -> Result<Cherries,FruitError>

Using bind and map in Our Pipeline

We understand the concepts now, so let’s put them into practice. We’ll com-
pose the workflow pipeline using our error-generating functions, tweaking
them as necessary so that they fit together.

Let’s quickly revisit the components of our pipeline, focusing on Result and
ignoring the Async effect and the service dependencies for now.

First, ValidateOrder will return an error if the input data is not in the right format,
so it’s a “switch” function and its signature will be like this:

type ValidateOrder =
// ignoring additional dependencies for now
UnvalidatedOrder // input
-> Result<ValidatedOrder, ValidationError> // output

The PriceOrder step may also fail for a variety of reasons, so its signature will
be this:

type PriceOrder =
ValidatedOrder // input
-> Result<PricedOrder, PricingError> // output

The AcknowledgeOrder and CreateEvents steps will always succeed, so their signa-
tures will be:

type AcknowledgeOrder =
PricedOrder // input
-> OrderAcknowledgmentSent option // output

type CreateEvents =
PricedOrder // input
-> OrderAcknowledgmentSent option // input (event from previous step)
-> PlaceOrderEvent list // output


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 204

Let’s start by combining ValidateOrder and PriceOrder. The failure type for Validate-
Order is ValidationError, while the failure type for PriceOrder is PricingError. As we saw
above, the functions are incompatible because the error types are different.
We need to convert both functions to return the same error type—a common
error type to be used throughout the pipeline, which we’ll call PlaceOrderError.
PlaceOrderError will be defined like this:

type PlaceOrderError =
| Validation of ValidationError
| Pricing of PricingError

And now, by using mapError, we can define new versions of validateOrder and
priceOrder that can be composed, just as we did for the FruitError example above:

// Adapted to return a PlaceOrderError
let validateOrderAdapted input =
input
|> validateOrder // the original function
|> Result.mapError PlaceOrderError.Validation

// Adapted to return a PlaceOrderError
let priceOrderAdapted input =
input
|> priceOrder // the original function
|> Result.mapError PlaceOrderError.Pricing

When this is done, we can finally chain them together using bind:

let placeOrder unvalidatedOrder =
unvalidatedOrder
|> validateOrderAdapted // adapted version
|> Result.bind priceOrderAdapted // adapted version

Note that the validateOrderAdapted function doesn’t need to have bind in front of
it because it’s first in the pipeline.

Next, acknowledgeOrder and createEvents have no errors—they are “one-track”
functions—so we can use Result.map to convert them into two-track functions
that can be slotted into the pipeline:

let placeOrder unvalidatedOrder =
unvalidatedOrder
|> validateOrderAdapted
|> Result.bind priceOrderAdapted
|> Result.map acknowledgeOrder // use map to convert to two-track
|> Result.map createEvents // convert to two-track

This placeOrder function has this signature:

UnvalidatedOrder -> Result<PlaceOrderEvent list,PlaceOrderError>


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Adapting Other Kinds of Functions to the Two-Track Model ® 205

Which is very close to what we need it to be.
Let’s analyze this new version of the workflow pipeline:

e Each function in the pipeline can generate errors, and the errors it can
produce are indicated in its signature. We can test the functions in isola-
tion, confident that when they are assembled we won't get any unexpected
behavior.

e The functions are still chained together, but now using a two-track model.
An error in one step causes the remainder of the functions in the pipeline
to be skipped.

¢ The overall flow in the top-level placeOrder is still clean. There are no special
conditionals or try/catch blocks.

Unfortunately, this placeOrder implementation won’t actually compile! Even
when we use bind and map, the functions don’t always fit together. In particular,
the output of acknowledgeOrder doesn’t match the input of createEvents, because
the output is just the event, not the priced order. We’ll see how to deal with
this issue shortly.

Adapting Other Kinds of Functions
to the Two-Track Model

So far, we have seen two function “shapes” in our pipeline: one-track functions
and “switch” functions. But of course we may need to work with many other
kinds of functions. Let’s look at two of them now:

e Functions that throw exceptions
e “Dead-end” functions that don’'t return anything

Handling Exceptions

We've avoided throwing exceptions in our code, but what about exceptions
that are raised in code not controlled by us, such as in a library or service.
Earlier, we suggested that many exceptions are not part of the domain design
and need not be caught except at the top level. But if we do want to treat an
exception as part of the domain, how should we do that?

The solution is straightforward—we can just create another “adapter block”
function that converts an exception-throwing function into a Result-returning
function as shown in the figure on page 206.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 206

/ Slot for “input \
function

 ——

For example, say that we want to trap timeouts from remote services and
turn them into a RemoteServiceError. We’'ll be working with many services, so
let’s first define a Servicelnfo to keep track of the service that caused the error:

type ServiceInfo = {
Name : string
Endpoint: Uri
}

And then we can define an error type that builds on this:

type RemoteServiceError = {
Service : Servicelnfo
Exception : System.Exception

}

We pass in the service info and the original service function to an adapter
block that catches some of the exceptions and returns a Result in those cases.
Here’s an example for when the service function takes a single parameter (x in
the code below):

/// "Adapter block" that converts exception-throwing services
/// into Result-returning services.
let serviceExceptionAdapter serviceInfo serviceFn x =
try
// call the service and return success
Ok (serviceFn x)
with
| :? TimeoutException as ex ->
Error {Service=serviceInfo; Exception=ex}
| :? AuthorizationException as ex ->
Error {Service=servicelInfo; Exception=ex}

Note that we are not catching all possible exceptions, only the ones that are
relevant to the domain.

report erratum -« discuss


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Adapting Other Kinds of Functions to the Two-Track Model ¢ 207

If the service function has two parameters, we need to define another adapter
to support that case, and so on.

let serviceExceptionAdapter2 serviceInfo serviceFn x y =
try
Ok (serviceFn x y)
with
| :? TimeoutException as ex -> ...
| :? AuthorizationException as ex -> ...

These are generic adapter blocks that will adapt any function. In some cases
you might prefer a custom adapter block for a particular service, such as one
that converts database exceptions to a DatabaseError choice type with domain-
friendly cases like “record not found” and “duplicate key.”

Now to use this adapter, we create a Servicelnfo and then pass in the service
function. For example, if the service function is the address-checking function,
the code would look something like this:

let servicelnfo = {
Name = "AddressCheckingService"
Endpoint = ...
}

// exception-throwing service
let checkAddressExists address =

// Result-returning service
let checkAddressExistsR address =
// adapt the service
let adaptedService =
serviceExceptionAdapter serviceInfo checkAddressExists
// call the service
adaptedService address

To make it clear that the new function is a variant that returns a Result, we’ll
name it checkAddressExistsR, with an R at the end. (In real-world code, you would
probably just give it the same name as the original function—"“shadowing” it).

Again, let’s check the signatures to make sure that we have what we want.
The original function indicated that it always returned a CheckedAddress:

checkAddressExists :
UnvalidatedAddress -> CheckedAddress

But we know that the signature was misleading. If we look at the signature
of the new “adapted” function, we can see that it’'s much more descriptive. It
indicates that it might fail and return an error.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 208

checkAddressExistsR :
UnvalidatedAddress -> Result<CheckedAddress,RemoteServiceError>

The error type is RemoteServiceError, so if we want to use this function in our
pipeline, we would have to add a case for remote errors in our PlaceOrderError type:

type PlaceOrderError =
| Validation of ValidationError
| Pricing of PricingError
| RemoteService of RemoteServiceError // new!

Then we must convert the RemoteServiceError into the shared PlaceOrderError when
creating the R version of the function, just as we did earlier:

let checkAddressExistsR address =
// adapt the service
let adaptedService =
serviceExceptionAdapter serviceInfo checkAddressExists
// call the service
address
|> adaptedService
|> Result.mapError RemoteService // lift to PlaceOrderError

Handling Dead-End Functions

Another common type of function is what you might call a “dead-end” or “fire-
and-forget” function: a function that takes input but doesn’t return any output.

Most of these kinds of functions are writing to I/O somehow. For example,
the logging function below has no output:
// string -> unit

let logError msg =
printfn "ERROR %s" msg

Other examples include writing to a database, posting to a queue, and so on.

To make a dead-end function work with the two-track pipeline, we’ll need yet
another adapter block. To construct this, we’ll first need a way to call the
dead-end function with the input and then return the original input—a “pass-
through” function. Let’s call this function tee:

Pead-end

Pead-end T Main flow

Function Tee'd function

—3» Tee —>§



http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Making Life Easier with Computation Expressions ® 209

Here’s the code:

// ('a -> unit) -> ('a -> 'a)
let tee f x =

f x

X

The signature shows that it takes any unit-returning function and emits a one-
track function.

We can then use Result.map to convert the output of tee to a two-track function:

// ('a -> unit) -> (Result<'a, 'error> -> Result<'a, 'error>)
let adaptDeadEnd f =
Result.map (tee f)

So now we have a way to take a dead-end function like logError and convert it
into a two-track function that can be slotted into our pipeline.

;I] Pead-end
Adopter

—> Dlock — i = Main flow
Pead-end i = Not used

F unction Adﬂpt ed
function

Making Life Easier with Computation Expressions

So far we've been dealing with straightforward error-handling logic. We've
been able to chain together Result-generating functions using bind; and for
those functions that were not two-track, we’ve been able to make them fit the
two-track model using various “adapter” functions.

Sometimes, though, the workflow logic is more complicated. You may need
to work within conditional branches, or loops, or work with deeply nested
Result-generating functions. In cases like these, F# offers some relief in the
form of “computation expressions.” A computation expression is a special
kind of expression block that hides the messiness of bind behind the scenes.

It's easy to create your own computation expressions. For example, we can
make one for Result called result (lowercase). All you need to get started is two
functions:

e bind, which we've already seen used with Result
e return, which just constructs a value—in the case of Result, that would be
the Ok constructor.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 210

We won’t show the implementation details for the result computation expression
here—you can browse the code in the Result.fs file in the code repository for
this book. Instead, let’s look at how a computation expression can be used
in practice to simplify code with lots of Results.

In the earlier version of placeOrder, we used bind to connect the output of the
Result-returning validateOrder to the input of priceOrder, like this:

let placeOrder unvalidatedOrder =
unvalidatedOrder
|> validateOrderAdapted
|> Result.bind priceOrderAdapted
|> Result.map acknowledgeOrder
|> Result.map createEvents

With a computation expression, however, we can work with the outputs of
validateOrder and priceOrder directly, just as if they were not wrapped in Result.

Here’s how that same code looks using a computation expression:

let placeOrder unvalidatedOrder =
result {
let! validatedOrder =
validateOrder unvalidatedOrder
|> Result.mapError PlaceOrderError.Validation
let! pricedOrder =
priceOrder validatedOrder
|> Result.mapError PlaceOrderError.Pricing
let acknowledgmentOption =
acknowledgeOrder pricedOrder
let events =
createEvents pricedOrder acknowledgmentOption
return events

}
Let’s see how this code works:

e The result computation expression starts with the word result and then
encompasses the block delimited by curly braces.

* The special let! keyword looks like a let but in fact “unwraps” the result to
get at the inner value. The validatedOrder in let! validatedOrder = ... is a normal
value that can be passed directly into the priceOrder function.

e The error type must be the same throughout the block, so Result.mapError
is used to lift the error types to the common type, just as before. The
errors are not explicit in the result expression, but their types still need to
match up.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Making Life Easier with Computation Expressions ® 211

¢ The last line in the block uses the return keyword, which indicates what
the overall value of the block is.

In practice, you just use let! everywhere you would have used a bind. For other
functions that don’t need bind, such as acknowledgeOrder, you can just use normal
syntax—you don’t need to use Result.map.

As you can see, computation expressions make the code look as if we were
not using Result at all. It hides the complexity nicely.

We won'’t go deeply into how to define a computation expression, but it’s quite
straightforward. For example, here is a basic definition of the result computation
expression used above:

type ResultBuilder() =
member this.Return(x) = 0k X
member this.Bind(x,f) Result.bind f x

let result = ResultBuilder()

We’'ll see some more computation expressions later in this book, notably the
async computation expression, which is used to manage asynchronous call-
backs in the same elegant way.

Composing Computation Expressions

One attractive thing about computation expressions is that they are compos-
able, which is a quality we always aim for.

For example, let’s say that validateOrder and priceOrder were defined using result
computation expressions:

let validateOrder input = result {
let! validatedOrder = ...
return validatedOrder

}

let priceOrder input = result {
let! pricedOrder = ...
return pricedOrder

}

Then these can be used within a bigger result expression, just like a normal
function:

let placeOrder unvalidatedOrder = result {
let! validatedOrder = validateOrder unvalidatedOrder
let! pricedOrder = priceOrder validatedOrder
return ...

}


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 212

And placeOrder, in turn, could be used in an even bigger result expression, and
SO on.

Validating an Order with Results

We can now revisit the implementation of the validateOrder function, this time
using a result computation expression to hide the error-handling logic.

As a reminder, here is the implementation without any Results:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->

let orderld =
unvalidatedOrder.OrderId
|> OrderId.create

let customerInfo =
unvalidatedOrder.CustomerInfo
|> toCustomerInfo

let shippingAddress =
unvalidatedOrder.ShippingAddress
|> toAddress checkAddressExists

let billingAddress = ...

let lines = ...

let validatedOrder : ValidatedOrder = {
OrderId = orderld
CustomerInfo = customerInfo
ShippingAddress = shippingAddress
BillingAddress = billingAddress
Lines = lines

}

validatedOrder

But when we change all the helper functions to return Result, that code will
no longer work. For example, the Orderld.create function will return a
Result<Orderld,string>, not a plain Orderld (and similarly for toCustomerinfo, toAddress,
and so on). However, if we use a result computation expression and use let!
rather than let, we can access the Orderld, Customerinfo, and so forth as plain
values. Here’s what the implementation looks like now:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->
result {

let! orderld =
unvalidatedOrder.OrderId
|> OrderId.create
|> Result.mapError ValidationError

let! customerInfo =
unvalidatedOrder.CustomerInfo
|> toCustomerInfo


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Making Life Easier with Computation Expressions ® 213

let! shippingAddress
let! billingAddress
let! lines = ...

let validatedOrder : ValidatedOrder = {
OrderId = orderld
CustomerInfo = customerInfo
ShippingAddress = shippingAddress
BillingAddress = billingAddress
Lines = lines

}

return validatedOrder

}

As before, though, we’ll need to use Result.mapError to make sure that all the
error types match. Orderld.create returns a string in the error case, so we must
use mapError to lift it to a ValidationError. The other helper functions will need to
do the same thing when they are dealing with simple types. We'll assume that
the output toCustomerinfo and toAddress functions are already a ValidationError, so
we don’t need to use mapError for them.

Working with Lists of Results

When we originally validated the order lines without using a Result type, we
could just use List.map to convert each line:

let validateOrder unvalidatedOrder =

// convert each line into an OrderLine domain type
let lines =
unvalidatedOrder.Lines
|> List.map (toValidatedOrderLine checkProductCodeExists)

// create and return a ValidatedOrder
let validatedOrder : ValidatedOrder = {

Lines = lines
// etc
}

validatedOrder

But this approach no longer works when toValidatedOrderLine returns a Result.
After using map, we end up with a list of Result<ValidatedOrderLine,...>, rather than
a list of ValidatedOrderLine.

That’s not at all helpful to us: when we set the value of ValidatedOrder.Lines, we
need a Result of list rather than a list of Result.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 214
let validateOrder unvalidatedOrder =

let lines = // lines is a "list of Result"
unvalidatedOrder.Lines
|> List.map (toValidatedOrderLine checkProductCodeExists)

let validatedOrder : ValidatedOrder = {

Lines = lines // compiler error
// ~ expecting a "Result of list" here

}

Using a result expression won’t help us here—the problem is that we have a
type mismatch. So now the question is this: how can we convert a list of Result
into a Result of list?

Let’s create a helper function that will do that: it'll loop through the list of
Results, and if any of them are bad, the overall result will be the error. Other-
wise, if they're all good, the overall result will be a list of all the successes.

The trick to implementing it is to remember that in F#, the standard list type is
a linked list, built by prepending each element onto a smaller list. To solve our
problem, we first need a new version of the prepend action (also known in the
FP world as the “cons” operator) that prepends a Result containing one item onto
a Result containing a list of items. The implementation is straightforward:

¢ If both parameters are Ok, prepend the contents and wrap the resulting
list back up into a Result.

e Otherwise, if either parameter is an Error, return the error.
Here’s the code:

/// Prepend a Result<item> to a Result<list>
let prepend firstR restR =

match firstR, restR with

| Ok first, Ok rest -> Ok (first::rest)

| Error errl, Ok _ -> Error errl
| Ok , Error err2 -> Error err2
| Error errl, Error _ -> Error errl

If you look at the type signature of this prepend function, you can see that it's
completely generic: it takes a Result<'a> and a Result<'alist> and combines them
into a new Result<'a list>.

With that in hand, we can build a Result<'a list> from a Result<'a> list by iterating
over the list starting with the last one (using foldBack) and then prepending
each Result element to the list that we've built so far. We'll call this function


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Making Life Easier with Computation Expressions ® 215

sequence and add it as another useful function in the Result module. Here’s its
implementation:

let sequence alListOfResults =
let initialValue = Ok [] // empty list inside Result

// loop through the list in reverse order,
// prepending each element to the initial value
List.foldBack prepend alListOfResults initialValue

Don’t worry too much about how this code works. Once written and included
in your library, you only need to know how and when to use it!

Let’s define a Result type to play with (we’ll call it IntOrError) and then test sequence
with a list of successes:

type IntOrError = Result<int,string>

let listOfSuccesses : IntOrError list = [0k 1; Ok 2]
let successResult =
Result.sequence listOfSuccesses // 0Ok [1; 2]

You can see that the list of Results ([Ok 1; Ok 2]) has been transformed into a
Result containing a list (Ok [1; 2]).

Let’s try with a list of failures:

let listOfErrors : IntOrError list = [ Error "bad"; Error "“terrible" ]

let errorResult =
Result.sequence listOfErrors // Error "bad"

We get another Result, but this time it contains an error (Error "bad").

In the failure example, only the first error is returned. In many
cases, though, we want to preserve all the errors, especially when
6 doing validation. The functional programming technique for doing
this is called applicatives. We’ll mention it briefly in the next sec-
tion, but we won’t discuss a detailed implementation in this book.

With Result.sequence in our toolkit, we can finally write the code to construct
the ValidatedOrder:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->
result {
let! orderld = ...
let! customerInfo = ...
let! shippingAddress
let! billingAddress


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 216

let! lines =
unvalidatedOrder.Lines
|> List.map (toValidatedOrderLine checkProductCodeExists)
|> Result.sequence // convert list of Results to a single Result

let validatedOrder : ValidatedOrder = {
OrderId = orderlId
CustomerInfo = customerInfo
ShippingAddress = shippingAddress
BillingAddress = billingAddress
Lines = lines

}

return validatedOrder

}

If you care about performance, the List.map followed by Result.sequence can be
made more efficient by combining them into a single function generally called
traverse,' but we won’t get sidetracked with that here.

We're almost done, but there’s one final hiccup. The output of validateOrder has
as its error case the ValidationError type.

In the main pipeline, however, we need the error case to be a PlaceOrderError.
So now, in the placeOrder function, we need to convert the type Result<Validated-
Order,ValidationError> to the type Result<ValidatedOrder,PlaceOrderError>. Just as we did
before, we can transform the type of error value using mapError. Similarly, we
need to convert the output of priceOrder from a PricingError to a PlaceOrderError
as well.

Here’s what the implementation of the overall workflow looks like now, with
mapError in use:

let placeOrder : PlaceOrder = // definition of function
fun unvalidatedOrder ->
result {

let! validatedOrder =
validateOrder checkProductExists checkAddressExists unvalidatedOrder
|> Result.mapError PlaceOrderError.Validation
let! pricedOrder =
priceOrder getProductPrice validatedOrder
|> Result.mapError PlaceOrderError.Pricing
let acknowledgmentOption = ...
let events = ...
return events

}

The output is now Result<ValidatedOrder,PlaceOrderError>, just as we want.

1.  https://fsharpforfunandprofit.com/posts/elevated-world-4/


https://fsharpforfunandprofit.com/posts/elevated-world-4/
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Monads and More ® 217

Monads and More

This book tries to avoid too much jargon, but one word that comes up all the
time in functional programming is monad. So let’s pause and talk a little
about monads now. The m-word has a reputation for being scary, but in fact
we've already created and used one in this very chapter!

A monad is just a programming pattern that allows you to chain “monadic”
functions together in series. OK, then what’s a “monadic” function? It’s a function
that takes a “normal” value and returns some kind of “enhanced” value. In the
error-handling approach developed in this chapter, the “enhanced” value is
something wrapped in the Result type, so a monadic function is exactly the kind
of Result-generating “switch” functions that we've been working with.

Technically, a “monad” is simply a term for something with three components:

e A data structure
¢ Some related functions
e Some rules about how the functions must work

The data structure in our case is the Result type.

To be a monad, the data type must have two related functions as well, return
and bind:

e return (also known as pure) is a function that turns a normal value into a
monadic type. Since the type we're using is Result, the return function is
just the Ok constructor.

e bind (also known as flatMap) is a function that lets you chain together
monadic functions (in our case, Result-generating functions). We saw how
to implement bind for Result earlier in this chapter.

The rules about how these functions should work are called the “monad laws,”
which sound intimidating but are actually commonsense guidelines to make
sure the implementations are correct and not doing anything weird. I won’t
go into the monad laws here—you can easily find them on the Internet.

So, that’s all a monad is. I hope you can see that it’s not as mysterious as
you might have thought.

Composing in Parallel with Applicatives

While we're at it, let’s also talk about a related pattern called applicatives.

Applicatives are similar to monads; but rather than chaining monadic func-
tions in series, an applicative allows you to combine monadic values in parallel.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 218

For example, if we need to do validation, we would probably use an applicative
approach to combine all the errors, rather than only keeping the first one.
Unfortunately, we haven’t got space to go into more details in this book, but
there’s a detailed discussion on fsharpforfunandprofit.com.?

I won't use the terms monad or applicative much in this book, but now if you
do run into them, you’ll have an idea what they mean.

For reference, here are the terms that we have introduced in this chapter:

e In the error-handling context, the bind function converts a Result-generating
function into a two-track function. It's used to chain Result-generating functions
“in series.” More generally, the bind function is a key component of a monad.

¢ In the error-handling context, the map function converts a one-track function
into a two-track function.

e The monadic approach to composition refers to combining functions in series
using bind.

e The applicative approach to composition refers to combining results in parallel.

.
Adding the Async Effect

In our original design, we didn’t only use an error effect (Result). In most of the
pipeline, we also used an async effect as well. Combining effects can be tricky
in general, but since these two effects often appear together, we’ll define an
asyncResult computation expression to go along with the AsyncResult type we
defined earlier. We won’t show the implementation now, but you can find it
in the code repository for this book.

Using asyncResult is just like using result. For example, the validateOrder implemen-
tation looks like this:

let validateOrder : ValidateOrder =
fun checkProductCodeExists checkAddressExists unvalidatedOrder ->
asyncResult {

let! orderId =
unvalidatedOrder.OrderId
|> OrderId.create
|> Result.mapError ValidationError
|> AsyncResult.ofResult // lift a Result to AsyncResult

let! customerInfo =

2.  https://fsharpforfunandprofit.com/posts/elevated-world-3/#validation

report erratum -« discuss


https://fsharpforfunandprofit.com/posts/elevated-world-3/#validation
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Adding the Async Effect ® 219

unvalidatedOrder.CustomerInfo
|> toCustomerInfo
|> AsyncResult.ofResult
let! checkedShippingAddress = // extract the checked address
unvalidatedOrder.ShippingAddress
|> toCheckedAddress checkAddressExists
let! shippingAddress = // process checked address
checkedShippingAddress
|> toAddress
|> AsyncResult.ofResult
let! billingAddress = ...
let! lines =
unvalidatedOrder.Lines
|> List.map (toValidatedOrderLine checkProductCodeExists)
|> Result.sequence // convert list of Results to a single Result
|> AsyncResult.ofResult
let validatedOrder : ValidatedOrder = {
OrderId = orderId
CustomerInfo = customerInfo
ShippingAddress = shippingAddress
BillingAddress = billingAddress
Lines = lines
}
return validatedOrder

}

In addition to replacing result with asyncResult, we have to ensure that everything
is an AsyncResult now. For example, the output of Orderld.create is just a Result,
so we have to “lift” it to an AsyncResult using the helper function AsyncResult.ofResult.

We've also broken up the address validation into two parts. The reason is
that when we add all the effects back in, the CheckAddressExists function returns
an AsyncResult.

type CheckAddressExists =
UnvalidatedAddress -> AsyncResult<CheckedAddress,AddressValidationError>

That has the wrong error type to fit into our workflow, so let’s create a helper
function (toCheckedAddress) that handles that result and maps the service-spe-
cific error (AddressValidationError) to our own ValidationError:

/// Call the checkAddressExists and convert the error to a ValidationError
let toCheckedAddress (checkAddress:CheckAddressExists) address =
address
|> checkAddress
|> AsyncResult.mapError (fun addrError ->
match addrError with
| AddressNotFound -> ValidationError "Address not found"
| InvalidFormat -> ValidationError "Address has bad format"
)


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 10. Implementation: Working with Errors ® 220

The output of the toCheckedAddress function still returns an AsyncResult around
a CheckedAddress, so we unwrap it into a checkedAddress value using let!, which
we can then pass in to the validation stage (toAddress) in the usual way.

It’s also straightforward to convert the main placeOrder function to use asyncResult:

let placeOrder : PlaceOrder =
fun unvalidatedOrder ->
asyncResult {

let! validatedOrder =
validateOrder checkProductExists checkAddressExists unvalidatedOrder
|> AsyncResult.mapError PlaceOrderError.Validation

let! pricedOrder =
priceOrder getProductPrice validatedOrder
|> AsyncResult.ofResult
|> AsyncResult.mapError PlaceOrderError.Pricing

let acknowledgmentOption = ...

let events = ...

return events

}

And the rest of the pipeline code can be converted to using asyncResult in the
same way, but we won't show it here. You can see the full implementation in
the code repository.

Wrapping Up

We're now done with the revised implementation of the pipeline, incorporating
our type-safe approach to error-handling and async effects. The main placeOrder
implementation above is still quite clear, and there’s no ugly error-handling
code to disrupt the flow. Yes, we did have to do some awkward transformations
to get all the types aligned correctly, but that extra effort pays for itself in the
confidence that all the pipeline components will work together without any
problems.

In the next few chapters, we’ll work on implementing the interactions between
the domain and the outside world: how to serialize and deserialize data and
how to persist state to a database.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 11

Serialization

In the examples in this book, we have designed our workflows as functions
with inputs and outputs, where the inputs come from Commands and the out-
puts are Events. But where do these commands come from? And where do the
events go? They come from, or go to, some infrastructure that lives outside
our bounded context—a message queue, a web request, and so on.

This infrastructure has no understanding of our particular domain, and
therefore we must convert types in our domain model into something that
the infrastructure does understand, such as JSON, XML, or a binary format
like protobuf.’

We'll also need some way of keeping track of the internal state needed by a
workflow, such as the current state of an Order. Again, we’ll probably use an
external service such as a database.

It’s clear that an important aspect of working with external infrastructure is
the ability to convert the types in our domain model into things that can be
serialized and deserialized easily.

Therefore, in this chapter, we’ll learn how to do just this; we’ll see how to
design types that can be serialized, and then we’ll see how to convert our
domain objects to and from these intermediate types.

Persistence vs. Serialization

Let’s start with some definitions. We’'ll say that persistence simply means
state that outlives the process that created it. And we’ll say that serialization
is the process of converting from a domain-specific representation to a repre-
sentation that can be persisted easily, such as binary, JSON, or XML.

1. https://developers.google.com/protocol-buffers/


https://developers.google.com/protocol-buffers/
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 11. Serialization ® 222

For example, our order-placing workflow implementation is instantiated and
run every time an “order form arrived” event occurs. But when the code stops
running, we want its output to stay around somehow (“be persisted”) so that
other parts of the business can use that data. “Staying around” does not neces-
sarily mean being stored in a proper database—it could be stored as a file or in
a queue. And we shouldn’t make assumptions about the lifetime of the persisted
data—it could be kept around for just a few seconds (such as in a queue) or it
could be kept around for decades (such as in a data warehouse).

In this chapter, we’ll focus on serialization, and in the next chapter we’ll look
at persistence.

Designing for Serialization

As we discussed in Transferring Data Between Bounded Contexts, on page

nested together deeply, are not well suited for a serializer to work with. So
the trick to pain-free serialization is to convert your domain objects to a type
specifically designed for serialization—a Data Transfer Object—and then
serialize that DTO instead of the domain type.

"""""" 1
I
Pomain 1
boundarg: —> To downstream context
1
Pomatin _| Pomain Tupe _|PTO | Serialize | _[Json/XML|
T‘:)loe l> - to PT - Tape o = >
1
——————————— d

From upstream context — I Pomaiin
1 Boundary

Y

Json/XML|___ | Peserialize | |PTO PTO to J Domainp‘
N Tgpe. N Pomain Type Type

In general, we want the deserialization to be as clean as possible. That means
that the deserialization into a DTO should always succeed unless the
underlying data is corrupt somehow. Any kind of domain-specific validation
(such as validating integer bounds for an OrderQty or checking that a ProductCode
is valid) should be done in the DTO-to-domain-type conversion process, inside
the bounded context, where we have better control of error handling.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Connecting the Serialization Code to the Workflow ¢ 223

Connecting the Serialization Code to the Workflow

The serialization process is just another component that can be added to the
workflow pipeline: the deserialization step is added at the front of the workflow,
and the serialization step at the end of the workflow.

For example, say that we have a workflow that looks like this (we’ll ignore
error handling and Results for now):

type MyInputType = ...
type MyOutputType = ...

type Workflow = MyInputType -> MyOutputType

Then the function signatures for the deserialization step might look like this:

type JsonString string

type MyInputDto

type DeserializeInputDto = JsonString -> MyInputDto
type InputDtoToDomain = MyInputDto -> MyInputType

And the serialization step might look like this:

type MyOutputDto = ...

type OutputDtoFromDomain = MyOutputType -> MyOutputDto
type SerializeOutputDto = MyOutputDto -> JsonString

It’s clear all these functions can be chained together in a pipeline, like this:

let workflowWithSerialization jsonString =
jsonString
|> deserializeInputbto // JSON to DTO
|> inputDtoToDomain // DTO to domain object
|> workflow // the core workflow in the domain
|> outputDtoFromDomain // Domain object to DTO
|> serializeOutputDto // DTO to JSON
// final output is another JsonString

And then this workflowWithSerialization function would be the one that is exposed
to the infrastructure. The inputs and outputs are just JsonStrings or similar, so
that the infrastructure is isolated from the domain.

Of course, it’s not quite that simple in practice! We need to handle errors,
async, and so on. But this demonstrates the basic concepts.

DTOs as a Contract Between Bounded Contexts

The commands we consume are triggered by the outputs of other bounded
contexts, and the events that our workflow emits become the inputs for other
bounded contexts. These events and commands form a kind of contract that


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 11. Serialization ® 224

our bounded context must support. It's a loose contract, to be sure, because
we want to avoid tight coupling between the bounded contexts. Nevertheless,
the serialized format of these events and commands, which are DTOs, should
only be changed carefully, if at all. This means that you should always have
complete control of the serialization format, and you shouldn’t just allow a
library to do things auto-magically!

A Complete Serialization Example

To demonstrate the practice of serializing and deserializing a domain object
to and from JSON, let’s build a small example. Say that we want to persist a
domain type Person that’s defined like this:

module Domain = // our domain-driven types

/// constrained to be not null and at most 50 chars
type String50 = String50 of string

/// constrained to be bigger than 1/1/1900 and less than today's date
type Birthdate = Birthdate of DateTime

/// Domain type

type Person = {
First: String50
Last: String50
Birthdate : Birthdate
}

The String50 and Birthdate types cannot be serialized directly, so we first create
a corresponding DTO type Dto.Person (a Person in a Dto module) where all the
fields are primitives, like this:

/// A module to group all the DTO-related
/// types and functions.
module Dto =

type Person = {
First: string
Last: string
Birthdate : DateTime

}

Next, we need “toDomain” and “fromDomain” functions. These are associated
with the DTO type, not the domain type, because the domain shouldn’t know
about DTOs, so let’s also put them in the Dto module in a submodule called Person.
module Dto =

module Person =
let fromDomain (person:Domain.Person) :Dto.Person =


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

A Complete Serialization Example ¢ 225

let toDomain (dto:Dto.Person) :Result<Domain.Person,string> =

attribute in versions of F# before 4.1 when a module has the same

@ As mentioned earlier, we need to use the CompilationRepresentation
name as a type.

This pattern of having a pair of fromDomain and toDomain functions is something
we’ll use consistently.

Let’s start with the fromDomain function that converts a domain type into a
DTO. This function always succeeds (Result is not needed) because a complex
domain type can always be converted to a DTO without errors.

let fromDomain (person:Domain.Person) :Dto.Person =
// get the primitive values from the domain object
let first = person.First |> String50.value
let last = person.Last |> String50.value
let birthdate = person.Birthdate |> Birthdate.value

// combine the components to create the DTO
{First = first; Last = last; Birthdate = birthdate}

Going in the other direction, the toDomain function converts a DTO into a
domain type; and because the various validations and constraints might fail,
toDomain returns a Result<Person,string> rather than a plain Person.

let toDomain (dto:Dto.Person) :Result<Domain.Person,string> =
result {
// get each (validated) simple type from the DTO as a success or failure
let! first = dto.First |> String50.create "First"
let! last = dto.Last |> String50.create "Last"
let! birthdate = dto.Birthdate |> Birthdate.create

// combine the components to create the domain object

return {
First = first
Last = last

Birthdate = birthdate
}
}

We're using a result computation expression to handle the error flow, because
the simple types, such as String50 and Birthdate, return Result from their create
methods.

For example, we might implement String50.create using the approach discussed
in The Integrity of Simple Values, on page 104. The code is shown below. Notice


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 11. Serialization ® 226

that we include the field name as a parameter so that we get helpful error
messages:

let create fieldName str : Result<String50,string> =
if String.IsNullOrEmpty(str) then
Error (fieldName + " must be non-empty")
elif str.Length > 50 then
Error (fieldName + " must be less that 50 chars")
else
Ok (String50 str)

Wrapping the JSON Serializer

Serializing JSON or XML is not something we want to code ourselves—we’ll
probably prefer to use a third-party library. However, the API of the library
might not be functional-friendly, so we may want to wrap the serialization
and deserialization routines to make them suitable for use in a pipeline and
to convert any exceptions into Results. Here’s how to wrap part of the standard
.NET JSON serialization library (Newtonsoft.Json), for example:

module Json =
open Newtonsoft.Json

let serialize obj =
JsonConvert.SerializeObject obj

let deserialize<'a> str =
try
JsonConvert.DeserializeObject<'a> str
|> Result.Ok
with
// catch all exceptions and convert to Result
| ex -> Result.Error ex

We're creating our own Json module to put the adapted versions in so we can
call the serialization functions Json.serialize and Json.deserialize.

A Complete Serialization Pipeline

With the DTO-to-domain converter and the serialization functions in place,
we can take a domain type—the Person record—all the way to a JSON string:

/// Serialize a Person into a JSON string
let jsonFromDomain (person:Domain.Person) =
person
|> Dto.Person.fromDomain
|> Json.serialize

If we test it, we get the JSON string that we expect:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

A Complete Serialization Example ¢ 227

// input to test with
let person : Domain.Person = {
First = String50 "Alex"
Last = String50 "Adams"
Birthdate = Birthdate (DateTime(1980,1,1))
}

// use the serialization pipeline
jsonFromDomain person

// The output is
// "{"First":"Alex","Last":"Adams", "Birthdate":"1980-01-01T00:00:00"}"

Composing the serialization pipeline is straightforward because all stages are
Result-free, but composing the deserialization pipeline is trickier because both
the Json.deserialize and the PersonDto.fromDomain can return Results. The solution is
to use Result.mapError to convert the potential failures to a common choice type
and then use a result expression to hide the errors, just as we learned in
Conwverting to a Common Error Type, on page 201:

type DtoError =
| ValidationError of string
| DeserializationException of exn

/// Deserialize a JSON string into a Person
let jsonToDomain jsonString :Result<Domain.Person,DtoError> =
result {
let! deserializedValue =
jsonString
|> Json.deserialize
|> Result.mapError DeserializationException

let! domainValue =
deserializedValue
|> Dto.Person.toDomain
|> Result.mapError ValidationError

return domainValue

}
Let’s test it with an input that has no errors:

// JSON string to test with
let jsonPerson = """{
"First": "Alex",
"Last": "Adams",
"Birthdate": "1980-01-01T00:00:00"
}II nn

// call the deserialization pipeline
jsonToDomain jsonPerson |> printfn "%A"


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 11. Serialization ® 228

// The output is:

// 0k {First = String50 "Alex";

// Last = String50 "Adams";

// Birthdate = Birthdate 01/01/1980 00:00:00;}

We can see that the overall result is Ok and the Person domain object has been
successfully created.

Let’'s now tweak the JSON string to have errors—a blank name and a bad
date—and run the code again:

let jsonPersonWithErrors = """{
"First": "",
"Last": "Adams",
"Birthdate": "1776-01-01T00:00:00"
} nunn

// call the deserialization pipeline
jsonToDomain jsonPersonWithErrors |> printfn "%A"

// The output is:

// Error (ValidationError [

// "First must be non-empty"
// 1)

You can see that we do indeed get the Error case of Result and one of the valida-
tion error messages. In a real application, you could log this and perhaps
return the error to the caller. (In this implementation we only return the first
error. To return all the errors, see Composing in Parallel with Applicatives, on

Another approach to error handling during deserialization is not to do it at
all and instead just let the deserialization code throw exceptions. Which
approach you choose depends on whether you want to handle deserialization
errors as an expected situation or as a “panic” that crashes the entire pipeline.
And that in turn depends on how public your API is, how much you trust the
callers, and how much information you want to provide the callers about
these kinds of errors.

Working with Other Serializers

The code above uses the Newtonsoft.Json serializer. You can use other serializers,
but you may need to add attributes to the PersonDto type. For example, to
serialize a record type using the DataContractSerializer (for XML) or DataContractjson-
Serializer (for JSON), you must decorate your DTO type with DataContractAttribute
and DataMemberAttribute:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

How to Translate Domain Types to DTOs ¢ 229

module Dto =

[<DataContract>]

type Person = {
[<field: DataMember>]
First: string
[<field: DataMember>]
Last: string
[<field: DataMember>]
Birthdate : DateTime
}

This shows one of the other advantages of keeping the serialization type sep-
arate from the domain type—the domain type is not contaminated with com-
plex attributes like this. As always, it’s good to separate the domain concerns
from the infrastructure concerns.

Another useful attribute to know about with serializers is the CLIMutableAttribute,
which emits a (hidden) parameterless constructor, often needed by serializers
that use reflection.

Finally, if you know that you're only going to be working with other F# com-
ponents, you can use a F#-specific serializer such as FsPickler’ or Chiron.”
Note that by doing this, youre now introducing a coupling between the
bounded contexts in that they all must use the same programming language.

Working with Multiple Versions of a Serialized Type

Over time, as the design evolves, the domain types may need to change, with
fields added or removed or renamed. This in turn may affect the DTO types,
too. The DTO types act as a contract between the bounded contexts, and it's
important not to break this contract. This means that you may have to support
multiple versions of a DTO type over time. There are many ways to do this, but
we haven’t got space to go into that here. Greg Young’s book, Versioning in an
Event Sourced System,” has a good discussion of the various approaches
available.

How to Translate Domain Types to DTOs

The domain types that we define can be quite complex, yet the corresponding
DTO types must be simple structures containing only primitive types. How
then do we design a DTO given a particular domain type? Let’s look at some
guidelines.

2.  https://github.com/mbraceproject/FsPickler



https://github.com/mbraceproject/FsPickler
https://github.com/xyncro/chiron
https://leanpub.com/esversioning
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 11. Serialization ® 230

Single-Case Unions

Single-case unions—what we are calling “simple types” in this book—can be
represented by the underlying primitive in the DTO.

For example, if ProductCode is this domain type:

type ProductCode = ProductCode of string

Then the corresponding DTO type is just string.

Options

For options, we can replace the None case with null. If the option wraps a refer-
ence type, we don’t need to do anything because null is a valid value. For value
types like int, we’ll need to use the nullable equivalent, such as Nullable<int>.

Records

Domain types defined as records can stay as records in the DTO, as long as
the type of each field is converted to the DTO equivalent.

Here’s an example demonstrating single-case unions, optional values, and a
record type:

/// Domain types
type OrderLineId = OrderLineId of int
type OrderLineQty = OrderLineQty of int
type OrderLine = {
OrderLineId : OrderLineId
ProductCode : ProductCode
Quantity : OrderLineQty option
Description : string option

}

/// Corresponding DTO type

type OrderLineDto = {
OrderLineId : int
ProductCode : string
Quantity : Nullable<int>
Description : string

}

Collections

Lists, sequences, and sets should be converted to arrays, which are supported
in every serialization format.

/// Domain type
type Order = {


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

How to Translate Domain Types to DTOs ® 231

Lines : OrderLine list

}

/// Corresponding DTO type
type OrderDto = {

Lines : OrderLineDto[]

}

For maps and other complex collections, the approach you take depends on
the serialization format. When using JSON format, you should be able to
serialize directly from a map to a JSON object, since JSON objects are just
key-value collections.

For other formats you may need to create a special representation. For
example, a map might be represented in a DTO as an array of records, where
each record is a key-value pair:

/// Domain type
type Price = Price of decimal
type PricelLookup = Map<ProductCode,Price>

/// DTO type to represent a map
type PricelLookupPair = {

Key : string
Value : decimal
}

type PriceLookupDto = {
KVPairs : PricelLookupPair []

}

Alternatively a map can be represented as two parallel arrays that can be
zipped together on deserialization.

/// Alternative DTO type to represent a map
type PriceLookupDto = {

Keys : string []

Values : decimal []

}

Discriminated Unions Used as Enumerations

In many cases, you have unions where every case is just a name with no extra
data. These can be represented by .NET enums, which in turn are generally
represented by integers when serialized.

/// Domain type
type Color =

| Red

| Green

| Blue


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 11. Serialization ® 232

/// Corresponding DTO type
type ColorDto =

| Red =1

| Green = 2

| Blue = 3

Note that when deserializing, you must handle the case where the .NET enum
value is not one of the enumerated ones.

let toDomain dto : Result<Color, > =
match dto with
| ColorDto.Red -> Ok Color.Red
| ColorDto.Green -> Ok Color.Green
| ColorDto.Blue -> Ok Color.Blue
| _ -> Error (sprintf "Color %0 is not one of Red,Green,Blue" dto)

Alternatively, you can serialize an enum-style union as a string, using the
name of the case as the value. This is more sensitive to renaming issues,
though.

Tuples

Tuples should not occur often in the domain, but if they do they’ll probably
need to be represented by a specially defined record, since tuples are not
supported in most serialization formats. In the example below, the domain
type Card is a tuple, but the corresponding CardDto type is a record.

/// Components of tuple
type Suit = Heart | Spade | Diamond | Club
type Rank = Ace | Two | Queen | King // incomplete for clarity

// Tuple
type Card = Suit * Rank

/// Corresponding DTO types
type SuitDto = Heart = 1 | Spade = 2 | Diamond = 3 | Club = 4
type RankDto = Ace = 1 | Two = 2 | Queen = 12 | King = 13
type CardDto = {

Suit : SuitDto

Rank : RankDto

}

Choice Types

Choice types can be represented as a record with a “tag” that represents which
choice is used and then a field for each possible case that contains the data
associated with that case. When a specific case is converted in the DTO, the
field for that case will have data and all the other fields, for the other cases,
will be null (or for lists, empty).


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

How to Translate Domain Types to DTOs ® 233

Some serializers can handle F# discriminated union types directly,
but you won’t have control over the format they use. This could
@ be a problem if another bounded context, using a different serial-
izer, doesn’t know how to interpret them. Since the DTOs are part
of a contract, it’s better to have explicit control over the format.

Here’s an example of a domain type (Example) with four choices:

e An empty case, tagged as A

¢ An integer, tagged as B

e A list of strings, tagged as C

¢ A name (using the Name type from above), tagged as D

/// Domain types

type Name = {
First : String50
Last : String50
}

type Example =
| A
| B of int
| C of string list
| D of Name

And here’s how the corresponding DTO types would look, with the type of
each case being replaced with a serializable version: int to Nullable<int>, string
list to string[] and Name to NameDto.

/// Corresponding DTO types
type NameDto = {

First : string

Last : string

}

type ExampleDto = {
Tag : string // one of "A"“,"B", "C", "D"
// no data for A case
BData : Nullable<int> // data for B case

CData : string[] // data for C case
DData : NameDto // data for D case
}

Serialization is straightforward—you just need to convert the appropriate
data for the selected case and set the data for all the other cases to null:

let nameDtoFromDomain (name:Name) :NameDto =
let first = name.First |> String50.value
let last = name.Last |> String50.value
{First=first; Last=last}


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

let fromDomain (domainObj:Example) :ExampleDto =
let nullBData = Nullable()
let nullCData null
let nullDData Unchecked.defaultof<NameDto>
match domainObj with
| A ->

Chapter 11. Serialization ® 234

{Tag="A"; BData=nullBData; CData=nullCData; DData=nullDData}

| Bi->
let bdata = Nullable i

{Tag="B"; BData=bdata; CData=nullCData; DData=nullDData}

| C strList ->
let cdata = strList |> List.toArray

{Tag="C"; BData=nullBData; CData=cdata; DData=nullDData}

| D name ->
let ddata = name |> nameDtoFromDomain

{Tag="D"; BData=nullBData; CData=nullCData; DData=ddata}

Here’s what’s going on in this code:

e We set up the null values for each field at the top of the function and then
assign them to the fields that aren’t relevant to the case being matched.

e In the “B” case, Nullable<_> types cannot be assigned null directly. We must

use the Nullable() function instead.

¢ In the “C” case, an Array can be assigned null because it's a .NET class.

e In the “D” case, an F# record such as NameDto cannot be assigned null
either, so we are using the “backdoor” function Unchecked.defaultOf<_> to
create a null value for it. This should never be used in normal code, only
when you need to create nulls for interop or serialization.

When deserializing a choice type with a tag like this, we match on the “tag”
field and then handle each case separately. And before we attempt the dese-
rialization, we must always check the data associated with the tag is not null:

let nameDtoToDomain (nameDto:NameDto) :Result<Name,string> =

result {
let! first = nameDto.First |> String50.create
let! last = nameDto.Last |> String50.create
return {First=first; Last=last}

}

let toDomain dto : Result<Example,string> =
match dto.Tag with

| IIAII >
Ok A
| IIBII ->

if dto.BData.HasValue then
dto.BData.Value |> B |> Ok
else


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

How to Translate Domain Types to DTOs ® 235

Error "B data not expected to be null"
| e >
match dto.CData with
| null ->
Error "C data not expected to be null"
| ->
dto.CData |> Array.toList |> C |> Ok

| "D" ->
match box dto.DData with
| null ->
Error "D data not expected to be null"
| >
dto.DData
|> nameDtoToDomain // returns Result..
|> Result.map D // ...so must use "map"

| >
// all other cases
let msg = sprintf "Tag
Error msg

o
%S

not recognized" dto.Tag

In the “B” and “C” cases, the conversion from the primitive value to the domain
values is error-free (after ensuring that the data is not null). In the “D” case,
the conversion from NameDto to Name might fail, so it returns a Result that we
must map over (using Result.map) with the D case constructor.

Serializing Records and Choice Types Using Maps

An alternative serialization approach for compound types (records and dis-
criminated unions) is to serialize everything as a key-value map. In other
words, all DTOs will be implemented in the same way: as the .NET type IDic-
tionary<string,obj>. This approach is particularly applicable for working with the
JSON format, where it aligns well with the JSON object model.

The advantage of this approach is that there’s no “contract” implicit in the
DTO structure&emdash;a key-value map can contain anything&emdash;so
it promotes highly decoupled interactions. The downside is that there’s no
contract at all! That means that it’s hard to know when there is a mismatch
in expectations between producer and consumer. Sometimes a little bit of
coupling can be useful. Let’'s look at some code. Using this approach, we
would serialize a Name record like this:

let nameDtoFromDomain (name:Name) :IDictionary<string,obj> =
let first = name.First |> String50.value :> obj
let last = name.lLast |> String50.value :> obj
[
("First",first)
("Last",last)
1 |> dict


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 11. Serialization ® 236

Here we're creating a list of key/value pairs and then using the built-in
function dict to build an IDictionary from them. If this dictionary is then serialized
to JSON, the output looks just as if we created a separate NameDto type and
serialized it.

One thing to note is that the IDictionary uses obj as the type of the value. That
means that all the values in the record must be explicitly cast to obj using the
upcast operator :>.

For choice types, the dictionary that is returned will have exactly one entry,
but the value of the key will depend on the choice. For example, if we are
serializing the Example type, the key would be one of “A,” “B,” “C,” or “D.”

let fromDomain (domainObj:Example) :IDictionary<string,obj> =
match domainObj with
| A ->
[ ("A",null) ] |> dict
| Bi->
let bdata = Nullable i :> obj
[ ("B",bdata) ] |> dict
| C strList ->
let cdata = strList |> List.toArray :> obj
[ ("C",cdata) 1 |> dict
| D name ->
let ddata = name |> nameDtoFromDomain :> obj
[ ("D",ddata) ] |> dict

The code above shows a similar approach to nameDtoFromDomain. For each case,
we convert the data into a serializable format and then cast that to obj. In the
“D” case, where the data is a Name, the serializable format is just another
IDictionary.

Deserialization is a bit trickier. For each field we need to (a) look in the dictio-
nary to see if it’s there, and (b) if present, retrieve it and attempt to cast it
into the correct type.

This calls out for a helper function, which we’ll call getValue:

let getValue key (dict:IDictionary<string,obj>) :Result<'a,string> =
match dict.TryGetValue key with
| (true,value) -> // key found!

try
// downcast to the type 'a and return 0Ok
(value :?> 'a) |> Ok

with

| :? InvalidCastException ->
// the cast failed
let typeName = typeof<'a>.Name


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

How to Translate Domain Types to DTOs ¢ 237

let msg = sprintf "Value could not be cast to %s" typeName
Error msg
| (false, ) -> // key not found
let msg = sprintf "Key '%s' not found" key
Error msg

Let’s look at how to deserialize a Name, then. We first have to get the value at
the “First” key (which might result in an error). If that works, we call
String50.create on it to get the First field (which also might result in an error).
Similarly for the “Last” key and the Last field. As always, we’ll use a result
expression to make our lives easier.

let nameDtoToDomain (nameDto:IDictionary<string,obj>) :Result<Name,string> =
result {
let! firstStr = nameDto |> getValue "First"
let! first = firstStr |> String50.create
let! lastStr = nameDto |> getValue "Last"
let! last = lastStr |> String50.create
return {First=first; Last=last}

}

To deserialize a choice type such as Example, we need to test whether a key is
present for each case. If one is, we can attempt to retrieve it and convert it
into a domain object. Again, there’s lots of potential for errors, so for each
case we'll use a result expression.

let toDomain (dto:IDictionary<string,obj>) : Result<Example,string> =
if dto.ContainskKey "A" then
Ok A // no extra data needed
elif dto.ContainsKey "B" then
result {
let! bData = dto |> getValue "B" // might fail
return B bData
}
elif dto.ContainsKey "C" then
result {
let! cData = dto |> getValue "C" // might fail
return cData |> Array.tolList |> C
}
elif dto.ContainsKey "D" then
result {
let! dData = dto |> getValue "D" // might fail
let! name = dData |> nameDtoToDomain // might also fail
return name |[> D
}
else
// all other cases
let msg = sprintf "No union case recognized"
Error msg


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 11. Serialization ® 238

Generics

In many cases, the domain type is generic. If the serialization library supports
generics, then you can create DTOs using generics as well.

For example, the Result type is generic and can be converted into a generic
ResultDto like this:

type ResultDto<'OkData, 'ErrorData when 'OkData : null and 'ErrorData: null> =
IsError : bool // replaces "Tag" field
OkData : 'OkData
ErrorData : 'ErrorData

}

Note that the generic types 'OkData and 'ErrorData must be constrained to be
nullable because they might be missing or null in the associated JSON object.

If the serialization library does not support generics, then you'll have to create
a special type for each concrete case. That might sound tedious, but you’ll
probably find that, in practice, very few generic types need to be serialized.

For example, here’s the Result type from the order-placing workflow converted
to a DTO using concrete types rather than generic types:

type PlaceOrderResultDto = {
IsError : bool
OkData : PlaceOrderEventDto[]
ErrorData : PlaceOrderErrorDto

}

Wrapping Up

In this chapter, we left our bounded context and clean domain and stepped
into the messy world of infrastructure. We learned how to design serializable
Data Transfer Objects to act as the intermediaries between the bounded
contexts and the outside world, and we looked at a number of guidelines that
can help you with your own implementations.

Serialization is one kind of interaction with the outside world, but it’s not the
only one. In most applications we’ll need to talk to a database of some sort.
In the next chapter, we’ll turn our attention to the techniques and challenges
of persistence—how to make our domain model work with relational and
NoSQL databases.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 12

Persistence

Throughout this book, we've designed our domain models to be “persistence-
ignorant™—not letting the design be distorted by implementation issues
associated with storing data or interacting with other services.

But there comes a point in most applications where we have state that needs
to last longer than the lifetime of a process or workflow. At this point, we need
to turn to some sort of persistence mechanism such as a file system or
database. Sadly, there’s almost always a mismatch when moving from our
perfect domain to the messy world of infrastructure.

This chapter aims to help you deal with the issues associated with persisting
a domain-driven data model. We'll start by discussing some high-level princi-
ples, such as command-query separation, and then we’ll switch to low-level
implementations. In particular, we’ll see how to persist our domain model in
two different ways: in a NoSQL document database and then in a traditional
SQL database.

By the end of the chapter, you should have all the tools you need to integrate
a database or other persistence mechanism into your application.

Before we dive into the mechanics of persistence, though, let’s look at some
general guidelines that help us work with persistence in the context of domain-
driven design:

¢ Push persistence to the edges.
e Separate commands (updates) from queries (reads).
¢ Bounded contexts must own their own data store.

Pushing Persistence to the Edges

As we discussed earlier on page 54, we would ideally like all our functions to

be “pure,” which makes them easier to reason about and test. Functions that


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 240

read from or write to the outside world cannot be pure, so when designing our
workflows, we want to avoid any kind of I/O or persistence-related logic inside
the workflow. This generally means separating workflows into two parts:

¢ A domain-centric part that contains the business logic
e An “edge” part that contains the I/O-related code

For example, let’s say we have a workflow that implements the logic for paying
an invoice. In a model that mixes up domain logic and I/0O, the implementation
might be designed like this:

¢ Load the invoice from the database.
e Apply the payment.

e If the invoice is fully paid, mark it as fully paid in the database and post
an InvoicePaid event.

e If the invoice is not fully paid, mark it as partially paid in the database
and don’t post any event.

Here’s what that code might look like in F#:

// workflow mixes domain logic and I/0
let paylInvoice invoiceId payment =
// load from DB
let invoice = loadInvoiceFromDatabase(invoiceId)

// apply payment
invoice.ApplyPayment (payment)

// handle different outcomes

if invoice.IsFullyPaid then
markAsFullyPaidInDb(invoiceId)
postInvoicePaidEvent (invoiceld)

else
markAsPartiallyPaidInDb(invoiceId)

The problem is that the function is not pure and would be hard to test.

Let’s extract the pure business logic into an applyPayment function that does
not touch the database but instead returns a decision about what to do next,
which we’ll call InvoicePaymentResult:

type InvoicePaymentResult =
| FullyPaid
| PartiallyPaid of ...

// domain workflow: pure function

let applyPayment unpaidInvoice payment :InvoicePaymentResult =
// apply payment
let updatedInvoice = unpaidInvoice |> applyPayment payment


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Pushing Persistence to the Edges ® 241

// handle different outcomes

if isFullyPaid updatedInvoice then
FullyPaid

else
PartiallyPaid updatedInvoice

// return PartiallyPaid or FullyPaid

This function is completely pure. It does not load any data—all the data it
needs is passed to it as parameters. And it doesn’t save any data. It makes
a decision but returns that decision as a choice type, rather than acting on
it immediately. As a result, it’'s easy to test that the logic in this function is
working.

Once this function is written, we’ll use it as part of a command handler at
the boundaries of our bounded context, where I/0 is allowed, like this:

type PayInvoiceCommand = {
Invoiceld :
Payment :

}

// command handler at the edge of the bounded context
let payInvoice payInvoiceCommand =
// load from DB
let invoiceId = payInvoiceCommand.Invoiceld
let unpaidInvoice =
loadInvoiceFromDatabase invoiceld // I/0

// call into pure domain
let payment =

payInvoiceCommand.Payment // pure
let paymentResult =

applyPayment unpaidInvoice payment // pure

// handle result

match paymentResult with

| FullyPaid ->
markAsFullyPaidInDb invoiceId // I/0
postInvoicePaidEvent invoiceld // I/0

| PartiallyPaid updatedInvoice ->
updateInvoiceInDb updatedInvoice // I/0

Note that this function does not make any decisions itself, it just handles the
decision made by the inner domain-centric function. As a result, this function
doesn’t really need to be tested with a unit test, because the persistence logic
is generally trivial. That doesn’t mean it shouldn’t be tested, of course, but
you might be better off testing it as part of an end-to-end integration test.

You can think of this composite function as a sandwich—I/O at the edges
with a pure center as shown in the figure on page 242.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 242

:Pomain :
1 boundary 1
[ . pererssessnassssaas . 1
: 1/0 Pure Code 1/0 : ,

However, if we do want to test this function in isolation, all we need to do is
add additional function parameters to it to represent all the I/O actions that
we call, like this:

// command handler at the edge of the bounded context

let paylInvoice
loadUnpaidInvoiceFromDatabase // dependency

markAsFullyPaidInDb // dependency
updateInvoiceInDb // dependency
payInvoiceCommand =

// load from DB

let invoiceIld = payInvoiceCommand.Invoiceld

let unpaidInvoice =
loadUnpaidInvoiceFromDatabase invoiceld

// call into pure domain

let payment =
payInvoiceCommand.Payment

let paymentResult =
applyPayment unpaidInvoice payment

// handle result

match paymentResult with

| FullyPaid ->
markAsFullyPaidInDb(invoiceId)
postInvoicePaidEvent (invoicelId)

| PartiallyPaid updatedInvoice ->
updateInvoiceInDb updatedInvoice

And now you can easily test this function by providing stubs for the parame-
ters in the usual way.

Composite functions that use I/0 like this should of course be located at the
top level of the application—either in the “composition root” or in a controller.

Making Decisions Based on Queries

The example above assumed that all of the data could be loaded outside the
domain function and then passed in to it. But what happens if you need to
make a decision based on reading from a database, right in the middle of the
“pure” code?


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Pushing Persistence to the Edges ® 243

The solution is to keep the pure functions intact but sandwich them between
impure 1/0 functions, like this.

: Domain
1 Doundarg
I ooy e e,

1 1/0 [Pure Code]: 1/0 [ Pure Code|: 1/0

The pure functions contain the business logic and make the decisions, and
the I/0O functions read and write data.

For example, let’s say that we need to extend the workflow: after payment,
we'll calculate the total amount owed and send a warning message to the
customer if it’s too large. With the additional requirements, the steps in the
pipeline would look something like this:

- I/0---
Load invoice from DB

- Pure ---
Do payment logic

- I/0 ---
Pattern match on output choice type:
if "FullyPaid" -> Mark invoice as paid in DB
if "PartiallyPaid" -> Save updated invoice to DB

- I/0 ---

Load all amounts from unpaid invoices in DB
- Pure ---

Add the amounts up and decide if amount is too large
- I/0 ---

Pattern match on output choice type:
If "OverdueWarningNeeded" -> Send message to customer
If "NoActionNeeded" -> do nothing

If there’s too much mixing of I/O and logic, the simple “sandwich” may become
more of a “layer cake.” In that case, you might want to break the workflow
into shorter mini-workflows, as discussed in Long-Running Worlkflows, on

Where's the Repository Pattern?

In the original Domain-Driven Design book, there’s a pattern for accessing
databases called the Repository pattern. If you are familiar with the book,
you might be wondering how that pattern fits in with a functional approach.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 244

The answer is that it doesn’t. The Repository pattern is a nice way of hiding
persistence in an object-oriented design that relies on mutability. But when
we model everything as functions and push persistence to the edges, then
the Repository pattern is no longer needed.

This approach also has a benefit in maintainability, because instead of having
a single I/0 interface with tens of methods, most of which we don’'t need to
use in a given workflow, we define a distinct function for each specific I/0
access and use them only as needed.

Command-Query Separation

The next principle we’ll look at is command-query separation, or CQS.

In the functional approach to domain modeling, all our objects are designed
to be immutable. Let’s think of the storage system as some kind of immutable
object too. That is, every time we change the data in the storage system, it
transforms into a new version of itself.

For example, if we want to model inserting a record in a functional way, we can
think of the insert function as having two parameters: the data to insert and the
original state of the data store. The output of the function, after the insert is
completed, is a new version of the data store with the data added to it.

|Pata to insert }\‘ Tnaort dota

State before insert

I

In code, we could model it using this type signature:

State_after ingert

'

type InsertData = DataStoreState -> Data -> NewDataStoreState

There are four basic ways of interacting with a data store: “Create” (or “insert”),
“Read” (or “query”), “Update,” and “Delete.” We just looked at “Insert’—let’s
diagram the other ones too:

I

—~& &

ea elete
S =

Ingert Update

3
3

T


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Command-Query Separation ® 245

Or in code:

type InsertData = DataStoreState -> Data -> NewDataStoreState
type ReadData = DataStoreState -> Query -> Data

type UpdateData = DataStoreState -> Data -> NewDataStoreState
type DeleteData = DataStoreState -> Key -> NewDataStoreState

One of these is not like the others. It’s clear that we have two different kinds
of operations:

e The insert, update, and delete operations change the state of the database
and (in general) do not return any useful data.

e The read or query operation, on the other hand, does not change the state of
the database, and it’s the only one of the four that returns a useful result.

Command-query separation is a design principle based on these distinctions.
It states that code that returns data (“queries”) should not be mixed up with
code that updates data (“commands”). Or to put it more simply: asking a
question should not change the answer.

Applied to functional programming, the CQS principle proposes this:

¢ Functions that return data should not have side effects.
e Functions that have side effects (updating state) should not return
data—that is, they should be unit-returning functions.

That’s nothing new—we’'ve been doing this anyway throughout our design—but
let’s now apply this specifically to databases.

Let’s work on those function signatures a bit.

e On the input side, we can replace the DataStoreState with some kind of
handle to the data store, such as a DbConnection.

e The output (NewDataStoreState) is not relevant for a real-world data store
because the data store is mutable and doesn’t return a new state. There-
fore we can replace that type with the Unit type.

Our signatures would now look like this:

type InsertData = DbConnection -> Data -> Unit
type ReadData = DbConnection -> Query -> Data
type UpdateData = DbConnection -> Data -> Unit
type DeleteData = DbConnection -> Key -> Unit

The DbConnection type is specific to a particular data store, so we’ll want to hide
this dependency from the callers using partial application or a similar technique
(see Partial Application, on page 153), which means our persistence-related


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 246

functions, as seen from the domain code, will be database-agnostic and will
have signatures like this:

type InsertData = Data -> Unit
type ReadData = Query -> Data
type UpdateData = Data -> Unit
type DeleteData = Key -> Unit

This is just what we saw in the previous chapters.

Of course, since we're dealing with I/O and possible errors, the actual signa-
tures need to include some effects. It's common to create an alias such as
DataStoreResult or DbResult that includes the Result type and possibly Async as well,
and then our signatures will look like this:

type DbError = ...
type DbResult<'a> = AsyncResult<'a,DbError>

type InsertData = Data -> DbResult<Unit>
type ReadData = Query -> DbResult<Data>
type UpdateData = Data -> DbResult<Unit>
type DeleteData = Key -> DbResult<Unit>

Command-Query Responsibility Segregation

It’s often tempting to try to reuse the same objects for reading and writing.
For example, if we have a Customer record, we might save it to a database and
load it from a database with side-effecting functions like these:

type SaveCustomer = Customer -> DbResult<Unit>
type LoadCustomer = CustomerId -> DbResult<Customer>

However, it’s not really a good idea to reuse the same type for both reading
and writing for a number of reasons.

First, the data returned by the query is often different than what is needed
when writing. For example, a query might return denormalized data or calcu-
lated values, but these wouldn’t be used when writing data. Also, when creating
a new record, fields such as generated IDs or versions wouldn’t be used, yet
would be returned in a query. Rather than trying to make one data type serve
multiple purposes, it’s better to design each data type for one specific use. In
F#, it's easy to create as many data types as needed, as we've seen before.

A second reason to avoid reuse is that the queries and commands tend to
evolve independently and therefore shouldn’t be coupled. For example, you
may find that over time you need three or four different queries on the same
data, with only one update command. It gets awkward if the query type and
the command type are forced to be the same.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Command-Query Separation ® 247

Finally, some queries may need to return multiple entities at once for perfor-
mance reasons. For example, when you load an order, you may also want to
load the customer data associated with that order, rather than making a
second trip to the database to get the customer. Of course, when you are
saving the order to the DB, you would use only the reference to the customer
(the Customerld) rather than the entire customer.

Based on these observations, it’s clear that queries and commands are almost
always different from a domain-modeling point of view, and therefore they
should be modeled with different types. This separation of query types and
command types leads naturally to a design where they are segregated into
different modules so that they are truly decoupled and can evolve indepen-
dently. One module would be responsible for queries (known as the read
model) and the other for commands (the write model), hence command-query
responsibility segregation or CQRS.

For example, if we wanted to have separate read and write models for a cus-
tomer, we might define a WriteModel.Customer type and a ReadModel.Customer type,
and the data access functions would look like this:

type SaveCustomer = WriteModel.Customer -> DbResult<Unit>
type LoadCustomer = CustomerId -> DbResult<ReadModel.Customer>

CQRS and Database Segregation

The CQ@RS principle can be applied to databases too. In that case, you would
have two different data stores, one optimized for writing (no indexes, transac-
tional, and so on), and one optimized for queries (denormalized, heavily
indexed, and so on).

Pata /commoand Process Process +— |||_
to u/pdate Command Q -

uery

v v
CWrite store 3 _ _

This is the “logical” view, of course—you don’t need to have two separate
physical databases. In a relational database, for example, the “write” model
could simply be tables and the “read” model could be predefined views on
those tables.

A

If you do have physically separate data stores, you must implement a special
process that copies data from the “write store” to the “read store.” This is


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 248

extra work, so you must decide whether the design benefits of separate data
stores are worth it. More importantly, the data on the read-side may be out
of date compared to the data on the write-side, which means that the read
store is “eventually consistent” rather than immediately consistent. This may
or may not be a problem, depending on your domain (see also the discussion
on consistency on page 114).

However, once you have committed to segregating the reads and writes, you
then have the flexibility to use many distinct read stores, each of which is
optimized for a certain domain. In particular, you can have a read store that
contains aggregated data from many bounded contexts, which is very useful
for doing reports or analytics.

Event Sourcing

CQRS is often associated with event sourcing.' In an event-sourcing approach,
the current state is not persisted as a single object. Instead, every time there
is a change to the state, an event representing the change (such as InvoicePaid)
is persisted. In this way, each difference between the old state and the new
state is captured, somewhat like a version control system. To restore the
current state at the beginning of a workflow, all the previous events are
replayed. There are many advantages to this approach, not least that it
matches the model of many domains where everything is audited. As they
say, “Accountants don’t use erasers.” Event sourcing is a large topic and we
don’t have space to do it justice here.

Bounded Contexts Must Own Their Data Storage

Another key guideline for persistence is that each bounded context must be
isolated from others in terms of their data storage. That means the following:

¢ A bounded context must own its own data storage and associated schemas,
and it can change them at any time without having to coordinate with
other bounded contexts.

e No other system can directly access the data owned by the bounded
context. Instead, the client should either use the public API of the
bounded context or use some kind of copy of the data store.

The goal here, as always, is to ensure that the bounded contexts stay decou-
pled and can evolve independently. If system A accesses the data store of

1.  http://microservices.io/patterns/data/event-sourcing.html


http://microservices.io/patterns/data/event-sourcing.html
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Bounded Contexts Must Own Their Data Storage ® 249

system B, then even if the codebases are completely independent, the two
systems are still coupled in practice because of the shared data.

Now the implementation of “isolation” can vary depending on the needs of
the design and the requirements of the operations team. At one extreme, each
bounded context might have a physically distinct database or data store that
is deployed completely separately from all the others. At the other extreme,
all the data from all contexts could be stored in one physical database (making
deployment easier) but use some kind of namespace mechanism to keep the
data for each context logically separate.

Working with Data from Multiple Domains

What about reporting and business analytics systems? They’ll need to access
data from multiple contexts, but we've just said that this is a bad idea.

The solution is to treat “Reporting” or “Business Intelligence” as a separate
domain and to copy the data owned by the other bounded contexts to a sep-
arate system designed for reporting. This approach, although more work,
does allow the source systems and the reporting system to evolve indepen-
dently and allows each to be optimized for its own concerns. Of course, this
approach is not new—the distinction between OLTP” and OLAP® systems has
been around for decades.

There are various ways to get data from the other bounded contexts to the
Business Intelligence context. The "pure" way would be to have it subscribe to
events emitted by other systems. For example, every time an order is created,
an event will be triggered and the Business Intelligence (or "BI") context can
listen to that event and insert a corresponding record in its own data store. This
approach has the advantage that the Business Intelligence context is just
another domain and does not require any special treatment in the design.

Business
Intelligence

2.  https://en.wikipedia.org/wiki/Online_transaction processing

3.  https://en.wikipedia.org/wiki/Online_analytical processing


https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_analytical_processing
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 250

Another way is to use a traditional ETL process” to copy the data from the
source systems to the BI system. This has the advantage of being easier to
implement initially, but it may impose extra maintenance since it’ll probably
need to be altered when the source systems change their database schemas.

Note that within the Business Intelligence domain, there’s very little need for
a formal domain model. It’s probably more important to develop a multidimen-
sional database (colloquially known as a “cube”) that efficiently supports ad
hoc queries and many different access paths.

We can handle the data required for operations using a similar approach. We
treat “Operational Intelligence” as a separate domain and then send logging,
metrics, and other kinds of data to it for analysis and reporting.

Working with Document Databases

We've talked about some of the general principles of persistence. We'll now
shift gears completely and dive into some implementation examples, starting
with a so-called “document database,” designed to store semistructured data
in JSON or XML format.

Persisting to a document database is easy. We use the techniques discussed
in the previous chapter (Chapter 11, Serialization, on page 221) to convert a

domain object into a DTO and then into a JSON string (or XML string or
whatever) and then store and load it through the API of the storage system.

For example, if we are using Azure blob storage to save PersonDto objects, we
can set up the storage like this:

open Microsoft.WindowsAzure
open Microsoft.WindowsAzure.Storage
open Microsoft.WindowsAzure.Storage.Blob

let connString = "... Azure connection string ..."
let storageAccount = CloudStorageAccount.Parse(connString)
let blobClient = storageAccount.CreateCloudBlobClient()

let container = blobClient.GetContainerReference("Person");
container.CreateIfNotExists()

And then we can save a DTO to a blob with a few lines of code:

type PersonDto = {
PersonId : int

4. : kipedia.org/wiki/Extract, transform, load



https://en.wikipedia.org/wiki/Extract,_transform,_load
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Working with Relational Databases ® 251

let savePersonDtoToBlob personDto =
let blobId = sprintf "Person%i" personDto.Personld
let blob = container.GetBlockBlobReference(blobId)
let json = Json.serialize personDto
blob.UploadText(json)

And that’s all there is to it. In the same way, we can create code that loads from
the storage using the deserialization techniques from the previous chapter.

Working with Relational Databases

Relational databases have a very different model from most code, and tradi-
tionally this has been the cause of a lot of pain—the so-called “impedance
mismatch” between objects and databases.

Data models developed using functional programming principles tend to be
more compatible with relational databases, primarily because functional
models do not mix data and behavior, so the saving and retrieving of records
is more straightforward. Nevertheless, we still need to address some issues.
Let’s look at how a relational database model compares to a functional model.

First, the good news is that tables in relational databases correspond nicely
to collections of records in the functional model. And the set-oriented opera-
tions (SELECT, WHERE) in a database are similar to the list-oriented operations
(map, filter) in functional languages.

So our strategy will be to use the serialization techniques from the previous
chapter to design record types that can be mapped directly to tables. For
example, say we have a domain type like this:

type CustomerId = CustomerId of int
type String50 = String50 of string
type Birthdate = Birthdate of DateTime

type Customer = {
CustomerId : CustomerId
Name : String50
Birthdate : Birthdate option
}

Then the corresponding table design is straightforward:

CREATE TABLE Customer (
CustomerId int NOT NULL,
Name NVARCHAR(50) NOT NULL,
Birthdate DATETIME NULL,
CONSTRAINT PK Customer PRIMARY KEY (CustomerId)


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 252

The bad news is that relational databases only store primitives such as strings
or ints, which means that we will have to unwrap our nice domain types, such
as ProductCode or Orderld.

Even worse, relational tables do not map nicely to choice types. That’s
something we need to look at in more detail.

Mapping Choice Types to Tables

How should we model choice types in a relational database? If we think of
choice types as a one-level inheritance hierarchy, then we can borrow some
of the approaches used to map object hierarchies to the relational model.’

The two most useful approaches for mapping choice types are these:

¢ All cases live in the same table.
e FEach case has its own table.

For example, say that we have a type like Contact (below), which contains a
choice type, and we want to store it in a database:

type Contact = {
ContactId : ContactId
Info : ContactInfo
}

and ContactInfo =
| Email of EmailAddress
| Phone of PhoneNumber

and EmailAddress = EmailAddress of string
and PhoneNumber = PhoneNumber of string
and ContactId = ContactId of int

The first approach (“all cases in one table”) is similar to the approach discussed

which in turn means that (a) we’ll need a flag or flags to indicate which case
is being used and (b) there will have to be NULLable columns that are used
for only some of the cases.

CREATE TABLE ContactInfo (
-- shared data
ContactId int NOT NULL,
-- case flags
IsEmail bit NOT NULL,
IsPhone bit NOT NULL,
-- data for the "Email" case
EmailAddress NVARCHAR(100), -- Nullable

5.  http://www.agiledata.org/essays/mappingObjects.html


http://www.agiledata.org/essays/mappingObjects.html
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Working with Relational Databases ® 253

-- data for the "Phone" case

PhoneNumber NVARCHAR(25), -- Nullable

-- primary key constraint

CONSTRAINT PK ContactInfo PRIMARY KEY (ContactId)
)

We have used a bit field flag for each case rather than a single Tag VARCHAR field
because it’s slightly more compact and easier to index.

The second approach (where each case has its own table) means that we
create two child tables in addition to the main table, one child table for each
case. All tables share the same primary key. The main table stores the ID and
some flags to indicate which case is active, while the child tables store the
data for each case. In exchange for more complexity, we have better constraints
in the database (such as NOT NULL columns in the child tables).

-- Main table
CREATE TABLE ContactInfo (

-- sShared data

ContactId int NOT NULL,

-- case flags

IsEmail bit NOT NULL,

IsPhone bit NOT NULL,

CONSTRAINT PK ContactInfo PRIMARY KEY (ContactId)
)

-- Child table for "Email" case
CREATE TABLE ContactEmail (

ContactId int NOT NULL,

-- case-specific data

EmailAddress NVARCHAR(100) NOT NULL,

CONSTRAINT PK ContactEmail PRIMARY KEY (ContactId)
)

-- Child table for "Phone" case
CREATE TABLE ContactPhone (

ContactId int NOT NULL,

-- case-specific data

PhoneNumber NVARCHAR(25) NOT NULL,

CONSTRAINT PK ContactPhone PRIMARY KEY (ContactId)
)

This “multitable” approach might be better when the data associated with
cases are very large and have little in common, but otherwise we’ll use the
first, “one-table” approach by default.

Mapping Nested Types to Tables

What if a type contains other types? How should these be handled? The gen-
eral advice is this:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 254

e If the inner type is an DDD Entity, with its own identity, it should be
stored in a separate table.

e If the inner type is a DDD Value Object, without its own identity, it should
be stored “inline” with the parent data.

For example, our Order type contains a list of OrderLine values. The OrderLine type
is an Entity, and therefore it should be stored in its own table, with a pointer
(foreign key) to its parent object.

CREATE TABLE Order (
OrderId int NOT NULL,
-- and other columns

)

CREATE TABLE OrderLine (
OrderLineId int NOT NULL,
OrderId int NOT NULL,

-- and other columns

)

On the other hand, the Order type contains two Address values, which are Value
Objects. The corresponding Order table should therefore directly include all
the Address columns.

CREATE TABLE Order (
OrderId int NOT NULL,

-- Inline the shipping address Value Object
ShippingAddressl varchar(50)
ShippingAddress2 varchar(50)
ShippingAddressCity varchar(50)

-- and so on

-- inline the billing address Value Object
BillingAddressl varchar(50)
BillingAddress2 varchar(50)
BillingAddressCity varchar(50)

-- and so on

-- other columns

)

Reading from a Relational Database

In F#, we tend not to use an object-relational mapper (ORM), but instead
work directly with raw SQL commands. The most convenient way to do this
is to use an F# SQL type provider. A few of these are available—for this
example, we’ll use the FSharp.Data.SqlClient type provider.®

6.  http://fsprojects.github.io/FSharp.Data.SqlClient/


http://fsprojects.github.io/FSharp.Data.SqlClient/
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Working with Relational Databases ® 255

What'’s special about using a type provider rather than a typical runtime
library is that the SQL type provider will create types that match the SQL
queries or SQL commands at compile time. If the SQL query is incorrect, you
will get a compile time error, not a runtime error. And if the SQL is correct,
it will generate an F# record type that matches the output of the SQL code
exactly.

Let’s say that we want to read a single Customer using a Customerld. Here’s how
this could be done using the type provider.

First we define a connection string to be used at compile time, which typically

references a local database.

open FSharp.Data

[< Literal>]
let CompileTimeConnectionString =

@"Data Source=(localdb)\MsSqlLocalDb; Initial Catalog=DomainModelingExample;

Then we define our query as a type called ReadOneCustomer, like this:

type ReadOneCustomer = SqlCommandProvider<"""
SELECT CustomerId, Name, Birthdate
FROM Customer
WHERE CustomerId = @customerId
""" CompileTimeConnectionString>

At compile time, the type provider will run this query on the local database
and generate a type to represent it. This is similar to SqlMetal” or EdmGener-
ator® utilities, except no separate files are generated—the types are created
in place. Later, when we use this type, we’ll provide a different “production”
connection from the compile-time one.

Next, just as we did with the serialization examples in the previous chapter,
we should create a toDomain function. This one validates the fields in the
database and then assembles them using a result expression.

That is, we will treat the database as an untrusted source of data that needs
to be validated just like any other source of data, so the toDomain function will
need to return a Result<Customer, > rather than a plain Customer. Here’s the code:

let toDomain (dbRecord:ReadOneCustomer.Record) : Result<Customer, > =
result {
let! customerld =
dbRecord.CustomerId
|> CustomerlId.create

7.  https://msdn.microsoft.com/en-us/library/bb386987.aspx

8. https://msdn.microsoft.com/en-us/library/bb387165.aspx


https://msdn.microsoft.com/en-us/library/bb386987.aspx
https://msdn.microsoft.com/en-us/library/bb387165.aspx
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 256

let! name =

dbRecord.Name

|> String50.create "Name"
let! birthdate =

dbRecord.Birthdate

|> Result.bindOption Birthdate.create
let customer = {

CustomerId = customerId

Name = name

Birthdate = birthdate

}

return customer

}

We've seen this kind of code before, in the Serialization chapter. There is one
new addition, however. The Birthdate column in the database is nullable, so
the type provider makes the dbRecord.Birthdate field an Option type. But the Birth-
date.create function doesn’t accept options. To fix this, we’ll create a little helper

function called bindOption that allows a “switch” function to work on options.

let bindOption f xOpt =
match xOpt with
| Some x -> f x |> Result.map Some
| None -> Ok None

Writing a custom toDomain function like this and working with all the Results is
a bit complicated, but once written, we can be sure that we’ll never have
unhandled errors.

On the other hand, if we're very confident that the database will never contain
bad data and we're willing to panic if it does, then we can throw exceptions
for invalid data instead. In that case, we can change the code to use a panicOn-
Error helper function (that converts error Results into exceptions), which in turn
means that the output of the toDomain function is a plain Customer without being
wrapped in a Result. The code looks like this:

let toDomain (dbRecord:ReadOneCustomer.Record) : Customer =

let customerId =
dbRecord.CustomerId
|> CustomerlId.create
|> panicOnError "CustomerId"

let name =
dbRecord.Name
|> String50.create "Name"
|> panicOnError "Name"

let birthdate =
dbRecord.Birthdate


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Working with Relational Databases ® 257

|> Result.bindOption Birthdate.create
|> panicOnError "Birthdate"

// return the customer
{CustomerId = customerId; Name = name; Birthdate = birthdate}

where the panicOnError helper function looks something like this:

exception DatabaseError of string

let panicOnError columnName result =
match result with
| Ok x -> x
| Error err ->
let msg = sprintf "%s: %A" columnName err
raise (DatabaseError msg)

Either way, once we have a toDomain function, we can now write the code that
reads the database and returns the results as a domain type. For example,
here’s a readOneCustomer function that performs the ReadOneCustomer query and
then converts it into a domain type.

type DbReadError =
| InvalidRecord of string
| MissingRecord of string

let readOneCustomer (productionConnection:SqlConnection) (CustomerId customerId) =
// create the command by instantiating the type we defined earlier
use cmd = new ReadOneCustomer(productionConnection)

// execute the command
let records = cmd.Execute(customerId = customerId) |> Seq.tolList

// handle the possible cases

match records with

// none found

| [1 ->
let msg = sprintf "Not found. CustomerId=%A" customerId
Error (MissingRecord msg) // return a Result

// exactly one found
| [dbCustomer] ->
dbCustomer
|> toDomain
|> Result.mapError InvalidRecord

// more than one found?

| ->
let msg = sprintf "Multiple records found for CustomerId=%A" customerId
raise (DatabaseError msg)

First, note that we are now explicitly passing in a SglConnection to use as the
“production” connection.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 258

Next, we have three possible cases to handle: no record found, exactly one
record found, and more than one record found. We need to decide which
cases should be handled as part of the domain and which should never
happen (and can be handled as a panic). In this case, we’ll say that a missing
record is possible and will be treated as a Result.Error, while more than one
record will be treated as a panic.

Handling these various cases seems like a lot of work, but the benefit is that
you are explicitly making decisions about the possible errors (and this is
documented in the code) rather than assuming that everything works and
then getting a NullReferenceException somewhere down the line.

And of course, we can make this code cleaner by following the “parameterize
all the things” principle to make a general function, convertSingleDbRecord say,
where the table name, ID, records, and toDomain converter are all passed in
as parameters:

let convertSingleDbRecord tableName idValue records toDomain =
match records with
// none found
| [1 ->
let msg = sprintf "Not found. Table=%s Id=%A" tableName idValue
Error msg // return a Result

// exactly one found
| [dbRecord] ->
dbRecord
|> toDomain
|> 0k // return a Result

// more than one found?

| >
let msg = sprintf "Multiple records found. Table=%s Id=%A" tableName idValue
raise (DatabaseError msg)

With this generic helper function, the code can be reduced to a few lines:

let readOneCustomer (productionConnection:SqlConnection) (CustomerId customerId) =
use cmd = new ReadOneCustomer(productionConnection)
let tableName = "Customer"

let records = cmd.Execute(customerId = customerId) |> Seq.tolList
convertSingleDbRecord tableName customerId records toDomain

Reading Choice Types from a Relational Database

We can read choice types the same way, although it’s a bit more complicated.
Let’s say that we're using the one-table approach to store Contactinfo records
and we want to read a single Contactinfo using a Contactld. Just as before, we
define our query as a type, like this:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Working with Relational Databases ® 259

type ReadOneContact = SqlCommandProvider<"""
SELECT ContactId,IsEmail, IsPhone, EmailAddress,PhoneNumber
FROM ContactInfo
WHERE ContactId = @contactId
"mt, CompileTimeConnectionString>

Next, we create a toDomain function. This one checks the flag in the database
(Iskmail) to see which case of Contactinfo to create and then assembles the data
for each case using child result expressions (yay for composability!).

let toDomain (dbRecord:ReadOneContact.Record) : Result<Contact, > =
result {
let! contactId =
dbRecord.ContactId
|> ContactId.create

let! contactInfo =
if dbRecord.IsEmail then
result {
// get the primitive string which should not be NULL
let! emailAddressString =
dbRecord.EmailAddress
|> Result.ofOption "Email expected to be non null"
// create the EmailAddress simple type
let! emailAddress =
emailAddressString |> EmailAddress.create
// lift to the Email case of Contact Info
return (Email emailAddress)
}
else
result {
// get the primitive string which should not be NULL
let! phoneNumberString =
dbRecord.PhoneNumber
|> Result.ofOption "PhoneNumber expected to be non null"
// create the PhoneNumber simple type
let! phoneNumber =
phoneNumberString |> PhoneNumber.create
// lift to the PhoneNumber case of Contact Info
return (Phone phoneNumber)

}

let contact = {
ContactId = contactId
Info = contactInfo

}

return contact

}

You can see that in the Email case, for example, the EmailAddress column in the
database is nullable, so the dbRecord.EmailAddress created by the type provider


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 260

is an Option type. So first we must use Result.ofOption to convert the Option into a
Result (in case it's missing), then create the EmailAddress type, and then lift that
to the Email case of Contactinfo.

It's even more complicated than the earlier Customer example, but again, we
have a lot of confidence that we’ll never have an unexpected error.

By the way, if you're wondering what the code for the Result.ofOption function
looks like, here it is:

module Result =
/// Convert an Option into a Result
let ofOption errorValue opt =
match opt with
| Some v -> Ok v
| None -> Error errorValue

As before, once we have a toDomain function, we can use it in conjunction with
the convertSingleDbRecord helper function we created earlier.

let readOneContact (productionConnection:SqlConnection) (ContactId contactId)
use cmd = new ReadOneContact(productionConnection)
let tableName = "ContactInfo"

let records = cmd.Execute(contactId = contactId) |> Seq.tolList
convertSingleDbRecord tableName contactId records toDomain

You can see that creating the toDomain function is the hard part. Once that’s
done, the actual database access code is relatively simple.

You might be thinking: Isn't this all a lot of work? Can’t we just use something
like Entity Framework or NHibernate that will do all this mapping automati-
cally? The answer is no, not if you want to ensure the integrity of your domain.
ORMs like those mentioned cannot validate email addresses and order
quantities, deal with nested choice types, and so on. Yes, it’s tedious to write
this kind of database code, but the process is mechanical and straightforward
and isn’t the hardest part of writing an application!

Writing to a Relational Database

Writing to a relational database follows the same pattern as reading: we
convert our domain object to a DTO and then execute an insert or update
command.

The simplest way to do database inserts is to let the SQL type provider gener-
ate a mutable type that represents the structure of a table, and then we just
set the fields of that type.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Working with Relational Databases ® 261

Here’s a demonstration. First, we use the type provider to set up types for all
the tables:

type Db = SqlProgrammabilityProvider<CompileTimeConnectionString>

And now we can define a writeContact function that takes a Contact and sets all
the fields in the corresponding Contact from the database:

let writeContact (productionConnection:SqlConnection) (contact:Contact) =

// extract the primitive data from the domain object
let contactId = contact.ContactId |> ContactId.value
let isEmail,isPhone,emailAddressOpt,phoneNumberOpt =
match contact.Info with
| Email emailAddress->
let emailAddressString = emailAddress |> EmailAddress.value
true,false,Some emailAddressString,None
| Phone phoneNumber ->
let phoneNumberString = phoneNumber |> PhoneNumber.value
false,true,None,Some phoneNumberString

// create a new row

let contactInfoTable = new Db.dbo.Tables.ContactInfo()
let newRow = contactInfoTable.NewRow()
newRow.ContactId <- contactId

newRow.IsEmail <- isEmail

newRow.IsPhone <- isPhone

// use optional types to map to NULL in the database
newRow.EmailAddress <- emailAddressOpt
newRow.PhoneNumber <- phoneNumberOpt

// add to table
contactInfoTable.Rows.Add newRow

// push changes to the database
let recordsAffected = contactInfoTable.Update(productionConnection)
recordsAffected

An alternative approach with more control is to use handwritten SQL state-
ments. For example, to insert a new Contact, we first define a type representing
a SQL INSERT statement:

type InsertContact = SqlCommandProvider<"""
INSERT INTO ContactInfo
VALUES (@ContactId,@IsEmail,@IsPhone,@EmailAddress,@PhoneNumber)
""", CompileTimeConnectionString>

And now we can define a writeContact function that takes a Contact, extracts the
primitives from the choice type, and then executes the command.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 12. Persistence ® 262

let writeContact (productionConnection:SqlConnection) (contact:Contact) =

// extract the primitive data from the domain object
let contactId = contact.ContactId |> ContactId.value
let isEmail,isPhone,emailAddress,phoneNumber =
match contact.Info with
| Email emailAddress->
let emailAddressString = emailAddress |> EmailAddress.value
true, false,emailAddressString, null
| Phone phoneNumber ->
let phoneNumberString = phoneNumber |> PhoneNumber.value
false, true,null, phoneNumberString

// write to the DB
use cmd = new InsertContact(productionConnection)
cmd.Execute(contactId,isEmail,isPhone,emailAddress, phoneNumber)

Transactions

All the code so far has been of the form “one aggregate = one transaction.”
But in many situations, we have a number of things that need to be saved
together atomically—all or nothing.

Some data stores support transactions as part of their API. Multiple calls to
the service can be enlisted in the same transaction, like this:

let connection = new SqlConnection()
let transaction = connection.BeginTransaction()

// do two separate calls to the database
// in the same transaction
markAsFullyPaid connection invoiceld
markPaymentCompleted connection paymentId

// completed
transaction.Commit()

Some data stores only support transactions as long as everything is done in
a single connection. In practice, that means that you’ll have to combine
multiple operations in a single call, like this:

let connection = new SqlConnection()
// do one call to service
markAsFullyPaidAndPaymentCompleted connection paymentId invoiceld

Sometimes, though, you are communicating with different services, and there’s
no way to have a cross-service transaction.

Gregor Hohpe’s article “Starbucks Does Not Use Two-Phase Commit,” men-

actions across different systems because the overhead and coordination cost


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Wrapping Up © 263

is too heavy and slow. Instead, we assume that most of the time things go
well, and then we use reconciliation processes to detect inconsistency and
compensating transactions to correct errors.

For example, here’s a simple demonstration of a compensating transaction
to roll back a database update:

// do first call

markAsFullyPaid connection invoiceld

// do second call

let result = markPaymentCompleted connection paymentId

// 1if second call fails, do compensating transaction
match result with
| Error err ->
// compensate for error
unmarkAsFullyPaid connection invoiceld
| Ok  -> ...

Wrapping Up

In this chapter, we started by looking at some high-level principles of persis-
tence: separating queries from commands, keeping the I/0O at the edges, and
ensuring that bounded contexts own their own data store. We then dived
down into the low-level mechanics of interacting with a relational database.

And that brings us to the end of the third part of this book. We've now got all
the tools we need to design and create a full implementation of a bounded
context: the pure types and functions inside the domain (Implementation:

database for storing state.

But we’re not quite done yet. As the military saying goes, “No plan survives
contact with the enemy.” So what happens when we learn new things and
need to change the design? That will be the topic of the next and final chapter.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

CHAPTER 13

Evolving a Design and Keeping It Clean

We have completed our domain model and implementation, but we all know
that that’s not the end of the story. It’s all too common for a domain model
to start off clean and elegant; but as the requirements change, the model gets
messy and the various subsystems become entangled and hard to test. So
here’s our final challenge: can we evolve the model without it becoming a big
ball of mud?

Domain-driven design is not meant to be a static, once-only process. It is
meant to be a continuous collaboration between developers, domain experts,
and other stakeholders. So if the requirements change, we must always start
by reevaluating the domain model first, rather than just patching the
implementation.

In this chapter, we will look at a number of possible changes to the require-
ments and follow them through to see how they affect our understanding of
the domain model first, before changing the implementation. Furthermore,
we will see that the heavy use of types in our design means we can have high
confidence that the code is not accidentally broken when changes are made
to the model.

We'll look at four kinds of changes:
¢ Adding a new step to the workflow
¢ Changing the input to the workflow

e Changing the definition of a key domain type (the order) and seeing how
that ripples through the system

e Transforming the workflow as a whole to conform with business rules


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ® 266

Change 1: Adding Shipping Charges

For our first requirements change, let’s look at how to calculate shipping
and delivery charges. Let’s say that the company wants to charge customers
for shipping using a special calculation. How can we integrate this new
requirement?

First we’ll need a function to calculate the shipping cost. Let’s say that this
company is based in California, so shipping to local states is one price (say
$5), shipping to remote states is another price (say $10), and shipping to
another country is yet another price ($20).

Here’s a first pass at implementing this calculation:

/// Calculate the shipping cost for an order
let calculateShippingCost validatedOrder =
let shippingAddress = validatedOrder.ShippingAddress
if shippingAddress.Country = "US" then
// shipping inside USA
match shippingAddress.State with
| "CA"™ | "OR" | "AZ" | "NV" ->
5.0 //local
| >
10.0 //remote
else
// shipping outside USA
20.0

Unfortunately, this kind of conditional logic, with multiple branching for
special conditions, is hard to understand and maintain.

Using Active Patterns to Simplify Business Logic

One solution that makes the logic more maintainable is to separate the
domain-centric “categorization” from the actual pricing logic. In F#, there’s a
feature called active patterns' that can be used to turn conditional logic into
a set of named choices that can be pattern-matched against, just as if you
had explicitly defined a discriminated union type for each choice. Active pat-
terns are a perfect fit for this kind of categorization.

To use the active pattern approach for this requirement, we first define a set
of patterns to match each of our shipping categories:
let (|UsLocalState|UsRemoteState|International|) address =

if address.Country = "US" then
match address.State with

1. https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/active-patterns


https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/active-patterns
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Change 1: Adding Shipping Charges ® 267

| "CA" | "OR" | "AZ" | "NV" ->
UsLocalState

| ->
UsRemoteState

else

International

And then, in the shipping calculation itself, we can pattern-match against
these categories:

let calculateShippingCost validatedOrder =
match validatedOrder.ShippingAddress with

| UsLocalState -> 5.0
| UsRemoteState ->
->

10.0
| International 20.0
By separating the categorization from the business logic like this, the code
becomes much clearer, and the names of the active pattern cases act as

documentation as well.

Defining the active patterns themselves is still complicated, of course, but
that code is only doing categorization, with no business logic. If the catego-
rization logic ever changes (such as having different states in “UsLocalState”),
we only need to change the active pattern, not the pricing function. We've
separated the concerns nicely.

Creating a New Stage in the Workflow

Next, we need to use this shipping cost calculation in the order-placing
workflow. One option is to modify the pricing stage and add the shipping cost
logic to it. But we’d be changing code that works and making it more compli-
cated, which in turn could lead to bugs. Rather than changing stable code,
let’s get the most out of composition and add a new stage in the workflow to
do the calculation and update the PricedOrder:

type AddShippingInfoToOrder = PricedOrder -> PricedOrderWithShippingInfo

This new stage in the workflow could then be slotted in between PriceOrder and
the next stage, AcknowledgeOrder.

Place order workflow
—1.|\alidate P> Price P

> Ackrowledge H—»

o =

AddShippin gInfo



http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ¢ 268

Typically, as we evolve any design, we’ll discover more details that we need
to keep track of. For example, the customer might want to know the shipping
method (for example, FedEx or UPS) as well as the price (and even this is
probably oversimplistic). So we're going to need some new types to capture
this extra information:
type ShippingMethod =

| PostalService

| Fedex24

| Fedex48
| Ups48

type ShippingInfo = {
ShippingMethod : ShippingMethod
ShippingCost : Price
}

type PricedOrderWithShippingMethod = {
ShippingInfo : ShippingInfo
PricedOrder : PricedOrder

}

Note that we've created another order type now——PricedOrderWithShippinginfo—that
contains the new shipping information. You might well think that this is
overkill, and we could consider just reusing the PricedOrder type instead by
adding a field for Shippinglnfo. But there are some advantages to creating a
whole new type:

e If the AcknowledgeOrder step is modified to expect PricedOrderWithShippinginfo as
input, you cannot get the order of the stages wrong.

e If we add ShippingInfo as a field in PricedOrder, what should it be initialized to
before the shipping calculation is done? Simply initializing it to a default
value might be a bug waiting to happen.

One final issue: How should the shipping cost be stored in the order? Should
it be a field in the header, like this?

type PricedOrder = {

ShippingInfo : ShippingInfo
OrderTotal : Price

}
Or should it be a new kind of order line, like this?

type PricedOrderLine =
| Product of PricedOrderProductlLine
| ShippingInfo of ShippingInfo


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Change 1: Adding Shipping Charges ® 269

The second approach means that the order total can always be calculated
from the sum of the lines, with no special logic needed to include fields from
the header as well. The downside is that you could accidentally create two
ShippinglInfo lines by mistake, and we have to worry about printing the lines in

the right order.

Let’s go for storing the shipping info in the header. Now we have everything
we need to complete the AddShippinginfoToOrder stage in the workflow. We just

need to code up a function that follows these requirements:

¢ It will implement the AddShippingInfoToOrder function type defined above.

e It takes a dependency to calculate the shipping cost—the calculateShippingCost

function that we designed above.

e It takes the shipping cost and adds it to the PricedOrder to make a PricedOrder-

WithShippinglnfo.

Because all these requirements are represented by types, it's surprisingly
hard to create an incorrect implementation! Here’s what it would look like:

let addShippingInfoToOrder calculateShippingCost : AddShippingInfoToOrder

fun pricedOrder ->
// create the shipping info
let shippingInfo = {
ShippingMethod = ...
ShippingCost = calculateShippingCost pricedOrder
}

// add it to the order
{
OrderId = pricedOrder.OrderId

ShippingInfo = shippingInfo
}

And it would be slotted into the top-level workflow like this:

// set up local versions of the pipeline stages

// using partial application to bake in the dependencies

let validateOrder unvalidatedOrder = ...

let priceOrder validatedOrder = ...

let addShippingInfo = addShippingInfoToOrder calculateShippingCost

// compose the pipeline from the new one-parameter functions
unvalidatedOrder

|> validateOrder

|> priceOrder

|> addShippingInfo


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ¢ 270

Other Reasons to Add Stages to the Pipeline

In this example, we've added a new component to the pipeline because the
requirements have changed. But adding and removing components like this
is a great way to add any kind of feature. As long as a stage is isolated from
the other stages and conforms to the required types, you can be sure that
you can add or remove it safely. Here are a few things you can do in this way:

* You can add a stage for operational transparency, making it easier to see
what’s going on inside the pipeline. Logging, performance metrics, auditing,
and so on can all be easily added in this way.

* You can add a stage that checks for authorization, and if that fails, sends
you down the failure path, skipping the rest of the pipeline.

* You can even add and remove stages dynamically in the composition root,
based on configuration or context from the input.

Change 2: Adding Support for VIP Customers

Let’s now look at a change that affects the overall input of the workflow. Say
that the business wants to support VIP customers—customers who get special
treatment, such as free shipping or a free upgrade to overnight delivery.

How should we model this?

One thing we should not do is model the output of a business rule in the
domain (such as adding a “free shipping” flag to the order). Instead, we should
store the input to a business rule (“the customer is a VIP”) and then let the
business rule work on that input. That way, if the business rules change
(which they will!), we don’t have to change our domain model.

We’'ll assume that somehow the customers’ VIP status is associated with their
login on the website, so we don’t need to determine it ourselves in the order-
taking domain. But how should we model the VIP status? Should we model
it as a flag in Customerinfo, like this?

type CustomerInfo = {
IsVip : bool
}

Or should we model it as one of a set of customer states, like this?

type CustomerStatus =
| Normal of CustomerInfo
| Vip of CustomerInfo


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Change 2: Adding Support for VIP Customers ® 271

type Order = {
CustomerStatus : CustomerStatus

}

The downside of modeling this as a customer state is that there may be other
customer statuses that are orthogonal to this, such as new versus returning
customers, customers with loyalty cards, and so forth.

The best approach is a compromise, which is to use a choice type that repre-
sents the status along the “VIP” dimension, independent of other customer
information.

type VipStatus =
| Normal
| Vip

type CustomerInfo = {
VipStatus : VipStatus

}

If we ever need other kinds of statuses, it will be easy to add them in the same
way. For example:

type LoyaltyCardId = ...
type LoyaltyCardStatus =
| None
| LoyaltyCard of LoyaltyCardId

type CustomerInfo = {

VipStatus : VipStatus
LoyaltyCardStatus : LoyaltyCardStatus

}

Adding a New Input to the Workflow

Let’s assume that we're using a new VipStatus field then. As always, we’ll update
the domain model and then see where that leads us.

We'll first define a type for status and then add it as a field of the Customerinfo:
type VipStatus = ...

type CustomerInfo = {

VipStatus : VipStatus
}


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ® 272

As soon as we do this, though, we get a compiler error in the code that con-
structs a Customerinfo:

No assignment given for field 'VipStatus' of type 'CustomerInfo'’

This demonstrates one of the nice things about F# record types: all fields
must be provided during construction. If a new field is added, you’ll get a
compiler error until you provide it.

So where can we get the VipStatus from? From the UnvalidatedCustomerinfo that is
the input to the workflow. And where does that come from? From the order
form that the user fills in—the DTO. So we need to add a corresponding field
in the UnvalidatedCustomerinfo and in the DTO as well. For both of these, though,
it can be a simple string, using null to indicate a missing value.

module Domain =
type UnvalidatedCustomerInfo = {

VipStatus : string
}

module Dto =
type CustomerInfo = {

VipStatus : string
}

And now, finally, we can construct a ValidatedCustomerinfo using the status field
from UnvalidatedCustomerinfo, along with all the other fields:

let validateCustomerInfo unvalidatedCustomerInfo =
result {

// new field
let! vipStatus =
VipStatus.create unvalidatedCustomerInfo.VipStatus

let customerInfo : CustomerInfo = {

VipStatus = vipStatus
}

return customerInfo

}

Adding the Free Shipping Rule to the Workflow

One of the requirements was to give VIPs free shipping, so we need to add
this logic to the workflow somewhere. Again, rather than modifying stable
code, we’ll just add another segment to the pipeline as shown in figure on


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Change 3: Adding Support for Promotion Codes ¢ 273

Place order workflow

—p|Validate [ Price ] AddShippingInfo —-D‘_A_i—-b etc >

VlipFreeShipping

As before, we start by defining a type that represents the new segment:

type FreeVipShipping =
PricedOrderWithShippingMethod -> PricedOrderWithShippingMethod

And then we create the workflow segment that implements that type and
insert it into the workflow. There’s no need to show the code—I think you
know how this works by now.

Change 3: Adding Support for Promotion Codes

Let’s move on to a different scenario: the sales team wants to do some promo-
tions, and they want to offer a promotion code that can be provided when
placing an order to get discounted prices.

After discussion with the sales team, we have these new requirements:

e When placing an order, the customer can provide an optional promotion code.
e If the code is present, certain products will be given different (lower) prices.
e The order should show that a promotional discount was applied.

Some of these changes are easy, but the last requirement, which looks so
simple, will create surprisingly powerful ripples throughout the domain.

Adding a Promotion Code to the Domain Model

Let’s start with the new promotion code field. As always, we’ll update the
domain model and see where that leads us.

We'll start by defining a type for the promotion code and then adding it as an
optional field of the order:

type PromotionCode = PromotionCode of string

type ValidatedOrder = {

PromotionCode : PromotionCode option

}

There’s no special validation for PromotionCode, but it’s a good idea to use a type
rather than just a string so that we don’t mix it up with other strings in the
domain.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ¢ 274

As with the VipStatus field earlier, adding a new field will trigger a series of
compiler errors. In this case, we’ll need to add a corresponding field to Unvali-
datedOrder and the DTO as well. Note that even though the field in ValidatedOrder
is explicitly marked as optional, we can use a non-optional string in the DTO,
with the assumption that null will indicate a missing value.

type OrderDto = {

PromotionCode : string

}
type UnvalidatedOrder = {

é;émotionCode : string
}
Changing the Pricing Logic

If the promotion code is present, we need to do one kind of pricing calculation,
and if it’'s absent, we need to do another. How can we model this in the
domain?

Well, we've already modeled the pricing calculation using a function type:

type GetProductPrice = ProductCode -> Price

But we now need to provide a different GetProductPrice function based on the
promotion code. Here’s the logic:

e If the promotion code is present, provide a GetProductPrice function that
returns the prices associated with that promotion code.

e If the promotion code is not present, provide the original GetProductPrice
function.

What we need then is a “factory” function that, given an optional promotion
code, returns the appropriate GetProductPrice function, like this:

type GetPricingFunction = PromotionCode option -> GetProductPrice

Passing in an option like this seems a bit unclear though, so perhaps we should
create a new type that’s more self-documenting?
type PricingMethod =

| Standard
| Promotion of PromotionCode

Logically, this is equivalent to an option, but it’s a bit clearer when used in
the domain model. The ValidatedOrder type now looks like this:


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Change 3: Adding Support for Promotion Codes ® 275

type ValidatedOrder = {
. //as before
PricingMethod : PricingMethod
}

And the GetPricingFunction looks like this:

type GetPricingFunction = PricingMethod -> GetProductPrice

One more thing has to change. In the original design, we injected a GetProduct-
Price function into the pricing stage of the workflow. Now we need to inject the
GetPricingFunction “factory” function into the pricing step instead.

type PriceOrder =
GetPricingFunction // new dependency
-> ValidatedOrder // input
-> PricedOrder // output

Once you've made these changes to the domain model, you'll get a bunch of
compilation errors in the implementation again. However, these compiler
errors are your friends! They’'ll guide you in what you need to do to fix the
implementation. It’s a tedious but straightforward process. Once you are
done, though, and the implementation compiles again, you can be very confi-
dent that everything works without error.

Implementing the GetPricingFunction

Let’s have a quick look at how the GetPricingFunction might be implemented. We’'ll
assume that each promotion code is associated with a dictionary of (Product-
Code,Price) pairs. In that case the implementation might be something like this:

type GetStandardPriceTable =
// no input -> return standard prices
unit -> IDictionary<ProductCode,Price>

type GetPromotionPriceTable =
// promo input -> return prices for promo
PromotionCode -> IDictionary<ProductCode,Price>

let getPricingFunction
(standardPrices:GetStandardPriceTable)
(promoPrices:GetPromotionPriceTable)
: GetPricingFunction =

// the original pricing function
let getStandardPrice : GetProductPrice =
// cache the standard prices
let standardPrices = standardPrices()
// return the lookup function
fun productCode -> standardPrices.[productCode]


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ® 276

// the promotional pricing function
let getPromotionPrice promotionCode : GetProductPrice =
// cache the promotional prices
let promotionPrices = promoPrices promotionCode
// return the lookup function
fun productCode ->
match promotionPrices.TryGetValue productCode with
// found in promotional prices
| true,price -> price
// not found in promotional prices
// so use standard price
| false, = -> getStandardPrice productCode

// return a function that conforms to GetPricingFunction
fun pricingMethod ->
match pricingMethod with
| Standard ->
getStandardPrice
| Promotion promotionCode ->
getPromotionPrice promotionCode

We won’t go into a detailed explanation of this code—it’s pretty self-explana-
tory. But you can see that we're using many of our favorite functional pro-
gramming techniques: types to ensure that the code is correct (GetProductPrice)
and to make the domain logic clear (the choices in PricingMethod), functions as
parameters (promoPrices of type GetPromotionPriceTable), and functions as output
(the return value of type GetPricingFunction).

Documenting the Discount in an Order Line

One of the requirements was, “The order should show that a promotional
discount was applied.” How should we do that?

In order to answer that, we need to know whether the downstream systems
need to know about the promotion. If not, the simplest option is just to add
a “comment line” to the list of order lines. We don’t need to have any special
detail in the comment, just some text describing the discount.

This means we need to change the definition of an “order line.” So far, we've
been assuming that the lines of an order always reference particular products.
But now we need to say that there’s a new kind of order line that does not
reference a product. That’s a change to our domain model. Let’s change the
PricedOrderLine definition to reflect this by making it a choice type:

type CommentLine = CommentLine of string

type PricedOrderLine =
| Product of PricedOrderProductLine
| Comment of CommentLine


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Change 3: Adding Support for Promotion Codes ¢ 277

There’s no need for any special validation for the CommentLine type, except
perhaps to ensure that the number of characters is not too large.

If we did need to track more detail than just a comment, we could have defined
a DiscountApplied case instead, containing data such as the amount of the dis-
count, and so on. The advantage of using a Comment is that the shipping context
and the billing context need not know anything about promotions at all, so
if the promotion logic changes, they aren’t affected.

Now, because we have changed PricedOrderlLine into a choice type, we also need
a new PricedOrderProductLine type that contains the details of lines that are
product-oriented, such as price, quantity, and so forth.

Finally, it’s clear that the ValidatedOrderLine and PricedOrderLine have now diverged
in their design. This demonstrates that keeping the types separate during the
domain modeling is a good idea—you never know when this kind of change
might be needed; and if the same type had been used for both, we wouldn’t
be able to keep the model clean.

To add the comment line, the priceOrder function needs to be changed:

¢ First, get the pricing function from the GetPricingFunction “factory.”

¢ Next, for each line, set the price using that pricing function.

¢ Finally, if the promotion code was used, add a special comment line to
the list of lines.

let toPricedOrderLine orderLine = ...

let priceOrder : PriceOrder =
fun getPricingFunction validatedOrder ->
// get the pricing function from the getPricingFunction "factory"
let getProductPrice = getPricingFunction validatedOrder.PricingMethod

// set the price for each line

let productOrderLines =
validatedOrder.OrderLines
|> List.map (toPricedOrderLine getProductPrice)

// add the special comment line if needed
let orderLines =
match validatedOrder.PricingMethod with
| Standard ->
// unchanged
productOrderLines
| Promotion promotion ->
let promoCode = promotion|> PromotionCode.value
let commentLine =
sprintf "Applied promotion %s" promoCode
|> CommentLine.create
|> Comment // lift to PricedOrderLine


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ¢ 278

List.append productOrderLines [commentLine]

// return the new order

{

OrderLines = orderLines

}

More Complicated Pricing Schemes

In many cases, pricing schemes can become even more complicated, with mul-
tiple sales promotions, vouchers, loyalty schemes, and so on. If this happens,
it’s probably a sign that pricing needs to become a separate bounded context.
Remember the discussion on getting the bounded contexts right on page 18?

These are the clues:

9. 2)

e A distinct vocabulary (with jargon such as “BOGOF
¢ A special team that manages prices

¢ Data specific to this context only (such as previous purchases and usages
of vouchers)

e Ability to be autonomous

If pricing is an important part of the business, then it’s just as important that
it can evolve independently and stay decoupled from the order-taking, ship-
ping, and billing domains. Here’s a diagram showing pricing as a distinct
bounded context closely related to order-taking but now logically separate:

" Order-takin g context

—> Place order workflow

~.K
P v
i Pricing context i

Billing context

Evolving the Contract Between Bounded Contexts

We've introduced a new kind of line, CommentLine, which the shipping system
will need to know about to print the order correctly. That means that the
OrderPlaced event that’s sent downstream will need to be changed as well.

2. https://fen.wikipedia.org/wiki/Buy one, get one free


https://en.wikipedia.org/wiki/Buy_one,_get_one_free
http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Change 3: Adding Support for Promotion Codes ¢ 279

And now we’ve just broken the contract between the order-taking context and
the shipping context.

Is this sustainable? That is, every time we add a new concept to the order-
taking domain, do we really have to change the events and the DTOs and
break the contract? Surely not. But as it stands, we've introduced coupling
between bounded contexts, which is definitely not what we want.

As discussed earlier in Contracts Between Bounded Contexts, on page 48, a good
solution to this issue is to use “consumer-driven” contracts. In this approach,
the (downstream) consumer decides what’s needed from the (upstream) pro-

ducer, and the producer must provide that data and nothing more.

In this situation, let’s think about what the shipping context really needs. It
doesn’t need the prices, it doesn’t need the shipping cost, it doesn’t need the
discount information. All it needs is the list of products, the quantity for each
one, and the shipping address. So let’s design a type to represent this:

type ShippableOrderLine = {
ProductCode : ProductCode
Quantity : float
}

type ShippableOrderPlaced = {
OrderId : OrderlId
ShippingAddress : Address
ShipmentLines : ShippableOrderLine list
}

This is much simpler than the original OrderPlaced event type. And because it
has less data, it’s less likely to change when the order-taking domain changes.

With this new event type at hand, we should redesign the PlaceOrderEvent output
of the order-taking workflow. We now have the following:

¢ An AcknowledgmentSent to log and to send to the customer service context
e A ShippableOrderPlaced to send to the shipping context
e A BillableOrderPlaced to send to the billing context

type PlaceOrderEvent =
| ShippableOrderPlaced of ShippableOrderPlaced
| BillableOrderPlaced of BillableOrderPlaced
| AcknowledgmentSent of OrderAcknowledgmentSent

Printing the Order

What about printing the order, though? When the order is packed and ready
for shipping, a copy of the original order is printed out and placed in the


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ¢ 280

package. How can the shipping department print out the order when we have
deliberately reduced the information available to it?

The key to this is being aware that the shipping department just needs
something it can print, but it doesn’t actually care about the content. In
other words, the order-placing context can provide the shipping department
with a PDF or an HTML document and then have it print that.

This document could be provided as a binary blob in the ShippableOrderPlaced
type above, or we could dump a PDF into shared storage and let the shipping
context access it via the Orderld.

Change 4: Adding a Business Hours Constraint

So far, we've looked at adding new data and behavior. Now let’s look at adding
new constraints on how the workflow is used. Here’s our new business rule:

¢ Orders can only be taken during business hours.

For whatever reason, the business has decided that the system should only
be available during business hours (perhaps under the assumption that
people accessing the site at four o’clock in the morning are probably not real
customers). So how can we implement this?

We can use a trick that we've seen before, which is to create an “adapter”
function. In this case we’ll create a “business-hours-only” function that accepts
any function as input and outputs a “wrapper” or “proxy” function that has
exactly the same behavior but raises an error if called out of hours.

Workflow [y, 7 Business-Hours-Only = _ Tr\f}‘nspfomed

Function Transformer F‘Zrnc%gv\?’

This transformed function will have exactly the same inputs and outputs as
the original one and therefore can be used anywhere that the original one
was used. Here’s the code for the transformer function:

/// Determine the business hours
let isBusinessHour hour =
hour >= 9 && hour <= 17

/// tranformer
let businessHoursOnly getHour onError onSuccess =
let hour = getHour()
if isBusinessHour hour then
onSuccess()
else
onError()


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Dealing with Additional Requirements Changes ® 281

You can see that this is completely generic code:

e The onError parameter is used to handle the case when we are outside of
business hours.

e The onSuccess parameter is used to handle the case when we are inside
business hours.

e The hour of day is determined by the getHour function parameter rather
than being hard-coded. This allows us to inject a dummy function for
easy unit testing.

In our case, the original workflow takes an UnvalidatedOrder and returns a Result
where the error type is PlaceOrderError. Therefore the onError we pass in must
also return a Result of the same type, so let’s add an OutsideBusinessHours case to
the PlaceOrderError type:

type PlaceOrderError =
| Validation of ValidationError

| OutsideBusinessHours //new!

We now have everything we need to transform the original order-placing
workflow:

let placeOrder unvalidatedOrder =

let placeOrderInBusinessHours unvalidatedOrder =
let onError() =
Error OutsideBusinessHours
let onSuccess() =
placeOrder unvalidatedOrder
let getHour() = DateTime.Now.Hour
businessHoursOnly getHour onError onSuccess

Finally, in the top level of our applications (the composition root), we replace
the original placeOrder function with the new placeOrderinBusinessHours function,
which is completely compatible, since it has the same inputs and outputs.

Dealing with Additional Requirements Changes

Obviously, we're just scratching the surface with the kinds of changes that
could be asked for. Here are some others to think about and how they might
be addressed:

¢ VIPs should only get free postage for shipping inside the USA. To support
this, we just need to change the code in the freeVipShipping segment of the


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ® 282

workflow. It should be clear by now that having lots of small segments
like this really helps to keep complexity under control.

e Customers should be able to split orders into multiple shipments. In this
case, there needs to be some logic for doing this (a new segment in the
workflow). From the domain-modeling point of view, the only change is
that the output of the workflow contains a list of shipments to send to
the shipping context, rather than a single one.

e The customer should be able to see the status of an order: whether it has
shipped yet, whether it is paid in full, and so on. This is a tricky one,
because the knowledge of the state of the order is split among multiple
contexts: the shipping context knows the shipping status, the billing
context knows the billing status, and so on. The best approach would
probably be to create a new context (perhaps called “Customer Service”)
that deals with customer questions like this. It can subscribe to events
from the other contexts and update the state accordingly. Any queries
about the status would then go directly to this context.

{'Order-taking context

—> Place order workflow

........................................

\aced

R 5 §:Ship|oin g contextE
i Customer Service ‘:‘2@(; o \
i context  ——g— billing context

Wrapping Up

In this chapter, as we evolved the design in response to four requirements
changes, we saw the benefits of type-driven domain modeling and the compo-
sitional approach to creating workflows from functions.

The type-driven design meant that when we added a new field to a domain type
(such as adding VipStatus to ValidatedOrder), we immediately got compiler errors that
forced us to specify where the data came from. That in turn guided us to modify
other types and so on until all the compiler errors went away.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Wrapping Up the Book ® 283

Similarly, when we changed one of the dependencies in the promotion code
example (from GetProductPrice to the more complex GetPricingFunction), that also
triggered a number of compiler errors. But after the code has been fixed up
and the compiler errors have gone away, we can be quite confident that our
implementation is working correctly again.

We also saw the advantages of using function composition to build our
workflow. We could easily add new segments to the workflow, leaving the
other segments untouched. And of course, no changes to existing code means
less chance of introducing a bug.

Finally, in the “business hours” example, we saw that, thanks to “function
types as interfaces,” we could transform whole functions in powerful ways
while preserving plug-in compatibility with existing code.

Wrapping Up the Book

We've covered a lot of ground in this book, from ruminations on high-level
abstractions like bounded contexts all the way down to the minutia of serial-
ization formats.

We haven’'t had a chance to cover many important topics: web services,
security, and operational transparency, to name a few. However, in the process
of working through this book, I hope you've developed some techniques and
skills that you can apply to any design problem.

Let’s highlight some of the most important practices that we've talked about:

* We should aim to develop a deep, shared understanding of a domain
before starting the low-level design. We picked up some discovery tech-
niques (Event Storming) and communication techniques (the use of a
Ubiquitous Language) that can help immensely during this process.

e We should ensure that our solution space is partitioned into autonomous,
decoupled bounded contexts that can evolve independently, and that each
workflow should be represented as a standalone pipeline with explicit
inputs and outputs.

* Before writing any code, we should try to capture the requirements using
a type-based notation to capture both the nouns and the verbs of the
domain. As we saw, the nouns can almost always be represented by an
algebraic type system and the verbs by functions.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

Chapter 13. Evolving a Design and Keeping It Clean ¢ 284

We should try to capture important constraints and business rules in
the type system wherever possible. Our motto is “make illegal states
unrepresentable.”

We should also try to design our functions to be “pure” and “total,” so
that every possible input has an explicit documented output (no excep-
tions) and all behavior is entirely predictable (no hidden dependencies).

Having gone through this process with the order-placing workflow, we ended
up with a detailed set of types that we used to guide and constrain the
implementation.

Then, during the implementation process, we repeatedly used important
functional programming techniques like these:

Building a complete workflow using only composition of smaller functions

Parameterizing functions whenever there’s a dependency, or even just a
decision that we want to put off

Using partial application to bake dependencies into a function, allowing
the function to be composed more easily and to hide unneeded implemen-
tation details

Creating special functions that could transform other functions into var-
ious shapes. In particular we learned about bind—the “adapter block” that
we used to convert error-returning functions into two-track functions that
could easily be composed

Solving type-mismatch problems by “lifting” disparate types into a com-
mon type

In this book I aimed to convince you that functional programming and domain
modeling are a great match. I hope that I have succeeded and that you now

have the confidence to go out and use what you have learned for your own
applications.


http://pragprog.com/titles/swdddf/errata/add
http://forums.pragprog.com/forums/swdddf

SYMBOLS
: (“cons”), 72
A

ACL (Anti-Corruption Layer),
48
active patterns, 266
adapter functions
adding workflow con-
straints with, 280
changing output with,
190
converting switches to
two-track, 198-200
creating, 170-172
handling dead-end func-
tions, 208
handling exceptions,
205-208
address verification examples,
108-112, 128-130, 165-
168
aggregates, 94-98, 101, 112-
117
agile development, 5
algebraic types, 59, 66
AND types, 64, 66, 79, 83,
see also product types
anonymous functions, 150
Anti-Corruption Layer (ACL),
48
applications, built from func-
tions, 157
applicatives, 217-218
architecture, 43-44, 53

array type, 72

Async type, 87, 134-135
asynchronous processes, 87
AsyncResult type, 218
atomicity, 113

autonomy, 18, 34, 44, 134

B
B2B companies, 27

Behavior-Driven Develop-
ment, 6

BI (Business Intelligence),
249
bias, design, 29-31
bind
function, 198-200, 203,
209, 218
monad, 217
Booleans
as bad design choice, 132
replacing flags, 122-124
boundaries, 18

bounded contexts

autonomy of, 44

code structure within, 52

combining multiple com-
mands, 121

communication between,
45-47

contracts between, 48-50

creating, 18

data storage, 248

definition, 22

getting data from outside,
239-244

kinds of relationships, 48

mapping, 19

namespaces as, 98

overview, 16-18, 24

Index

preventing scope creep,
18
ranking, 20
workflows within, 50
Brandolini, Alberto, 8
Brown, Simon, 43

Business Intelligence (BI),
249

business processes, 12
business rules, 108-112, 270

C
“C4” approach, 43
choice types, 64, 66
converting events to, 176
discriminated unions, 65
modeling domain errors,
194
modeling in relational
databases, 252
modeling with, 84, 101
reading from relational
databases, 258-260
serialization of, 232
serializing with maps,
235-238
single-case unions, 66,
79-80, 230
translating to DTOs, 232
235
class-driven design, avoiding,
30

classes, 43
Clean Architecture, 54
code, for this book, xi

code, within bounded con-
texts, 52



collection types, 72
collections, 82
serialization of, 230
Command type, 121
command-query responsibili-
ty segregation (CQRS), 246-
248
command-query separation
(CQS), 244-246
commands
combining multiple in
one type, 121
definition, 22
documenting, 13
as input, 120
CompilationRepresentation, 105,
225
components, 43
computation expressions
composing, 211
creating, 209-211
lists, 213-216
Conformist relationship, 48
consistency
between aggregates, 116
between contexts, 114
definition, 104
multiple aggregates, 117
overview, 112
within aggregates, 113
constrained types, 162
constraints, 36, 81, 104-106,
280
Consumer-Driven Contract
relationship, 48
“cons” operator, 72
containers, 43
Context Maps, definition, 22
context maps, 19, 49
with (copying records), 94
coupling, 48-50
CQRS (command-query re-
sponsibility segregation),
246-248
CQ@S (command-query separa-
tion), 244-246
cubes, 250
currying, 152
Customer/Supplier relation-
ship, 48

D
data
accessing outside pure
functions, 239-244
bounded context storage,
248
consistency, 103
CQRS, 246-248
CQsS, 244-246
document databases, 250
integrity, 103
modeling null, 69
multiple domains, 249
relational databases,
251-262
static, 7
transferring between
bounded contexts, 46
transforming, 7
Data Transfer Objects (DTOs),
46, 222-223, 229-238, 250
database-driven design,
avoiding, 29
DDD (domain-driven design),
see domain-driven design
(DDD)
dead-end functions, 208
decoupling, 45
dependencies
composition problems,
162
definition, 130
"factory” functions, 274
modeling with types, 128
partial applications, 190
passing, 180-183
placement of, 130
testing, 185-187
too many, 183
visibility of, 137
dependency injection, 180
dependency injections, 162
deserialization
choice types, 234, 236
collections, 231
connecting to workflow,
223
design types for, 222
enumerations, 232
error handling, 227
generic types, 238
setting up, 225
wrapping JSON serializ-
ers, 226
development team, definition,
4

Index ® 286

discriminated unions, serial-
ization of, 231, see al-
so choice types

document databases, 250
domain, documenting, 31-33

domain concepts, see ubiqui-
tous language

domain events

converting to choice
types, 176

creating, 175

definition, 7, 22

discovering, 7-11, 23

documenting commands,
13

extending to edges, 11

within bounded contexts,
52

domain experts

definition, 4, 15

interviewing, 25-29, 33—
35

listening to, 18, 143

domain models

aggregates, 94-98

best practices, 283

building, 67-69

constraints, 36

definition, 22

errors, 70

evolving, 265-283

importance of shared, 4-
6

keeping types separate,
277

lists, 72

no value, 71

objects, 46, 120, 222,
250

optional values, 69

order-placing example,
77, 98

patterns, 78

persistence, 239-263

process overview, 284

read-only, 11

serialization, 221-238

text-based languages, 31—
33

using algebraic type, 82—
85

using states, 124-128
domain types, changing, 229
domain-driven design (DDD)

approaching, 4

benefits, 6

best practices, 283



not class-driven design,
30
compared to agile, 5
creating Ubiquitous Lan-
guage, 21, 24
not database-driven, 29
executable documenta-
tion, 142
focusing on Domain
Events, 7-14, 23
guidelines, 6
overview, 3, 22
partitioning domain into
subdomains, 14-16, 23
process overview, 284
relationships between
bounded contexts, 48
uses for, 3
using bounded contexts,
16-21, 24
domains
bounded contexts, 16-21
definition, 15, 22
determining inputs/out-
puts, 28
documenting, 36-41
non-functional require-
ments, 27
partitioning, 23
subdomains, 14-16
understanding, 25-29,
33-35
DTOs (Data Transfer Objects),
46, 222-223, 229-238, 250

E
edge cases, 126

effects
async, 218
composition problems,
162
documenting, 134-136
errors, 191
modeling, 87
email address verification ex-
ample, 108-110
Entities
aggregates, 94-98
definition, 88-89, 98
identifiers, 89-91
implementing equality,
91-93
enumerations, serialization
of, 231

equality, 89, 91-93

errors
classifying, 192

computation expressions,
209-216

dead-end functions, 208

documenting, 70

documenting effects,
134-136

domain, 192-194

exceptions, 205-208

exceptions for, 173, 191

functions for, 218

handling, 87

making explicit, 191

modeling in types, 194

overview, 191

serialization pipelines,
226

two-track handling, 196—
205

ugly code, 195

unhandled edge cases,
126

event sourcing, 248

Event Storming, 7, 10-11, 23

Event Storming (Brandolini),
8

events, see domain events

exceptions, 173, 191, 195,
205-208

exn, 83

Expecto, 186

F
F#
composition of types, 64—
66
function composition,
156
functions as things, 150
implementing state ma-
chines, 127-128
lists, 214
resources, Xi—xii
serializers for, 229
SQL type providers, 254—
258
testing tools, 186
types in, 61-63
working with types, 66—
67
“factory” functions, 274
feedback loops, 5
files, organizing types, 73
flatMap function, 198-200
FsCheck, 186
FsUnit, 186
function signatures, 60

Index ¢ 287

functional applications, 157

functional programming

benefits, 186

vs. object-oriented pro-
gramming, 147-148

transformers, 171

types, 61-63

functions

adapters, 170-172, 190,
198-200, 205-208, 280

anonymous, 150

chaining Result-generat-
ing, 196-205

composition of, 156-160

composition problems,
162

currying, 152

dead-end functions, 208

defining function types,
69

documenting effects in
signature, 87

error-handling, 218

"factory", 274

generic types, 61

I/0 sandwich, 242

as input, 151

modeling workflows, 85—
88

monads, 196, 217-218

as output, 151

overview, 59

partial application, 153

purity, 239-242

as things, 149-151

total, 154-155, 192

transformers, 171

type signatures for, 60

use of, 148

using types to guide im-
plementation, 163-165

as values, 63

G
garbage in, garbage out, 3

generics, 61, 121
serialization of, 238

H
Hexagonal Architecture, 54
Hohpe, Gregor, 115, 262

I

1/0 (input/output), see in-
put/output (I/0)

identity, 88-94

immutability, 93-94



infrastructure errors, 192,
194
input/output (I/0)
adding input to work-
flows, 271
connecting, 136, 158,
162
at edges of workflow,
239-242
external infrastructure,
221
function sandwich, 242
functions as, 151-152
functions as output, 151
keeping at edges, 54
modeling complex, 85-86
modeling rules, 270
patterns, 79
total functions, 154-155
understanding, 25-29
validation, 47
workflows, 120-122
integrity
business rules, 108-112
definition, 103
invariants, 107
simple values, 104-106
units of measure, 106
invariants, 107

iterative processes, 5

J
JSON, 224-229, 235-238

K
key-value maps, 235-238

L

lambda expressions, 150, 164
let keyword, 60, 150

let! keyword, 210, 212
“lifting” types, 175-177, 190
list type, 72

lists, 150, 177, 213-216
serialization of, 230

M

map function, 199, 203, 218
Map type, 72

mapError function, 210, 212
maps, key-value, 235-238
measure types, 106
microservice premium, 44
models, see domain models
module definitions, 105

modules, 43
monads, 196, 217-218

N

namespaces, 98
NonEmptyList type, 107
North, Dan, 6

null, 69

@)

object-oriented programming,
147-148

objects, 63

Onion Architecture, 53

online analytical processing
(OLAP), 249

online transaction processing
(OLTP), 249

Option type, 69
optional values, 69
options, serialization of, 230

OR types, 64, 66, 79, see al-
so choice types

order-placing example

acknowledge order step,
131-133, 135

adding shipping charges,
266-270

connecting I/0, 136

constraints, 36, 280

creating events, 175

domain model, 77, 98

error handling, 203-205,
212

events, 133

implementing acknowledg-
ment step, 174

implementing pricing
step, 172-174

implementing validation
step, 165-172

life cycle modeling, 38-40

other requirements
changes, 281

piping approach
overview, 161-162

pricing step, 130, 135,
278

printing order, 279

process overview, 284

promotion codes, 273-
278

shipping context, 278

substep modeling, 40

summary, 119

text-based model, 31-33

Index ¢ 288

understanding in-
puts/outputs, 25-29

using states for modeling,
122-124

validation step, 128-130,
134

VIP support, 270-273

workflow details, 33-35

outputs, see input/output

(I/0)

P

panics, 192-193

paper-based systems, 13

parameters, functions, 152-
154

partial application, 153, 168,
190

payment system example,
67, 240

performance, 81, 107

persistence
atomicity, 113
CQRS, 246-248
CQS, 244-246
data storage, 248-250
definition, 221
document databases, 250
edges, 239-242
overview, 239
relational databases,

251-262

transactions, 262

persistence ignorance, 30

pipelines, see also workflows

adding new input, 271-
273

adding new stages, 267-
270

assembling, 187

commands and, 120-122

composing, 178-180

creating events, 175

dependencies, 190

handling dependencies,
180-187

implementation, 190

implementing steps, 162—
177

modeling processes as,
14

modeling workflows, 119-
120

two-track error handling,
196-205

workflow input, 120

piping, 156, 161-162



private, 105-106
Process Managers, 142

processes
asynchronous, 87
business, 12
in domain model, 79
iterative, 5
product types, 64, 66, see al-
sorecord types

queries, 242, 251, see alsoda-
ta

R
rec keyword, 74

record types, 83, 101
records, 235-238
with for copying, 94
serialization of, 230
relational databases
choice types, 252, 258-
260
functional models and,
251
using SQL type providers,
254-258
writing to, 260
reporting, importance of, 11
Repository pattern, 243
requirements, 10, 27
ResizeArray type, 72
resources
architecture approaches,
53
business analytics sys-
tems, 249
domain-driven design
(DDD), 3
Event Storming, 8
F#, 147
F# libraries, 107
measure types, 107
Sagas, 142
serializers, 228
software architecture, 43
SQL type providers, 254
testing tools, 186
for this book, xi—xii

result computation expression,
212

Result type, 87, 105, 130, 192,
196, 200, 209-216, 218

return
computation expression,
209
monad, 217

S
Sagas, 140
scenarios, definition, 12
scope creep, 18
self-documenting design, 37
seq type, 72
serialization
choosing serializers, 228
connecting to workflow,
223
definition, 221
design types for, 222
error handling, 226
setting up, 224
wrapping JSON serializ-
ers, 226
Set type, 72
Shared Kernel relationship,
48
shared models, developing,
10
simple types
constrained values, 81
implementing, 162
modeling with, 101
performance issues, 81
single-case unions, 66,
79-80, 230
translating to DTOs, 230
using, 66
simple values, integrity of,
104-106
single-case unions, 66, 79—
80, 230

smart constructor, 105
software architecture, see ar-
chitecture
SQL type providers, 254-258
“Starbucks Does Not Use
Two-Phase Commit” (Hoh-
pe), 115, 262
states
modeling sets, 122-124
state machines, 124—
128, 140
structs, 82
subdomains, 14-16, 23
sum types, see choice types

Index ¢ 289

switch functions, 196, 198
system context, 43

T
teams, 10-11
text-based language models,
31-33, 36, 38-40, see al-
so order-placing example
total functions, 154-155, 192
transactions, 262
trust boundaries, 47
tuples, serialization of, 232
two-track functions
adapter blocks, 198-200
error type compatibility,
201
organizing Result, 200
overview, 196
type checking, 200
type inference, 60
type signatures, 60

types, see also simple types

advantages, 268, 282

as documentation, 101

checking, 200

composable, 67-69

composition of, 64-66

dependency modeling,
128

documenting business
rules, 108-112

documenting errors, 70

domain error modeling,
194

generics, 61, 121, 238

implementing state ma-
chines with, 127-128

keeping separate, 277

"lifting" to shared, 175-
177, 190

modeling with, 142

Option, 69

organizing, 73

overview, 61-63

steps modeling, 128-136

unknown, 83

values in, 63

working with, 66-67

U

Ubiquitous Language
capturing, 37
creating, 21, 24
definition, 22



instead of developer-cen-
tric, 79, 101

modeling domain errors,
194

Undefined, 83

unit type, 71

units of measure, 106
unknown types, 83
Unquote, 186

use cases, definition, 12

\Y4

validation, 47, 103, see al-
so integrity

Value Objects, 88-89, 93, 98

value types, 82

values
constrained, 81
simple, 79-82
in types, 63

variables, 63

Versioning in an Event
Sourced System (Young),
229

void, 71
W

waterfall development, 143

workflows, see also pipelines

active patterns, 266

adding new input, 271-
273

adding new stages, 267-
270

composing, 136

constraints, 36, 280

definition, 12

friction-free design, 18

input, 120-122

keeping I/O at edges, 54,
239-242

Index ® 290

life cycle modeling, 38-40

long-running, 140

modeling, 85-88

as pipelines, 119-120

state machines, 124-128

substep modeling, 40

text-based model, 31-33

understanding I/0, 25—
29

understanding details,
33-35

using states for modeling,
122-124

using types for modeling,
128-136, 142

within bounded contexts,
50

Y
Young, Greg, 229



Thank you!

How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to

on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,
Andy Hunt, Publisher

Pracmatic SAVE 30%!
-_%\ §ookshelf Use coupon code
— BUYANOTHER2017



https://pragprog.com

Level Up

From data structures to architecture and design, we have what you need.

A Common-Sense Guide to Data Structures and Algorithms

If you last saw algorithms in a university course or at
a job interview, you're missing out on what they can
do for your code. Learn different sorting and searching
techniques, and when to use each. Find out how to
use recursion effectively. Discover structures for spe-
cialized applications, such as trees and graphs. Use
Big O notation to decide which algorithms are best for
your production environment. Beginners will learn how
to use these techniques from the start, and experienced
developers will rediscover approaches they may have
forgotten.

Jay Wengrow
(218 pages) ISBN: 9781680502442. $45.95
https://pragprog.com/book/jwdsal

Design It!

Don't engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

A Common-Sense Guide to
Data Structures and Algorithms

Level Up Your Core
Programming Skills

Jay Wengrow
edited by Brian MacDonald

The.
Dgrammers

Design It!

From Programmer
to Software Architect

\

||

Michael Keelin

Foreword by George Fairbanks
Edited by Susannah Davidson Pfalzer



https://pragprog.com/book/jwdsal
https://pragprog.com/book/mkdsa

Explore Testing

Explore the uncharted waters of exploratory testing and delve deeper into web testing.

Explore |t!

Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(186 pages) ISBN: 9781937785024. $29
https://pragprog.com/book/ehxta

The Way of the Web Tester

This book is for everyone who needs to test the web.
As a tester, you'll automate your tests. As a developer,
you’ll build more robust solutions. And as a team,
you’'ll gain a vocabulary and a means to coordinate
how to write and organize automated tests for the web.
Follow the testing pyramid and level up your skills in
user interface testing, integration testing, and unit
testing. Your new skills will free you up to do other,
more important things while letting the computer do
the one thing it’s really good at: quickly running
thousands of repetitive tasks.

Jonathan Rasmusson
(256 pages) ISBN: 9781680501834. $29
https://pragprog.com/book/jrtest

Hltn

Explore It!
Reduce Risk and
Increase Confidence with
Exploratory Testing

Elisabeth Hendrickson
Edited by Jacquelyn Carter

The Way of the
Web Tester

A Beginner's Guide to
‘Automating Tests WY

Jonathan Rasmusson
edited by Susannah Pfalzer


https://pragprog.com/book/ehxta
https://pragprog.com/book/jrtest

The Joy of Mazes and Math

Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers

A book on mazes? Seriously?
Yes!

Not because you spend your day creating mazes, or
because you particularly like solving mazes.

But because it’s fun. Remember when programming
used to be fun? This book takes you back to those days
when you were starting to program, and you wanted
to make your code do things, draw things, and solve
puzzles. It’s fun because it lets you explore and grow
your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of
twisty little passages, all alike. Now you can code your
way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you've ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

for Hogrémmers

Code Your Own
Twisty Little Passages

Jamis Buck
Edited by Jacqueliyn Carter

Good Math

A Geek's Guide Lo the Beauty of
Numbers, Logic. and Computation

%..‘ . ﬁ
.\s,/// \/
tz B:vy/”

Mark C. Chu-Carroll
Edited by John Osborn



https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath

Past and Present

To see where we're going, remember how we got here, and learn how to take a healthier
approach to programming.

Fire in the Valley

In the 1970s, while their contemporaries were
protesting the computer as a tool of dehumanization

and oppression, a motley collection of college dropouts, L. Third Edition
o¢ opp Y . s P Fire in the Valley
hippies, and electronics fanatics were engaged in The Birth and Death of the

Personal Computer

something much more subversive. Obsessed with the
idea of getting computer power into their own hands,
they launched from their garages a hobbyist movement
that grew into an industry, and ultimately a social and
technological revolution. What they did was invent the
personal computer: not just a new device, but a water-
shed in the relationship between man and machine.
This is their story.

Michael Swaine and Paul Freiberger
Foreword by John Markoff, The New York Times

Edited by Brian P. Hogan

Michael Swaine and Paul Freiberger
(422 pages) ISBN: 9781937785765. $34
https://pragprog.com/book/fsfire

The Healthy Programmer

To keep doing what you love, you need to maintain e
your own systems, not just the ones you write code

for. Regular exercise and proper nutrition help you The
learn, remember, concentrate, and be creative—skKills Healthy
critical to doing your job well. Learn how to change Programmer

Get Fit, Feel Better,

your work habits, master exercises that make working and Keep Coding

at a computer more comfortable, and develop a plan %: .
to keep fit, healthy, and sharp for years to come. w:%"
This book is intended only as an informative guide for w'j&';
those wishing to know more about health issues. In no -
way is this book intended to replace, countermand, or e .:_{-0 - }gll\lvl,:ﬁf
conflict with the advice given to you by your own et s

healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
https://pragprog.com/book/jkthp


https://pragprog.com/book/fsfire
https://pragprog.com/book/jkthp

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/swdddf
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you’'d like to have a paper copy of the book. It’s available
for purchase at our store: https:/pragprog.com/book/swdddf

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http.//write-for-us.pragprog.com
Or Call: +1 800-699-7764


https://pragprog.com/book/swdddf
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/swdddf
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Preface
	Who Is This Book For?
	What’s in This Book?
	Other Approaches to Domain Modeling
	Working with the Code in This Book
	Questions or Suggestions?
	Credits
	Acknowledgments

	Part I—Understanding the Domain
	1. Introducing Domain-Driven Design
	The Importance of a Shared Model
	Understanding the Domain Through Business Events
	Partitioning the Domain into Subdomains
	Creating a Solution Using Bounded Contexts
	Creating a Ubiquitous Language
	Summarizing the Concepts of Domain-Driven Design
	Wrapping Up

	2. Understanding the Domain
	Interview with a Domain Expert
	Fighting the Impulse to Do Database-Driven Design
	Fighting the Impulse to Do Class-Driven Design
	Documenting the Domain
	Diving Deeper into the Order-Taking Workflow
	Representing Complexity in Our Domain Model
	Wrapping Up

	3. A Functional Architecture
	Bounded Contexts as Autonomous Software Components
	Communicating Between Bounded Contexts
	Contracts Between Bounded Contexts
	Workflows Within a Bounded Context
	Code Structure Within a Bounded Context
	Wrapping Up
	What’s Next


	Part II—Modeling the Domain
	4. Understanding Types
	Understanding Functions
	Types and Functions
	Composition of Types
	Working with F# Types
	Building a Domain Model by Composing Types
	Modeling Optional Values, Errors, and Collections
	Organizing Types in Files and Projects
	Wrapping Up

	5. Domain Modeling with Types
	Reviewing the Domain Model
	Seeing Patterns in a Domain Model
	Modeling Simple Values
	Modeling Complex Data
	Modeling Workflows with Functions
	A Question of Identity: Value Objects
	A Question of Identity: Entities
	Aggregates
	Putting It All Together
	Wrapping Up

	6. Integrity and Consistency in the Domain
	The Integrity of Simple Values
	Units of Measure
	Enforcing Invariants with the Type System
	Capturing Business Rules in the Type System
	Consistency
	Wrapping Up

	7. Modeling Workflows as Pipelines
	The Workflow Input
	Modeling an Order as a Set of States
	State Machines
	Modeling Each Step in the Workflow with Types
	Documenting Effects
	Composing the Workflow from the Steps
	Are Dependencies Part of the Design?
	The Complete Pipeline
	Long-Running Workflows
	Wrapping Up
	What’s Next


	Part III—Implementing the Model
	8. Understanding Functions
	Functions, Functions, Everywhere
	Functions Are Things
	Total Functions
	Composition
	Wrapping Up

	9. Implementation: Composing a Pipeline
	Working with Simple Types
	Using Function Types to Guide the Implementation
	Implementing the Validation Step
	Implementing the Rest of the Steps
	Composing the Pipeline Steps Together
	Injecting Dependencies
	Testing Dependencies
	The Assembled Pipeline
	Wrapping Up

	10. Implementation: Working with Errors
	Using the Result Type to Make Errors Explicit
	Working with Domain Errors
	Chaining Result-Generating Functions
	Using bind and map in Our Pipeline
	Adapting Other Kinds of Functions to the Two-Track Model
	Making Life Easier with Computation Expressions
	Monads and More
	Adding the Async Effect
	Wrapping Up

	11. Serialization
	Persistence vs. Serialization
	Designing for Serialization
	Connecting the Serialization Code to the Workflow
	A Complete Serialization Example
	How to Translate Domain Types to DTOs
	Wrapping Up

	12. Persistence
	Pushing Persistence to the Edges
	Command-Query Separation
	Bounded Contexts Must Own Their Data Storage
	Working with Document Databases
	Working with Relational Databases
	Transactions
	Wrapping Up

	13. Evolving a Design and Keeping It Clean
	Change 1: Adding Shipping Charges
	Change 2: Adding Support for VIP Customers
	Change 3: Adding Support for Promotion Codes
	Change 4: Adding a Business Hours Constraint
	Dealing with Additional Requirements Changes
	Wrapping Up
	Wrapping Up the Book


	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –


