

MEAP Edition
Manning Early Access Program

Elm in Action
Version 5

Copyright 2017 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

Licensed to Correl Roush <correl@gmail.com>

http://www.manning.com
https://forums.manning.com/forums/elm-in-action

welcome
Thanks for buying the MEAP of Elm in Action! I hope you find this a wonderfully practical
journey into a delightful language.

As an early adopter of Elm, I felt like a wide-eyed sprinter barreling down an exciting path
that had not yet been paved. Now that I’ve had time to catch my breath, I’m eager to help
pave that road for future travelers. My goal for this book is for you to enjoy learning Elm even
more than I did...and I loved it so much I’m writing a book about it!

More than anything, I hope this book gives you the confidence to use Elm professionally.
As much as I enjoyed using Elm on a side project, it’s brought me even more joy at work.
When I think back on what motivated my team to try it, it was the practical benefits:
reliability, a quicker development loop, and a lower maintenance burden.

The most authentic way I know to convey the benefits of building an application in Elm
is...well, to build an application in Elm. That’s exactly what we’ll be doing over the course of
this book: developing an application from start to finish, learning the language along the way.
By the end you’ll have built, refactored, and tested an Elm code base. If using it at work
sounds appealing, you’ll be able to convey its benefits based on firsthand experience!

Throughout the MEAP process I intend both to release new chapters as I finish them, and
to revise past chapters based on feedback from readers like you. I’d love it if you could leave
some comments in the Author Online Forum. All feedback is helpful! Mentioning which parts
felt difficult tells me where to focus my revision time, and mentioning your favorite parts tells
me what not to change.

Thanks again, and enjoy!

—Richard Feldman

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

brief contents
PART 1: GETTING STARTED

 1 Welcome to Elm

 2 Your First Elm Application

 3 Compiler as Assistant

PART 2: PRODUCTION-GRADE ELM

 4 Talking to Servers

 5 Talking to JavaScript

 6 Testing

 7 Tools

PART 3: BUILDING BIGGER

 8 Single-Page Applications

 9 Scaling Elm Code

10 Performance Optimization

Appendix A: Getting Set Up

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

1
Welcome to Elm

This chapter covers

• How and why to introduce Elm to a project
• Using elm-repl

• Building expressions
• Writing and importing functions
• Working with collections

Back in 2014 I set out to rewrite a side project, and ended up with a new favorite
programming language. Not only was the rewritten code faster, more reliable, and easier to
refactor, writing it was the most fun I’d had in over a decade writing code. Ever since that
project, I’ve been hooked on Elm.

The rewrite in question was a writing application I’d built even longer ago, in 2011. Having
tried out several writing apps over the course of writing a novel, and being satisfied with none,
I decided to scratch my own itch and build my dream writing app. I called it Dreamwriter.

For those keeping score: yes, I was indeed writing code in order to write prose better.
Things went well at first. I built the basic Web app, started using it, and iterated on the

design. Months later I’d written over fifty thousand words in Dreamwriter. If I’d been satisfied
with that early design, the story might have ended there. However, users always want a
better experience...and when the user and the developer are the same person, further
iteration is inevitable.

The more I revised Dreamwriter, the more difficult it became to maintain. I’d spend hours
trying to reproduce bugs that knocked me out of my writing groove. At some point the copy
and paste functions stopped working, and I found myself resorting to the browser’s developer
tools whenever I needed to move paragraphs around.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

1

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Right around when I’d decided to scrap my unreliable code base and do a full rewrite, a
blog post crossed my radar. After reading it I knew three things:

1. The Elm programming language compiled to JavaScript, just like Babel or CoffeeScript.
(I already had a compile step in my build script, so this was familiar territory.)

2. Elm used the same rendering approach as React.js—which I had recently grown to
love—except Elm had rendering benchmarks that outperformed React’s!

3. Elm’s compiler would catch a lot of the errors I’d been seeing before they could harm
me in production. I did not yet know just how many it would catch.

I’d never built anything with a functional programming language like Elm before, but I decided
to take the plunge. I didn’t really know what I was doing, but the compiler’s error messages
kept picking me up whenever I stumbled. Eventually I got the revised version up and running,
and began to refactor.

The refactoring experience blew me away. I revised the Elm-powered Dreamwriter
gleefully, even recklessly—and no matter how dramatic my changes, the compiler always had
my back. It would point out whatever corner cases I’d missed, and I’d go through and fix
them. As soon as the code compiled, lo and behold, everything worked again. I felt invincible.

I related my Elm experience to my coworkers at NoRedInk, and they were curious but
understandably cautious. How could we find out if the team liked it without taking a big risk? A
full rewrite may have been fine for Dreamwriter, but it would have been crazy to attempt that
for our company’s entire front-end.

So we introduced Elm gently, by rewriting just one portion of one production feature in
Elm. It went well, so we did a bit more. And then more.

Today our front-end is as Elm-powered as we can make it, and our team has never been
happier. Our test suites are smaller, yet our product is more reliable. Our feature set has
grown more complex, yet refactoring remains delightful. We swap stories with other
companies using Elm about how long our production code has run without throwing a single
runtime exception.

In this book we’ll explore all of these benefits.
After learning some basics, we’ll build an Elm Web application the way teams typically do:

ship a basic version that works, but which has missing features and some technical debt. As
we advance through the chapters, we’ll expand and refactor this application, adding features
and paying off technical debt as we learn more about Elm. We’ll debug our business logic.
We’ll even interoperate with JavaScript, using its vast library ecosystem to avoid reinventing
the wheel. By the end of the book we will have transformed our application into a more
featureful product, with a more maintainable code base, than the one we initially shipped.

With any luck, we’ll have a lot of fun doing it.
Welcome to Elm!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

2

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

1.1 How Elm Fits In
Elm can be used either as a replacement for in-browser JavaScript code, or as a complement
to it. You write some .elm files, run them through Elm’s compiler, and end up with plain old .js
files that the browser runs as normal. If you have separate stylesheets that you use alongside
JavaScript, they’ll work the same way alongside Elm.

Figure 1.1 Elm files are compiled to plain old JavaScript files

The appropriate Elm-to-JavaScript ratio can vary by project. Some projects may want
primarily JavaScript and only a touch of Elm for business logic or rendering. Others may want
a great deal of Elm but just a pinch of JavaScript to leverage its larger ecosystem. No single
answer applies to every project.

What distinguishes Elm from JavaScript is maintainability.
Handwritten JavaScript code is notoriously prone to runtime crashes like “undefined is not

a function.” In contrast, Elm code has a reputation for never throwing runtime exceptions in
practice. This is because Elm is built around a small set of simple primitives like expressions,
immutable values, and managed effects. That design lets the compiler identify lurking
problems just by scanning your source code. It reports these problems with such clarity that it
has earned a reputation for user-friendliness even among programming legends.

That should be an inspiration for every error message.

—John Carmack, after seeing one of Elm’s compiler errors

Having this level of compiler assistance makes Elm code dramatically easier to refactor and
debug, especially as code bases grow larger. There is an up-front cost to learning and
adopting Elm, but you reap more and more maintainablity benefits the longer the project
remains in active development.

TIP Most teams that use Elm in production say they used a “planting the seed” approach. Instead of waiting

for a big project where they could build everything in Elm from the ground up, they rewrote a small part of their

existing JavaScript code base in Elm. This was low-risk and could be rolled back if things did not go as planned,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

3

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

but having that small seed planted in production meant they could grow their Elm code at a comfortable pace

from then on.

Although Elm is in many ways a simpler language than JavaScript, it’s also much younger.
This means Elm has fewer off-the-shelf solutions available for any given problem. Elm code
can interoperate with JavaScript code to piggyback the larger JavaScript library ecosystem,
but Elm’s design differs enough from JavaScript’s that incorporating JavaScript libraries takes
effort.

Balancing these tradeoffs depends on the specifics of a given project. Let’s say you’re on a
team where people are comfortable with JavaScript but are new to Elm. Here are some
projects I’d expect would benefit from learning and using Elm:

• Feature-rich Web applications whose code bases are large or will grow large
• Individual features that will be revised and maintained over an extended period of time
• Projects where most functionality comes from in-house code, not off-the-shelf libraries

In contrast, I’d stick to a more familiar language and toolset for projects like these:

• Proof-of-concept prototypes that will not be maintained long-term
• Time-crunched projects where learning a language is unrealistic given the deadline
• Projects that will consist primarily of gluing together off-the-shelf components

We’ll explore these tradeoffs in more detail throughout the course of the book.

1.2 Expressions
To get our feet wet with Elm, let’s tap into one of the most universal traits across the animal
kingdom: the innate desire to play.

 Researchers have developed many theories as to why we play, including to learn, to
practice, to experiment, and of course for the pure fun of it. These researchers could get some
high-quality data by observing a member of the homo sapiens programmerus species in its
natural environment for play—the Read-Eval-Print Loop, or REPL.

You'll be using Elm's REPL to play as you take your first steps as an Elm programmer.

1.2.1 Using elm-repl

The Elm Platform includes a nice REPL called elm-repl, so if you have not installed the Elm
Platform yet, head over to Appendix A to get hooked up.

Once you’re ready, enter elm-repl at the terminal. You should see this prompt:

---- elm-repl 0.18.0 ---
 :help for help, :exit to exit, more at https://github.com/elm-lang/elm-repl
--
>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

4

Licensed to Correl Roush <correl@gmail.com>

https://github.com/elm-lang/elm-repl
https://forums.manning.com/forums/elm-in-action

Alexander Graham Bell invented the telephone over a century ago. There was no customary
greeting back then, so Bell suggested one: lift the receiver and bellow out a rousing “Ahoy!”
Thomas Edison later proposed the alternative “Hello,” which stuck, and today programmers
everywhere append “World” as the customary way to greet a new programming language.

Let’s spice things up a bit, shall we? Enter this at the prompt.

> "Ahoy, World!"

You should see this response from elm-repl:

"Ahoy, World!" : String

Congratulations, you are now an Elm programmer!

NOTE To focus on the basics, for the rest of this chapter we'll omit the type annotations that elm-repl

prints. For example, the previous code snippet would have omitted the : String portion of "Ahoy,

World!" : String. We'll get into these annotations in Chapter 3.

If you're the curious sort, by all means feel free to play as we continue. Enter things that
occur to you, and see what happens! Whenever you encounter an error you don't understand
yet, picture yourself as a tiger cub building intuition for physics through experimentation:
adorable for now, but powerful in time.

1.2.2 Building Expressions

Let's rebuild our "Ahoy, World!" greeting from two parts, and then play around from there.
Try entering these into elm-repl.

Listing 1.1 Combining Strings

> "Ahoy, World!"
"Ahoy, World!"

> "Ahoy, " ++ "World!"
"Ahoy, World!"

> "Pi is " ++ toString pi ++ " (give or take)" ❶
"Pi is 3.141592653589793 (give or take)"

❶ toString is a standalone function, not a method

In Elm, we use the ++ operator to combine strings, instead of the + operator JavaScript uses.
At this point you may be wondering: Does Elm even have a + operator? What about the other
arithmetic operators?

Let’s find out by experimenting in elm-repl!

Listing 1.2 Arithmetic Expressions

> 1234 + 103

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

5

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

1337

> 12345 - (5191 * -15) ❶
90210

> 2 ^ 11
2048

> 49 / 10
4.9

> 49 // 10 ❷
4

> -5 % 2 ❸
1

❶ Nest expressions via parentheses
❷ Integer division (decimals get truncated)
❸ Remainder after integer division

Sure enough, Elm has both a ++ and a + operator. They are used for different things:

• The ++ operator is for appending. Using it on a number is an error.
• The + operator is for addition. It can only be used on numbers.

You will see this preference for being explicit often in Elm. If two operations are sufficiently
different—in this case, adding and appending—Elm implements them separately, so each
implementation can do one thing well.

STRINGS AND CHARACTERS

Elm also distinguishes between strings and the individual UTF-8 characters that comprise
them. Double quotes in Elm represent string literals, just like in JavaScript, but single quotes
in Elm represent character literals.

Table 1.1 Strings and Characters

Elm Literal Result

"a" a string with a length of 1

'a' a single character

"abc" a string with a length of 3

'abc' error: character literals must contain exactly 1 character

"" an empty string

'' error: character literals must contain exactly 1 character

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

6

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

COMMENTS

Comments also work a bit differently in Elm:

• Use -- instead of // for inline comments
• Use {- -} instead of /* */ for block comments

Let’s see these in action!

Listing 1.3 Characters, Comments, and Constants

> 'a' -- This is a comment. It will be ignored. ❶
'a'

> "a" {- This is a block comment. It will also be ignored. -} ❷
"a"

> milesPerHour = 88 ❸
88

> milesPerHour
88

❶ JavaScript comment: //
❷ JavaScript comment: /* ... */
❸ JavaScript: const milesPerHour = 88;

NAMING VALUES WITH CONSTANTS

In the last two lines of code above, we did something new: we assigned the constant
milesPerHour to the value 88.

DEFINITION A constant assigns a name to a value. Once assigned, this name cannot be later reassigned

to a different value in the same scope.

There are a few things to keep in mind when naming constants.

• The name must begin with a lowercase letter. After that it can be a mix of letters,
numbers, and underscores.

• By convention, all letters should be in one uninterrupted sequence. For example, map4
is a reasonable name, but map4ever is not, because the sequence of letters is
interrupted by the 4.

• Because of the previous two rules, you should never use snake_case or
SCREAMING_SNAKE_CASE to name constants. Use camelCase instead.

• If you absolutely must know whether the compiler will accept some_raD__TH1NG___ as
a valid constant name, remember: what happens in elm-repl stays in elm-repl.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

7

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

ASSIGNING CONSTANTS TO EXPRESSIONS

Not only can you assign constants to literal values, you can also assign them to expressions.

DEFINITION An expression is anything that evaluates to a single value.

Here are some expressions we’ve seen so far.

Expression Evaluates to

"Ahoy, " ++ "World!" "Ahoy, World!"

2 ^ 11 2048

pi 3.141592653589793

42 42

NOTE Since an expression is anything that evaluates to a value, literal values like "Ahoy, World!" and

42 are expressions too—just expressions that have already been fully evaluated.

Expressions are the basic building block of Elm applications. This is different from JavaScript,
which offers many features as statements instead of expressions.

Consider these two lines of JavaScript code.

label = (num > 0) ? "positive" : "negative" // ternary expression
label = if (num > 0) { "positive" } else { "negative" } // if-statement

The first line is ternary expression. Being an expression, it evaluates to a value, and
JavaScript happily assigns that value to label.

The second line is an if-statement, and since statements do not evaluate to values, trying
to assign it to label yields a syntax error.

This distinction does not exist in Elm, as Elm programs express logic using expressions
only. As such, Elm has if-expressions instead of if-statements. As we will see in Chapter 2,
every Elm application is essentially one big expression built up from lots of smaller ones!

1.2.3 Booleans and Conditionals

There aren’t terribly many booleans out there—just the two, really—and working with them in
Elm is similar to working with them in JavaScript. There are a few differences, though.

• You write True and False instead of true and false
• You write /= instead of !==
• To negate values, you use Elm’s not function instead of JavaScript’s ! prefix

Let’s try them out!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

8

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Listing 1.4 Boolean Expressions

> pi == pi ❶
True ❷

> pi /= pi ❸
False ❹

> not (pi == pi) ❺
False

> pi <= 0 || pi >= 10
False

> 3 < pi && pi < 4 ❻
True

❶ JavaScript: pi === pi
❷ JavaScript: true
❸ JavaScript: pi !== pi
❹ JavaScript: false
❺ JavaScript: !(pi === pi)
❻ 3 < pi < 4 would be an error

Now let’s say it’s a lovely afternoon at the North Pole, and we’re in Santa’s workshop writing a
bit of UI logic to display how many elves are currently on vacation. The quick-and-dirty
approach would be to add the string " elves" after the number of vacationing elves, but then
when the count is 1 we’d display "1 elves", and we’re better than that.

Let’s polish our user experience with the if-expression shown in Figure 1.2.

Figure 1.2 Comparing an Elm if-expression to a JavaScript ternary

Like JavaScript ternaries, Elm if-expressions require three ingredients:

1. A condition
2. A branch to evaluate if the condition passes
3. A branch to evaluate otherwise

Each of these ingredients must be expressions, and the if-expression itself evaluates to the
result of whichever branch got evaluated. You’ll get an error if any of these three ingredients
are missing, so make sure to specify an else branch every time!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

9

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

NOTE There is no such thing as “truthiness” in Elm. Conditions can be either True or False, and that’s it.

Life is simpler this way.

Now let’s say we modified our pluralization conditional to include a third case:

• If we have one Elf, evaluate to "elf"
• Otherwise, if we have a positive number of elves, evaluate to "elves"
• Otherwise, we must have a negative number of elves, so evaluate to "anti-elves"

In JavaScript you may have used else if to continue branching conditionals like this. It’s
common to use else if for the same purpose in Elm, but it’s worth noting that else if in
Elm is nothing more than a stylish way to combine the concepts we learned a moment ago.

Check it out!

Listing 1.6 Using else if

if elfCount == 1 then ❶
 "elf" ❶
else ❶
 (if elfCount >= 0 then "elves" else "anti-elves") ❶

if elfCount == 1 then ❷
 "elf" ❷
else (if elfCount >= 0 then ❷
 "elves" ❷
else ❷
 "anti-elves") ❷

if elfCount == 1 then ❸
 "elf" ❸
else if elfCount >= 0 then ❸
 "elves" ❸
else ❸
 "anti-elves" ❸

❶ Use an if-expression inside else
❷ Rearrange some whitespace
❸ Drop the parentheses

This works because the else branch of an if-expression must be an expression, and it just so
happens that if-expressions themselves are expressions. As shown in Figure 1.3, all it takes is
putting an if-expression after another one’s else, and voilà! Additional branching achieved.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

10

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 1.3 The else if technique: use an if-expression as the else branch of another if-expression

Nesting expressions for fun and profit is a recurring theme in Elm, and we’ll see plenty more
recipes like else if thoughout the book.

Chapter 3 will add a powerful new conditional to our expression toolbox, one which has no
analogue in JavaScript: the case-expression.

1.3 Functions
Earlier we wrote this expression:

elfLabel = if vacationingElves == 1 then "elf" else "elves"

Suppose it turns out a general-purpose singular/plural labeler would be really useful, and we
want to reuse similar logic across the code base at Santa’s Workshop. Search results might
want to display "1 result" and "2 results" as appropriate, for example.

We can write a function to make this pluralization logic easily reusable.

DEFINITION Elm functions represent reusable logic. They are not objects. They have no fields, no

prototypes, and no ability to store state. All they do is accept values as arguments, and then return a value.

If you thought expressions would be a recurring theme in Elm, wait ‘til you see functions!

1.3.1 Defining Functions

Let’s define our first function: isOdd. It will take a number and then:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

11

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

• Return True if the number is odd
• Return False if the number is even

We can define isOdd in elm-repl and try it out right away.

Listing 1.7 Defining a function

> isOdd num = num % 2 == 1 ❶
<function>

> isOdd 5 ❷
True

> (isOdd 5) ❸
True

> isOdd (5 + 1) ❹
False

❶ JavaScript: function isOdd(num) { return num % 2 === 1; }
❷ JavaScript: isOdd(5)
❸ JavaScript: (isOdd(5))
❹ JavaScript: isOdd(5 + 1)

As you can see, in Elm we put the function parameter name before the = sign. We also don’t
surround the function body with { }. And did you notice the return keyword is nowhere to be
seen? That’s because Elm doesn’t have one! In Elm, a function body is a single expression,
and since an expression evaluates to a single value, Elm uses that value as the function’s
return value. This means all Elm functions return values!

For our isOdd function, the expression num % 2 == 1 serves as the function’s body, and
provides its return value.

Refactoring out an early return
In JavaScript, return is often used to exit a function early. This is harmless when used responsibly, but can lead to
unpleasant surprises when used in the middle of large functions. Elm does not support these unpleasant surprises,
because it has no return keyword.

Let’s refactor the early return out of this function:

function capitalize(str) {
 if (!str) {
 return str; ❶
 }

 return str[0].toUpperCase() + str.slice(1);
}

❶ Early return

Without making any other changes, we can refactor this early return into a ternary:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

12

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

function capitalize(str) {
 return !str ? str : str[0].toUpperCase() + str.slice(1);
}

Poof! There it goes. Since JavaScript’s ternaries are semantically analogous to Elm’s if-expressions, this code is now
much more straightforward to rewrite in Elm. More convoluted JavaScript functions may require more steps than this,
but it is always possible to untangle them into plain old conditionals.

Removing an early return is one of many quick refactors you can do to ease the transition from legacy JavaScript
to Elm, and we’ll look at more of them throughout the book. When doing these, do not worry if the intermediate
JavaScript code looks ugly! It’s intended to be a stepping stone to nicer Elm code, not something to be maintained long-
term.

Let’s use what we just learned to generalize our previous elf-labeling expression into a
reusable pluralize function. Our function this time will have a longer definition than last
time, so let’s use multiple lines to give it some breathing room. In elm-repl, you can enter
multiple lines by adding \ to the end of the first line and indenting the next line.

NOTE Indent with spaces only! Tab characters are syntax errors in Elm.

Listing 1.8 Using multiple REPL lines

> pluralize singular plural count = \
| if count == 1 then singular else plural ❶
<function>

> pluralize "elf" "elves" 3 ❷
"elves"

> pluralize "elf" "elves" (round 0.9) ❸
"elf"

❶ Don’t forget to indent!
❷ No commas between arguments!
❸ (round 0.9) returns 1

When passing multiple arguments to an Elm function, separate the arguments with whitespace
and not commas. That last line of code is an example of passing the result of one function call,
namely round 0.9, as an argument to another function. (Think about what would happen if
we did not put parentheses around (round 0.9)...how many arguments would we then be
passing to pluralize?)

1.3.2 Importing Functions

So far we’ve only used basic operators and functions we wrote ourselves. Now let’s expand
our repertoire of functions by using one from an external module.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

13

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

DEFINITION A module is a named collection of Elm functions and other values.

The String module is one of the core modules that ships with Elm. Additional modules can be
obtained from Elm’s official package repository, copy-pasting code from elsewhere, or through
a back-alley rendezvous with a shadowy figure known as Dr. Deciduous. Chapter 4 will cover
how to do the former, but neither the author nor Manning Publications endorses obtaining Elm
modules through a shadowy back-alley rendezvous.

Let’s import the String module and try out two of its functions, toLower and toUpper.

Listing 1.9 Importing functions

> String.toLower "Why don't you make TEN louder?"
"why don't you make ten louder?"

> String.toUpper "These go to eleven."
"THESE GO TO ELEVEN."

Observant readers may note a striking resemblance between Elm’s String.toUpper function
and the toUpperCase() method one finds on JavaScript strings. This is the first example of a
pattern we will encounter many times!

JavaScript has several ways of organizing string-related functionality: fields on a string,
methods on a string, or methods on the String global istelf.

In contrast, Elm strings have neither fields nor methods. The String module houses the
standard set of string-related features, and exposes them in the form of plain old functions
like toLower and toUpper.

Table 1.2 String Functionality Comparison

JavaScript Elm

"storm".length String.length "storm"

"dredge".toUpperCase() String.toUpper "dredge"

String.fromCharCode(something) String.fromChar something

Not only is this organizational pattern consistent within the String module, it’s consistent
across Elm. Want a standard date-related feature? Look no further than the functions in the
Date module. Regular Expression functions? Hit up the Regex module.

Methods are never the answer in Elm; over here it’s all vanilla functions, all the time.

TIP Complete documentation for String, Date, Regex, and other tasty modules can be found in the core

section of the package.elm-lang.org website.

We’ll learn more about modules in the coming chapters, including how to write our own!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

14

Licensed to Correl Roush <correl@gmail.com>

http://package.elm-lang.org/
https://forums.manning.com/forums/elm-in-action

USING STRING.FILTER TO FILTER OUT CHARACTERS

Another useful function in the String module is filter. It lets us filter out unwanted
characters from a string, such as non-numeric digits from a phone number.

To do this, we must give filter a function which specifies which characters to keep. The
function will take a single character as an argument and return True if we should keep that
character or False if we should chuck it. Figure 1.4 illustrates using String.filter to remove
dashes from a US telephone number.

Figure 1.4 Using String.filter to remove dashes from a US phone number

As in JavaScript, Elm functions are first-class values that can be passed around just like any
other value. This lets us provide filter with the function it expects by defining that function
and then passing it in as a plain old argument.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

15

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Listing 1.10 Filtering with a named function

> isKeepable character = character /= '-' ❶
<function>

> isKeepable 'z'
True

> isKeepable '-'
False

> String.filter isKeepable "800-555-1234" ❷
"8005551234"

❶ A function describing which characters to keep
❷ Passing our function to String.filter

This normalizes telephone numbers splendidly. Alexander Graham Bell would be proud!
String.filter is one of the higher-order functions (that is, functions which accept other

functions as arguments) that Elm uses to implement customizable logic like this.

1.3.3 Creating scope with let-expressions

Let’s say we find ourselves removing dashes from phone numbers so often, we want to make
a reusable function for it. We can do that with our trusty isKeepable function:

withoutDashes str = String.filter isKeepable str

This works, but in a larger Elm program, it might be annoying having isKeepable in the global
scope like this. After all, its implementation is only useful to withoutDashes. Can we avoid
globally reserving such a nicely self-documenting name?

Absolutely! We can scope isKeepable to the implementation of withoutDashes using a
let-expression.

DEFINITION A let-expression adds locally scoped constants to an expression.

Figure 1.5 shows how we can implement withoutDashes using a single let-expression.

Figure 1.5 Anatomy of the wild let-expression

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

16

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

The above code does very nearly the same thing as entering the following in elm-repl:

> dash = '-'
> isKeepable character = character /= dash
> withoutDashes str = String.filter isKeepable str

In both versions, the implementation of withoutDashes boils down to String.filter
isKeepable str. The only difference between the two is the scope of dash and isKeepable.

• In the elm-repl version above, dash and isKeepable are in the global scope.
• In Figure 1.5, dash and isKeepable are scoped locally to the let-expression.

Whenever you see a let-expression, you can mentally replace it with the part after its in
keyword—in this case, String.filter isKeepable str. All the values between let and in
are intermediate constants that are no longer in scope once the expression after in gets
evaluated.

NOTE The indentation in Figure 1.5 is no accident! In a multiline let-expression, the let and in keywords

must be at the same indentation level, and all other lines in the let-expression must be indented further than

they are.

Anywhere you’d write a normal expression, you can swap in a let-expression instead. Because
of this, you don’t need to learn anything new to define locally-scoped constants inside function
bodies, branches of if-expressions, or anyplace else.

Wherever you want some local scope, reach for a refreshing let-expression!

1.3.4 Anonymous Functions

Anonymous functions in Elm work the same way they do in JavaScript: like named functions
but without the name.

Listing 1.11 Named and Anonymous Functions

function area(w, h) { return w * h; } ❶

function(w, h) { return w * h; } ❷

area w h = w * h ❸

\w h -> w * h ❹

❶ JavaScript named function
❷ JavaScript anonymous function
❸ Elm named function
❹ Elm anonymous function

Elm’s anonymous functions differ from its named functions in three ways.

1. They have no names

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

17

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

2. They begin with a \
3. Their parameters are followed by -> instead of =

Once defined, anonymous functions and named functions work the same way; you can always
use the one in place of the other. For example, the following do exactly the same thing:

isKeepable char = char /= '-'
isKeepable = \char -> char /= '-'

Let’s use an anonymous function to call String.filter in one line instead of two, then see if
we can improve the business logic! For example, we can try using Char.isDigit to cast a
wider net, filtering out any non-digit characters instead of just dashes.

Listing 1.12 Filtering with anonymous functions

> String.filter (\char -> char /= '-') "800-555-1234"
"8005551234"

> String.filter (\char -> char /= '-') "(800) 555-1234"
"(800) 5551234" ❶

> import Char
> String.filter (\char -> Char.isDigit char) "(800) 555-1234"
"8005551234" ❷

> String.filter Char.isDigit "(800) 555-1234" ❸
"8005551234"

❶ Our simple filter fell short here
❷ Much better!
❸ Refactor of previous approach

Anonymous functions are often used with higher-order functions like String.filter.

1.3.5 Operators

So far we’ve seen functions such as String.filter, as well as operators such as ++, -, and
==. How do operators and functions relate?

As it turns out, Elm’s operators are functions! There are a few things that distinguish
operators from normal functions:

• Operators must always accept exactly two arguments—no more, no fewer.
• Normal functions have names that begin with a letter. You typically call them by writing

the name of the function followed by its arguments. This is prefix-style calling.
• Operators have names that contain neither letters nor numbers. You typically call them

by writing the first argument, followed by the operator, followed by the second
argument. This is infix-style calling.

Wrapping an operator in parentheses treats it as a normal function—prefix-style calling and
all!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

18

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 1.6 Calling the (-) operator in both infix-style and prefix-style

Let’s play with some operators in elm-repl:

Listing 1.13 Operators are functions

> (/)
<function>

> divideBy = (/)
<function>

> 7 / 2 ❶
3.5

> (/) 7 2 ❷
3.5

> divideBy 7 2
3.5

❶ infix-style calling
❷ prefix-style calling

OPERATOR PRECEDENCE

Try entering an expression involving both arithmetic operators and (==) into elm-repl:

> 3 + 4 == 8 - 1
True : Bool

Now consider how we’d rewrite this expression in prefix-style:

> (==) ((+) 3 4) ((-) 8 1)
True : Bool

Notice anything about the order in which these operators appear? Reading the infix-style
expression from left to right, you see + first, then ==, and finally -. In the prefix-style
expression, the order is different: first you see ==, then +, and finally -. Why is this?

They get reordered because (==), (+), and (-) have different precedence values.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

19

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 1.7 (==) gets evaluated after (+) and (-) because it has lower precedence

DEFINITION In any expression containing multiple operators, the operators with higher precedence get

evaluated before those with lower precedence. This only applies to infix-style calls, as all prefix-style calls

implicitly have the same precedence.

There isn’t much formal documentation on operators’ relative precedence values, but
operators that appear in many programming languages (such as the (==), (+), and (-)
operators) tend to work similarly in Elm to how they do everywhere else.

We’ll dig into operator precedence in greater depth in later chapters.

NORMAL FUNCTION CALLS HAVE TOP PRECEDENCE

Here are two ways to write the same thing:

> negate 1 + negate 5
-6

> (negate 1) + (negate 5)
-6

These two are equivalent because normal function calls have higher precedence than any
operator. This means any time you want to pass the results of two normal function calls to an
operator, you won’t need to add any parentheses! You’ll still get the result you wanted.

OPERATOR ASSOCIATIVITY

Besides precedence, the other factor that determines evaluation order for operators called in
infix-style is whether the operators are left-associative, right-associative, or non-associative.
Every operator is one of these.

An easy way to think about operator associativity is in terms of where the implied
parentheses go. Infix expressions involving left-associative operators, such as arithmetic
operators, have implied parentheses that cluster on the left:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

20

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 1.3 Implied parentheses for the (-) operator

Parentheses Shown Expression Result

none 10 - 6 - 3 1

assuming left-associative ((10 - 6) - 3) 1

assuming right-associative (10 - (6 - 3)) 7

If (-) were right-associative, 10 - 6 - 3 would have parentheses clustering on the right,
meaning it would evaluate to (10 - (6 - 3)) and the undesirable result of 10 - 6 - 3 == 7.
Good thing arithmetic operators are left-associative!

Non-associative operators cannot be chained together. For example, foo == bar == baz
does not result in clustered parentheses, it results in an error!

In Chapter 7, we’ll see how to define our own operators, including specifying their
associativity and precedence values.

1.4 Collections
Elm’s most basic collections are lists, records, and tuples. Each has varying degrees of
similarity to JavaScript’s arrays and objects, but one way in which they differ from JavaScript
collections is in that Elm collections are always immutable.

DEFINITION An immutable value cannot be modified in any way once created.

This is in contrast to JavaScript, where some values (like strings and numbers) are immutable,
but collections (like arrays and objects) can be mutated.

1.4.1 Lists

An Elm list has many similarities to a JavaScript array.

• You can create one with a square bracket literal, e.g. ["one fish", "two fish"]
• You can ask for its first element
• You can ask for its length
• You can iterate over its elements in various ways

An Elm list does have some differences, though.

• It is immutable
• It has no fields or methods. You work with it using functions from the List module.
• Because it is a linked list, you can ask for its first element, but not for other individual

elements. (If you need to ask for elements at various different positions, you can first
convert from an Elm List to an Elm Array. We’ll discuss Elm Arrays in Chapter 3.)

• You can combine it with another list using the ++ operator. In JavaScript this is done

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

21

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

with the concat method rather than an operator.
• All elements in an Elm list must have a consistent type. For example, it can be a “list of

numbers” or a “list of strings,” but not a “list where strings and numbers intermingle.”
(Making a list containing both strings and numbers involves first creating wrapper
elements for them, using a feature called union types that we’ll cover in Chapter 3.)

Although Elm supports both (immutable) lists and (also immutable) arrays, lists are used far
more often because they have better performance characteristics in typical Elm use cases.
We’ll get more into the performance differences between linked lists and arrays in Chapter 10.

Here are some examples of how Elm lists and JavaScript arrays differ.

Table 1.4 Contrasting JavaScript Arrays and Elm Lists

JavaScript Array Elm List

[1, 2, 3].length List.length [1, 2, 3]

["one fish", "two fish"][0] List.head ["one fish", "two fish"]

["one fish", "two fish"][1] No arbitrary position-based element access

[1, 2].concat([3, 4]) [1, 2] ++ [3, 4]

[1, 2].push(3) Cannot be modified; use e.g. append instead

[1, "Paper", 3] All elements in a list must have a consistent type

Let’s focus on that last one. Why must all elements in an Elm list have a consistent type?
To understand how this requirement benefits us, let’s consider the List.filter function,

which works like the String.filter function we used earlier.
Recall that String.filter takes a function which returns True when the given character

should be kept, and False when it should be dropped. List.filter differs only in that the
function you provide doesn’t necessarily receive characters—instead it receives elements from
the list, whatever they may be.

Let’s see that in action. Quick! To elm-repl!

Listing 1.14 Filtering lists

> List.filter (\char -> char /= '-') ['Z', '-', 'Z'] ❶
['Z','Z']

> List.filter (\str -> str /= "-") ["ZZ", "-", "Top"] ❷
["ZZ","Top"]

> import Char
> List.filter Char.isDigit ['7', '-', '9'] ❸
['7','9']

> List.filter (\num -> num % 2 == 1) [1, 2, 3, 4, 5] ❹
[1,3,5]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

22

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

❶ Same function we passed to String.filter earlier
❷ Strings instead of characters
❸ Works just like with String.filter
❹ Keep only the odd numbers

Here’s how we would rewrite that last line of code in JavaScript:

[1, 2, 3, 4, 5].filter(function(num) { return num % 2 === 1; })

This looks straightforward enough, but JavaScript arrays permit inconsistent element types.
Without looking it up, can you guess what happens if we change it to the following?

[1, "2", "cat", 4, "5", ""].filter(function(num) { return num % 2 === 1; })

Will it crash? Will it happily return numbers? What about strings? It’s a bit of a head-scratcher.
Because Elm requires consistent element types, this is a no-brainer: in Elm it would be an

error. Even better, it would be an error at build time—meaning you can rest easy knowing
whatever surprises would result from executing this code will not inflict pain on your users.
Requiring consistent element types means all lists in Elm guarantee this level of predictability.

By the way, the above filter() call successfully returns [1, "5"]. (Like, duh, right?)

1.4.2 Records

We’ve now seen how JavaScript’s mutable arrays resemble Elm’s immutable lists. In a similar
vein, JavaScript’s mutable objects resemble Elm’s immutable records.

DEFINITION A record is a collection of named fields, each with an associated value.

Whereas array and list literals between the two languages are syntactically identical, where
JavaScript object literals use : to separate fields and values, Elm record literals use = instead.

Let’s get a taste for some of their other differences.

JavaScript Object Elm Record

{ name: "Li", cats: 2 } { name = "Li", cats = 2 }

({ name: "Li", cats: 2 }).toString() toString { name = "Li", cats = 2 }

({ name: "Li", cats: 2 }).cats ({ name = "Li", cats = 2 }).cats

({ name: "Li", cats: 2 })["cats"] Fields can only be accessed directly, using a dot

({ name: "Li", cats: 2 }).cats = 3 Cannot be modified. (New cat? New record!)

{ NAME: "Li", CATS: 2 } Fields have the same naming rules as constants

({ name: "Li", cats: 2 }).__proto__ No prepackaged fields, only the ones you define

Object.keys({ name: "Li", cats: 5 }) No listing of field names is available on demand

Object.prototype Records have no concept of inheritance

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

23

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Wow—compared to objects, records sure don’t do much! It’s like all they do is sit around
holding onto the data we gave them. (Yep.) Personally I’ve found Elm’s records a welcome
reprieve from the intricacies of JavaScript’s this keyword.

RECORD UPDATES

Record updates let us concisely obtain a new record by copying the old one and changing only
the specified values. (As we will see in Chapter 10, behind the scenes Elm does not actually
copy the entire record—that would be slow!—but rather only the parts that will be different.)

Let’s use this technique to represent someone obtaining an extra cat, going from { name =
"Li", cats = 2 } to { name = "Li", cats = 3 } by way of a record update.

Listing 1.15 Record updates

> catLover = { name = "Li", cats = 2 }
{ name = "Li", cats = 2 }

> catLover
{ name = "Li", cats = 2 }

> withThirdCat = { catLover | cats = 3 } ❶
{ name = "Li", cats = 3 }

> withThirdCat
{ name = "Li", cats = 3 }

> catLover ❷
{ name = "Li", cats = 2 } ❷

> { catLover | cats = 88, name = "LORD OF CATS" } ❸
{ name = "LORD OF CATS", cats = 88 }

❶ Record update syntax
❷ Original record unmodified!
❸ Update multiple fields (order doesn’t matter)

Record updates let us represent this incremental evolution without mutating our records or
recreating them from scratch. In Chapter 2 we’ll represent our application state with a record,
and use record updates to make changes based on user interaction.

1.4.3 Tuples

Lists let us represent collections of varying size, whose elements share a consistent type.
Records let us represent collections of fixed fields, but whose corresponding values may have
varied types.

Tuples introduce no new capabilities to this mix, as there is nothing a tuple can do that a
record couldn’t. Compared to records, though, what tuples bring to the party is conciseness.

DEFINITION A tuple is a record-like value whose fields are accessed by position rather than by name.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

24

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

In other words, tuples are for when you want a record, but don’t want to bother naming its
fields. They are often used for things like key-value pairs where writing out { key = "foo",
value = "bar" } would add verbosity but not much clarity.

Let’s try some out!

Listing 1.17 Using Tuples

> ("Tech", 9)
("Tech",9)

> Tuple.first ("Tech", 9) ❶
"Tech"

> Tuple.second ("Tech", 9) ❷
9

❶ Return first element (only works on 2-element tuples)
❷ Return second element (only works on 2-element tuples)

You can only use the Tuple.first and Tuple.second functions on tuples that contain two
elements. If they have more than two, you can use tuple destructuring to extract their values.

DEFINITION Tuple destructuring extracts the values inside a tuple and assigns them to constants in the

current scope.

Let’s use tuple destructuring to implement a function that takes a tuple of three elements.

Listing 1.18 Tuple Destructuring

> multiply3d (x, y, z) = x * y * z ❶
<function>

> multiply3d (6, 7, 2)
84

> multiply2d someTuple = let (x, y) = someTuple in x * y ❷
<function>

❶ Destructuring a tuple into three constants: x, y, and z
❷ Destructuring a tuple inside a let-expression

As demonstrated in Listing 1.18, once you have named the values inside the tuple, you can
use them just like you would any other constant.

TIP Mind the difference between a tuple and a parenthetical function call! (foo, bar) is a tuple,

whereas (foo bar) is a call to the foo function passing bar as an argument. A simple mnemonic to

remember the difference is “comma means tuple.”

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

25

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 1.5 Comparing Lists, Records, and Tuples

List Record Tuple

Variable Length Fixed Length Fixed Length

Can Iterate Over Cannot Iterate Over Cannot Iterate Over

No Names Named Fields No Names

Immutable Immutable Immutable

Since any tuples can be represented (more verbosely) using a record instead, it’s often better
to refactor long tuples—say, with more than three elements—into records. Choose tuples or
records based on whichever would yield more readable code; their performance characteristics
are equivalent.

1.5 Summary
We’re off to a fantastic start! First we discussed some of the toughest problems Web
programmers face: crashing is too easy in JavaScript, and maintenance is too error-prone.
Then we learned how Elm addresses these problems, with a design that prioritizes
maintainability and a helpful compiler that catches would-be runtime exceptions before they
can cause user pain. From there we dove in and wrote our first Elm code in elm-repl.

Here is a brief review of things we covered along the way.

• The ++ operator combines strings and lists, whereas the + operator is for addition only.
• Double quotes refer to strings. Single quotes refer to individual UTF-8 characters.
• let-expressions introduce scoped constants to an expression.
• There is no concept of “truthiness” in Elm, just True and False.
• if foo /= bar then "different" else "same" is an if-expression. Like JavaScript

ternaries, if-expressions require an else branch and always evaluate to a value.
• Lists like [3, 1, 4] are immutable. Their elements must share a consistent type.
• List.filter (\num -> num < 0) numbersList returns a list containing all the

negative numbers in the original numbersList
• catLover = { name = "Li", cats = 2 } assigns a record to the constant catLover.

Once assigned, constants cannot be reassigned.
• { catLover | cats = 3 } returns a new record that is the same as the catLover

record, except the cats value is now 3.
• (foo, bar) destructures a tuple such as (2, 3). In this example, foo would be 2

and bar would be 3.

Table 1.6 summarizes some of the differences between JavaScript and Elm.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

26

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 1.6 Differences between JavaScript and Elm

JavaScript Elm

// This is an inline comment -- This is an inline comment

/* This is a block comment */ {- This is a block comment -}

true && false True && False

"Ahoy, " + "World!" "Ahoy, " ++ "World!"

"A spade" === "A spade" "A spade" == "A spade"

"Calvin" !== "Hobbes" "Calvin" /= "Hobbes"

Math.pow(2, 11) 2 ^ 11

Math.trunc(-49 / 10) -49 // 10

n % 2 === 1 ? "odd" : "even" if n % 2 == 1 then "odd" else "even"

nums.filter(function(n) { ... }) List.filter (\n -> n % 2 == 1) nums

function pluralize(s, p, c) { ... } pluralize singular plural count = ...

We also learned about several differences between normal functions and operators:

Table 1.7 Differences between normal functions and operators

Function How to identify one Calling style Examples

Normal Name begins with a letter prefix-style negate, not, toString

Operator Name has no letters or numbers infix-style (++), (*), (==)

In Chapter 2 we’ll expand on what we’ve learned here to create a working Elm application.
Let’s go build something!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

27

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

2
Your First Elm Application

This chapter covers

• Declaratively rendering a page
• Managing state with Model-View-Update
• Handling user interaction

Elm applications are built to last. They have a reputation for being scalable, easy to refactor,
and difficult to crash unexpectedly. Since JavaScript applications have...erm...a different
reputation, it stands to reason that Elm must be doing things differently. And so it is!

Where each line of code in a JavaScript application can potentially result in a change or
effect—like “update that text!” or “send this to the server!”—the code in an Elm application
builds up a description of what the program should do in response to various inputs. Elm’s
compiler translates this description into the appropriate JavaScript commands for the browser
to run at the appropriate times, and the end user may have no idea Elm was involved at all.

In this chapter we’ll build our first Elm application: Photo Groove, a simple photo browsing
Web app where users select thumbnails to view larger versions. We’ll create a user interface
using declarative rendering and manage state using the Elm Architecture. By the end, we will
have a fully functioning application—and a code base we can build on for the rest of the book!

2.1 Rendering a Page
Since the very early days of the Web, browsers have been translating HTML markup into a
Document Object Model (or DOM for short) which represents the structure of the current page.
The DOM consists of DOM nodes, and it’s only by changing these nodes that Web applications
can modify the current page on the fly.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

28

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

In this chapter we’ll work with the two most common types of DOM nodes: elements and
text nodes.

• Elements have a tagName (such as "div" or "img"), and may have child DOM nodes.
• Text nodes have a textContent property instead of a tagName, and are childless.

As Figure 2.1 shows, elements and text nodes can freely intermingle inside the DOM.

Figure 2.1 Intermingling element DOM nodes and text nodes

Here we’ve pulled back the curtain on the markup <p>How <i>do</i> you do?</p> to see
that despite its two element tags—namely <p> and <i>—we are actually working with five
DOM nodes here! The other three are not elements, but rather text nodes.

2.1.1 Describing a page using the Html Module

When describing how a page looks in Elm, we do not write markup. Instead, we call functions
to create representations of individual DOM nodes. The most flexible of these functions is
called node, and as Figure 2.2 shows, its arguments line up neatly with the analogous markup.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

29

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 2.2 Representing a button using HTML markup (top) and Elm’s node function (bottom)

There are four function calls in this line of Elm code. Can you spot them?

1. A call to the node function, passing three arguments: the string "button", a list of
attributes, and a list of child nodes

2. A call to the class function, passing "funky"
3. A call to the id function passing "submitter"
4. A call to the text function passing "Submit"

These are plain old Elm functions. Each returns a representation of some portion of the DOM:
a button element, a text node, and some class and id attributes. You can call these
functions anytime you like, and pass their return values to other functions as normal.

In Elm we usually refer to a “a virtual DOM node” as “Html” for short. This name comes
from the Html module, which provides a plethora of intuitively-named functions that let you
avoid calling node directly. For example, the Html module’s img function is shorthand for
calling node passing "img" as the first argument. The following two lines are equivalent:

node "img" [src "logo.png"] []
 img [src "logo.png"] []

It’s best practice to use helper functions like img as much as possible, and to fall back on node
only in cases where no helper function is available. (For example, you may notice that there is
no helper for the deprecated <blink> element. I’m not saying you should call node "blink"
[] [text "<BLINK> LIVES AGAIN"], but I’m not not saying it either.)

RENDERING A PAGE

Let’s use what we’ve learned to render our first page with Elm!
For the rest of this chapter we’ll be building an application called Photo Groove. Eventually

we’ll add features like searching and viewing larger versions, but first we need to render a
basic page that says “Photo Groove” across the top, with some thumbnail images below.

Since our output is visual this time, elm-repl won’t get us very far. Instead, let’s bring up
the Try Elm website at http://elm-lang.org/try and enter the following into the left-hand pane.

Listing 2.2 Building a view in Try Elm

import Html exposing (div, h1, img, text) ❶
import Html.Attributes exposing (..) ❶

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

30

Licensed to Correl Roush <correl@gmail.com>

http://elm-lang.org/try
https://forums.manning.com/forums/elm-in-action

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"] ❷
 , div [id "thumbnails"] ❸
 [img [src "http://elm-in-action.com/1.jpeg"] []
 , img [src "http://elm-in-action.com/2.jpeg"] []
 , img [src "http://elm-in-action.com/3.jpeg"] [] ❹
]
]

main = ❺
 view "no model yet"

❶ We’ll discuss “exposing” later
❷ h1 element with an empty attributes list
❸ Put commas at the start of the line
❹ img element with an empty children list
❺ We’ll discuss “main” later

Press Compile. The words “Photo Groove” should appear in the right-hand pane, followed by
three images. (Depending on the size of your browser, the images may not be side-by-side.)

Figure 2.3 The Try Elm website

Congratulations! You’ve rendered your first user interface in Elm.
Figure 2.4 shows the DOM structure of the interface we just rendered.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

31

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/1.jpeg
http://elm-in-action.com/2.jpeg
http://elm-in-action.com/3.jpeg
https://forums.manning.com/forums/elm-in-action

Figure 2.4 The DOM structure of your first Elm user interface

Notice how the helper functions that create elements—in this case, div, h1, and img—take
exactly two arguments in all cases:

1. A list of attributes. If an element has no attributes, we pass [] like so:
h1 [] [text "Photo Groove"]

2. A list of child DOM nodes. If an element has no children, we pass [] like so:
img [src "1.jpeg"] []

If an element has neither attributes nor children? In that case we pass [] [] like so:

br [] []

This pattern is consistent throughout the Html module, and it’s worth following if you ever
decide to make a custom element helper of your own using the node function.

IMPORTING UNQUALIFIED VALUES WITH ‘EXPOSING’

We’ve now used several functions from the Html module, but we wrote them in a different
style from the way we did in Chapter 1. Back then we wrote functions like String.filter in a
qualified style—that is, we included the String module’s name right there in the function call.
With the Html module’s functions, we used an unqualified style—we wrote div instead of
Html.div, we wrote h1 instead of Html.h1, and so forth.

We could do this because we used exposing when we imported the Html module:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

32

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

import Html exposing (div, h1, img, text)

This line of code both imports the Html module so we can use its contents, and also brings
Html.div, Html.h1, Html.img, and Html.text into the global scope. That lets us refer to
them as div, h1, img, and text without the prefix of Html.

We could have achieved a similar result by assigning them to constants:

import Html

div = Html.div
h1 = Html.h1
img = Html.img
text = Html.text

However, since this pile of code can be replaced by a single line—import Html exposing

(div, h1, img, text)—it’s normal to use exposing for this purpose instead.

EXPOSING EVERYTHING WITH (..)

When we imported the Html module, we listed exactly which values we wanted to expose:
div, h1, img, and text. For the Html.Attributes module, we wrote this instead.

import Html.Attributes exposing (..)

Using exposing (..) means “expose everything,” which lets us use every value in the Html
module in an unqualified style. Let’s change our first import to use exposing (..) instead:

import Html exposing (..)

Now we won’t need to extend the list of div, h1, img, and text whenever we want to use a
new element type. Everything the Html module has to offer is now in our global scope!

When to use qualified over unqualified imports
In Chapter 1 we wrote out String.toUpper and List.filter, instead of toUpper and filter. Here we’re doing the
opposite, writing img and div instead of Html.img and Html.div.

This begs the question: when is it a good idea to use the qualified style (with the module name prefixed) over the
unqualified style? The unqualified style is more concise, so why not use exposing (..) every time?

There are two primary downsides to unqualified imports. One is that unqualified names can become ambiguous. Try
this in elm-repl:
> import String exposing (..)
> import List exposing (..)
> filter
You’ll get an error saying that filter is ambiguous. After importing and exposing both String.filter and
List.filter, it’s no longer clear which of the two you meant! (In cases like this you can still use the qualified style to

resolve the ambiguity, so if you now put String.filter or List.filter into elm-repl, they will still work as
normal.)

Unqualified imports are also less self-documenting. Suppose you come across code that says partition foo
bar, and you’ve never seen partition before. Naturally you wonder: “How can I find out what partition does? Is it

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

33

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

defined in this file?” You search through the file and can’t find it, so it must come from an import. You scroll up to the

imports and discover a long list of exposing (..) declarations. Argh! partition could be in any of those!
This could take awhile...
Suppose instead you see the code List.partition foo bar. You want to know what List.partition does,

so you bring up the documentation for the List module on http://package.elm-lang.org. You learn about
List.partition, then get on with your day!

Scenarios like this are why it’s best practice to write things in a qualified way by default.
Still, sometimes there’s a good reason to prefer the unqualified style—like how unqualified Html functions are

designed to resemble HTML markup. In these cases, it’s best to limit yourself to one exposing (..) (or perhaps one

“family” of them, such as Html and Html.Attributes) per file. This way if you encounter an unfamiliar function of
mysterious origin, you’ll have the fewest modules to hunt through to find its documentation!

2.1.2 Building a Project

Now that we’ve gotten something on the screen, let’s add some styles! We could style our
elements inline using the Html.Attributes.style attribute, but instead we’ll organize things
the traditional way: with our CSS declarations in a separate file.

The only way to get multiple files involved in the same page is to give a browser some
HTML markup, so our first step in the process of styling our application will be to create an
index.html file. Since Try Elm doesn’t let you bring your own HTML file to the party, this
means we’ll need to start building our project locally.

1. Make a new directory called PhotoGroove and open it in a terminal.
2. Create a file called PhotoGroove.elm inside this directory.
3. Copy the Try Elm code from Listing 2.2 into PhotoGroove.elm.
4. Add the line module PhotoGroove exposing (..) to the top of PhotoGroove.elm.
5. Change import Html exposing (div, h1, img, text) to use exposing (..).
6. When the dust settles, we should have a PhotoGroove.elm file that looks like this:

Listing 2.3 PhotoGroove.elm

module PhotoGroove exposing (..) ❶

import Html exposing (..) ❷
import Html.Attributes exposing (..)

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , div [id "thumbnails"]
 [img [src "http://elm-in-action.com/1.jpeg"] []
 , img [src "http://elm-in-action.com/2.jpeg"] []
 , img [src "http://elm-in-action.com/3.jpeg"] []
]
]

main = ❸
 view "no model yet"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

34

Licensed to Correl Roush <correl@gmail.com>

http://package.elm-lang.org/
http://elm-in-action.com/1.jpeg
http://elm-in-action.com/2.jpeg
http://elm-in-action.com/3.jpeg
https://forums.manning.com/forums/elm-in-action

❶ “This file describes a module called PhotoGroove”
❷ Remember: this uses “exposing (..)” now!
❸ This will be the application’s entry point

Why Commas in Front?
When writing a multi-line literal in JavaScript, the usual convention is to put commas at the end of each line. Consider
the following code:
rules = [
 rule("Do not talk about Sandwich Club."),
 rule("Do NOT talk about Sandwich Club.")
 rule("No eating in the common area.")
]

Did you spot the mistake? There’s a comma missing after the second call to rule, meaning this is not syntactically

valid JavaScript. Running this code will result in a SyntaxError.
Now consider the equivalent Elm code, with the same missing comma:
rules = [
 rule "Do not talk about Sandwich Club.",
 rule "Do NOT talk about Sandwich Club."
 rule "No eating in the common area."
]

The mistake is just as easy to overlook, but harder to fix because this is syntactically valid Elm code—just not the code
you intended to write!
The missing comma means the above code is essentially equivalent to the following:
rules = [
 (rule "Do not..."),
 (rule "Do NOT..." rule "No eating...")
]

Instead of calling rule three times, each time with one argument, here the second call to rule is receiving three
arguments—and there is no third call! This means instead of the syntax error JavaScript gave you, you’ll get a seemingly
nonsensical error about arguments.

Now try to make this mistake when writing in a commas-first style:
rules =
 [rule "Do not talk about Sandwich Club."
 rule "Do NOT talk about Sandwich Club."
 , rule "No eating in the common area."
]

This style makes it blindingly obvious that a comma is missing. Now we don’t even need to compile our code to identify
the problem!
It may feel different at first, but the commas-first style gives you one less potential error to worry about once you get
used to it.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

35

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

DECLARING THE PHOTOGROOVE MODULE

By writing module PhotoGroove exposing (..) at the top of our PhotoGroove.elm file, we
defined a new module of our own. This means other files in our project can now import this
PhotoGroove module just like they would the String or Html modules, for example like so:

import PhotoGroove exposing (main)

Because we wrote exposing (..) after module PhotoGroove, we are exposing all of our top-
level values—namely main and view—for other modules to import.

If we wanted to expose main but leave view invisible to other modules, we could have
written exposing (main) instead. In such a case, another module that imported PhotoGroove
would get an error if it tried to access PhotoGroove.view. Only exposed values can be
accessed by other modules!

INSTALLING PACKAGE DEPENDENCIES

At this point we have a PhotoGroove.elm file, but it’s missing a dependency. All this fancy
rendering logic we’ve been writing comes from the Html module, but unlike the modules we’ve
been using so far—like String and List—the Html module does not come preinstalled. To
access it, we need to install the package that contains the Html module.

DEFINITION An Elm package is an installable collection of modules.

The elm-package utility downloads and installs packages when you give it the name of the
package you want. Package names consist of a username followed by a / and then the
package name; in this case, the package we seek is named elm-lang/html.

Let’s use elm-package to get some Html going. Run this command in the terminal:

elm-package install elm-lang/html

You should see something like this:

Some new packages are needed. Here is the upgrade plan.

(it lists the packages here)

Do you approve of this plan? (Y/n)

Answer y, and you should shortly see the text Packages configured successfully! You
should now have a file called elm-package.json in your current directory, which elm-package
will have created for you automatically. We’ll dig into elm-package.json in future chapters.

COMPILING TO JAVASCRIPT AND RUNNING THE APPLICATION

Now we’re ready to compile our Elm code into JavaScript. Run this in the terminal:

elm-make PhotoGroove.elm --output elm.js

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

36

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

This will compile our PhotoGroove.elm file into a JavaScript file we can give to a browser.
(That generated JavaScript file will be called elm.js, because we passed --output elm.js to
elm-make.) Now all we need is a HTML file that will load up our compiled elm.js file!

Make a file called index.html and put the following inside it.

Listing 2.4 index.html

<!doctype html>
<html>
 <head>
 <style>
 body { background-color: rgb(44, 44, 44); color: white; }
 img { border: 1px solid white; margin: 5px; }
 .large { width: 500px; float: right; }
 .selected { margin: 0; border: 6px solid #60b5cc; }

 .content { margin: 40px auto; width: 960px; }
 #thumbnails { width: 440px; float: left }
 h1 { font-family: Verdana; color: #60b5cc; }

 </style>
 </head>

 <body>
 <div id="elm-area"></div> ❶

 <script src="elm.js"></script> ❷
 <script>
 Elm.PhotoGroove.embed(document.getElementById("elm-area")); ❸
 </script>
 </body>
</html>

❶ Our Elm application will render into this div
❷ PhotoGroove.elm will get compiled into elm.js
❸ The Elm object comes from elm.js

The markup we put in this file covers things like:

• The standard <!doctype>, <html>, and <body> tags
• Importing the elm.js file we generated with elm-make
• Whatever <head> inclusions we need—styles, metadata, <title>, and so on

The line Elm.PhotoGroove.embed(document.getElementById("elm-area")); starts our Elm
code running in the <div id="elm-area"></div> element we set up earlier in index.html.
Let’s break down what happens when our Elm code starts running.

THE ELM RUNTIME AND ‘MAIN’

When Elm compiles your code into JavaScript, it includes an extra bit of JavaScript known as
the Elm Runtime. The Elm Runtime is behind-the-scenes logic that silently handles things like:

• Adding and removing event listeners for any events your code depends on
• Efficiently scheduling tasks like HTTP requests and DOM updates

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

37

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

• Storing and managing application state

When we called Elm.PhotoGroove.embed, we told the Elm Runtime to open the module called
PhotoGroove and use its exposed main value as the entry point for the application. If we did
not have a module called PhotoGroove, or if it did not expose a main value, we’d get an error.

This means when the browser runs our compiled code, view "no model yet" will be the
first line of code executed, because that’s what we assigned to main. If we renamed the
PhotoGroove module to CubeDraft, we’d have to call Elm.CubeDraft.embed instead, but
otherwise everything would still work. If the CubeDraft module did not expose a value called
main, however, the application would not start. There’s no renaming main!

If you open index.html, you should see our application displaying as it does in Figure 2.5.

Figure 2.5 Rendering the application

Fantastic! Next we’ll make it interactive.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

38

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

2.2 Handling User Input with the Elm Architecture
So far we haven’t had much data flowing through our application. Okay, really we haven’t had
any—we just generated some Html and rendered it. That will soon change, as we’re about to
start handling user input! This brings us to a common question: how will we keep data flow
manageable as our code scales?

JavaScript offers a staggering selection of data flow architectures to choose from, but Elm
has just one. It’s called the Elm Architecture, and the Elm Runtime is optimized for
applications that follow it. We’ll learn about the Elm Architecture as we add interactivity to
Photo Groove.

Figure 2.6 shows a preview of the architecture we’ll be building toward in this chapter.
Don’t worry if this does not make sense yet! We will get there, one step at a time.

Figure 2.6 The Elm Runtime uses the Elm Architecture to manage data flow

Let’s begin where data flow naturally begins: with application state as a whole.

2.2.1 Representing Application State with a Model

Back in the Wild West days of the Web, it was common to store application state primarily in
the DOM itself. Is that menu expanded or collapsed? Check whether one of its DOM nodes has
class="expanded" or class="collapsed". Need to know what value a user has selected in a
dropdown? Query it out of the DOM at the last possible instant.

This approach turned out not to scale very well, especially as applications grew more
complex and unit testing became increasingly important. Today it’s common practice to store
application state completely outside the DOM, and to propagate changes from that
independent state over to the DOM as necessary. This is what we do in the Elm Architecture.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

39

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

DECLARING A MODEL

We’re going to store our application state separately from the DOM, and will refer to that state
as our model.

DEFINITION A model stores the current state of an application. Any value necessary to render a user

interface should be stored in its model.

Remember how earlier we wrote this code?

main =
 view "no model yet"

Let’s replace this code with the contents of Listing 2.5.

Listing 2.5 Adding a Model

initialModel =
 [{ url = "1.jpeg" } ❶
 , { url = "2.jpeg" } ❶
 , { url = "3.jpeg" } ❶
]

main =
 view initialModel ❷

❶ We’ll add more fields beyond url later
❷ Pass our new initialModel record to view

Excellent! Now we have an initial model to work with. So far it contains a list of photos, each
of which is represented by a record containing a url string.

WRITING A VIEW FUNCTION

Next we’ll render a thumbnail for each photo in our list. A typical Elm application does this
through a view function, which describes how the DOM should look based on its arguments.

At the top of a typical Elm application is a single view function, which accepts our current
model as an argument and then returns some Html. The Elm Runtime takes the Html returned
by this view function and renders it.

By pure coincidence, we’ve already written just such a view function—it’s the function we
had the foresight to name view. Unfortunately, our current view implementation ignores the
model argument it receives, which means changing our model won’t result in a visible change
to the end user. Let’s fix that! view should base its return value on its model argument.

It’ll be easier to do this if we first write a separate viewThumbnail function, which renders
a single thumbnail as Html. We can set the stage for that design by replacing our view
implementation with the following:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

40

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Listing 2.6 Splitting out viewThumbnail

urlPrefix = ❶
 "http://elm-in-action.com/" ❶

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , div [id "thumbnails"] []
]

viewThumbnail thumbnail =
 img [src (urlPrefix ++ thumbnail.url)] [] ❷

❶ We’ll prepend this to strings like “1.jpeg”
❷ Prepend urlPrefix to get a complete URL like “http://elm-in-action.com/1.jpeg”

Figure 2.7 illustrates how our current model and view connect to the Elm Runtime.

Figure 2.7 Model and view connecting with the Elm Runtime

Next, we’ll iterate over our list of photo records and call viewThumbnail on each one, in order
to translate it from a dusty old record to a vibrant and inspiring img.

Fortunately, the List.map function does exactly this!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

41

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/
http://elm-in-action.com/1.jpeg%E2%80%9D
https://forums.manning.com/forums/elm-in-action

LIST.MAP

List.map is another higher-order function similar to the List.filter function we used in
Chapter 1. You pass List.map a translation function and a list, and it runs that translation
function on each value in the list. Once that’s done, List.map returns a new list containing the
translated values.

Take a look at Figure 2.8 to see List.map do its thing for viewThumbnail.

Figure 2.8 Using List.map to transform photo records into img nodes

Since div is just a plain Elm function that accepts two lists as arguments—first a list of
attributes, followed by a list of child nodes—we can swap out our entire hardcoded list of child
img nodes with a single call to List.map! Let’s go ahead and do that now.

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , div [id "thumbnails"] (List.map viewThumbnail model)
]

viewThumbnail thumbnail =
 img [src (urlPrefix ++ thumbnail.url)] []

If you run elm-make PhotoGroove.elm --output elm.js again to recompile this code, you
should see the same result as before. The difference is that now we have a more flexible
internal representation, setting us up to add interactivity in a way that was impossible before
we connected model and view.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

42

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

EXPANDING THE MODEL

Now let’s add a feature: when the user clicks on a thumbnail, it will become selected—
indicated by a blue border surrounding it—and we’ll display a larger version of it beside the
thumbnails.

To do this, we first need to store which thumbnail is selected. That means we’ll want to
convert our model from a list to a record, so we can store both the list of photos and the
current selectedUrl value at the same time.

Listing 2.7 Converting the model to a record

initialModel =
 { photos =
 [{ url = "1.jpeg" }
 , { url = "2.jpeg" }
 , { url = "3.jpeg" }
]
 , selectedUrl = "1.jpeg" ❶
 }

❶ Select the first photo by default

Next let’s update viewThumbnail to display the blue border for the selected thumbnail.
That’s easier said than done! Being a lowly helper function, viewThumbnail has no way to

access the model—so it can’t know the current value of selectedUrl. But without knowing
which thumbnail is selected, how can it possibly know whether to return a selected or
unselected img?

It can’t! We’ll have to pass that information along from view to viewThumbnail.
Let’s rectify this situation by passing selectedUrl into viewThumbnail as an additional

argument. Armed with that knowledge, it can situationally return an img with the "selected"
class—which our CSS has already styled to display with a blue border—if the url of the given
thumbnail matches selectedUrl.

viewThumbnail selectedUrl thumbnail =
 if selectedUrl == thumbnail.url then
 img
 [src (urlPrefix ++ thumbnail.url)
 , class "selected"
]
 []
 else
 img
 [src (urlPrefix ++ thumbnail.url)]
 []

Comparing our then and else cases, we see quite a bit of code duplication. The only thing
different about them is whether class "selected" is present. Can we trim down this code?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

43

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Absolutely! We can use the Html.classList function. It builds a class attribute using a
list of tuples, with each tuple containing first the desired class name, and second a boolean for
whether to include the class included in the final class string.

Let’s refactor our above code to the following, which accomplishes the same thing:

viewThumbnail selectedUrl thumbnail =
 img
 [src (urlPrefix ++ thumbnail.url)
 , classList [("selected", selectedUrl == thumbnail.url)]
]
 []

Now all that remains is to pass in selectedUrl, which we can do with an anonymous function.
While we’re at it, let’s also add another img to display a larger version of the selected photo.

Listing 2.8 Rendering Selected Thumbnail via anonymous function

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , div [id "thumbnails"]
 (List.map (\photo -> viewThumbnail model.selectedUrl photo)
 model.photos
)
 , img ❶
 [class "large"
 , src (urlPrefix ++ "large/" ++ model.selectedUrl)
]
 []
]

❶ Display a larger version of the selected photo

If you recompile with the same elm-make command as before, the result should now look like
Figure 2.9.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

44

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 2.9 Rendering the selected thumbnail alongside a larger version.

Looking good!

REPLACING ANONYMOUS FUNCTIONS WITH PARTIAL APPLICATION

Although the way we’ve written this works, it’s not quite idiomatic Elm code. The idiomatic
style would be to remove the anonymous function like so:

Before: List.map (\photo -> viewThumbnail model.selectedUrl photo) model.photos
After: List.map (viewThumbnail model.selectedUrl) model.photos

Whoa! Does the revised version still work? Do these two lines somehow do the same thing?
It totally does, and they totally do! This is because calling viewThumbnail without passing

all of its arguments is an example of partially applying a function.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

45

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

DEFINITION Partially applying a function means providing one or more of its arguments, and getting back

a new function which accepts the remaining arguments and finishes the job.

When we called viewThumbnail model.selectedUrl photo, we provided viewThumbnail with
both of the arguments it needed to return some Html. If we call it without that second photo
argument, what we get back is not Html, but rather a function—specifically a function that
accepts the missing photo argument and then returns some Html.

Let’s think about how this would look in JavaScript, where functions aren’t set up to
support partial application by default. If we’d written viewThumbnail in JavaScript, and
wanted it to support partial application, it would have to look like this:

function viewThumbnail(selectedUrl) {
 return function(thumbnail) {
 if (selectedUrl === thumbnail.url) {
 // Render a selected thumbnail here
 } else {
 // Render a non-selected thumbnail here
 }
 };
}

Functions that can be partially applied, such as the one in this JavaScript code, are known as
curried functions.

DEFINITION A curried function is a function that can be partially applied.

All Elm functions are curried. That’s why when we call (viewThumbnail model.selectedUrl)
we end up partially applying viewThumbnail, not getting an undefined argument or an error.

In contrast, JavaScript functions are not curried by default. They are instead tupled, which
is to say they expect a complete “tuple” of arguments. (In this case, “tuple” refers to “a fixed-
length sequence of elements,” not specifically one of Elm’s Tuples.)

Elm and JavaScript both support either curried or tupled functions. The difference is which
they choose as the default:

• In JavaScript, functions are tupled by default. If you’d like them to support partial
application, you can first curry them by hand—like we did in our JavaScript
viewThumbnail implementation above.

• In Elm, functions are curried by default. If you’d like to partially apply them...go right
ahead! They’re already set up for it. If you’d like a tupled function, write a curried
function that accepts a single Tuple as its argument, then destructure that tuple.

Table 2.1 shows how to define and use both curried and tupled functions in either language.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

46

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 2.1 Curried functions and Tupled functions in Elm and JavaScript

 Elm JavaScript

Curried Function splitA separator str =
 String.split separator str

function splitA(sep) {
 return function(str) {
 return str.split(sep);
 }
}

Tupled Function splitB (separator, str) =
 String.split separator str

function splitB(sep, str) {
 return str.split(sep);
}

Total Application splitB ("-", "867-5309") splitB("-", "867-5309")

Total Application splitA "-" "867-5309" splitA("-")("867-5309")

Partial Application splitA "-" splitA("-")

We can use our newfound powers of partial application to make view more concise! We now
know we can replace our anonymous function with a partial application of viewThumbnail.

Before: List.map (\photo -> viewThumbnail model.selectedUrl photo) model.photos
After: List.map (viewThumbnail model.selectedUrl) model.photos

TIP In Elm, an anonymous function like (\foo -> bar baz foo) can always be rewritten as (bar baz)

by itself. Keep an eye out for this pattern; it comes up surprisingly often.

Here’s how our updated view function should look.

Listing 2.9 Rendering Selected Thumbnail via partial application

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , div [id "thumbnails"]
 (List.map (viewThumbnail model.selectedUrl) model.photos) ❶
 , img
 [class "large"
 , src (urlPrefix ++ "large/" ++ model.selectedUrl)
]
 []
]

❶ Partially apply viewThumbnail with model.selectedUrl

Since all Elm functions are curried, it’s common to give a helper function more information by
adding an argument to the front of its arguments list.

For example, when viewThumbnail needed access to selectedUrl, we made this change:

Before: List.map viewThumbnail model.photos
After: List.map (viewThumbnail model.selectedUrl) model.photos

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

47

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Because we added the new selectedUrl argument to the front, we could pass it in using
partial application instead of an anonymous function. This is a common technique in Elm code!

TIP Since operators are functions, you can partially apply them too! List.map ((*) 2) [1, 2, 3]

evaluates to [2, 4, 6].

Incidentally, currying is named after acclaimed logician Haskell Brooks Curry. The Haskell
programming language is also named after his first name, and whether the Brooks Brothers
clothing company is named after his middle name is left as an exercise to the reader.

2.2.2 Handling Events with Messages and Updates

Now that we can properly render which thumbnail is selected, we need to change the
appropriate part of the model whenever the user clicks a different thumbnail.

If we were writing JavaScript, we might implement this logic by attaching an event listener
to each thumbnail like so:

thumbnail.addEventListener("click", function() { model.selectedUrl = url; });

Elm wires up event handlers a bit differently. Similarly to how we wrote a view function that
used Virtual DOM nodes to describe our desired page structure, we’re now going to write an
update function that uses messages to describe our desired model.

DEFINITION A message is a value used to pass information from one part of the system to another.

When the user clicks a thumbnail, a message will be sent to an update function as follows:

Figure 2.10 Handling the event when a user clicks a thumbnail

The format of our message is entirely up to us. We could represent it as a string, or a list, or a
number, or anything else we please. Here’s a message implemented as a record:

{ operation = "SELECT_PHOTO", data = "2.jpeg" }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

48

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

This record is a message which conveys the following information:

“We should update our model to set 2.jpeg as the selectedUrl.”

The update function receives this message and does the following:

1. Looks at the message it received.
2. Looks at our current model.
3. Uses these two values to determine a new model, then returns it.

We can implement our “select photo” logic by adding this update function right above main:

update msg model =
 if msg.operation == "SELECT_PHOTO" then
 { model | selectedUrl = msg.data }
 else
 model

Notice how if we receive an unrecognized message, we return the original model unchanged.
This is important! Whatever else happens, the update function must always return a new
model, even if it happens to be the same as the old model.

ADDING ONCLICK TO VIEWTHUMBNAIL

We can request that a SELECT_PHOTO message be sent to update whenever the user clicks a
thumbnail, by adding an onClick attribute to viewThumbnail:

viewThumbnail selectedUrl thumbnail =
 img
 [src (urlPrefix ++ thumbnail.url)
 , classList [("selected", selectedUrl == thumbnail.url)]
 , onClick { operation = "SELECT_PHOTO", data = thumbnail.url }
]
 []

The Elm Runtime takes care of managing event listeners behind the scenes, so this one-line
addition is the only change we need to make to our view. We’re ready to see this in action!

THE MODEL-VIEW-UPDATE LOOP

To wire our Elm application together, we’re going to change main = view model to the
following, which incorporates update according to how we’ve set things up so far.

main =
 Html.beginnerProgram
 { model = initialModel
 , view = view
 , update = update
 }

The Html.beginnerProgram function takes a record with three fields:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

49

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

• model - A value that can be anything you please.
• view - A function that takes a model and returns a Html node.
• update - A function that takes a message and a model, and returns a new model.

It uses these arguments to return a description of a program, which the Elm Runtime sets in
motion when the application starts up. Before we got beginnerProgram involved, main could
only render static views. beginnerProgram lets us specify how we want to react to user input!

Figure 2.11 demonstrates how data flows through our revised application.

Figure 2.11 Data flowing from the start of the program through the Model-View-Update loop

Notice that view builds fresh Html values after every update. That might sound like a lot of
performance overhead, but in practice, it’s almost always a performance benefit!

This is because Elm doesn’t actually recreate the entire DOM structure of the page every
time. Instead, it compares the Html it got this time to the Html it got last time and updates
only the parts of the page that are different between the two requested representations.

This approach to “Virtual DOM” rendering, popularized by the JavaScript library React, has
several benefits over manually altering individual parts of the DOM:

• Updates are automatically batched to avoid expensive repaints and layout reflows
• It becomes far less likely that application state will get out of sync with the page
• Replaying application state changes effectively replays user interface changes

Since onClick lives in the Html.Events module, we’ll need to import it:

import Html.Events exposing (onClick)

And with that final touch...it’s alive! You’ve now written an interactive Elm application!
The complete PhotoGroove.elm file should look like this:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

50

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Listing 2.10 PhotoGroove.elm with complete Model-View-Update in place

module PhotoGroove exposing (..)

import Html exposing (..)
import Html.Attributes exposing (..)
import Html.Events exposing (onClick)

urlPrefix =
 "http://elm-in-action.com/"

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , div [id "thumbnails"]
 (List.map (viewThumbnail model.selectedUrl) model.photos)
 , img
 [class "large"
 , src (urlPrefix ++ "large/" ++ model.selectedUrl)
]
 []
]

viewThumbnail selectedUrl thumbnail =
 img
 [src (urlPrefix ++ thumbnail.url)
 , classList [("selected", selectedUrl == thumbnail.url)]
 , onClick { operation = "SELECT_PHOTO", data = thumbnail.url }
]
 []

initialModel =
 { photos =
 [{ url = "1.jpeg" }
 , { url = "2.jpeg" }
 , { url = "3.jpeg" }
]
 , selectedUrl = "1.jpeg"
 }

update msg model =
 if msg.operation == "SELECT_PHOTO" then
 { model | selectedUrl = msg.data }
 else
 model

main =
 Html.beginnerProgram
 { model = initialModel
 , view = view
 , update = update
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

51

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/
https://forums.manning.com/forums/elm-in-action

Let’s compile it once more with elm-make PhotoGroove.elm --output elm.js. If you open
index.html, you should now be able to click a thumbnail to select it. Huzzah!

Figure 2.12 Our final Photo Groove application

At this point we’ve also worked our way through the complete Elm Architecture diagram from
the beginning of the chapter. Figure 2.13 shows where things ended up.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

52

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 2.13 Our final Elm Architecture setup

Congratulations on a job well done!

2.3 Summary
In this chapter we learned about three ways to handle interactions, each of which differs from
the JavaScript way of handling the same. Table 2.2 summarizes these differences.

Table 2.2 Handling interactions in JavaScript compared to Elm

Interaction JavaScript approach Elm approach

Changing the DOM Directly alter DOM nodes Return some Html from a view function

Reacting to user input Attach a listener to an element Specify a message to send to update

Changing application state Alter an object in place Return a new model in update

We covered many other concepts in the course of building our first Elm application, including:

• A model represents our application state
• A view function takes a model and returns a list of Html nodes
• User events such as clicks get translated into message values
• Messages get run through the update function to produce a new model
• After an update, the new model is sent to the view function to determine the new DOM
• Html.beginnerProgram wires together model, view, and update
• List.map is a higher-order function that translates one list into another
• All Elm functions are curried, which means they can be partially applied

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

53

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

In the next chapter we’ll get into ways to improve upon the application we’ve made so far,
both adding features and refactoring to make it easier to maintain.

Onward!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

54

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

3
Compiler as Assistant

This chapter covers

• Documenting guarantees with type annotations
• Implementing multi-way conditionals with case-expressions
• Storing flexible data with union types
• Using Array and Maybe for positional element access

• Generating random numbers using commands

In Chapter 2 we built our first Elm application. It doesn’t do much yet, but it has potential! So
far it displays thumbnails of three photos, and lets users click one to view a larger version.

We showed it to our manager, who was thrilled with what we’d made. “Wow, this is looking
incredible. The part where you click the thumbnail and it shows the bigger version? Just
brilliant. I’m going to get some more team members working with you on this.”

Nice! Quite a vote of confidence. Sure, we have no tests or documentation to help get
these new teammates up to speed, but there’s no time like the present to clean up our code!

Our manager also had a couple of feature requests. “Let’s give users the ability to choose
between viewing small, medium, or large thumbnails. Also, for this next version I want to kick
the fun factor into overdrive. Let’s add a button that says Surprise Me! and when you click it,
it selects one of the photos...at random.”

We resist the urge to tell our manager “whoa there, that might be too much fun” and
instead review the tasks we’ve just received:

1. Improve code quality to help new team members get up to speed
2. Let users choose between small, medium, and large thumbnails
3. Add a Surprise Me! button that randomly selects a photo

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

55

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Improving code quality while adding new features is often a tall order. Even more so because
these particular features involve aspects of Elm we have not yet encountered.

Fortunately, we have an assistant to help us out: Elm’s compiler. In this chapter we’ll learn
how it can help us improve documentation, refactor without introducing regressions, and
accomplish both while introducing new features. Let’s get to it!

3.1 Documenting Guarantees with Type Annotations
One of the quickest ways we can make our code nicer for incoming teammates is to add some
comments that document what our code does. Although comments are simple and flexible,
they’re also notoriously unreliable. Sometimes they’re written inaccurately. Other times they
start out accurate but become inaccurate as the code base changes out from under them.

“Code never lies. Comments sometimes do.”

—Ron Jeffries

Elm gives us access to a genuinely trustworthy form of documentation: type annotations.

3.1.1 Adding Optional Type Annotations

In Chapter 2 we assigned the constant urlPrefix to "http://elm-in-action.com". Let’s edit
our PhotoGroove.elm file to add a type annotation on top of that urlPrefix assignment:

Figure 3.1 Adding a type annotation to urlPrefix

This annotation is saying “urlPrefix is a String,” and it’s not kidding around with that. Elm’s
compiler will check our entire code base to verify this claim. If finds even one incident where
urlPrefix is not used as a String, it will give us an error at compile time. This means if our
code compiles, we can be certain urlPrefix is a String absolutely everywhere it’s used!

TIP Searching for "urlPrefix :" in your editor is now a quick way to jump to urlPrefix’s definition.

This guarantee is even more useful for annotated functions. When teammates are new to the
codebase, being able to reliably tell at a glance what arguments a function takes, and what it
returns, can be an incredible time-saver.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

56

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com
https://forums.manning.com/forums/elm-in-action

ANNOTATING FUNCTIONS

We can annotate functions by writing -> between their arguments and return values.

isEmpty : String -> Bool
isEmpty str = str == ""

This annotation says “isEmpty takes a String and returns a Bool.” Bool refers to one of
those True or False boolean values that we can use as the condition of an if-expression.

ANNOTATING RECORDS

Record annotations use : instead of = but otherwise look about the same as record values.

selectPhoto : { operation : String, data : String }
selectPhoto = { operation = "SELECT_PHOTO", data = "1.jpeg" }

This annotation says “selectPhoto is a record with an operation field and a data field, and
each of those fields is a String.” We can add a similar annotation to our initialModel:

initialModel =
 { photos = [{ url = "1.jpeg" }, { url = "2.jpeg" }, { url = "3.jpeg" }]
 , selectedUrl = "1.jpeg"
 }

Ah, but this record has a list in it! How do we annotate lists?

ANNOTATING LISTS

In Chapter 1 we learned that all elements in an Elm list must have a consistent type. This is
reflected in their type annotations. For example, Elm represents a “list of strings” with the
type annotation List String, and a “list of booleans” with the type annotation List Bool.

Let’s play around with some different lists to see their type annotations in elm-repl:

Listing 3.1 Annotating Lists

> ["funk", "soul"]
["funk","soul"] : List String ❶

> [["don’t", "forget"], ["about", "Dre"]]
[["don’t","forget"],["about","Dre"]] : List (List String) ❷

> [{ url = "1.jpeg" }, { url = "2.jpeg" }] ❸
[{ url = "1.jpeg" },{ url = "2.jpeg" }] : List { url : String }

❶ “a list of strings”
❷ “a list of lists of strings”
❸ “a list of records”

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

57

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Notice anything about the structure of that last example? It looks just like the list of photos in
our model! This means we can use it to write an annotation for our model. Let’s do that:

initialModel : { photos : List { url : String }, selectedUrl : String }
initialModel =
 ...

Model annotations are among the most helpful forms of documentation for new teammates,
because they concisely (and reliably!) describe the structure of our entire application state.

3.1.2 Annotating Functions with Type Variables

Functions, records, and lists served us well in Chapter 2, but implementing the Surprise Me!
button will involve a collection we haven’t used before.

LISTS AND ARRAYS

We mentioned in Chapter 1 that Elm supports arrays as well as lists. Both are sequential
collections of varying length, whose elements share a consistent type. However, there are a
few differences between arrays and lists:

• Lists can be created with square bracket literals, whereas arrays have no literal syntax
in Elm. We always create arrays by calling functions.

• Lists have better performance in typical Elm use cases. This makes them the standard
choice for representing a sequence of values, in contrast to JavaScript where arrays are
standard. In Chapter 10 we’ll see why lists are a better standard choice in Elm.

• Arrays are better for arbitrary positional access. That means it’s quick and easy to say
“give me the 3rd element in this array.” Lists have no first-class way to do this.

Randomly choosing a photo involves arbitrary positional access. As such, we’ve found
ourselves in exactly the sort of situation where an array will serve us better than a list!

ARRAY.FROMLIST

The most common way to obtain an array is by calling Array.fromList on an existing list.
Table 3.1 shows the results of a few different calls to Array.fromList.

Table 3.1 Translating a list into an array using Array.fromList

Expression Result

Array.fromList [2, 4, 6] Array containing 3 elements: 2, 4, and 6

Array.fromList ["foo"] Array containing 1 element: "foo"

Array.fromList [] Array containing 0 elements

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

58

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

TYPE VARIABLES

How would we write a type annotation for Array.fromList? It’s bit different from the
functions we’ve annotated so far, as it returns a different type depending on what you pass it.

Table 3.2 shows some examples of the different types of values it can return.

Table 3.2: Array.fromList’s return type depends on its input

Given one of these Array.fromList returns one of these

List Float Array Float

List String Array String

List { url : String } Array { url : String }

Notice the pattern? Whatever type of list we pass in, that’s what type of array we get out.
We can capture this pattern in a type annotate like so:

fromList : List elementType -> Array elementType

In this annotation, elementType is a type variable.

DEFINITION A type variable represents more than one possible type. Type variables have lowercase

names, making them easy to tell them apart from concrete types like String, which are always capitalized.

When you call Array.fromList passing some list, the type variable elementType gets
replaced by that list’s element type. Table 3.3 shows this process in action.

Table 3.3 Replacing Array.fromList’s type variable

When we pass this in... ...elementType becomes... ...and we get this back

List Float Float Array Float

List String String Array String

List { url : String } { url : String } Array { url : String }

CHOOSING NAMES FOR TYPE VARIABLES

When annotating fromList, we can choose a different name for its type variable besides
elementType. Since a type variable essentially serves as a placeholder for a concrete type like
String or List Int, it can have just about any name, so long as it’s lowercase and we use it
consistently. For example, we could annotate Array.fromList in any of the following ways:

• List elementType -> Array elementType

• List foo -> Array foo

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

59

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

• List a -> Array a

In contrast, none of the following would work as annotations for Array.fromList:

• List elementType -> Array blah
• List foo -> Array bar
• List a -> Array b

These three annotations are saying “Array.fromList takes a list containing elements of one
type and returns an array that potentially contains elements of another type.”

That just ain’t so! Array.fromList can only return an array whose elements have the
same type as the list it receives. Its type annotation must reflect that, by having the same
type variable for both the List it accepts and the Array it returns.

NOTE Elm has three type variable names that have special meanings—number, appendable, and

comparable—which we’ll dive into later. For now, avoid choosing any of those as your type variable names!

By the way, you’ll often encounter type variables in documentation with single-letter names
like a, b, c, and so on. (For example, the official documentation for Array.fromList annotates
it as List a -> Array a.) You are by no means obliged to do the same! Feel free to use the
most self-descriptive names you can think of for your own type variables.

CREATING AN ARRAY OF PHOTOS

Since we want to access our photos by position, we’ll be using Array.fromList on our
model.photos list to translate it into an array.

Let’s add this code below our initialModel definition in PhotoGroove.elm:

photoArray : Array { url : String }
photoArray =
 Array.fromList initialModel.photos

If we tried to compile this right now, we’d get an error because we have not imported the
Array module! Let’s add it to our imports at the top of the file:

import Array exposing (Array)

Nice. Let’s verify that our code still compiles by running elm-make on it before proceeding.

Exposing Imported Types
Notice how we wrote exposing (Array) there? If we’d written import Array without the exposing (Array)
part, we’d need to refer to the Array type in a qualified style, like so:

photoArray : Array.Array { url : String }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

60

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Array.Array refers to “the Array type from the Array module” just like how Array.fromList refers to “the

fromList function from the Array module.” Kinda verbose, right?

By writing exposing (Array) after import Array, we get to skip the “Array.” prefix and use the more
concise annotation:

photoArray : Array { url : String }

Much better!

3.1.3 Reusing Annotations with Type Aliases

Now that we’ve created photoArray, we can see that our annotations for initialModel and
photoArray have a bit of code duplication going on: they both include { url : String }.

initialModel : { photos : List { url : String }, selectedUrl : String }
photoArray : Array { url : String }

We can replace this duplication with shared code using a type alias.

DEFINITION A type alias assigns a name to a type. Anywhere you would refer to that type, you can

substitute this name instead.

Let’s create a type alias called Photo, and then use that in place of { url : String }.

Listing 3.2 Creating a type alias for Photo

type alias Photo = ❶
 { url : String } ❶

initialModel : { photos : List Photo, selectedUrl : String }
initialModel =
 ...

photoArray : Array Photo
photoArray =
 Array.fromList initialModel.photos

❶ “whenever I say Photo, I mean { url : String }”

Not only does this make our initialModel annotation more concise, it also makes it easier to
maintain! Now if we add a new field to our Photo record, we can change the type alias in one
place instead of having to hunt down several individual annotations.

ANNOTATING INITIALMODEL USING A TYPE ALIAS

Since initialModel, view, and update all involve our model record, let’s add a type alias for
Model as well, and then revise initialModel’s type annotation to use it:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

61

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

type alias Model =
 { photos : List Photo
 , selectedUrl : String
 }

initialModel : Model

That takes care of initialModel. What about view?

HTML’S TYPE VARIABLE

We know view takes a Model and returns Html, but we can’t just write “view returns Html”
and call it a day. This is because, just like List and Array, the Html type has a type variable!

Html’s type variable reflects the type of message it sends to update in response to events
from handlers like onClick.

Table 3.4 Comparing type variables for List and Html

Value Type Description

["foo"] List String
List of String elements

[3.14] List Float
List of Float elements

div [onClick "foo"] [] Html String
Html producing String messages

div [onClick 3.14] [] Html Float
Html producing Float messages

div [onClick { x = 3.3 }] [] Html { x : Float }
Html producing { x : Float } messages

Since our onClick handler produces messages in the form of records that have an operation
string and a data string, our view function’s return type is:

Html { operation : String, data : String }

That’s pretty verbose! Even though it won’t remove any code duplication yet, it’s perfectly fine
to introduce a type alias to make view’s annotation more concise. Let’s add one above view:

type alias Msg =
 { operation : String, data : String }

view : Model -> Html Msg

Excellent! Next we’ll look into annotating view’s helper function, viewThumbnail.

3.1.4 Annotating Longer Functions

We’ve now seen a few type annotations for functions that take a single argument, but none for
functions that take multiple arguments. Our viewThumbnail function will be the first.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

62

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

To learn how to annotate a multi-argument function, let’s play around with one that has a
simpler return type: the humble padLeft function. padLeft makes sure strings meet a certain
minimum length. You give it a minimum length, a “filler character,” and a string. If the string
is not at least the given length, padLeft adds filler characters to its left until the string
reaches that length.

We can try it out in elm-repl, since padLeft is included in Elm’s core String module:

> String.padLeft 9 '.' "not!"
".....not!" : String

> String.padLeft 2 '.' "not!"
"not!" : String

We can see that String.padLeft takes three arguments—an Int, a Char, and a String—and
then returns another String. How can we annotate a function like that?

Believe it or not, we’ve already seen the answer! It’s just one of those answers that likes
to hide in plain sight.

ANNOTATING A PARTIALLY APPLIED FUNCTION

Let’s think back to Chapter 2, where we learned that all functions in Elm are curried. That
means they all support partial application—the practice of calling a function without passing all
the arguments it requires. If we call padLeft passing only one of its three arguments, the
result will be a function that takes the remaining arguments and “finishes the job.”

Here’s a partial application of padLeft. What would the annotation for this be?

padNine = String.padLeft 9

padLeft 9 is a partial application, so we know padNine must be a function. That’s a start!
We also know that padLeft takes a Char as its next argument after the 9. That gives us

enough information to rough out some pseudocode:

padNine : Char -> (a function of some sort)
padNine = String.padLeft 9

Now let’s suppose we gave this padNine function the Char it wants. Passing a '.' character to
padNine would be the the same as passing 9 and then '.' to the original padLeft, like so:

padNineDots = String.padLeft 9 '.'

How would we annotate padNineDots? Since it gives padLeft two of three arguments, that
means only one more argument is needed to finish the job. That last argument is a String, so
padNineDots must take a String and return a String. We know how to write that one!

padNineDots : String -> String
padNineDots = String.padLeft 9 '.'

We now know that:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

63

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

• padNine takes a Char and returns a function (of some type)
• If you pass padNine a Char, it returns a String -> String function

Putting those two together, our mystery function must be a String -> String!
That tells us we can annotate padNine like so:

padNine : Char -> (String -> String)
padNine = String.padLeft 9

Now let’s unwind our original partial application. If we cease partially applying the 9, we can
follow the pattern we saw here to arrive at a valid annotation for the original padLeft itself:

padLeft : Int -> (Char -> (String -> String))

This is a perfectly accurate annotation, but it’s a bit heavy on the parentheses, yeah?
Fortunately, we can be more concise. Elm’s syntax lets us omit the parentheses here, so the
following two annotations are equivalent:

padNine : Int -> (Char -> (String -> String))
padNine : Int -> Char -> String -> String

Either style works just as well as the other, but the latter is considered best practice. You can
see elm-repl use this annotation style in Listing 3.3, as we partially apply String.padLeft
step by step, until it has no more arguments to accept and finally returns a String.

Listing 3.3 Multi-Argument function annotations

> String.padLeft
<function:padLeft> : Int -> Char -> String -> String

> String.padLeft 9
<function> : Char -> String -> String

> String.padLeft 9 '.'
<function> : String -> String

> String.padLeft 9 '.' "not!"
".....not!" : String

Notice how each time we partially applied padLeft, our annotation got shorter:

Function Type Annotation

String.padLeft Int -> Char -> String -> String

String.padLeft 9 Char -> String -> String

String.padLeft 9 '.' String -> String

String.padLeft 9 '.' "not!" String

If you think about it, this means technically every Elm function takes only one argument.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

64

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

After all, any function that appears to take multiple arguments is ultimately calling out to
single-argument functions behind the scenes. The fact that Elm lets you omit the parentheses
for these nested calls is just a syntactic convenience.

TIP You can now tell your friends that in Chapter 2 of this book, you wrote an entire working Elm application

where every function took only a single argument. This sounds like some really hardcore programming unless

your friends are familiar with currying!

ANNOTATING VIEWTHUMBNAIL

Armed with this knowledge, we can follow this pattern to annotate viewThumbnail like so:

viewThumbnail : String -> Photo -> Html Msg
viewThumbnail selectedUrl thumbnail =

Splendid! Our code is getting easier and easier for teammates to pick up at a glance.

3.2 Case-expressions and Union Types
Now that our documentation situation is looking better, let’s shift gears to work on those two
new features: the Surprise Me! button and the thumbnail size chooser.

We’ll introduce these iteratively, first adding the visual elements with only a token level of
interactivity, and then circling back to make them work properly afterwards.

3.2.1 Using case-expressions

Let’s start by adding the Surprise Me! button to our view, right above the thumbnails div.

, button
 [onClick { operation = "SURPRISE_ME", data = "" }]
 [text "Surprise Me!"]
, div [id "thumbnails"]

Next let’s revise our update function to add a quick else if branch for our new SURPRISE_ME
operation, and a shiny new type annotation while we’re at it.

update : Msg -> Model -> Model
update msg model =
 if msg.operation == "SELECT_PHOTO" then
 { model | selectedUrl = msg.data }
 else if msg.operation == "SURPRISE_ME" then
 { model | selectedUrl = "2.jpeg" }
 else
 model

This implementation always selects the second photo. That’s not much of a surprise, granted,
but we’ll get there. For now, let’s smooth out that code duplication we just introduced!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

65

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

REFACTORING AN IF-EXPRESSION INTO A CASE-EXPRESSION

We now have two conditionals that do nothing more than compare msg.operation to a string.
Let’s express this more cleanly by rewriting these if-expressions as a case-expression:

Figure 3.2 Refactoring an if-expression into a case-expression

Whereas an if-expression is a two-way conditional, a case-expression is a multi-way
conditional. It lets us compare something to a wider range of values than just True or False.

Just like with a JavaScript switch-statement, we begin a case-expression by providing a
value which will be run through a series of comparisons. Here we wrote case msg.operation
of because we want to run msg.operation through these comparisons.

Following the case are a series of branches such as the following:

"SELECT_PHOTO" ->
 { model | selectedUrl = msg.data }

This says that if msg.operation is equal to "SELECT_PHOTO", then the branch after the -> will
be evaluated, and the entire case-expression will evaluate to that branch’s result.

If msg.operation is not equal to "SELECT_PHOTO", then the next branch (in this case the
"SURPRISE_ME" -> branch) will be checked in the same way, and so on.

Just like if-expressions, case-expressions must always evaluate to a single value, meaning
exactly one branch must always be chosen for evaluation. When writing if-expressions we
have else to ensure we end up with a value no matter what, whereas in case-expressions we
can use the default branch of _ -> for the same purpose.

NOTE Elm has no equivalent of JavaScript’s break statement. This is no problem, since case-expression

branches don’t “fall through” like branches in JavaScript’s switch-statements do.

Our code is really shaping up! Let’s copy the case-expression from Figure 3.2 into
PhotoGroove.elm, then run elm-make PhotoGroove.elm --output elm.js to recompile it.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

66

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

TRYING OUT THE ‘SURPRISE ME!’ BUTTON

Before we open up index.html and view our progress, we have one last change to make.
While we’ve been hard at work on code quality and new functionality, one of our new
teammates has been busy improving our stylesheets.

Let’s edit index.html to make use of their work, by changing its <head> to the following:

<head>
 <link rel="stylesheet" href="http://elm-in-action.com/styles.css">
</head>

Lovely! Now we can open our revised index.html to see the new button in all its glory.

Figure 3.3 The new Surprise Me! button

In addition to styling the Surprise Me! button, our helpful teammate went ahead and added
styles for the Thumbnail Size Chooser too.

How about we introduce some logic to go with those styles?

3.2.2 Enumerating possibilities with Union Types

Our second feature lets users choose one of three thumbnail sizes: small, medium, or large.
The first step toward implementing it will be storing the current chosenSize in our model.

In JavaScript we might represent chosenSize as a String—perhaps setting it to either
"SMALL", "MEDIUM", or "LARGE"—but in Elm we can do better with union types.

DEFINITION A union type is a custom type you create by specifying the values it can contain.

One use for a union type is as an enumeration of values. Figure 3.4 illustrates how we can
define a union type to represent the different thumbnail size choices we’ll support:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

67

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/styles.css
https://forums.manning.com/forums/elm-in-action

Figure 3.4 Defining an enumeration of values with a union type called ThumbnailSize

This is saying “define a new type called ThumbnailSize with three possible values: Small,
Medium, and Large.” Let’s add this code to PhotoGroove.elm, right above type alias Msg.

We can now define chosenSize in one of the following ways:

chosenSize : ThumbnailSize
chosenSize = Small

chosenSize : ThumbnailSize
chosenSize = Medium

chosenSize : ThumbnailSize
chosenSize = Large

Notice that in each of these examples, the type of chosenSize is ThumbnailSize. These new
values we’ve created—Small, Medium, and Large—aren’t “actually integers under the hood” or
“just strings behind the scenes.” We really have scratch-built a brand new type here! Trying to
compare a ThumbnailSize to a number, string, or any other type (using == or any other
comparison) will yield an error at build time.

This is different from type alias, which gives a name to an existing type—much like how
a variable gives a name to an existing value.

These values are also unique. The expression Medium == Medium is True, but put
absolutely any other value (besides Medium) on either side of that == and the expression will
no longer be True. The same can be said of Small == Small and Large == Large.

NOTE Boolean values in Elm are capitalized because Bool is a union type: type Bool = True | False

Let’s add the chosenSize field to our model and initialize it to Medium in initialModel:

type alias Model =
 { photos : List Photo
 , selectedUrl : String
 , chosenSize : ThumbnailSize
 }

initialModel : Model
initialModel =
 { photos = ...
 , selectedUrl = "1.jpeg"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

68

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 , chosenSize = Medium
 }

Great! Next we’ll render some radio buttons to let users change it.

RENDERING A THUMBNAIL SIZE RADIO BUTTON

We can use our newfound knowledge of union types and case-expressions to write a helper
function that takes a ThumbnailSize and renders a radio button which chooses that size. Let’s
add the following to PhotoGroove.elm, right below viewThumbnail:

Listing 3.4 Rendering a thumbnail size radio button

viewSizeChooser : ThumbnailSize -> Html Msg
viewSizeChooser size =
 label []
 [input [type_ "radio", name "size"] []
 , text (sizeToString size)
]

sizeToString : ThumbnailSize -> String
sizeToString size =
 case size of
 Small -> ❶
 "small" ❶

 Medium -> ❷
 "med" ❷

 Large -> ❸
 "large" ❸

❶ evaluates to “small” if size == Small
❷ evaluates to “med” if size == Medium
❸ evaluates to “large” if size == Large

NOTE The underscore in that type_ attribute is very important! As we’ve seen, type is a reserved keyword

in Elm (used to define union types), which means it can’t be used for an Html attribute name. The

Html.Attributes module names the attribute type_ to work around this.

Notice anything missing from that case-expression? It has no default branch! We accounted
for the cases where size is Small, Medium, and Large...but what if size has some other
value, such as null, undefined, or "halibut"?

Can’t happen! sizeToString’s type annotation tells us that size is guaranteed to be a
ThumbnailSize, and a ThumbnailSize can only be Small, Medium, or Large. It can’t be null
or undefined because those don’t exist in Elm, and it can’t be "halibut" because that’s a
String, not a ThumbnailSize.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

69

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Elm’s compiler knows we’ve covered every possibility here, so it doesn’t require a default
branch. In fact, if we tried to add one, the compiler would politely inform us that we’d written
unreachable code.

RENDERING THREE RADIO BUTTONS

We can now call this viewSizeChooser function three times, passing Small, Medium, and
Large, to render the three radio buttons on the page. Let’s do that right above thumbnails:

, h3 [] [text "Thumbnail Size:"]
, div [id "choose-size"]
 [viewSizeChooser Small, viewSizeChooser Medium, viewSizeChooser Large]
, div [id "thumbnails"]
 (List.map (viewThumbnail model.selectedUrl) model.photos)

Once again we see some code duplication: we’re calling the same function (viewSizeChooser)
on every element in a list. Any time we’re calling the same function on every element in a list,
there’s a good chance we can make our code cleaner with List.map!

This is absolutely one of those times. Let’s refactor our choose-size element to this:

, div [id "choose-size"]
 (List.map viewSizeChooser [Small, Medium, Large])

Not only does this refactor reduce duplication, it also makes our code more concise.

RENDERING DIFFERENT THUMBNAIL SIZES

Rendering the interface for choosing a thumbnail size is great, but it’s only half the battle! We
still need to actually render our thumbnails differently based on what the user has chosen.

Thanks to our coworker having written a stylesheet for us, we can implement this by
adding the class "small", "med", or "large" to our thumbnails container. Since those classes
conveniently correspond to the results of our sizeToString function, we can go ahead and
replace our current div [id "thumbnails"] with the following:

div [id "thumbnails", class (sizeToString model.chosenSize)]

TIP It would be best practice to write a separate sizeToClass function and use it here in place of

sizeToString, even if their implementations were identical for the time being. Having separate functions

means if someone later changes the text on the radio buttons, our thumbnail classes won’t accidentally break.

Let’s see how it looks! Since we haven’t implemented the radio button logic yet, try changing
the chosenSize value in initialModel to Large and then recompile to see how that affects
the way the page looks. Then try recompiling again with Small, and finally back to Medium.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

70

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 3.5 Recompiling with chosenSize = Small, chosenSize = Medium, and chosenSize = Large

Cool! Now that we have our interface rendering, it’s time to start making the logic work.

3.2.3 Holding Data in Union Types

Making the Surprise Me! button change our model’s selectedUrl field to a random photo’s
url means we’ll need to access a random photo from our photoArray.

In JavaScript we might implement reading a photo from an array as follows:

var photos = […maybe there are photos here, but maybe not…];
var selectedId = photos[2].url; // Select the third photo

What happens if photos doesn’t have at least three elements? In that case, photos[2] would
evaluate to undefined, and photos[2].url would throw an angry runtime exception such as:

Uncaught TypeError: Cannot read property 'url' of undefined

Elm avoids this runtime exception by handling this situation differently in three ways:

1. In Elm you call Array.get to get an element in an Array; there is no [2] accessor.
2. Array.get never returns undefined or null, because Elm has neither of these.
3. Array.get always returns a container value called a Maybe.

What’s a Maybe? Glad you asked!

DEFINITION A Maybe is a container like a List, except it can hold at most one element.

Maybe is implemented as a union type, but a flavor of union type we haven’t seen yet: one
that holds data. Its definition looks like this:

type Maybe value
 = Just value
 | Nothing

MAYBE VERSUS UNDEFINED

The most common use for Maybe is to represent the potential absence of a value. It provides a
container-based alternative to JavaScript’s drop-in replacements of null and undefined.

Figure 3.6 compares Elm’s Array.get and Maybe to JavaScript’s [2] and undefined.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

71

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 3.6 Comparing Elm’s Maybe to JavaScript’s undefined

Array.get 2 photos expresses the desire to access the third element of an array called
photos. However, the photos array may have fewer than three elements in it! If the index 2 is
outside the bounds of photos, then Array.get 2 photos will return Nothing.

On the other hand, if 2 is inside its bounds, then Array.get will return Just c—where c is
the element at index 2 in the photos array.

MAYBE’S TYPE VARIABLE

As we’ve seen before with List, Array, and Html, the Maybe type has a type variable!
We chose to name it value in the definition we gave for Maybe’s union type earlier:

type Maybe value
 = Just value
 | Nothing

Similarly to how you can have a List String or a List Photo, you can also have a Maybe
String or Maybe Photo. The difference is that whereas List Photo means “a list of photos,”
Maybe Photo means “either a Photo or nothing at all.” Put another way, Maybe is a container
that can hold at most one element.

Now that we know Just "1.jpeg" is a Maybe String, what is the type of Just itself?

"JUST" IS A FUNCTION

Argh, that heading totally gave away the answer. Oh well.
As the heading suggests, whereas Nothing is a Maybe value, Just is a function that

returns a Maybe value. We can confirm this in elm-repl:

> Nothing
Nothing : Maybe.Maybe a

> Just
<function> : a -> Maybe.Maybe a

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

72

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

> Just "dance"
Just ("dance") : Maybe.Maybe String

NOTE elm-repl calls the type Maybe.Maybe because the Maybe type lives in a module called Maybe.

This is similar to Array.Array from earlier, except that unlike the Array module, the Maybe module is

imported by default. (The Maybe.Maybe type is not exposed by default.)

In Chapter 1 we noted that when you write a function by hand, its name must be
lowercase...yet here we see that union type constructors like Just are functions with
capitalized names. What makes them so special?

A capital question! The answer is right around the corner.

DESTRUCTURING UNION TYPES

In Chapter 1 we learned how we can destructure tuples to both extract and name their values.

multiply3d (x, y, z) = x * y * z

As it turns out, we can also destructure union type constructors such as Just in the branches
of case-expressions. Let’s use what we’ve learned about Array.get and Maybe to add this
getPhotoUrl function right above our update function.

Listing 3.5 Selecting a photo by index

getPhotoUrl : Int -> String
getPhotoUrl index =
 case Array.get index photoArray of
 Just photo -> ❶
 photo.url

 Nothing ->
 "" ❷

❶ Destructuring `Just` and naming its contained value `photo`
❷ Fall back on "" if there was no photo at that index

Here, Just photo -> is saying two things:

1. This branch matches a Maybe value that was created using the Just type constructor.
2. We’re extracting the value that was passed to Just and naming it photo.

NOTE This is where the distinction between capitalized and uncapitalized functions matters. By comparing

their capitalizations, Elm’s compiler can tell that Just photo -> refers to a type constructor called Just

which holds a value we’ve chosen to name photo. If we’d instead written Just True -> the compiler would

know we meant “the Just type constructor holding exactly the value True.”

Notice that this case-expression did not need a _ -> branch! This is because its branches
already cover all possible values of Maybe. One branch covers Nothing, and the other covers

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

73

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

any values created with Just. Since Nothing and Just are the only ways to obtain a Maybe,
these branches have every possibility covered.

Also notice how because Array.get returns a Maybe, you can’t help but remember to
handle the case where index is outside the bounds of photoArray. This API design means that
you’ll always be doing the minimal amount of coding necessary to handle error cases. You
don’t need to defensively check whether something is null or undefined, because Elm’s
compiler has your back in cases where the value you want might not be available.

3.2.4 Representing Flexible Messages with Union Types

We’ve made so much progress! We’ve updated our views to render the new interfaces,
expanded our model to hold our new chosenSize field, and introduced helper functions for
photoArray. Now it’s time to wire all that together with changes to update.

Let’s start by updating that chosenSize field, which currently gets initialized to Medium and
then never changes. We’ll want to update it whenever the user clicks a radio button.

This might seem like the obvious change to make to viewSizeChooser:

viewSizeChooser : ThumbnailSize -> Html Msg
viewSizeChooser size =
 ...
 onClick { operation = "SET_SIZE", data = size)

There’s just one problem...this is a type mismatch! Remember our type alias for Msg?

type alias Msg =
 { operation : String, data : String }

This says the data field of a Msg needs to be a String, not a ThumbnailSize! To preserve
backwards compatibility with existing code, we need a Msg type that can accommodate both
ThumbnailSize and String. One way we can do this is by adding a new field called sizeData:

type alias Msg =
 { operation : String, data : String, sizeData : ThumbnailSize }

This solves one problem while creating another. Now our existing onClick handler will no
longer compile, because it’s missing a field. Here’s how we wrote it back in Chapter 2:

onClick { operation = "SELECT_PHOTO", data = thumbnail.url }

Without specifying a value for that new sizeData field, this record is no longer a valid Msg.
We’d need to change it to something like this:

onClick { operation = "SELECT_PHOTO", data = thumbnail.url, sizeData = Small }

Yuck. Having to set sizeData = Small for an operation that doesn’t care about sizeData?
That doesn’t smell right. And are we really planning to add a field to every Msg in our program
whenever we need it to support a new data type? This doesn’t seem like it will scale well.

Is there a better way?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

74

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

IMPLEMENTING MSG AS A UNION TYPE

There totally is! Implementing Msg as a union type will work much better. Here’s the plan:

1. Replace our type alias Msg declaration with a type Msg declaration.
2. Revise update to use a case-expression which destructures our new union type.
3. Change our onClick handler to pass a type constructor instead of a record.

Listing 3.6 shows the first two changes: replacing type alias Msg with type Msg, and
revising update accordingly. Let’s edit PhotoGroove.elm to incorporate these changes.

Listing 3.6 Implementing Msg as a union type

type Msg ❶
 = SelectByUrl String ❷
 | SurpriseMe ❸
 | SetSize ThumbnailSize ❹

update : Msg -> Model -> Model
update msg model =
 case msg of
 SelectByUrl url -> ❺
 { model | selectedUrl = url }

 SurpriseMe -> ❻
 { model | selectedUrl = "2.jpeg" }

❶ Replaces our earlier declaration of type alias Msg
❷ Replaces our "SELECT_PHOTO" operation
❸ Replaces our "SURPRISE_ME" operation
❹ Our new operation: set thumbnail size
❺ Previous condition: msg.operation == "SELECT_PHOTO"
❻ Nothing to destructure for SurpriseMe!

This change means our onClick handlers now expect type constructors instead of records.
We’ll need to make this change in view:

Old: onClick { operation = "SURPRISE_ME", data = "" }
New: onClick SurpriseMe

Let’s also make this change in viewThumbnail:

Old: onClick { operation = "SELECT_PHOTO", data = thumbnail.url }
New: onClick (SelectByUrl thumbnail.url)

THE MISSING PATTERNS ERROR

If we recompile, we’ll see a type of error we haven’t seen before: a missing patterns error.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

75

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

-- MISSING PATTERNS -------------------------------- PhotoGroove.elm

This `case` does not have branches for all possibilities.
...
You need to account for the following values:

 PhotoGroove.SetSize _

Add a branch to cover this pattern!

Oops! The compiler noticed we only handled SelectByUrl and SurpriseMe in our update
function’s case-expression; we never implemented the logic for SetSize. Fortunately, that
deficiency will never reach our end users because the compiler didn’t let us forget.

TIP Anytime you use the default case _ -> in a case-expression, you cannot get this error. That is not a good

thing! The missing patterns error is your friend. When you see it, it’s often saving you from a bug you would

have had to hunt down later. Try to use _ -> only as a last resort, so you can benefit from as many missing

pattern safeguards as possible.

Let’s add this to the end of our update function:

SurpriseMe index ->
 { model | selectedUrl = "2.jpeg" }

SetSize size ->
 { model | chosenSize = size }

Finally, we need to add a new onClick handler to our radio button in viewSizeChooser:

Old: input [type_ "radio", name "size"] []
New: input [type_ "radio", name "size", onClick (SetSize size)] []

If we recompile and click the radio buttons, we can now see the thumbnail sizes change!

TIP There are at least two ways we could improve user experience here. One way would be making the

“medium” option display as selected on page load. Another would be to use a broader event handler than

onClick—one that detects whenever the radio state changes, even if it not from a click. Try implementing

these improvements sometime for practice!

Using union types for Msg has two major advantages over records.

1. The compiler can save us from typos. Before, if we wrote "SELECT_PHOTA" instead of
"SELECT_PHOTO", our code would silently fail and we’d have to hunt down the cause.
Now, if we write SelectByUrk instead of SelectByUrl, Elm’s compiler will give us an
error at build time—including the line number of the typo. No bug hunting necessary!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

76

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

2. Each flavor of Msg now holds only the minimum amount of data it needs. SelectByUrl
holds only a String, and SetSize holds only a ThumbnailSize. Best of all, SurpriseMe
doesn’t need to hold any data at all...and so it doesn’t!

To sum up, implementing Msg as a union type has made our code more reliable, more concise,
and easier to scale. These advantages make union types the typical choice for representing
messages in production Elm applications, and they’re what we will use for the rest of the book.

Now all that remains is to incorporate random number generation into SurpriseMe.

3.3 Generating Random Numbers with Commands
Currently our Surprise Me! button always selects the second photo, but we want it to select a
random photo instead. Here’s how we’re going to do that:

1. Generate a random integer between 0 and 2. This will be our index.
2. Ask photoArray for the photo it’s storing at that index.
3. Set our model’s selectedUrl to be that photo’s url.

We’ll start by generating the random integer.

3.3.1 Describing Random Values with Random.Generator

In JavaScript, Math.random() is the typical starting point for generating random values.
Calling Math.random() gives you a random Float between 0 and 1. To randomly generate an
Int or a String, you manually convert that Float into the value you actually want.

In Elm we start with a Random.Generator, which specifies the type of value we want to
randomly generate. For example, the Random.int function takes a lower bound and an upper
bound, and returns a Random.Generator that generates a random Int between those bounds.

Here’s a generator that randomly generates integers between 0 and 2:

randomPhotoPicker : Random.Generator Int
randomPhotoPicker =
 Random.int 0 2

Notice how the type annotation says Random.Generator Int. This means “we have a
Random.Generator that produces Int values.” If we’d used Random.bool instead of
Random.int, it would have returned a Random.Generator Bool instead.

GENERATING A RANDOM PHOTO INDEX

Since randomPhotoPicker generates random integers bewteen 0 and 2, and photoArray has
3 photos in it, we could use this generator to pick an index within photoArray to select. That
would work, but it would be brittle since it relies on photoArray having exactly 3 photos. We
can improve it by replacing the hardcoded 2 with (Array.length photoArray - 1).

Let’s add the following after our getPhotoUrl declaration.

randomPhotoPicker : Random.Generator Int

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

77

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

randomPhotoPicker =
 Random.int 0 (Array.length photoArray - 1)

That’ll do nicely. We also need to add the Random module to our imports.

import Random

Now that we’ve described the random value we want, it’s time to actually generate one!

3.3.2 Introducing Commands to the Elm Architecture

If you call JavaScript’s Math.random() five times, you’ll probably get back five different
numbers. Elm functions are more consistent. If you call any Elm function five times with the
same arguments, you can expect to get the same return value each time. This is no mere
guideline, but a language-level guarantee! Knowing that all Elm functions have this useful
property makes bugs easier to track down and reproduce.

Since Elm forbids functions from returning different values when they receive the same
arguments, it’s not possible to write an inconsistent function like Math.random as a plain Elm
function. Instead, Elm implements random number generation using a command.

DEFINITION A command is a value that describes an operation for the Elm Runtime to perform. Unlike

functions, running the same command multiple times can have different results.

When the user clicks Surprise Me! we’ll use a command to translate our Random.Generator
Int into a randomly-generated Int, which will represent our new selected photo index.

RETURNING COMMANDS FROM UPDATE

Remember how we specified what onClick should do in terms of a message that got sent to
our update function? We didn’t say “add this click event listener to the DOM right away,” we
said “I want this Msg to get sent to my update function whenever the user clicks here.”

Commands work similarly. We don’t say “generate a random number right this instant,” we
say “I want a random number, so please generate one and send it to my update function gift-
wrapped in a Msg.” As with onClick, we let update take it from there—and if we so desire,
update can return new commands which trigger new calls to update when they complete.

Figure 3.7 shows how commands flow through the Elm Architecture.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

78

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 3.7 How commands flow through the Elm Architecture

Importantly, the addition of commands has not altered the fundamental structure of the Elm
Architecture we learned in Chapter 2. All of the following still hold true.

• Our Model value is still the single source of truth for the application state.
• Our update function is still the only way to alter that model.
• Sending a Msg to update remains the only way to tell update what we want done.

All we’ve done is to give update some new powers: the ability to run logic that can have
inconsistent results, such as generating a random number. As we will soon see, the key to
unlocking these powers is graduating from Html.beginnerProgram to Html.program.

RUNNING COMMANDS IN RESPONSE TO USER INPUT

We want to generate our random number in response to a click event, so we’ll need to alter
our update function a bit. Specifically we’ll have update return a tuple containing not only the
new Model we want, but also whatever commands we want the Elm Runtime to execute.

Before we edit update’s implementation, let’s revise its type annotation to guide our work.

update : Msg -> Model -> (Model, Cmd Msg)

As you can see, tuple annotations look just like tuple values. (Model, Cmd Msg) means “a
tuple where the first element is a Model and the second is a Cmd Msg.”

NOTE We write Cmd Msg instead of just Cmd for the same reason that we write Html Msg instead of Html.

Like Html, the Cmd type also has a type variable, and for a familiar reason: whenever a Cmd finishes, a Msg

value is what it sends to update for further processing.

Let’s revise our update implementation to reflect this new reality.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

79

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 SelectByUrl url ->
 ({ model | selectedUrl = url }, Cmd.none)

 SurpriseMe ->
 ({ model | selectedUrl = "2.jpeg" }, Cmd.none)

 SetSize size ->
 ({ model | chosenSize = size }, Cmd.none)

A fine start! Next we’ll replace that Cmd.none in SurpriseMe’s branch with a command to
randomly generate the index of the photo we want to select.

3.3.3 Generating Random Values with Random.generate

The Random.generate function returns a command that generates random values wrapped up
in messages. It’s just what the doctor ordered here! Random.generate takes two arguments:

1. A Random.Generator, which specifies the type of random value we want.
2. A function which can wrap the resulting random value in one of our Msg values.

The randomPhotoPicker we created earlier will do nicely for the Random.Generator, so all
we’re missing is a way to wrap these randomly-generated integers in a Msg. We can introduce
one by adding a new type constructor to Msg and a new branch to update:

type Msg
 = SelectByUrl String
 | SelectByIndex Int
 ...

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 SelectByIndex index ->
 ({ model | selectedUrl = getPhotoUrl index }, Cmd.none)

 ...

Nice! Now we just need Random.generate to produce one of these SelectByIndex messages.

CALLING RANDOM.GENERATE

When a user clicks the Surprise Me! button, the SurpriseMe -> branch of our update function’s
case-expression gets run. Currently that returns a Cmd.none, but now we want it to return a
different command: one that generates a random Int and sends it back to update wrapped in
a SelectByIndex message. We’ll get this command by calling Random.generate.

Earlier we noted that Random.generate needs two ingredients:

• A Random.Generator, which specifies what type of random value we want. (We’ll use
randomPhotoPicker, our Random.Generator Int, for this.)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

80

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

• A function which can wrap the resulting random value in one of our Msg values. (We’ll
use our SelectByIndex type constructor for this, as it is a function that returns a Msg.)

Let’s revise our SurpriseMe branch to return an unchanged model, and to call
Random.generate instead of returning Cmd.none.

SurpriseMe ->
 (model, Random.generate SelectByIndex randomPhotoPicker)

Figure 3.8 illustrates how this would cause data to flow through our application, assuming the
Elm Runtime randomly generated a 2 after the user clicked our Surprise Me! button.

Figure 3.8 Data flowing through our application, assuming the Elm Runtime randomly generated a 2

Calling Random.generate SelectByIndex randomPhotoPicker returns a command which:

1. Randomly generates an Int between 0 and 2, because that’s the type of random value
randomPhotoPicker specified it should generate.

2. Takes that randomly-generated Int, passes it to SelectByIndex (an Int -> Msg
function), and runs the resulting Msg through update.

We could write a type annotation for Random.generate like so:

generate : (randomValue -> msg) -> Random.Generator randomValue -> Cmd msg

NOTE Capitalization is important! There is a big difference between Msg and msg. A function that returns Msg

returns an instance of the exact Msg union type we defined in PhotoGroove.elm. In contrast, msg is a type

variable. A function that returns msg could return anything at all!

Table 3.5 shows how the expressions involved in our call to Random.generate relate to the
parameters and type variables in this annotation.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

81

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 3.5 Types involved in calling Random.generate

Expression Type Type in Original Annotation

SelectByIndex (Int -> Msg) (randomValue -> msg)
randomPhotoPicker Random.Generator Int Random.Generator randomValue

Random.generate
 SelectByIndex
 randomPhotoPicker

Cmd Msg Cmd msg

NOTE Because it takes a function as an argument, Random.generate is another higher-order function like

List.map or String.filter.

UPGRADING TO HTML.PROGRAM

We’re almost done, but if we compile our code right now, we’ll get an error. This is because
Html.beginnerProgram wants update to return a Model, whereas our update function now
returns a (Model, Cmd Msg) tuple. Fortunately beginnerProgram’s older sibling,
Html.program, expects just such a tuple! Let’s replace our main declaration with this:

main =
 Html.program
 { init = (initialModel, Cmd.none)
 , view = view
 , update = update
 , subscriptions = (\model -> Sub.none)
 }

We’re passing two things differently from what we passed to Html.beginnerProgram.

1. The model record has been replaced by an init tuple. The first element in the tuple is
our initial Model, and the second is a command to run when the application loads. (init
is the only place besides update that can specify commands to run.) Since we have
nothing to run on startup, we write Cmd.none.

2. We’ve added a subscriptions field. We’ll make use of that in Chapter 5, but for now
let’s disregard it.

Next we’ll give main a type annotation. As we’ve been going through adding annotations, you
may have wondered why the compiler hasn’t been helping out with that. It clearly knows what
the types are, since it infers them for us in elm-repl, so why can’t it tell us the annotations?

GENERATING ANNOTATIONS WITH THE --WARN FLAG

Actually, it totally can! Try running elm-make with the --warn flag:

elm-make PhotoGroove.elm --output elm.js --warn

You should see this warning:

Top-level value `main` does not have a type annotation.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

82

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

139| main =
 ^^^^
I inferred the type annotation so you can copy it into your code:

main : Program Never Model Msg

Thanks, compiler! Go ahead and copy this final annotation right into your code. (Chapter 5 will
get into what Program Never Model Msg means.) Generated annotations won’t always match
what you would have written yourself, but you can at least expect them to compile.

TIP This is presented as a compiler warning because it’s best practice to document your top-level functions

with type annotations. When the compiler can generate these for you, documentation takes much less effort!

At this point you may be wondering something else: why did we go through this whole chapter
writing annotations by hand, when we could have had the compiler generate immediately
usable ones for us all along? To that I say...hey look, a distraction!

THE FINAL BUILD

If you recompile with elm-make and open index.html, you should experience a gloriously
functional application. Try clicking Surprise Me! to watch it randomly pick a different photo!

Figure 3.9 Randomly choosing the initially selected photo

Ain’t it grand? Even after all the changes we made, once it compiled it just worked—no
regressions! Not only that, but our code never came anywhere near causing a runtime
exception. This is a normal experience with Elm, yet it never seems to get old.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

83

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Compared to where we were at the end of Chapter 2, our revised application is not only
more feature-rich, it’s also more reliable and better-documented. It does more, it does it
better, and the code is cleaner. Huzzah!

3.4 Summary
We’ve now improved on our application from Chapter 2 in several ways.

• We added documentation in the form of type annotations
• Users can select from one of three thumbnail sizes
• It has a Surprise Me! button which selects a thumbnail at random
• From now on whenever we add a new Msg value, the compiler will give us a Missing

Patterns error if we forget to handle it (like it did when we didn’t account for SetSize)

Along the way we covered many new concepts, such as:

• Type variables represent concrete types that have not been specified yet.
• A type alias declaration assigns a name to a type, much like how a constant assigns

a name to a value.
• A type declaration defines a new union type, a custom type that did not exist before.
• Union types can hold more flexible data than records or tuples can.
• Union type constructors can be either values which are instances of that union type, or

functions which return instances of that union type.
• You can destructure union type constructors in case-expressions to extract their data.
• If you don’t write a fallback _ -> branch in a case-expression, you’ll get a compiler

error unless your code handles all possible cases.
• Array.get prevents runtime crashes by returning a Maybe instead of a normal element.

We also learned some differences between comments and type annotations.

Table 3.6 Documenting Code with Comments and Type Annotations

Comment Type Annotation

Arbitrary string, can describe anything Can only describe a thing’s type

Can be inaccurate or get out of date Compiler guarantees it’s accurate and up-to-date

Can be written just about anywhere Always goes on the line above the thing it documents

Finally, we learned about Maybe, the container value which Array.get returns to represent the
potential absence of a value. Table 3.7 compares Maybe and List.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

84

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 3.7 Comparing Maybe and List

Container Contents List Maybe

Empty [] : List a Nothing : Maybe a

One value ["foo"] : List String Just "foo" : Maybe String

Two values ["foo", "bar"]: List String not possible!

In Chapter 4 we’ll take our application to the extreme, by talking to a server to obtain our
list of photos to display. Stay tuned!

Listing 3.7 The complete PhotoGroove.elm

module PhotoGroove exposing (..)

import Html exposing (..)
import Html.Attributes exposing (..)
import Html.Events exposing (onClick)
import Array exposing (Array)
import Random

urlPrefix : String
urlPrefix =
 "http://elm-in-action.com/"

type ThumbnailSize
 = Small
 | Medium
 | Large

view : Model -> Html Msg
view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , button
 [onClick SurpriseMe]
 [text "Surprise Me!"]
 , h3 [] [text "Thumbnail Size:"]
 , div [id "choose-size"]
 (List.map viewSizeChooser [Small, Medium, Large])
 , div [id "thumbnails", class (sizeToString model.chosenSize)]
 (List.map (viewThumbnail model.selectedUrl) model.photos)
 , img
 [class "large"
 , src (urlPrefix ++ "large/" ++ model.selectedUrl)
]
 []
]

viewThumbnail : String -> Photo -> Html Msg

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

85

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/
https://forums.manning.com/forums/elm-in-action

viewThumbnail selectedUrl thumbnail =
 img
 [src (urlPrefix ++ thumbnail.url)
 , classList [("selected", selectedUrl == thumbnail.url)]
 , onClick (SelectByUrl thumbnail.url)
]
 []

viewSizeChooser : ThumbnailSize -> Html Msg
viewSizeChooser size =
 label []
 [input [type_ "radio", name "size", onClick (SetSize size)] []
 , text (sizeToString size)
]

sizeToString : ThumbnailSize -> String
sizeToString size =
 case size of
 Small ->
 "small"

 Medium ->
 "med"

 Large ->
 "large"

type alias Photo =
 { url : String }

type alias Model =
 { photos : List Photo
 , selectedUrl : String
 , chosenSize : ThumbnailSize
 }

initialModel : Model
initialModel =
 { photos =
 [{ url = "1.jpeg" }
 , { url = "2.jpeg" }
 , { url = "3.jpeg" }
]
 , selectedUrl = "1.jpeg"
 , chosenSize = Medium
 }

photoArray : Array Photo
photoArray =
 Array.fromList initialModel.photos

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

86

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

getPhotoUrl : Int -> String
getPhotoUrl index =
 case Array.get index photoArray of
 Just photo ->
 photo.url

 Nothing ->
 ""

randomPhotoPicker : Random.Generator Int
randomPhotoPicker =
 Random.int 0 (Array.length photoArray - 1)

type Msg
 = SelectByUrl String
 | SelectByIndex Int
 | SurpriseMe
 | SetSize ThumbnailSize

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 SelectByIndex index ->
 ({ model | selectedUrl = getPhotoUrl index }, Cmd.none)

 SelectByUrl url ->
 ({ model | selectedUrl = url }, Cmd.none)

 SurpriseMe ->
 (model, Random.generate SelectByIndex randomPhotoPicker)

 SetSize size ->
 ({ model | chosenSize = size }, Cmd.none)

main =
 Html.program
 { init = (initialModel, Cmd.none)
 , view = view
 , update = update
 , subscriptions = (\model -> Sub.none)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

87

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

4
Talking to Servers

This chapter covers

• Using Decoders to validate and translate JSON
• Handling descriptive errors with Results
• Communicating over HTTP with Requests

We’ve made great progress! Users of our Photo Groove application can now do quite a bit:

• Select a thumbnail to view a larger version
• Choose Small, Medium, or Large thumbnail sizes
• Click Surprise Me! to select a random thumbnail

Our manager is impressed with our progress, but has even more in mind. “It’s time to take
Photo Groove to the next level. The highest level. The cloud level. That’s right, we’re going to
have Photo Groove start getting its photo information from our very own servers!”

As with last time, our manager has one more minor feature request. “There’s also going to
be some metadata associated with each photo—specifically download size and an optional
caption. We can have it show those on top of the big photo, right?”

Sure, since you asked so nicely.
In this chapter we’ll teach our application how to talk to servers. We’ll validate and

translate JSON data, communicate over HTTP using the Elm Architecture, and reliably handle
errors in client-server communication.

Let’s get to it!

4.1 Preparing for Server-Loaded Data
Since we’re going to be loading our initial list of photos from the server, our data modeling
needs will change.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

88

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

4.1.1 Modeling Incremental Initialization

Right now our initialModel looks like this:

initialModel : Model
initialModel =
 { photos = [{ url = "1.jpeg" }, { url = "2.jpeg" }, { url = "3.jpeg" }]
 , selectedUrl = "1.jpeg"
 , chosenSize = Medium
 }

We’ll be loading our photos from the server, meaning initialModel.photos will be [] and
we’ll update that list once we hear back from the server. This will have a few consequences:

1. Because we have no initial photos, we can’t have an initial selectedUrl either.
2. The initial request to load the data might fail, for example because the server is down.

In that case, we should display an error.
3. Our photoArray value references initialModel.photos, so it will be affected.
4. Both getPhotoUrl and randomPhotoPicker reference photoArray, so they will be

affected as well.

Let’s translate these new considerations into data model changes!

MODELING ABSENT VALUES WITH MAYBE

The Maybe container we learned about in Chapter 3 seems like a nice way to implement the
first consideration—that we won’t have an initial selectedUrl. Since Maybe represents the
potential absence of a value—by holding either the value Nothing or some other value
wrapped in a Just—it’s an intuitive way to represent the data that is absent until we hear
back from the server.

We can also use a Maybe to represent a potential loading error message. It will begin as
Nothing, but might become something like Just "Server unavailable" if we get an error.

Go ahead and change Model and initialModel to look like the following.

type alias Model =
 { photos : List Photo
 , selectedUrl : Maybe String
 , loadingError : Maybe String
 , chosenSize : ThumbnailSize
 }

initialModel : Model
initialModel =
 { photos = []
 , selectedUrl = Nothing
 , loadingError = Nothing
 , chosenSize = Medium
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

89

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Now that we’ve revised our data model, we can lean on the compiler to tell us what parts of
our code base were affected by this revision. This will let us reliably propagate these changes
throughout our code base!

PROPAGATING CHANGES

If we recompile we’ll see two type mismatches: one in view and one in update.
Since selectedUrl is now a Maybe String instead of a String, our SelectByUrl logic inside

update now needs a Just. Let’s add it:

SelectByUrl url ->
 ({ model | selectedUrl = Just url }, Cmd.none)

Our SelectByIndex logic has a similar type mismatch, but there we can actually do better!
One way to fix the mismatch is to wrap what getPhotoUrl returns in a Just...but another way
is to propagate the Maybe itself! Let’s rewrite getPhotoUrl to return a Maybe:

getPhotoUrl : Int -> Maybe String
getPhotoUrl index =
 case Array.get index photoArray of
 Just photo ->
 Just photo.url

 Nothing ->
 Nothing

Notice how this not only resolves the type mismatch, but also means we are no longer
returning the clearly invalid URL of "" in the case where the index is out of bounds. One less
potential bug to worry about!

FIXING VIEWTHUMBNAIL

Now that we’ve resolved our type mismatches in update, we can move on to resolving the
ones in view. One of the problems in view is that the viewThumbnail function it calls has an
inaccurate type annotation. It says it’s taking a String called selectedUrl, but selectedUrl
is now a Maybe String. Let’s fix that annotation real quick:

viewThumbnail : Maybe String -> Photo -> Html Msg
viewThumbnail selectedUrl thumbnail =

There’s another problem in viewThumbnail: the code selectedUrl == thumbnail.url is now
comparing a String to a Maybe String, which is a type mismatch! The easiest way to fix this
is by calling Just on thumbnail.url, converting it to a Maybe String. Now we’re comparing a
Maybe String to a Maybe String and balance has been restored to the galaxy.

classList [("selected", selectedUrl == Just thumbnail.url)]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

90

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

FIXING THE PREVIEW IMAGE

With those “quick fixes” out of the way, we can recompile to see one final error: the code that
renders the large preview image has a type mismatch.

src (urlPrefix ++ "large/" ++ model.selectedUrl)

This case is not a “quick fix” like the others were. If model.selectedUrl is Nothing here, we
really don’t want to render this img at all!

Let’s pull the logic to view the large photo into its own function, and handle the Maybe in
there by declining to render the img at all.

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 ... (everything in between stays the same) ...
 , div [id "thumbnails", class (sizeToString model.chosenSize)]
 (List.map (viewThumbnail model.selectedUrl) model.photos)
 , viewLarge model.selectedUrl
]

viewLarge : Maybe String -> Html Msg
viewLarge maybeUrl =
 case maybeUrl of
 Nothing ->
 text ""

 Just url ->
 img [class "large", src (urlPrefix ++ "large/" ++ url)] []

Notice that we’re returning text "" if maybeUrl is Nothing. This “render an empty text node”
technique is a quick way to obtain some Html that has no visual impact on the page.

Let’s recompile everything with elm-make --output=elm.js PhotoGroove.elm and open
index.html to see our progress.

Figure 4.1 The updated application, with no photos displaying

Excellent! We’ve achieved that peculiar flavor of success where we smile at our desk...while
hoping nobody walks by and sees how the previously-working application looks right now.

4.1.2 Resolving Data Dependencies

Now that we’ve resolved our type mismatches, let’s turn to our business logic.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

91

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

photoArray is still based on initialModel.photos. This is perfectly reasonable if
initialModel.photos has a bunch of photos in it...but now that it’s hardcoded to []? Not so
much. That means photoArray will always be empty, which means even once we’ve loaded
some photos to display, our Surprise Me! button won’t be able to randomly select one.

FIXING SELECTBYINDEX

To fix this, we need to make our SelectByIndex logic reference the current photos, rather
than the hardcoded ones we had at startup. We can do this by deleting photoArray and
getPhotoUrl, and changing the SelectByIndex branch of our update function like so:

SelectByIndex index ->
 let
 newSelectedPhoto : Maybe Photo
 newSelectedPhoto =
 Array.get index (Array.fromList model.photos)

 newSelectedUrl : Maybe String
 newSelectedUrl =
 case newSelectedPhoto of
 Just photo ->
 Just photo.url

 Nothing ->
 Nothing
 in
 ({ model | selectedUrl = newSelectedUrl }, Cmd.none)

Our newSelectedUrl implementation fits a pattern that comes up fairly often:

1. Run a case-expression on a Maybe
2. In the Nothing branch, evaluate to Nothing
3. In the Just branch, evaluate to another Just

In other words, if we have a Nothing, we leave it alone, but if we have a Just, we transform
it into a different Just.

REFACTORING TO USE MAYBE.MAP

The Maybe.map function provides a way to perform this transformation more concisely. Let’s
refactor our getPhotoUrl implementation to use it.

newSelectedUrl : Maybe String
newSelectedUrl =
 Maybe.map (\photo -> photo.url) newSelectedPhoto

You can read this code as “Look at the result of Array.get index photoArray. If it’s
Nothing, then return Nothing, but if it’s Just photo, return Just photo.url instead.”

Maybe.map does this by accepting a function which transforms the old Just value into the
new one. (If the Maybe is Nothing, this Just-transforming function does not get called.)

Table 4.1 illustrates the similarities between Maybe.map and our old friend List.map.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

92

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 4.1 Comparing List.map and Maybe.map

List.map Maybe.map

List.map negate [39] == [-39] Maybe.map negate (Just 39) == Just -39
List.map negate [5] == [-5] Maybe.map negate (Just 5) == Just -5
List.map negate [] == [] Maybe.map negate Nothing == Nothing

This code is now significantly more concise than when we used an entire case-expression to
implement the same logic...but wait! There’s more!

REFACTORING TO USE .URL

Anytime you see a function that takes a record and immediately return one of its fields—as
we’re doing with (\photo -> photo.url) above—you can take advantage of a special syntax
Elm offers for these occasions. If we replace (\photo -> photo.url) with .url instead, it will
do exactly the same thing.

That means we can delete newSelectedPhoto and refactor newSelectedUrl to this:

newSelectedUrl : Maybe String
newSelectedUrl =
 Maybe.map .url (Array.get index (Array.fromList model.photos))

TIP You can think of .url as “a function which takes a record and returns its .url field.”

We’ve now replaced a case-expression with one function call, but the result is not the nicest to
read. Fortunately, Elm provides an excellent way to make expressions like this more readable!

USING THE PIPELINE OPERATOR

We can express newSelectedUrl as a “pipeline” of sequential operations by using the |>
operator like so:

newSelectedUrl : Maybe String
newSelectedUrl =
 model.photos
 |> Array.fromList
 |> Array.get index
 |> Maybe.map .url

This expression is exactly equivalent to writing Maybe.map .url (Array.get index

(Array.fromList model.photos)) except it’s expressed in a different style.
Figure 4.2 compares these two ways to write the same expression.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

93

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 4.2 The same expression, with and without pipelines

The pipelined code is saying the following:

1. Start with model.photos
2. Pass it to Array.fromList
3. Pass the previous step’s return value as the final argument to Array.get index
4. Pass that previous step’s return value as the final argument to Maybe.map .url

Pipelines make it easier to read and to modify sequences of transformations like this. We’ll be
using them quite often throughout the rest of the book!

NOTE Before Elm’s compiler generates JavaScript code, it quietly rewrites pipelines into normal function

calls. So "foo" |> String.reverse compiles to the same thing as String.reverse "foo". Since they compile to the

same thing, there’s no performance cost to choosing one over the other. Choose whichever makes for nicer

code!

Go ahead and revise our SelectByIndex logic to use this pipeline style, like so:

SelectByIndex index ->
 let
 newSelectedUrl : Maybe String
 newSelectedUrl =
 model.photos
 |> Array.fromList
 |> Array.get index
 |> Maybe.map .url
 in
 ({ model | selectedUrl = newSelectedUrl }, Cmd.none)

INLINING RANDOMPHOTOPICKER

Now we have one remaining problem: randomPhotoPicker is still referencing the photoArray
value we deleted.

Fortunately, it was only using photoArray to get its length inside the SurpriseMe branch
of update’s case-expression. We can get that same length value using List.length model at
that point in the code, so we can delete the top-level randomPhotoPicker in favor of this:

SurpriseMe ->
 let
 randomPhotoPicker =
 Random.int 0 (List.length model.photos - 1)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

94

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 in
 (model, Random.generate SelectByIndex randomPhotoPicker)

Great! Now that we’ve installed the requisite package and prepared our data model for the
transition, we’re ready to get some HTTP going!

4.2 Fetching Data from a Server
One of our helpful coworkers has set up a simple server endpoint which returns a comma-
separated list of photo filenames. The list doesn’t yet contain the metadata that we’ll
ultimately need, but it’ll give us a good starting point toward that goal.

Let’s send a HTTP GET request to fetch that comma-separated string from a server!

4.2.1 Describing HTTP Requests

We’ll be using the Http module to send HTTP requests to our server. Since Http is not one of
Elm’s core modules, we need to install the elm-lang/http package to gain access to it:

elm-package install elm-lang/http

In Chapter 6 we’ll learn more about package management, but for now let’s keep moving!

MANAGED EFFECTS INSTEAD OF SIDE EFFECTS

In Chapter 3 we saw how generating random numbers in Elm must be done with a Cmd rather
than a plain function call.

Whereas JavaScript’s Math.random() can return a different random number each time you
call it, Elm functions must be more consistent. When you pass an Elm function the same
arguments, it’s guaranteed return the same value.

There’s another rule that applies to all Elm functions, and this one affects the HTTP
requests we’re about to make. The rule is that Elm functions cannot have side effects.

DEFINITION An effect is an operation that modifies external state. A function which modifies external

state when it executes has a side effect.

HTTP requests can always modify external state—since even a GET request can result in a
server changing values in a database—so performing an HTTP request is an effect. This means
if we execute a function and it performs an HTTP request, that function has a side effect.

Listing 4.1 shows a few JavaScript functions which consistently return the same value, but
which have side effects because they modify external state along the way. None of these could
be written as plain Elm functions.

Listing 4.1 JavaScript functions which have side effects

function storeStuff() { ❶
 localStorage.stuff = "foo"; ❶

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

95

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 return 1; ❶
} ❶

function editField(object) { ❷
 object.foo = "bar"; ❷
 return object; ❷
} ❷

var something = 1;

function editVar() { ❸
 something = 2; ❸
 return 0; ❸
} ❸

❶ modifies the contents of localStorage
❷ modifies the object it receives
❸ modifies an external variable

If you look through all the code we’ve written for Photo Groove, you won’t find a single
function that has a side effect. All effects are performed by the Elm Runtime itself; our code
only describes which effects to perform, by returning values from update.

NOTE Calling update does not directly alter any state! All update does is return a tuple. If you wanted to,

you could call update a hundred times in a row, and all it would do is give you a hundred tuples.

This system of managed effects, where the Elm Runtime is in charge of performing all effects,
means that Elm programs can be written entirely in terms of data transformations. In Chapter
6 we’ll see how nice this makes Elm code to test.

This means that in order to perform a HTTP request, we’ll do what we did with random
number generation in Chapter 3: use a Cmd to tell the Elm runtime to perform that effect.

DESCRIBING REQUESTS WITH HTTP.GETSTRING

The Http.send function returns a Cmd representing the HTTP request we want to make.
To configure this request, we pass Http.send an Http.Request value describing what the

request should do. This Request value serves a similar purpose to the Random.Generator
value we passed to Random.generate in Chapter 3—except where Random.Generator
described the random value we wanted, Request describes the HTTP request we want.

One way we can obtain a Request value is with the Http.getString function, like so:

Http.getString "http://elm-in-action.com/photos/list"

The getString function has this type:

getString : String -> Request String

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

96

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/photos/list
https://forums.manning.com/forums/elm-in-action

We pass it a URL string, and it returns a Request that asks the Elm Runtime to send a HTTP
GET request to that URL. If the request succeeds, we’ll end up with a plain String containing
the response body the server sent back.

TRANSLATING REQUESTS INTO COMMANDS WITH HTTP.SEND

Now that we have our Request String, we can pass it to Http.send to get a Cmd Msg. Just
like in Chapter 3 with random number generation, once this Cmd completes, it will send a Msg
to update telling us what happened.

Figure 4.3 The Elm Runtime executing a Cmd from Http.send

Unlike random number generation, a lot can go wrong with a HTTP request! What if we send
the server an invalid URL? Or an unrecognized one? What if the server has been unplugged by
a mischievous weasel? If the request fails for any reason, we’ll want to know went wrong so
we can inform the user.

Http.send produces a value that accounts for this possibility: a Result.

4.2.2 Handling HTTP Responses

To get a feel for how Result works, let’s compare it to its cousin Maybe.
In Chapter 3 we saw how Array.get returned a Maybe in order to account for the

possibility of a missing value. The definition of Maybe looks like this:

type Maybe value
 = Just value
 | Nothing

Elm has a similar union type for representing the result of an operation that can fail, such as
performing a HTTP request. It’s called Result, and it looks like this:

type Result errValue okValue
 = Err errValue
 | Ok okValue

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

97

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

As we can see, Result has two type variables:

• okValue represents the type of value we’ll get if the operation succeeded. For example,
if we are trying to obtain a String from the server, then okValue would be String.

• errValue represents the type of error we’ll get if the operation failed. In our case,
errValue will refer to a union type that enumerates various mishaps that can befall
HTTP requests. That union type is called Http.Error.

Similarly to how Maybe requires that we write logic to handle both the Just and Nothing
cases, so too does Result require that we handle both the Ok and Err cases.

HANDLING THE RESULT

Let’s start by importing the Http module we’re about to begin using.

import Http

Next let’s add a Msg type constructor to handle the Result value we’ll get from Http.send:

type Msg
 = SelectByUrl String
 | SelectByIndex Int
 | SurpriseMe
 | SetSize ThumbnailSize
 | LoadPhotos (Result Http.Error String)

We’ll learn more about that Http.Error type in a bit. For now, let’s add a branch to our
update function’s case-expression for this new Msg. We’ll start with something like this:

LoadPhotos result ->
 case result of
 Ok responseStr ->
 ...translate responseStr into a list of Photos for our Model...

 Err httpError ->
 ...record an error message here...

With that basic skeleton in place, we can implement these two cases one at a time. We’ll start
with the Ok responseStr case, where the server gave us a valid response and all is well.

READING PHOTO FILENAMES WITH STRING.SPLIT

Remember earlier when we mentioned how we’ve got a server endpoint which returns a
comma-separated list of photo filenames? If not, here it is again:

One of our helpful coworkers has set up a simple server endpoint which returns a comma-separated list

of photo filenames.

—This book, earlier.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

98

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Sure enough, if we visit this endpoint at http://elm-in-action.com/photos/list we can see the
list of filenames. It’s a plain old string:

"1.jpeg,2.jpeg,3.jpeg,4.jpeg"

When we wrote Ok responseStr a moment ago, that responseStr value will refer to exactly
this string! Now we can split responseStr into a list of individual filenames using Elm’s
String.split function. It has this type:

split : String -> String -> List String

We give String.split a separator (in this case a comma) and a string to split, and it gives us
back a list of all the strings it found between those separators.

Table 4.2 shows what String.split "," will do to the string we get from the server.

Table 4.2 Calling String.split "," on a string

stringFromServer String.split "," stringFromServer

"1.jpeg,2.jpeg,3.jpeg,4.jpeg" ["1.jpeg", "2.jpeg", "3.jpeg", "4.jpeg"]

Once we have this list of filename strings, we can use it to set the photos : List Photo field
in our Model like in Listing 4.2.

Listing 4.2 Incorporating responseStr into the Model

Ok responseStr ->
 let
 urls =
 String.split "," responseStr ❶

 photos =
 List.map (\url -> { url = url }) urls ❷
 in
 ({ model | photos = photos }, Cmd.none) ❸

❶ Split the String into a List String
❷ Translate the List String into a List Photo
❸ Set the photos in the model

Now when we successfully receive a String response from the server, we’ll translate it into a
list of Photo records and store them in our Model.

USING TYPE ALIASES TO CREATE RECORDS

Declaring type alias Photo = { url : String } does more than giving us a Photo type we
can use in type annotations. It also gives us a convenience function whose job is to build
Photo record instances. This function is also called Photo. Here it is in action:

Photo "1.jpeg" == { url = "1.jpeg" }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

99

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/photos/list
https://forums.manning.com/forums/elm-in-action

This also works with record type aliases involving multiple fields, like the one for Model:

type alias Model =
 { photos : List Photo
 , selectedUrl : String
 , chosenSize : ThumbnailSize
 }

This declaration gives us a convenience function called Model which builds a record and
returns it. Since this record has three fields where Photo had only one, the Model function
accepts three arguments instead of one. The type of the Model function looks like this:

Model : List Photo -> String -> ThumbnailSize -> Model

The order of arguments matches the order of the fields in the type alias declaration. So if
you were to move the photos : List Photo declaration to the end of the type alias, then
the Model function would look like this instead:

Model : String -> ThumbnailSize -> List Photo -> Model

We can use this knowledge to perform a quick refactor of our Photo construction:

Old: List.map (\url -> { url = url }) urls
New: List.map Photo urls

Lovely!

HANDLING ERRORS (OR NOT)

What about when things don’t go as planned? We’ll add some nice error handling later, but
first we want to get something up and running. Elm won’t let us forget to handle the error
case—if we omitted the Err branch, we’d get a MISSING PATTERNS compile error!—but the
compiler won’t stop us from choosing to do nothing when we receive an Err.

Err httpError ->
 (model, Cmd.none)

Since we aren’t using our httpError value, let’s rename it to an underscore:

Err _ ->
 (model, Cmd.none)

The underscore parameter
The underscore is a special parameter name whose purpose is to signify that there is a parameter here, but we’re
choosing not to use it. Unlike a normal parameter, attempting to reference _ in our logic would be a compile error.

One handy feature of _ is that you can use it multiple times in the same parameter list. For example:
functionThatTakesThreeArguments _ _ _ =
 "I ignore all three of my arguments and return this string!"
You can use _ either in function parameter lists or in case-expression branches.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

100

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Later on we’ll circle back to this branch of our case-expression and use it to show the user a
nice error message when an HTTP error happens.

PATTERN MATCHING

Before we move on, let’s pause for a tasty refactor. If you zoom out a bit, you’ll notice we
have a case-expression nested directly inside another case-expression.

case msg of

 ...

 LoadPhotos result ->
 case result of
 Ok responseStr ->
 ...

 Err _ ->
 (model, Cmd.none)

In situations like this, we can use concise pattern matching to express the same logic:

case msg of

 ...

 LoadPhotos (Ok responseStr) ->
 ...

 LoadPhotos (Err _) ->
 (model, Cmd.none)

DEFINITION Pattern matching is a way of destructuring values based on how their containers look. In the

example above, if we have a LoadPhotos containing an Ok containing a value, that value will go into a

variable called responseStr.

This refactored code is equivalent to what we had before. The difference is that now each of
our branches is expressing two conditions at once:

• The LoadPhotos (Ok responseStr) branch runs if msg is a LoadPhotos type
constructor which contains an Ok value.

• The LoadPhotos (Err _) branch runs if msg is a LoadPhotos type constructor and it
contains an Err value.

You can nest patterns like these as much as you want, even assembling elaborate creations
like NestAllTheThings (Just (Ok (Listen (This (IsReally "great" _ _))))) - but try
not to overdo it.

We’ll encounter other pattern matching techniques as we progress through the book.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

101

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

4.2.3 Sending HTTP Requests

At this point we’ve assembled all the ingredients necessary to launch our HTTP rocketship in
the direction of our server:

• The Request String returned by Http.getString "http://elm-in-
action.com/photos/list"

• The LoadPhotos message that will handle the response

The Http.send function will wire these up for us! It has this type:

send : (Result Http.Error val -> msg) -> Request val -> Cmd msg

Http.send has two type variables: msg and val. We can infer what they’ll become in our case:

• Since we’re passing a Request String, the val type variable must become String
• Since we need it to return a Cmd Msg, the msg type variable must become Msg

Knowing this, we can tell that the first argument to send is a function that looks like this:

(Result Http.Error String -> Msg)

This means we could declare a new value called initialCmd using this call to Http.send:

initialCmd : Cmd Msg
initialCmd =
 Http.send
 (\result -> LoadPhotos result)
 (Http.getString "http://elm-in-action.com/photos/list")

We’ll use this initialCmd value to run our HTTP request when the program starts up.
This will compile, but we can simplify it! Back in Section 2.2.1 of Chapter 2, we noted that

an anonymous function like (\foo -> bar baz foo) can always be rewritten as (bar baz) by
itself. This means we can replace (\result -> LoadPhotos result) with LoadPhotos like so:

initialCmd : Cmd Msg
initialCmd =
 Http.send LoadPhotos
 (Http.getString "http://elm-in-action.com/photos/list")

USING PIPELINE STYLE FOR INITIALCMD

By the way, remember how earlier we refactored newSelectedUrl to use a pipeline style
instead of multiple constants? We can use the same technique to express initialCmd in terms
of the steps needed to build it up:

initialCmd : Cmd Msg
initialCmd =
 "http://elm-in-action.com/photos/list"
 |> Http.getString
 |> Http.send LoadPhotos

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

102

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/photos/list
http://elm-in-action.com/photos/list
http://elm-in-action.com/photos/list
http://elm-in-action.com/photos/list
http://elm-in-action.com/photos/list
http://elm-in-action.com/photos/list
https://forums.manning.com/forums/elm-in-action

Nice! Let’s add this version of initialCmd to PhotoGroove.elm right above our main
declaration.

RUNNING A COMMAND ON INIT

Now we have a Cmd to run, but we want to kick this one off a bit differently than last time. We
ran our random number generation command from update in response to a user click, but we
want to run this command right when the program starts up.

We can do that by updating main to use initialCmd instead of Cmd.none on init, like so:

main : Program Never Model Msg
main =
 Html.program
 { init = (initialModel, initialCmd)
 , view = view
 , update = update
 , subscriptions = _ -> Sub.none ❶
 }

❶ We don’t use this argument, so name it _

While we’re at it, we also updated subscriptions to use _ for its anonymous function’s
argument, since that argument never gets used.

TIP An anonymous function which ignores its argument (like the _ -> above) looks like a hockey stick.

Figure 4.4 illustrates how our revised init kicks off the sequence of events leading up to our
update function receiving a LoadPhotos message.

Figure 4.4 Running a LoadPhotos command on init

Now let’s recompile and open index.html, so we can bask in the glory of our new server-
loaded photos!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

103

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 4.5 The updated application, with an additional photo loaded

Excellent! However, we’ve lost something along the way: we no longer select the first photo
like we did before.

SELECTING AN INITIAL PHOTO USING LIST.HEAD

We’d like to select the first URL that comes back from the server, whatever that URL may be.
The List.head function is perfect for this! Its type looks like this:

head : List elem -> Maybe elem

List.head someList and Array.get 0 someArray serve essentially the same purpose:
returning Nothing if run on an empty collection, or Just whateverElementWasFirst if the
collection had anything in it. This means we can grab the first URL out of the list like so:

List.head urls

Since we’re going to set selectedUrl to this value, and selectedUrl is already a Maybe
String, we don’t need run a case-expression on this Maybe String to do any special
handling. We can drop it in and let whoever works with selectedUrl handle the Nothing case.

Let’s expand the record update in the LoadPhotos (Ok responseStr) branch to set not
only the photos field but the selectedUrl field as well:

LoadPhotos (Ok responseStr) ->
 let
 urls =
 String.split "," responseStr

 photos =
 List.map Photo urls
 in
 ({ model

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

104

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 | photos = photos
 , selectedUrl = List.head urls
 }
 , Cmd.none
)

Now we can try it out and see how this looks. Recompile and...

Figure 4.6 Selecting the first loaded photo by default.

Beautiful! Now that we’re loading photos from the server, we’re ready to take the final step:
obtaining the metadata and complete URLs from the server rather than just the filenames.

Now that we’ve gotten things working in the case where the response successfully comes
back, let’s revisit the case where everything is not all sunshine and kittens. It’s time for some
proper error handling!

4.2.4 Gracefully Handling Errors

Let’s make it so that if there’s an error, we render a helpful message for our users. To do this,
we’ll need to make two changes:

1. Have update set this error message when it receives a ReportError message.
2. Have view render this error message if it’s present.

Let’s start with the change to update:

LoadPhotos (Err _) ->
 ({ model
 | loadingError = Just "Error! (Try turning it off and on again?)"
 }
 , Cmd.none
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

105

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

NOTE We need the Just here because we’re storing loadingError in our Model as a Maybe String,

whereas ReportError holds a plain String.

Next let’s introduce a brand-new function which renders the error message, and then modify
Html.program to use it instead of using view directly:

viewOrError : Model -> Html Msg
viewOrError model =
 case model.loadingError of
 Nothing ->
 view model

 Just errorMessage ->
 div [class "error-message"]
 [h1 [] [text "Photo Groove"]
 , p [] [text errorMessage]
]

main : Program Never Model Msg
main =
 Html.program
 { init = (initialModel, initialCmd)
 , view = viewOrError

Whoa! Can we do that? Can we pass a function other than view to Html.program as the view
function to use?

Well, sure! All Html.program needs there is a function of type Model -> Html Msg. As
long as we give it a function of that type, Html.program could care less what that function is
called.

We’ve done several refactors where we split smaller functions out of view, but this is the
first time we’ve wrapped view in another function. And it was no big deal! One of the nice
things about working with plain old Elm functions all the time is that they’re easily
interchangeable as long as the types line up.

VERIFYING THAT ERROR HANDLING WORKS

Let’s start by making sure the error handling works properly. Change initialCmd to fetch
data from an invalid URL:

initialCmd : Cmd Msg
initialCmd =
 "http://elm-in-action.com/breakfast-burritos/list"
 |> Http.getString
 |> Task.perform handleLoadFailure handleLoadSuccess

Now when you recompile and open index.html, you’ll see our new error message:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

106

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/breakfast-burritos/list
https://forums.manning.com/forums/elm-in-action

Figure 4.7 Displaying an error as a status message

Now let’s change initialCmd back to "http://elm-in-action.com/photos/list" and press
on toward receiving that photo metadata!

4.3 Decoding JSON
Browsers can talk to servers using many different formats. JSON, XML, RPC, BBQ...the list
goes on. Regardless of the format, when the browser sends off a HTTP request to a server, the
response comes back as a raw string. It’s up to the program running in the browser to decode
that raw string into a useful representation.

The server with the metadata will be sending us that information via JSON. This means
we’ll need some way to decode a JSON string into something more useful!

4.3.1 Decoding JSON Strings into Results

Plenty of things can go wrong during the process of decoding JSON. Suppose the server
messes up and sends us XML instead of JSON. Our JSON-decoding logic will certainly fail! Or
suppose we get back a response that’s valid JSON, but a required field is missing. What then?

THE DECODESTRING FUNCTION

The Json.Decode.decodeString function returns a Result. Its complete type is:

decodeString : Decoder val -> String -> Result String val

Notice that the Result we get back from decodeString has one concrete type—namely that
errValue is always a String—and one that matches the type of the given decoder’s type
variable. Table 4.3 shows how the decoder passed to decodeString affects its return type.

Table 4.3 How the Decoder passed to decodeString affects its return type

Decoder passed in decodeString returns Example success value Example failure value

Decoder Bool Result String Bool Ok True Err "nope"
Decoder String Result String String Ok "Win!" Err "nah"
Decoder (List Int) Result String (List Int) Ok [1, 2, 3] Err "argh!"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

107

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/photos/list
https://forums.manning.com/forums/elm-in-action

DECODING PRIMITIVES

The Json.Decode module has a Decoder Bool called bool, which translates a JSON boolean
string (either "true" or "false") into an Elm Bool (True or False). Let’s try it in elm-repl!

Listing 4.1 Using decodeString bool

> import Json.Decode exposing (..)

> decodeString bool "true"
Ok True : Result String Bool

> decodeString bool "false"
Ok False : Result String Bool

> decodeString bool "42"
Err "Expecting a Bool but instead got: 42" : Result String Bool

> decodeString bool "@&!*/%?"
Err "Given an invalid JSON: Unexpected token @" : Result String Bool

NOTE elm-repl prints types in fully-qualified style to avoid ambiguity, meaning it always prints Result.Result

instead of Result. These examples will use the unqualified Result for brevity, which means they won’t have the

quite same output as what you’ll see in your own elm-repl.

Besides bool, the Json.Decode module offers other primitive decoders like string, int, and
float. They work similarly to bool, as we can see in elm-repl:

Listing 4.2 Using decodeString with int, float, and string

> import Json.Decode exposing (..)

> decodeString float "3.33"
Ok 3.33 : Result String Float

> decodeString string "\"backslashes escape quotation marks\""

Ok "backslashes escape quotation marks" : Result String String

> decodeString int "76"
Ok 76 : Result String Int

> decodeString int "3.33"
Err "Expecting an Int but instead got: 3.33" : Result String Int

The only primitive decoders are bool, int, float, string, and null, since JavaScript’s
undefined is not allowed in valid JSON. As we will soon see, there are more popular ways of
handling null than with this primitive decoder.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

108

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

4.3.2 Decoding JSON Collections

We’ve now seen how to decode primitives like booleans, integers, and strings from JSON into
their Elm counterparts. This is a good start, but JSON also supports arrays and objects, and
we’ll need to decode both of these types in order to receive our list of photos with metadata.

DECODING JSON ARRAYS INTO LISTS

Suppose we have the JSON string "[true, true, false]". To decode a list of booleans from
this JSON array, we can write list bool. This will give us a Decoder (List Bool) value.

Here’s how Json.Decode.bool and Json.Decode.list compare:

bool : Decoder Bool
list : Decoder value -> Decoder (List value)

Whereas bool is a decoder, list is a function that takes a decoder and returns a new one.
We can use it in elm-repl to make decoders for lists of primitives, or even lists of lists!

Listing 4.2 Using Json.Decode.list

> import Json.Decode exposing (list, bool, string, int)

> list
<function> : Decoder a -> Decoder (List a) ❶

> list bool
Decoder (List Bool)

> list string
Decoder (List String)

> list (list int)
Decoder (List (List Int))

❶ elm-repl chooses “a” for the type variable we called “value”

DECODING OBJECTS

The simplest way to decode an object is with the field function. Suppose we write this:

decoder : Decoder String
decoder =
 field "email" string

When this decoder runs, it performs three checks:

1. Are we decoding an Object?
2. If so, does that Object have a field called email?
3. If so, is the Object’s email field a String?

If all three are true, then decoding succeeds with the value of the Object’s email field.
Table 4.4 shows how this decoder would work on a variety of inputs.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

109

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 4.4. Decoding objects with field decoders

Decoder JSON Result

field "email" string 5 Err "Expected object, got 5"
{"email": 5} Err "Expected string for 'email', got 5"
{"email": "cate@nolf.com"} Ok "cate@nolf.com"

DECODING MULTIPLE FIELDS

Building a decoder for a single field is all well and good, but typically when decoding objects,
we care about more than one of their fields. How do we do that?

The simplest is with a function like map2, which we can see in Table 4.5.

Table 4.5. Decoding objects with field decoders

Decoder JSON Result

map2
 (\x y -> (x, y))
 (field "x" int)
 (field "y" int)

{"width": 5}

Err "Missing 'y' field"

{"x": 5, "y": null} Err "Expected int for 'y', got null"
{"x": 5, "y": 12} Ok (5, 12)

DECODING MANY FIELDS

The photo information we’ll be getting back from our server will be in the form of JSON which
looks like this:

{"url": "1.jpeg", "size": 36, "title": "Beachside"}

This is an object with three fields: two strings and one int. Let’s update our Photo type alias to
reflect this:

type alias Photo =
 { url : String
 , size : Int
 , title : String
 }

We could decode this using thet technique we just learned, with one slight difference. We’d
have to use map3 instead of map2, because we have three fields instead of two.

photoDecoder : Decoder Photo
photoDecoder =
 map3
 (\url size title -> { url = url, size = size, title = title })
 (field "url" string)
 (field "size" int)
 (field "title" string)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

110

Licensed to Correl Roush <correl@gmail.com>

mailto:cate@nolf.com
mailto:cate@nolf.com
https://forums.manning.com/forums/elm-in-action

How far can this approach take us? If we added a fourth field, we’d change map3 to map4. The
Json.Decode module also includes map5, map6, map7, and map8, but map8 is as high as it goes.

From there we can either combine the decoders we’ve already used...or we can introduce a
library designed for larger-scale JSON decoding!

PIPELINE DECODING

The Json.Decode.Pipeline is designed to make life easier when decoding large objects. It
comes from a popular third-party package called NoRedInk/elm-decode-pipeline - so let’s
install it real quick before we proceed:

elm-package install NoRedInk/elm-decode-pipeline

Let’s also write a decoder for it. We’ll do that by deleting the following import:

import Html.Attributes exposing (..)

...and then adding all of this to the end of our imports list:

import Html.Attributes exposing (id, class, classList, src, name, type_, title)
import Json.Decode exposing (string, int, list, Decoder)
import Json.Decode.Pipeline exposing (decode, required, optional)

Then the coast is clear to replace photoDecoder with this:

Listing 4.2 photoDecoder

photoDecoder : Decoder Photo
photoDecoder =
 decode buildPhoto ❶
 |> required "url" string ❷
 |> required "size" int ❸
 |> optional "title" string "(untitled)" ❹

buildPhoto : String -> Int -> String -> Photo
buildPhoto url size title =
 { url = url, size = size, title = title }

❶ Pass decoded values to the buildPhoto function
❷ "url" is required, and must be a string
❸ "size" is required, and must be an integer
❹ "title" is optional, and defaults to "(untitled)"

NOTE We changed our import Html.Attributes line because if it were still exposing (..), then

we’d be exposing two functions called required: both Json.Decode.Pipeline.required and

Html.Attributes.required. Referencing a value that’s exposed by two modules at once is an error!

Let’s break down what’s happening here.

1. decode buildPhoto begins the pipeline. It says that our decoder will decode the
arguments to buildPhoto, one by one, and ultimately the whole decoder will succeed

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

111

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

unless any of the steps in this pipeline fails. Since buildPhoto accepts three
arguments, we’ll need three pipeline steps after this. otherwise, the compiler will give
an error.

2. required "url" string says that we need what we’re decoding to be a JSON object
with the String field "url". We’re also saying that if decoding succeeds, we should
use this first result as the first argument to buildPhoto. Decoding could fail here,
because either the "url" field was missing, or because the field was present...but was
not a String.

3. required "size" int does the same thing required "url" string except that it
decodes to an integer instead of a string.

4. optional "title" string "(untitled)" - this is similar to the required steps, but
with one important difference: in this example, if the "title" field were either missing
or null, instead of failing decoding, this decoder will default on that final argument—
that is, the title string would default to "(untitled)".

Figure 4.8. shows how the buildPhoto arguments and photoDecoder arguments match up.

Figure 4.8 The relationship between photoDecoder and buildPhoto

By the way, notice anything familiar about what buildPhoto does?
All it does is take one argument for each of the fields in Photo, and then assign them

uncritically without altering them in any way. We already have a function that does this! It’s
the Photo function, which we got it for free because we defined the Photo type alias.

Let’s delete buildPhoto and replace photoDecoder = decode buildPhoto with this:

photoDecoder =
 decode Photo

Much easier!

WARNING Reordering any function’s arguments can lead to unpleasant surprises. Since reordering the

fields in the Model type alias has the consqeuence of reordering the Model function’s arguments, you should

be exactly as careful when reordering a type alias as you would be when reordering any function’s arguments!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

112

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

4.3.3 Decoding JSON HTTP Responses

We’ve already seen how we can use Http.getString to obtain a String from a server, and
how we can use decodeString and a Decoder to translate a String into a list of Photo
records for our Model.

Although we could use Http.getString and decodeString to populate our Model in this
way, there is another function in the Http module which will take care of both for us.

HTTP.GET

The Http.get function requests data from a server and then decodes it. Here is how the types
of Http.getString and Http.get match up:

getString : String -> Request String
get : Decoder value -> String -> Request value

Comparing types like this suggests how these functions are similar and how they differ.
They both accept a URL string and return a Request. However, where getString takes no

other arguments and produces a String on success, get additionally accepts a Decoder
value, and on success produces a value instead of a String.

As you might expect, if we give Http.get a decoder of (list int) and the response it
gets back is the JSON payload "[1, 2, 3]", then Http.get will successfully decode that into
Ok (List Int). If decoding fails, we will instead get Err UnexpectedPayload.

What’s UnexpectedPayload? It’s a type constructor for that Http.Error type we said we’d
get back to! (Sure enough, here we are getting back to it.) Http.Error is a union type which
describes various ways a HTTP request can fail. It looks like this:

type Error
 = BadUrl String
 | Timeout
 | NetworkError
 | BadStatus (Response String)
 | BadPayload String (Response String)

Since it’s a union type, we can run a case-expression on any Http.Error value—with different
branches for Timeout, NetworkError, and so on—to do custom error handling based on what
went wrong.

TIP The lower-level Http.request function lets you customize requests in more depth, including

performing error handling based on raw status code.

Since we want to decode the JSON from our server into a List Photo, and we have a Decoder
Photo, we can use Json.Decode.list to end up with the information we want. Let’s change
initialCmd to do just that while it references our shiny new URL:

initialCmd : Cmd Msg
initialCmd =
 list photoDecoder

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

113

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 |> Http.get "http://elm-in-action.com/photos/list.json"
 |> Http.send LoadPhotos

This means we’ll be sending a List Photo to LoadPhotos instead of a String, so we’ll need to
update its definition to match:

type Msg
 = SelectByUrl String
 | SelectByIndex Int
 | SurpriseMe
 | SetSize ThumbnailSize
 | LoadPhotos (Result Http.Error (List Photo))

This lets us simplify the LoadPhotos (Ok ...) branch of update’s case-expression quite a bit!
Having direct access to photos means we no longer need to build that value up using a let-
expression. We can also use our new friends Maybe.map and .url to determine selectedUrl
right on the same line!

LoadPhotos (Ok photos) ->
 ({ model
 | photos = photos
 , selectedUrl = Maybe.map .url (List.head photos)
 }
 , Cmd.none
)

RENDERING THE METADATA

Now all that remains is to have our view render the new caption and download size metadata!
We can do this by adding one line to viewThumbnail:

viewThumbnail selectedUrl thumbnail =
 img
 [src (urlPrefix ++ thumbnail.url)
 , title (thumbnail.title ++ " [" ++ toString thumbnail.size ++ " KB]")
 , classList [("selected", selectedUrl == Just thumbnail.url)]
 , onClick (SelectByUrl thumbnail.url)
]
 []

Great! At this point everything should compile, and we can open index.html to see the result:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

114

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/photos/list.json
https://forums.manning.com/forums/elm-in-action

Figure 4.9 The final application

Now we’re reading our list of photos from the server rather than hardcoding them, and we’ve
given ourselves a nice foundation on which to build an even richer application!

4.4 Summary
We learned quite a few things in the course of making Photo Groove talk to servers!

• A Decoder can validate and translate JSON into an Elm value.
• The Json.Decode module provides primitive decoders like float, int, and string.
• The Json.Decode.list function turns a Decoder Bool into a Decoder (List Bool).
• The Json.Decode.Pipeline module offers functions to decode objects in pipeline style.
• Pattern matching lets us trade nested case-expressions for longer branch conditions.
• A Result is either Ok okValue in case of success, or Err errValue in case of failure.
• String.split splits a string around a given separator, resulting in a list of strings.
• A Request describes a request we want to make. Http.send turns it into a

Cmd.

• Http.getString requests a plain String from the server at the given URL.
• Http.get works like Http.getString, except it runs the given Decoder on the result.
• The init field passed to Html.program lets us specify a Cmd to run on startup.

We also saw how the pipeline operator (|>) lets us write expressions by starting with a value
and then running a series of transformations on it. Table 4.6 shows an example of this.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

115

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 4.6 The same expression with and without pipelines

Pipeline Style Without Pipelines

model.photos
 |> Array.fromList
 |> Array.get index

Array.get index
 (Array.fromList
 model.photos)

Now that we’ve gotten Photo Groove talking to a server, we’ll get it talking to JavaScript. This
will let us tap into the enormous ecosystem of JavaScript libraries out there. Let’s see what
that can get us!

Listing 3.7 The complete PhotoGroove.elm

module PhotoGroove exposing (..)

import Html exposing (..)
import Html.Events exposing (onClick)
import Array exposing (Array)
import Random
import Http
import Html.Attributes exposing (id, class, classList, src, name, type_, title)
import Json.Decode exposing (string, int, list, Decoder)
import Json.Decode.Pipeline exposing (decode, required, optional)

photoDecoder : Decoder Photo
photoDecoder =
 decode Photo
 |> required "url" string
 |> required "size" int
 |> optional "title" string "(untitled)"

urlPrefix : String
urlPrefix =
 "http://elm-in-action.com/"

type ThumbnailSize
 = Small
 | Medium
 | Large

view : Model -> Html Msg
view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , button
 [onClick SurpriseMe]
 [text "Surprise Me!"]
 , h3 [] [text "Thumbnail Size:"]
 , div [id "choose-size"]
 (List.map viewSizeChooser [Small, Medium, Large])
 , div [id "thumbnails", class (sizeToString model.chosenSize)]
 (List.map (viewThumbnail model.selectedUrl) model.photos)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

116

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/
https://forums.manning.com/forums/elm-in-action

 , viewLarge model.selectedUrl
]

viewLarge : Maybe String -> Html Msg
viewLarge maybeUrl =
 case maybeUrl of
 Nothing ->
 text ""

 Just url ->
 img [class "large", src (urlPrefix ++ "large/" ++ url)] []

viewThumbnail : Maybe String -> Photo -> Html Msg
viewThumbnail selectedUrl thumbnail =
 img
 [src (urlPrefix ++ thumbnail.url)
 , title (thumbnail.title ++ " [" ++ toString thumbnail.size ++ " KB]")
 , classList [("selected", selectedUrl == Just thumbnail.url)]
 , onClick (SelectByUrl thumbnail.url)
]
 []

viewSizeChooser : ThumbnailSize -> Html Msg
viewSizeChooser size =
 label []
 [input [type_ "radio", name "size", onClick (SetSize size)] []
 , text (sizeToString size)
]

sizeToString : ThumbnailSize -> String
sizeToString size =
 case size of
 Small ->
 "small"

 Medium ->
 "med"

 Large ->
 "large"

type alias Photo =
 { url : String
 , size : Int
 , title : String
 }

type alias Model =
 { photos : List Photo
 , selectedUrl : Maybe String
 , loadingError : Maybe String
 , chosenSize : ThumbnailSize

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

117

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 }

initialModel : Model
initialModel =
 { photos = []
 , selectedUrl = Nothing
 , loadingError = Nothing
 , chosenSize = Medium
 }

photoArray : Array Photo
photoArray =
 Array.fromList initialModel.photos

getPhotoUrl : Int -> Maybe String
getPhotoUrl index =
 case Array.get index photoArray of
 Just photo ->
 Just photo.url

 Nothing ->
 Nothing

type Msg
 = SelectByUrl String
 | SelectByIndex Int
 | SurpriseMe
 | SetSize ThumbnailSize
 | LoadPhotos (Result Http.Error (List Photo))

randomPhotoPicker : Random.Generator Int
randomPhotoPicker =
 Random.int 0 (Array.length photoArray - 1)

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 SelectByIndex index ->
 let
 newSelectedUrl : Maybe String
 newSelectedUrl =
 model.photos
 |> Array.fromList
 |> Array.get index
 |> Maybe.map .url
 in
 ({ model | selectedUrl = newSelectedUrl }, Cmd.none)

 SelectByUrl url ->
 ({ model | selectedUrl = Just url }, Cmd.none)

 SurpriseMe ->

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

118

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 let
 randomPhotoPicker =
 Random.int 0 (List.length model.photos - 1)
 in
 (model, Random.generate SelectByIndex randomPhotoPicker)

 SetSize size ->
 ({ model | chosenSize = size }, Cmd.none)

 LoadPhotos (Ok photos) ->
 ({ model
 | photos = photos
 , selectedUrl = Maybe.map .url (List.head photos)
 }
 , Cmd.none
)

 LoadPhotos (Err _) ->
 ({ model
 | loadingError = Just "Error! (Try turning it off and on again?)"
 }
 , Cmd.none
)

initialCmd : Cmd Msg
initialCmd =
 list photoDecoder
 |> Http.get "http://elm-in-action.com/photos/list.json"
 |> Http.send LoadPhotos

viewOrError : Model -> Html Msg
viewOrError model =
 case model.loadingError of
 Nothing ->
 view model

 Just errorMessage ->
 div [class "error-message"]
 [h1 [] [text "Photo Groove"]
 , p [] [text errorMessage]
]

main : Program Never Model Msg
main =
 Html.program
 { init = (initialModel, initialCmd)
 , view = viewOrError
 , update = update
 , subscriptions = (_ -> Sub.none)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

119

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/photos/list.json
https://forums.manning.com/forums/elm-in-action

5
Talking to JavaScript

This chapter covers

• Rendering Custom Elements
• Sending data to JavaScript
• Receiving data from JavaScript
• Initializing our Elm application using data from JavaScript

Now we’ve gotten Photo Groove loading photos from a server. It’s looking better and better!
However, our manager has a concern. “We have the photos, and they certainly look sharp. But
where is the groove? This is Photo Groove, not Photo Browse! You know what we need?
Filters. You know, the kind that make normal photos look all wacky and messed-up? Those!”

Sounds groovy.
We collaborate with our team’s visual designer to create a mockup of the filtering feature.

The final design calls for a status bar to report on the filtering process, and sliders to control
the filters’ settings. And not just any sliders! Our designer wants each to have the specific look
and feel of a Paper Slider, a Web Component built on Google’s Material Design guidelines.

As luck would have it, we won’t have to code either the filter effects or the sliders from
scratch. They’re both available as open-source libraries, but there’s a catch: these libraries are
written in JavaScript, not Elm.

Fortunately, Elm applications are not limited to using Elm libraries alone! In this chapter
we’ll expand Photo Groove to include a filtering feature. We’ll add sliders which let users apply
filters in varying degrees to the large photo. We’ll create a status bar that displays information
from the JavaScript libraries. Along the way we’ll learn two different ways to incorporate
JavaScript code into an Elm application: custom elements and ports.

Here we go!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

120

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

5.1 Using Custom Elements
We’ll start with the sliders. We want to create three sliders in total: Hue, Ripple, and Noise.
Adjusting each value will transform how the large photo appears to the end user.

Figure 5.1 shows how the sliders fit into what we’ll be building toward in this chapter.

Figure 5.1 Adding sliders which control filtering for the large photo

Each slider controls an integer value which the filtering library will use for the magnitude of
the filter effect. Sliding all three to 0 would disable filtering—leaving the photos unaltered, like
how they look now—whereas setting all three to the maximum value of 11 would apply each
filter at full power.

Implementing the sliders using Custom Elements will involve three steps:

1. Run some JavaScript code before our Elm code executes, to register custom behavior
for all <paper-slider> elements on the page.

2. Write Elm code to render these <paper-slider> elements using plain Html values.
3. Write custom event handlers to update our model based on the sliders’ states.

Along the way, we’ll learn a new use for the JSON Decoders we saw in Chapter 4, and
compare two alternative ways of integrating the sliders into our data model. Let’s get to it!

5.1.1 Importing Custom Elements

The Paper Slider we’ll be using is implemented as a Custom Element, which is a part of the
Web Components specification. Here’s how Custom Elements work:

• Someone writes some JavaScript which defines a new element type. In this case the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

121

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

new element is a <paper-slider>.
• We run that JavaScript code when our page loads, to register this custom element with

the browser.
• From now on, whenever any code—in JavaScript or in Elm—creates an element whose

tag name is "paper-slider", that element will behave according to this custom logic.

WARNING Custom Elements are implemented in JavaScript, so they may throw runtime exceptions!

REGISTERING CUSTOM ELEMENTS

To register the custom <paper-slider> element on our page, we’ll first need to import the
code for it. Let’s add a <link rel="import"> to the <head> of our index.html file, right
below the <link rel="stylesheet"> for our stylesheet:

<link rel="stylesheet" href="http://elm-in-action.com/styles.css">
<link rel="import" href="http://elm-in-action.com/wc/slider/paper-slider.html">

This <link> tag loads the JavaScript code, CSS styles, and markup necessary to describe a
custom <paper-slider> element, and then registers that <paper-slider> on the page. From
now on, whenever an element with the tag name "paper-slider" appears on this page, it will
behave according to the implementation we’ve imported here.

You can find more Custom Elements at http://webcomponents.org/, or create and serve
your own from any URL you like.

Polyfilling Custom Elements for Older Browsers
Since custom elements and <link rel="import"> tags are relatively new features, not all older browsers support
them.

We can fix this for browsers as old as Internet Explorer 11 by loading some JavaScript code known as a polyfill,
which patches support for custom elements into these browsers. To polyfill support for Custom Elements, add this
<script> between your two <link> tags:

<link rel="stylesheet" href="http://elm-in-action.com/styles.css">
<script src="http://elm-in-action.com/polyfill/webcomponents.js"></script>
<link rel="import" href="http://elm-in-action.com/wc/slider/paper-slider.html">

If your users only run modern browsers which have already implemented Custom Elements, you don’t need the polyfill
and can omit this <script>. (That said, the polyfill has no effect on browsers which support Custom Elements, so it
should be harmless aside from being more for users to download.)

Custom elements from the Polymer Project use something called Shady DOM to improve performance in browsers
that do not natively support certain parts of the Web Components specification. However, if you use Polymer elements
inside other Polymer elements, they may not work properly in their stock configuration due to how Shady DOM interacts
with virtual DOM systems such as Elm’s.

A workaround is to disable Shady DOM by adding this before your first <link rel="import"> tag:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

122

Licensed to Correl Roush <correl@gmail.com>

http://webcomponents.org/
http://elm-in-action.com/styles.css
http://elm-in-action.com/wc/slider/paper-slider.html
http://elm-in-action.com/styles.css
http://elm-in-action.com/polyfill/webcomponents.js"></
http://elm-in-action.com/wc/slider/paper-slider.html
https://forums.manning.com/forums/elm-in-action

<script>window.Polymer = {dom: "shadow"};</script>

For more information on configuring Shady DOM, see https://www.polymer-project.org/1.0/docs/devguide/settings
In practice, polyfills are never as good as proper support for a browser feature. This polyfill often incurs significant

performance penalties for some Custom Elements, and users have reported some polyfilled Custom Elements not
working on Mobile Safari 10. Be sure to cross-browser test! See http://webcomponents.org/polyfills to learn more.

ADDING A <PAPER-SLIDER> TO THE PAGE

Back at the beginning of Chapter 2 we saw the Html.node function. It takes three arguments:

1. Tag name
2. List of attributes
3. List of children

Here are two ways to create the same button, one using node and the other using button:

node "button" [class "large"] [text "Send"]
 button [class "large"] [text "Send"]

Functions that create elements like button, label and input have tiny implementations—they
do nothing more than call node. For example, label and input can be implemented like so:

label attributes children =
 node "label" attributes children

input attributes children =
 node "input" attributes children

TIP Because of partial application, we could also have written these as label = node "label" and

input = node "input" - either way works!

Now that the <paper-slider> custom element has been registered on the page with our
<link> tag, the only Elm code necessary to use it is to call node "paper-slider".

Let’s add a function that does this, at the end of PhotoGroove.elm:

paperSlider =
 node "paper-slider"

This paperSlider function will work the same way as functions like button, div, and so on. It
also has the same type as they do:

paperSlider : List (Attribute msg) -> List (Html msg) -> Html msg

Go ahead and add this type annotation right above our paperSlider implementation.

VIEWING THE SLIDERS

Next let’s invoke paperSlider to render the sliders. Add this beneath the view function:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

123

Licensed to Correl Roush <correl@gmail.com>

https://www.polymer-project.org/1.0/docs/devguide/settings
http://webcomponents.org/polyfills
https://forums.manning.com/forums/elm-in-action

Listing 5.1 viewFilter

viewFilter : String -> Int -> Html Msg
viewFilter name magnitude =
 div [class "filter-slider"]
 [label [] [text name] ❶
 , paperSlider [max "11"] [] ❷
 , label [] [text (toString magnitude)] ❸
]

❶ Display the filter’s name
❷ <paper-slider> that goes from 0 to 11
❸ Display the current magnitude

We’ll also need to add max to the Html.Attributes we’re exposing in our imports:

import Html.Attributes exposing (id, class, classList, src, name, max, type_, title)

If we try to compile this, we’ll get a naming error: max is ambiguous! The compiler suggests:

Maybe you want one of the following?

 Basics.max
 Html.Attributes.max

The cause of this error is that Elm has a built-in math function called max. It’s in the Basics
module, and every Elm file has an implicit import Basics exposing (..) so that we can use
common functions like negate, not, and max without having to qualify them as
Basics.negate, Basics.not, or Basics.max.

RESOLVING AMBIGUOUS NAMES

The compiler is reporting an ambiguity in our code: when we wrote max, we might have meant
either Basics.max or Html.Attributes.max, since both max functions are exposed in this file.

Let’s clarify which we meant by fully qualifying max:

paperSlider [Html.Attributes.max "11"] []

This resolves the compiler error, but Html.Attributes.max is pretty verbose! We can shorten
it by giving Html.Attributes an alias of Attr using the as keyword:

import Html.Attributes as Attr exposing (id, class, classList, src, name, type_, title)

Now anywhere we would write Html.Attributes.foo we can write Attr.foo instead.
Let’s refactor our input to look like this:

paperSlider [Attr.max "11"] []

Splendid! This should make everything compile neatly.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

124

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

RENDERING THREE SLIDERS

Now we can call viewFilter in our view function to get a few sliders rendering. Let’s do that
right below the code for the Surprise Me! button.

view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , button
 [onClick SurpriseMe]
 [text "Surprise Me!"]
 , div [class "filters"]
 [viewFilter "Hue" 0
 , viewFilter "Ripple" 0
 , viewFilter "Noise" 0
]

Figure 5.2 shows how this looks on the page.

Figure 5.2 Adding paperSliders for Hue, Ripple, and Noise

Those sliders look slick, but they aren’t completely operational yet. We want the numbers next
to the sliders to change as the user slides their values around. Let’s make that happen!

5.1.2 Handling Custom Events

If we take a quick glance at the Paper Slider’s official documentation - hosted at
https://www.webcomponents.org/element/PolymerElements/paper-slider/paper-slider - we
can see that the slider fires a custom event, immediate-value-changed, as the user slides.

How might we respond to that event? Html.Attributes has a variety of built-in event
handler functions such as onClick, but there’s no onImmediateValueChange. The immediate-
value-changed event is a custom event built into paper-slider, and the Html.Attributes
module has no idea it exists. So how can we specify a handler for it?

HTML.ATTRIBUTES.ON

The Html.Attributes.on function lets us create a custom event handler, similarly to how the
Html.node function lets us create a custom element. The on function has this type:

on : String -> Decoder msg -> Attribute msg

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

125

Licensed to Correl Roush <correl@gmail.com>

https://www.webcomponents.org/element/PolymerElements/paper-slider/paper-slider
https://forums.manning.com/forums/elm-in-action

The String is the name of the event, which in this case is "immediate-value-changed". The
Decoder argument is a Json.Decode.Decoder, the same type of decoder we built in Chapter 4
for our HTTP responses. Here we won’t be using the Decoder on a JSON string coming back
from a server, but rather on a JavaScript event object!

DECODING IMMEDIATE-VALUE-CHANGED

The event object JavaScript uses for "immediate-value-changed" looks something like this:

{target: {immediateValue: 7}}

The target field refers to the slider object itself, which in turn has a field called value—an Int
representing the slider’s current value. We can use the Json.Decode.field and
Json.Decode.int functions to write a decoder for this like so:

field "target" (field "immediateValue" int)

Table 5.1 compares this decoder to the example email decoder we wrote in Chapter 4.

Table 5.1. Decoding objects with field decoders

Decoder JSON Result

field "email" string

5 Err "Expected object, got 5"

{"email": 5} Err "Expected string for 'email',

got 5"

{"email": "cate@nolf.com"} Ok "cate@nolf.com"

Decoder JavaScript Result

field "target"

 (field

 "immediateValue"

 int)

9 Err “Expected object, got 9"

{"target": 9} Err "Expected object for 'target',

got 9”

{"target":

 {"immediateValue": 9}

}

Ok 9

JSON.DECODE.AT

There’s a convenience function in Json.Decode for the case where we want to call field on
another field like this: Json.Decode.at. It takes a list of field strings and traverses them in
order. These two decoders do the same thing:

field "target" (field "immediateValue" int)

at ["target", "immediateValue"] int

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

126

Licensed to Correl Roush <correl@gmail.com>

mailto:cate@nolf.com
mailto:cate@nolf.com
https://forums.manning.com/forums/elm-in-action
mailto:cate@nolf.com
mailto:cate@nolf.com

DECODING A MSG

This Decoder Int will decode an integer from a JavaScript object such as {target: {value:
7 }}. But is that what we want? Let’s look at the type of on again:

on : String -> Decoder msg -> Attribute msg

Notice that it wants a Decoder msg and then returns an Attribute msg. That tells us we want
it to decode not an integer, but a message. Ah! We have a message type named Msg. So how
do we convert between the Decoder Int that we have and the Decoder Msg that on expects?

USING JSON.DECODE.MAP

The Json.Decode.map function is just what the doctor ordered! It converts between decoded
values, as shown in Table 5.2.

Table 5.2 Json.Decode.map

Expression Description

Json.Decode.map negate float Decode a float, then negate it.

Json.Decode.map (\num -> num * 2) int Decode an integer, then double it.

Json.Decode.map (_ -> "[[redacted]]") string Decode a string, then replace it with "[[redacted]]" no

matter what it was originally. Note that this will still fail

if it attempts to decode a non-string value!

Since Json.Decode.map takes a function which converts one decoded value to another, we can
use it to convert our decoded Int into a Msg.

UPDATING IMPORTS

We’ll need to expose the on and at functions in our imports in order to reference them:

import Html.Events exposing (onClick, on)
import Json.Decode exposing (string, int, list, Decoder, at)

With those changes in place, we’re ready to add this onImmediateValueChange function to the
end of PhotoGroove.elm:

Listing 5.2 onImmediateValueChange

onImmediateValueChange : (Int -> msg) -> Attribute msg
onImmediateValueChange toMsg =
 let
 targetImmediateValue : Decoder Int ❶
 targetImmediateValue = ❶
 at ["target", "immediateValue"] int ❶

 msgDecoder : Decoder msg ❷

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

127

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 msgDecoder = ❷
 Json.Decode.map toMsg targetImmediateValue ❷
 in
 on "immediate-value-changed" msgDecoder ❸

❶ Decode the integer located at event.target.immediateValue
❷ Convert that integer to a message using toMsg
❸ Create a custom event handler using that decoder

Notice how onImmediateValueChange takes a toMsg function? This is because we need it to
be flexible. We plan to have multiple sliders on the page, and we’ll want each of them to have
a unique Msg constructor so that we can tell their messages apart. The toMsg argument lets us
pass in the appropriate constructor on a case-by-case basis, which will come in handy later.

REFACTORING TO USE PIPELINES

Notice how we assemble this value in three steps (targetImmediateValue, msgDecoder, and
on), and each step’s final argument is the previous step’s return value? That means we can
rewrite this to use the pipeline style we learned in Chapter 4! Let’s do that refactor:

onImmediateValueChange : (Int -> msg) -> Attribute msg
onImmediateValueChange toMsg =
 at ["target", "immediateValue"] int
 |> Json.Decode.map toMsg
 |> on "immediate-value-changed"

Try walking through each step in the pipeline and finding the equivalent code in Listing 5.2. All
the same logic is still there, just reorganized!

ADDING EVENT HANDLING TO VIEWFILTER

Now that we have onImmediateValueChange, we can use it in our viewFilter function.
Remember how we made onImmediateValueChange accept an Int -> msg function, so

that we could pass it a different Msg constructor on a case-by-case basis? We’ll want
viewFilter to have that same flexibility. The only difference will be that since viewFilter
returns an Html Msg, we won’t be using a type variable like msg; instead, viewFilter will
accept an Int -> Msg function.

Listing 5.3 using onImmediateValueChange in viewFilter

viewFilter : String -> (Int -> Msg) -> Int -> Html Msg
viewFilter name toMsg magnitude =
 div [class "filter-slider"]
 [label [] [text name]
 , paperSlider [Attr.max "11", onImmediateValueChange toMsg] [] ❶
 , label [] [text (toString magnitude)]
]

❶ Calling onImmediateValueChange just like we did onClick

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

128

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

With this revised viewFilter implementation at the ready, our display logic is ready to be
connected to our model and update. Once we’ve revised those to work with viewFilter, our
shiny new Custom Elements will be fully integrated into our application!

5.1.3 Responding to Slider Changes

We have three filters, each of which has a name and a magnitude. How should we track their
current values in our model? Let’s walk through two approaches, comparing the pros and cons
of each, and then at the end decide which to use.

The first approach would be to add three fields to the model: one for Hue, one for Ripple,
and one for Noise. The alternative would prioritize flexibility, and store the filters as a list of {
name : String, amount : Int } records. Table 5.3 shows these approaches side-by-side.

Table 5.3 Storing filter data as three ints versus one list of records

Three Ints One List of Records

type alias Model =
 { photos : List Photo
 ...
 , hue : Int
 , ripple : Int
 , noise : Int
 }

type alias Model =
 { photos : List Photo
 ...
 , filters : List { name : String, amount : Int }
 }

initialModel : Model
initialModel =
 { photos = []
 ...
 , hue = 0
 , ripple = 0
 , noise = 0
 }

initialModel : Model
initialModel =
 { photos = []
 ...
 , filters =
 [{ name = "Hue", amount = 0 }
 , { name = "Ripple", amount = 0 }
 , { name = "Noise", amount = 0 }
]
 }

Each model design has its own strengths and weaknesses, which become clearer when we
write code that references these parts of the model.

Let’s consider how our update implementations might compare. In either approach, we’d
expand our Msg type’s constructors and then add at least one branch to our update function’s
case-expression. Table 5.4 compares how these revisions would look for each approach.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

129

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 5.4 Updating the model

Three Ints One List of Records

type Msg
 = SelectByUrl String
 | SetHue Int
 | SetRipple Int
 | SetNoise Int

type Msg
 = SelectByUrl String
 | SetFilter String Int

case msg of
 SetHue hue ‐>
 ({ model | hue = hue }
 , Cmd.none
)

 SetRipple ripple ‐>
 ({ model | ripple = ripple }
 , Cmd.none
)

 SetNoise noise ‐>
 ({ model | noise = noise }
 , Cmd.none
)

case msg of
 SetFilter name amount ‐>
 let
 transform filter =
 if filter.name == name then
 { name = name
 , amount = amount
 }
 else
 filter

 filters =
 model.filters
 |> List.map transform
 in
 ({ model | filters = filters }
 , Cmd.none
)

The “list of records” approach is more flexible. If we decided to add a fourth filter, such as
“blur”, we could add it to initialModel and boom! It would appear on the page instantly.
With the three integers approach, adding a fourth integer would require expanding not only
initialModel, but also adding a field to our type alias for Model, a constructor for our Msg,
and a branch for update’s case-expression. That sure sounds like more work!

Finally let’s compare how rendering would look.

Table 5.5 Viewing filter data from three fields versus one

Three Ints List of Records (assuming viewFilter tweaked)

, div [class "filters"]
 [viewFilter SetHue "Hue" model.hue
 , viewFilter SetRipple "Ripple" model.ripple
 , viewFilter SetNoise "Noise" model.noise
]

, div [class "filters"]
 (List.map viewFilter model.filters)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

130

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Assuming we tweaked viewFilter to accept a { name : String, amount : Int } record,
we could save ourselves a few lines of code with the “list of records” approach, using
List.map as shown in Table 5.5. Once again “list of records” comes out ahead!

CHOOSING AN APPROACH

So far we’ve compared these approaches by conciseness, and also by how much effort it
would take to add more filters later. However, our analysis is overlooking a crucial
consideration, one which tends to make a much bigger difference in Elm than in JavaScript:

Which approach rules out more bugs?

As we’ve seen, Elm’s compiler gives us certain guarantees that can rule out entire categories
of bugs. Some code can better leverage these guarantees than others! We can “help the
compiler help us” by taking it into consideration when making decisions like these.

What potential future headaches would each approach let the compiler rule out?

CONSIDERING POTENTIAL BUGS

Suppose we go with the “list of records” approach and one of our coworkers makes an
innocuous typo—writing "Rippl" instead of "Ripple"—such that a SetFilter "Rippl" 5
message comes through our update function. That code will compile, but it won’t work
properly because our filter.name == "Rippl" condition will never pass. We’ll have to hope
our coworker catches this bug in testing!

What if our coworker makes the same typo in the three-ints approach? Attempting to
create a SetRippl 5 message will be a compiler error, because we named our Msg constructor
SetRipple, not SetRippl.

Table 5.6 Making a Mistake

 Three Ints List of Records

Message SetRippl 5 SetFilter “Rippl” 5

Outcome Elm’s compiler tells us we have a naming error. This compiles, but now we have a bug!

CONSIDERING FUTURE CHANGES

What about making changes? Suppose in the future we need to rename “Ripple” to “Swirl”.
In the “three ints” approach, we can rename our Msg constructor from SetRipple to

SetSwirl, and our Model field from ripple to swirl—and then watch Elm’s compiler tell us
exactly what other parts of our code base need changing as a result. If we miss anything, we’ll
get a helpful type mismatch error telling us every spot we overlooked.

With the “list of records” approach, we have to hope none of our coworkers ever wrote
code using the hardcoded magic string "Ripple" instead of a constant. If they did, and

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

131

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

something breaks, the only way we’ll find out before the bug reaches production is if someone
also wrote a test that happens to fail when we change "Ripple" to "Swirl".

CHOOSING RELIABILITY

By using individual fields instead of a list of records, we can rule out the entire category of
bugs related to invalid filter names.

Increasing conciceness and saving potential future effort are nice, but preventing bugs in a
growing code base tends to be more valuable over time. Verbosity has a predictable impact on
a project, whereas the impact of bugs can range from “quick fix” to “apocalyptic progress
torpedo.” Let’s rule them out when we can!

We’ll go with the approach that prevents more bugs. Take a moment to look back at
Tables 5.3, 5.4, and 5.5, and implement the changes in the first column. Then let’s revise our
calls to viewFilter to use our model’s new fields:

, div [class "filters"]
 [viewFilter "Hue" SetHue model.hue
 , viewFilter "Ripple" SetRipple model.ripple
 , viewFilter "Noise" SetNoise model.noise
]

When the dust settles, you should be able to recompile with elm-make --output=elm.js
PhotoGroove.elm and see the number labels change when the user slides.

Figure 5.3 Sliding now changes the numbers next to the sliders

Now that we have our sliders set up, we can move on to introducing the filters themselves!

5.2 Sending Data to JavaScript
Now our model has all the data it needs to calibrate the filters. We’ll use some JavaScript once
again to apply the filters, although this time not Custom Elements. Instead we’ll write code
that passes configuration options and a <canvas> element to a JavaScript function, which will
then proceed to draw groovy pictures on it.

First we’ll get a basic proof-of-concept working, to confirm that we’re successfully
communicating across languages, and then we’ll smooth out the implementation details until
we’re satisfied with how things are working.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

132

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

5.2.1 Creating a Command using a Port

You may recall from Chapter 4 that an effect is an operation that modifies external state. You
may also recall that if a function modifies external state when it runs, that function has a side
effect. Elm functions are not permitted to have side effects, but JavaScript functions are.

TALKING TO JAVASCRIPT IS LIKE TALKING TO SERVERS

Since calling any JavaScript function may result in a side effect, Elm functions cannot call
JavaScript functions anytime they please; this would destroy the guarantee that Elm functions
have no side effects!

Instead, Elm talks to JavaScript the same way it talks to servers: by sending data out
through a command, and receiving data in through a message. Figure 5.4 illustrates this.

Figure 5.4 Using commands and messages to talk to both servers and JavaScript

This means that talking to JavaScript will have some characteritics in common with what we
saw when talking to servers in Chapter 4:

• Data can only be sent using a command
• Data can only be received by update, and that data must be wrapped in a message
• We can translate and validate this incoming data using Decoders

NOTE In JavaScript, some effects are performed synchronously, with program execution halting until the

effect completes. In contrast, an Elm Cmd always represents an asynchronous effect. This means that when we

send data to JavaScript, it’s always possible that other code might run before data gets sent back to Elm!

CREATING A COMMAND

Let’s create a Cmd to send some data to JavaScript. First we’ll define a type alias for the
data we’re going to send, right above our type alias for Photo:

type alias FilterOptions =
 { url : String
 , filters : List { name : String, amount : Int }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

133

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

This represents all the information our JavaScript library will need in order to apply the filters:
the URL of the photo in question, plus the list of filters and their amounts.

USING A PORT TO DEFINE A FUNCTION

In Chapter 4 we created a Cmd using the Http.send function, but here we’ll instead use a
language feature designed specifically for talking to JavaScript: the port keyword.

Add this right above the type alias for FilterOptions:

port setFilters : FilterOptions -> Cmd msg

This declares a function called setFilters. Its type is (FilterOptions -> Cmd msg). We
don’t write an implementation for this function, because the port keyword automatically
writes one for us! port only needs to look at the type we requested to decide what the
function should do.

All port functions that send data to JavaScript are defined using a very specific pattern:

• The port keyword must be followed by a function name and a type annotation
• The type annotation must be for a function that takes one argument
• The function must return Cmd msg, and nothing else—not even Cmd Msg!

TYPE VARIABLES IN VALUES

Notice that our new setFilters function returns Cmd msg, not Cmd Msg. We know from
Chapter 3 that the lowercase “m” means msg is a type variable, like the val type variable we
saw in Array.fromList:

fromList : List val -> Array val

This List String -> Cmd msg function is the first time we’ve seen a function annotation with
a type variable in its return type, but no type variable in its parameters!

What does that mean? And how is Cmd msg different from Cmd Msg?

PORT COMMANDS NEVER SEND MESSAGES

Believe it or not, we’ve been using a Cmd msg for quite some time now! The official
documentation for Cmd.none shows that it has this type:

none : Cmd msg

We’ll dive deeper into values like this in future chapters, but for now it’s enough to know that
a Cmd msg is a command which produces no message after it completes.

Both Cmd.none and setFilters produce no message after completing. The difference is
that Cmd.none has no effect, whereas setFilters will perform the effect of sending data to
JavaScript. (Specifically, it will send the FilterOptions value we pass it.) You can think of
setFilters as a “fire and forget” command.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

134

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 5.7 Comparing Cmd Msg and Cmd msg.

Expression Type Effect Message sent back to update

list photoDecoder

 |> Http.get "http://..."

 |> Http.send LoadPhotos

Cmd Msg Send HTTP request LoadPhotos

Cmd.none Cmd msg (none) (no message sent back)

setFilters filterOptions Cmd msg Send filterOptions to

JavaScript

(no message sent back)

NOTE While HTTP requests can fail, sending data to JavaScript cannot. We don’t miss out on any error

handling opportunities just because setFilters sends no message back to update.

Figure 5.5 shows the similarities and differences between a Cmd originating from an Http.send
and a Cmd originating from a port.

Figure 5.5 Comparing a Cmd from Http.send to a Cmd from a port

PORT MODULES

Any module that uses the port keyword must be declared using the port module keyword,
which means we’ll need to change the first line of PhotoGroove.elm to this:

port module PhotoGroove exposing (..)

TIP If you’re ever wondering whether a given module talks directly to arbitrary JavaScript code, checking to

see if it’s a port module is usually the quickest way.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

135

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

CALLING SETFILTERS WHEN USERS SELECT PHOTOS

Now that we have our port set up, we need to call setFilters in order to send some data to
JavaScript. We’ll want to apply the filters every time the user selects a photo, so that’s when
we’ll want update to return the command we get from setFilter.

Here’s one way we could modify the SelectByUrl branch of our update function to do this.

Listing 5.4 SelectByUrl

SelectByUrl selectedUrl ->
 let
 filters =
 [{ name = "Hue", amount = model.hue }
 , { name = "Ripple", amount = model.ripple }
 , { name = "Noise", amount = model.noise }
]

 url =
 urlPrefix ++ "large/" ++ selectedUrl

 cmd =
 setFilters { url = url, filters = filters }
 in
 (model, cmd)

However, the SelectByUrl branch is not the only way a user can select a photo! Users can
also click the Surprise Me! button to select a photo at random, and we’ll want to apply filters
in that situation as well. This means we’ll want to reuse the above code in two places: both
the SelectByUrl branch of our case-expression as well as the SurpriseMe branch.

SHARING CODE BETWEEN UPDATE BRANCHES

Usually the simplest way to share code is to extract common logic into a helper function and
call it from both places. This is just as true for update as it is for any function, so let’s do that!

NOTE The structure of update permits clever alternatives to this venerable code sharing technique—like

having update call itself, passing a different Msg. This saves us from writing another function, but it’s more

error-prone and less peformant. If we do this, and later a teammate innocently changes how that other Msg

responds to user input, our code breaks! Having update call itself also runs a bit slower because we create an

unnecessary Msg and run an unnecessary case-expression on it. A helper function not only runs faster, it’s less

error-prone to maintain because it explicitly signals to future maintainers that code is being reused.

We’ll name the helper function applyFilters, and add it right below update:

Listing 5.5 applyFilters

applyFilters: Model -> (Model, Cmd Msg)
applyFilters model =
 case model.selectedUrl of
 Just selectedUrl ->

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

136

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 let
 filters =
 [{ name = "Hue", amount = model.hue }
 , { name = "Ripple", amount = model.ripple }
 , { name = "Noise", amount = model.noise }
]

 url =
 urlPrefix ++ "large/" ++ selectedUrl
 in
 (model, setFilters { url = url, filters = filters })

 Nothing ->
 (model, Cmd.none)

Now we can have both SelectByIndex and SelectByUrl call applyFilters directly:

SelectByIndex index ->
 let
 newSelectedUrl : Maybe String
 newSelectedUrl =
 ...
 in
 applyFilters { model | selectedUrl = newSelectedUrl }

SelectByUrl selectedUrl ->
 applyFilters { model | selectedUrl = Just selectedUrl }

Lovely! Now whenever a user clicks either a photo or the Surprise Me! button, setFilters will
return a Cmd that sends the appropriate FilterOptions value over to JavaScript.

Next we’ll wire up the logic on the JavaScript side, which will receive that FilterOptions
value and use it to apply some filters!

5.2.2 Receiving Data from Elm

Now we’re going to write some JavaScript code. Whenever we access a JS library from Elm,
it’s best to write as little JS as possible. This is because if something crashes at runtime, it’s a
safe bet that the culprit is somewhere in our JS code—so the less of it we have, the less code
we’ll have to sift through to isolate the problem.

ADDING PASTA

The JavaScript code we need comes from an open-source image filtering library intuitively
named Pasta.js. We can import Pasta by adding this <script> tag to index.html, right
before the <script> that imports our compiled elm.js file:

<div id="elm-area"></div>

<script src="http://elm-in-action.com/pasta.js"></script>
<script src="elm.js"></script>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

137

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/pasta.js"></
https://forums.manning.com/forums/elm-in-action

This <script> adds a global JavaScript function called Pasta.apply to the page. It takes two
arguments:

1. A <canvas> element, which is where apply will draw the filtered photos.
2. An options object, which—in a remarkable coincidence—has the same structure as

the FilterOptions record Elm will be sending to JavaScript via our setFilter port.

Let’s introduce that <canvas>. We can do this with a quick change to PhotoGroove.elm:
having viewLarge render a canvas instead of an img.

Let’s replace the Just branch of the case-expression in viewLarge with this:

Just url ->
 img [class "large", src (urlPrefix ++ "large/" ++ url)] []
 canvas [id "main-canvas", class "large"] []

Pasta.apply will take care of drawing the filtered photo onto this canvas. (The photo URL to
draw will be sent to Pasta.apply via the FilterOptions we’re sending through our port.)

RECEIVING DATA FROM THE SETFILTERS PORT

We can set up a callback function that receives data from our setFilters function like so:

<script src="http://elm-in-action.com/pasta.js"></script>
<script src="elm.js"></script>
<script>
 var app = Elm.PhotoGroove.embed(document.getElementById("elm-area"));

 app.ports.setFilters.subscribe(function(options) {
 Pasta.apply(document.getElementById("main-canvas"), options);
 });
</script>

We’ve never needed the return value of Elm.PhotoGroove.embed before, but now we do!
This object, typically called app, lets us subscribe to data Elm sends to JavaScript via ports

like setFilters. When the Elm runtime executes the Cmd returned by setFilters, the
callback function we’ve passed to app.ports.setFilters.subscribe will run. The options
argument it accepts is the FilterOptions record Elm sent over, but converted from an Elm
record to a JavaScript object.

WARNING Like Custom Elements, ports invoke JavaScript code—which may throw runtime exceptions. If

we make a mistake in any of our JavaScript code here, Elm’s compiler has no way to help us catch it.

Table 5.8 shows how a port translates immutable Elm values (like the FilterOptions record)
into brand-new (potentially mutable) JavaScript values.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

138

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/pasta.js"></
https://forums.manning.com/forums/elm-in-action

Table 5.8 Translating Elm values into JavaScript values via ports

Elm Value Elm Type JavaScript Value JavaScript Type

"foo" String "foo" string

4.2 Float 4.2 number

True Bool true boolean

("foo", True, 4.2) (String, Bool, Float) ["foo", true, 4.2] Array

["drive", "line"] List String ["drive", "line"] Array

{ name = "Shadow" } { password : String } {"name": "Shadow"} object

Nothing Maybe val null object

TIP Since all Elm values must be immutable, mutable values (like JavaScript objects and arrays) can’t be sent

through the port. Instead they automatically get copied into immutable data structures. This process has some

overhead. Passing in values like strings and numbers, which are already immutable, has no such overhead.

Since we gave our <canvas> an id of "main-canvas", we can easily pass it to Pasta.apply
by calling document.getElementById("main-canvas") to find it on the page by id.

TRYING IT OUT

Let’s try it out! If we open the page, we see...well, an empty rectangle.

Figure 5.6 An empty rectangle. Yep.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

139

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

That’s not what we wanted! We’ll figure that bug out later, but first let’s see what these sliders
do! Crank up that Ripple value, and then...hm, still nothing happens. What’s the deal?

One last idea: maybe try selecting a new photo?
Oh hey, look at that!

Figure 5.7 Increasing Ripple, then selecting another photo.

Sure enough, things changed...quite a lot! We are definitely talking to that JavaScript library.
However, there are some bugs to iron out. Playing around with it some more, we observe

the following problems.

1. All of the Ripple and Noise values between 1 and 11 have the same effect.
2. Changing Hue doesn’t seem to do anything.
3. When we initially load the page, we see an empty rectangle instead of the first photo.

Clearly we have some fixing to do!

CONVERTING THE AMOUNT VALUE TO A PERCENTAGE

The reason Hue isn’t working is the same reason that the Ripple and Noise values between 1
and 11 do the same thing: we’re not quite using the Pasta.js API correctly.

We’re sending an Int between 1 and 11, but actually Pasta.js is expecting a percentage—a
Float between 0 and 1. Since JavaScript does not draw a distinction between Int and Float,
this mistake does not result in a type mismatch error—not even at runtime!—and instead, our
code simply does not work as expected.

We can fix this by dividing our Model’s hue, ripple, and noise fields by 11 before sending
them to JavaScript. Let’s revise our logic in applyFilters:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

140

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

filters =
 [{ name = "Hue", amount = toFloat model.hue / 11 }
 , { name = "Ripple", amount = toFloat model.ripple / 11 }
 , { name = "Noise", amount = toFloat model.noise / 11 }
]

We need that toFloat because Elm’s division operator (/) only works if you give it two Float
values. The Basics.toFloat function converts an Int to a Float, so toFloat model.hue
converts model.hue from an Int to a Float—at which point we can divide it by 11 as normal.

NOTE This is another example of Elm’s design emphasizing being explicit. If JavaScript required similar

explicitness, we’d have caught this bug earlier on, when we tried to pass an Int to an API expecting a Float.

We’ll also need to update FilterOptions to expect a Float for the amount field.

type alias FilterOptions =
 { url : String
 , filters : List { name : String, amount : Float }
 }

Now if we recompile and try our sliders again, we see a much more interesting range of Hue,
Ripple, and Noise values. Lovely! There are still some bugs left, but we’re making progress.

CHANGING AS WE SLIDE

This will be way more fun if the photos update every time we slide, right? We know that
applyFilters calls our setFilters port, so to apply the filters every time we slide, all we
need to do is to run our applyFilters command every time we slide:

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 SetHue hue ->
 applyFilters { model | hue = hue }

 SetRipple ripple ->
 applyFilters { model | ripple = ripple }

 SetNoise noise ->
 applyFilters { model | noise = noise }

Recompile, and...presto! We’re still greeted with an empty rectangle—we’ll fix that next—but
now whenever we slide, the photos update in realtime to reflect the new filter settings. Whee!

Let’s fix that pesky bug where we see an empty rectangle instead of a photo on page load.

5.2.3 Timing DOM Updates

Showing the initial photo when the page loads takes two steps—a straightforward step and a
tricky step. Let’s start with the straightforward one: what we do after loading the photos.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

141

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

APPLYING FILTERS AFTER LOADING PHOTOS

The problem here is that we currently load the photos and then re-render the view, but re-
rendering the view is no longer enough to make a photo show up! We now need to call
applyFilters so that Pasta can render something to the canvas.

To fix this, we need the LoadPhotos branch of our update function’s case-expression to
call applyFilters after updating model:

LoadPhotos (Ok photos) ->
 applyFilters
 { model
 | photos = photos
 , selectedUrl = Maybe.map .url (List.head photos)
 }

However, if you recompile and reload, you’ll see the same behavior. Why wasn’t that enough?

TIMING PORTS AND RENDERING

The remaining problem is a matter of timing. Let’s break down what is happening:

1. We initialize model.photos to [] and model.selectedUrl to Nothing.
2. We request a list of photos from the server.
3. view runs, passing Nothing to viewLarge because model.selectedUrl is Nothing.
4. Because viewLarge received Nothing, it declines to render the <canvas>!
5. The server responds with our photos, meaning update gets a LoadPhotos message.
6. update runs its LoadPhotos branch and returns a new model (with a selectedUrl that

is no longer Nothing), as well as a Cmd that will instruct our JavaScript code to have
Pasta render to the <canvas>.

See the problem? Step 6 tells Pasta to render to a <canvas>, but as we noted in Step 4, no
such <canvas> has been created yet!

This means our JavaScript call to Pasta.apply(document.getElementById("main-

canvas"), options) will silently fail. Shortly after this happens, view will run again with the
new model. This time, model.selectedUrl will not be Nothing—meaning viewLarge will
happily ask for a fresh, blank <canvas>. Great.

We were so close, though! If Elm would have rendered the view before running the Cmd
that invoked Pasta, the <canvas> would have been on the DOM before the JavaScript
executed, and everything would have been fine! So why doesn’t Elm do this?

OPTIMIZED DOM UPDATES

One reason the Elm Runtime has good performance is that it skips unnecessary renders.
See, browsers only repaint the DOM as pixels on users’ screens every so often. If the Elm

Runtime changes part of the DOM, and then changes it again before the next repaint, the first
change will have been wasted time; only the second change will be painted for users to see.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

142

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

You might think that if your update function gets called a million times in a single second,
that your view would also be called a million times. Not so! Although those million updates will
result in a million potential Model changes, Elm waits until the browser’s next repaint to call
view even once—with whatever Model is at that moment. Invoking view more frequently than
that would result in DOM updates that the browser wouldn’t bother to paint anyway.

SYNCHRONIZING WITH THE ELM RUNTIME

The JavaScript function requestAnimationFrame allows code to run just before the browser’s
next repaint. Since this is when the Elm runtime will schedule its next DOM update, we can
use requestAnimationFrame to delay our call to document.getElementById("main-canvas")
until after our next view has added the <canvas> we need to the DOM!

Since requestAnimationFrame accepts a single callback function, this means we can finally
fix this bug by wrapping our call to Pasta.apply in a requestAnimationFrame callback
function, like so:

app.ports.applyFilters.subscribe(function(options) {
 requestAnimationFrame(function() {
 Pasta.apply(document.getElementById("main-canvas"), options);
 });
});

TIP Anytime you need to trigger some JavaScript port code to run after the next time view results in a DOM

update, you can synchronize things by wrapping your port code in requestAnimationFrame like this.

Let’s recompile and bring up the page. Now the initial photo loads right after the page does!

5.3 Receiving Data from JavaScript
Now we’re ready for the final piece of the puzzle: the status bar, which displays information
reported by Pasta. First we’ll start subscribing to Pasta’s realtime status updates, which Pasta
broadcasts as they occur. Then we’ll set an initial status message which displays the version of
Pasta we’re using. Each change involves a different Elm concept we haven’t used before: first
subscriptions, and then flags. Let’s put them to work!

5.3.1 Receiving realtime data from JavaScript via Ports

Here we’ll be receiveing realtime data from JavaScript in the same way we receive user input:
through a Msg. Let’s start by introducing a status string to our Model, initialModel, and Msg.

Model initialModel Msg

type alias Model =
 { photos : List Photo
 , status : String

initialModel : Model
initialModel =
 { photos = []
 , status = ""

type Msg
 = SelectByUrl String
 | SelectByIndex Int
 | SetStatus String

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

143

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

With these in place, our change to update is straightforward: set the status field on model
when we receive a SetStatus message.

update msg model =
 case msg of
 SetStatus status ->
 ({ model | status = status }, Cmd.none)

We’ll also need view to display the status:

, button
 [onClick SurpriseMe]
 [text "Surprise Me!"]
, div [class "status"] [text model.status]
, div [class "filters"]

Nice! We’re getting faster at this.
Now all that’s missing is a source of SetStatus messages. We’ll get those from JavaScript!

SENDING DATA FROM JAVASCRIPT TO ELM

Let’s modify index.html to add a bit more JavaScript code right below our setFilters code.

var app = Elm.PhotoGroove.embed(document.getElementById("elm-area"));

app.ports.setFilters.subscribe(function(options) {
 requestAnimationFrame(function() {

 Pasta.apply(document.getElementById("main-canvas"), options);
 });

});

Pasta.addStatusListener(function(status) { ❶
 console.log("Got a new status to send to Elm: ", status); ❷
});

❶ Pasta calls this function whenever its status changes
❷ Log the new status to the developer console

This uses Pasta’s addStatusListener function to log status changes to the browser’s
JavaScript console. If we reload the page and open the browser’s console, we’ll see various
status messages flowing through as we play around with the sliders and select photos.

Next we need to send those status strings to Elm instead of to the console!

SUBSCRIPTIONS

Earlier in the chapter we sent data from Elm to JavaScript using a command. Now we’ll do the
reverse: send some data from JavaScript to Elm—using not a command, but a subscription.

DEFINITION A subscription represents a way to translate certain events outside our program into

messages that get sent to our update function.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

144

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

One use for subscriptions is handling user inputs that aren’t tied to a particular DOM element.
For example, we’ve used onClick to translate a click event on a specific element into a
message that gets sent to update. What if we instead want to detect when the user resizes
the entire browser window?

We do this by adding a subscription to our program, which translates global window resize
events into messages. Those messages get sent to update just like the ones for onClick do.

Figure 5.8 A subscription that translates browser window resize events into messages

NOTE If you’d like to try out Window.resizes you’ll need to run elm-package install elm-

lang/window first. You can also find subscriptions for global mouse events in the elm-lang/mouse

package, and subscriptions for global keyboard events in the elm-lang/keyboard package.

DEFINING A SUBSCRIPTION PORT

There are also subscriptions which translate data from JavaScript into messages that are sent
to update. We can get one of these subscriptions by using a slightly different port declaration.

Let’s add another port right below the code that defines setFilters:

port setFilters : FilterOptions -> Cmd msg

port statusChanges : (String -> msg) -> Sub msg

We can already see some similarities and differences between our command port and our
subscription port. Both define a function that takes one argument, but whereas the first
function returned a command (Cmd msg), the second returns a subscription (Sub msg).

Cmd and Sub are both parameterized on the type of message they produce. We noted
earlier how setFilters returns a Cmd msg (as opposed to Cmd Msg) because it is a command

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

145

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

which produces no message after it completes. In contrast, statusChanges returns a Sub msg,
but here msg refers to the type of message returned by the (String -> msg) function we
pass to statusChanges.

Table 5.9 shows how various calls to statusChange can yield different return values.

Table 5.9 Calling the statusChanges function

Function to pass to statusChanges Expression Return Type

String.length : String -> Int statusChanges String.length Sub Int

String.reverse : String -> String statusChanges String.reverse Sub String

SetStatus : String -> Msg statusChanges SetStatus Sub Msg

NOTE Whereas it’s normal for setFilters to return Cmd msg, it would be bizarre for statusChanges to

return Sub msg. After all, a Cmd msg is a command that has an effect but never sends a message to

update...but subscriptions do not run effects. Their whole purpose is to send messages to update!

Subscribing to a Sub msg would be like listening to a disconnected phone line: not terribly practical.

If we call statusChanges SetStatus, we’ll get back a Sub Msg subscription. That’s all well and
good, but what do we do with a Sub Msg?

PASSING SUBSCRIPTIONS TO HTML.PROGRAM

We use it with that subscriptions field we set up with Html.program!

main : Program Never Model Msg
main =
 Html.program
 { init = (initialModel, initialCmd)
 , view = viewOrError
 , update = update
 , subscriptions = _ -> Sub.none
 , subscriptions = _ -> statusChanges SetStatus
 }

Ever since Chapter 3 we’ve been setting this subscriptions field to an anonymous function
that always returned Sub.none. Now we’ve made that anonymous function return
statusChanges SetStatus instead, which means that whenever JavaScript sends a string to
the statusChanges port, it will result in a SetStatus message being sent to update.

NOTE The argument this anonymous subscriptions function accepts is a Model. Whenever our model

changes, the new model is passed to this function, giving us a chance to return a different Sub depending on

what’s in the new model. This lets us dynamically control which subscriptions our program pays attention to.

Figure 5.9 illustrates how subscriptions fit into Elm programs.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

146

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 5.9 How Subscriptions fit into Elm programs

Now our statusChanges port is fully connected to the rest of our application, meaning we’re
ready to have our JavaScript code start sending it data!

CALLING APP.PORTS.STATUSCHANGES.SEND

Much like how we used app.ports.setFilters.subscribe to receive data from Elm, we can use
app.ports.statusChanges.send to send data to Elm. Let’s replace our console.log in
index.html with a call to app.ports.statusChanges.send:

Pasta.addEventListener("statusChange", function(status) {
 console.log("Got a new status to send to Elm: ", status);

 app.ports.statusChanges.send(status);
});

Remember, subscriptions = _ -> statusChanges SetStatus specifies that we’ll wrap
whatever status string we receive from the statusChanges port in a SetStatus message.

This means that calling app.ports.statusChanges.send("Reticulating splines") from
JavaScript will ultimately result in a SetStatus "Reticulating splines" message being sent
to update on the Elm side. At that point, our existing status-rendering logic should kick in,
which we can confirm by recompiling and seeing how things look.

Figure 5.10 Showing the status when filters change

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

147

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Fantastic! There’s just one more problem to address. Right when we refresh the page, at first
there is no status to show, leading to a brief flicker of nothingness before the first status
update arrives. We’ll fix this by showing an initial status, using data obtained from Pasta prior
to the first status change it sends us.

5.3.2 Receiving initialization arguments via Flags

We’d like to display an initial status which reports the version of Pasta we’re using. It will look
something like this:

Initializing with Pasta v4.2...

We can easily obtain the current version from Pasta in JavaScript; all we have to do is
reference Pasta.version. But how do we get that value into Elm in time for the initial render,
to avoid that flicker of missing content?

SENDING INITIALIZATION DATA TO PROGRAMWITHFLAGS

Calling app.ports.statusChanges.send(Pasta.version) won’t cut it here. Elm would still
render initialModel (with model.status being "", resulting in the flicker of missing content)
before receiving a message from statusChanges and re-rendering with the new status.

What we want is a way to give Elm a value from JavaScript that’s available right away,
early enough to use in our initial. This means we don’t want ports...we want flags.

DEFINITION Flags are values passed to an Elm program’s initialization function.

To use flags we’ll need to switch from Html.program to Html.programWithFlags. The primary
difference between the two is the type of init that each accepts. program wants init to be a
(Model, Cmd Msg) tuple, whereas programWithFlags wants it to be a function which
accepts initialization flags as an argument and returns a (Model, Cmd Msg) tuple.

This change lets us receive a Float from JavaScript—namely Pasta.version—as an
argument to init, giving us the chance to incorporate it into our initial model like so:

main =
 Html.programWithFlags
 { init = init
 , view = viewOrError
 , update = update
 , subscriptions = (_ -> Sub.none)
 }

init : Float -> (Model, Cmd Msg)
init flags =
 let
 status =
 "Initializing Pasta v" ++ toString flags
 in

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

148

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 ({ initialModel | status = status }, initialCmd)

Switching to programWithFlags affects our type annotation for main a bit:

main : Program Never Model Msg
main : Program Float Model Msg

Program Never Model Msg means “a Program with Model as its model type, Msg as its
message type, and which has no flags.” Program Float Model Msg means the same thing,
except that its flags are a Float.

The Never Type
The type of a Html.program always begins with Program Never. What is this Never type, exactly?

The definition of Never lives in the Basics module, and its implementation looks something like this:

type Never
 = PassMeNever Never

How might we obtain a value of type Never? That’s easy, just call PassMeNever! What does PassMeNever take as
an argument? Oh, a Never. Hm...how can we obtain a Never to pass to PassMeNever? Ah yes—call PassMeNever!
Now what type of argument does it take again?

To make an endlessly long story short, it’s not possible to instantiate a Never. Any function which accepts a Never

for an argument is a function that can never be called! The reason Html.program returns a Program Never
Model Msg is that it can never be passed any flags, Float or otherwise. As you may recall, Html.program’s init
is not even a function, so we can never call it!

SENDING FLAGS TO ELM

On the JavaScript side, we can send flags to Elm by passing an extra argument to the
Elm.PhotoGroove.embed method we’ve been using to start the program running.

var app = Elm.PhotoGroove.embed(document.getElementById("elm-area"), Pasta.version);

Decoding JavaScript Values
We can use the same Decoders we used in Chapter 4 to translate values from JavaScript into Elm values while
gracefully handling errors.

In Chapter 4 we used the Json.Decode.decodeString function to decode a String of JSON into various Elm values.
There is a similar function. Json.Decode.decodeValue, which takes a Json.Decode.Value instead of a String. We can
write our statusChanges port to expect a Value from JavaScript, like so:

import Json.Decode exposing (Value)

port statusChanges : (String -> msg) -> Sub msg
port statusChanges : (Value -> msg) -> Sub msg

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

149

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

From there, writing a Decoder Msg and passing it to Json.Decode.decodeValue will give us a Result String Msg. We can
translate that into a Msg by introducing an error-handling Msg which ideally displays a helpful message to end users,
explaining that something went wrong.

We can use the same technique for Flags:

main : Program Value Model Msg

Using this decoder style is generally a better choice for production applications. For one, it lets us give users a better

experience by gracefully handling errors. For another, any incoming type other than Value is liable to result in a runtime
exception if JavaScript passes in something invalid!

Elm will check this immediately upon receiving the value, and will throw the exception early rather than letting it
snake its way through our program, but it’s better still to do the error handling ourselves. Besides, since Elm performs
the automatic check using decoders anyway, it’s not as if there’s a performance penalty for doing it explicitly!

That’s it! Now when we start up Photo Groove, we’ll see the version number proudly displaying
for the briefest of moments before the first photo loads. Figure 5.11 shows the initial status,
captured using an incredible high-speed screenshotting camera.

Figure 5.11 Showing the status on page load

Nicely done!

5.4 Summary
Photo Groove is now substantially groovier than before. Specifically:

• We added some cool sliders using Custom Elements written in JavaScript
• As users slide their values around, it changes the filters on our large photo
• The filters come from a JavaScript library, which Photo Groove talks to like a server
• When the JS filtering library sends status reports, Photo Groove displays them
• The initial status report includes the JS filtering library’s version number

In the process we learned some new concepts and techniques for building Elm applications:

• We can resolve cyclical dependency errors by making functions more flexible
• Asking “Which approach rules out more bugs?” is a good way to decide between

different ways to model data
• Once Custom Elements have been registered on the page, we can access them using

the Html.node function
• The as keyword lets us alias imported modules, for example import Html.Attributes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

150

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

as Attr
• The Html.Attributes.on function lets us create a custom event handler using a

Decoder
• requestAnimationFrame can delay our JavaScript code’s execution until the next time

Elm calls view and renders the result to the DOM
• A subscription represents a way to translate certain events outside our program into

messages that get sent to our update function
• A port module can use the port keyword to define functions that return commands

and subscriptions which talk to JavaScript
• Html.programWithFlags lets us send initialization flags from JavaScript to Elm

In Chapter 6 we’ll crank our application’s maintainability into overdrive by building it a hearty
suite of automated tests!

Listing 5.6 index.html

<!doctype html>
<html>
 <head>
 <link rel="stylesheet" href="http://elm-in-action.com/styles.css">
 <link rel="import" href="http://elm-in-action.com/wc/slider/paper-slider.html">
 </head>

 <body>
 <div id="elm-area"></div>

 <script src="http://elm-in-action.com/pasta.js"></script>
 <script src="elm.js"></script>
 <script>
 var app = Elm.PhotoGroove.embed(document.getElementById("elm-area"),

Pasta.version);

 app.ports.setFilters.subscribe(function(options) {
 requestAnimationFrame(function() {
 Pasta.apply(document.getElementById("main-canvas"), options);
 });

 Pasta.addStatusListener(function(status) {
 app.ports.statusChanges.send(status);
 });
 });
 </script>
 </body>
</html>

Listing 5.7 PhotoGroove.elm

port module PhotoGroove exposing (..)

import Html exposing (..)
import Html.Events exposing (onClick)
import Array exposing (Array)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

151

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/styles.css
http://elm-in-action.com/wc/slider/paper-slider.html
http://elm-in-action.com/pasta.js"></
https://forums.manning.com/forums/elm-in-action

import Random
import Http
import Html.Attributes as Attr exposing (id, class, classList, src, name, max, type_, title)
import Json.Decode exposing (string, int, list, Decoder)
import Json.Decode.Pipeline exposing (decode, required, optional)
import Slider exposing (paperSlider)

photoDecoder : Decoder Photo
photoDecoder =
 decode buildPhoto
 |> required "url" string
 |> required "size" int
 |> optional "title" string "(untitled)"

buildPhoto : String -> Int -> String -> Photo
buildPhoto url size title =
 { url = url, size = size, title = title }

urlPrefix : String
urlPrefix =
 "http://elm-in-action.com/"

type ThumbnailSize
 = Small
 | Medium
 | Large

view : Model -> Html Msg
view model =
 div [class "content"]
 [h1 [] [text "Photo Groove"]
 , button
 [onClick SurpriseMe]
 [text "Surprise Me!"]
 , div [class "status"] [text model.status]
 , div [class "filters"]
 [viewFilter SetHue "Hue" model.hue
 , viewFilter SetRipple "Ripple" model.ripple
 , viewFilter SetNoise "Noise" model.noise
]
 , h3 [] [text "Thumbnail Size:"]
 , div [id "choose-size"]
 (List.map viewSizeChooser [Small, Medium, Large])
 , div [id "thumbnails", class (sizeToString model.chosenSize)]
 (List.map (viewThumbnail model.selectedUrl) model.photos)
 , viewLarge model.selectedUrl
]

viewFilter : (Int -> Msg) -> String -> Int -> Html Msg
viewFilter toMsg name magnitude =
 div [class "filter-slider"]
 [label [] [text name]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

152

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/
https://forums.manning.com/forums/elm-in-action

 , paperSlider [Attr.max "11", Slider.onImmediateValueChange toMsg] []
 , label [] [text (toString magnitude)]
]

viewLarge : Maybe String -> Html Msg
viewLarge maybeUrl =
 case maybeUrl of
 Nothing ->
 text ""

 Just url ->
 canvas [id "main-canvas", class "large"] []

viewThumbnail : Maybe String -> Photo -> Html Msg
viewThumbnail selectedUrl thumbnail =
 img
 [src (urlPrefix ++ thumbnail.url)
 , title (thumbnail.title ++ " [" ++ toString thumbnail.size ++ " KB]")
 , classList [("selected", selectedUrl == Just thumbnail.url)]
 , onClick (SelectByUrl thumbnail.url)
]
 []

viewSizeChooser : ThumbnailSize -> Html Msg
viewSizeChooser size =
 label []
 [input [type_ "radio", name "size", onClick (SetSize size)] []
 , text (sizeToString size)
]

sizeToString : ThumbnailSize -> String
sizeToString size =
 case size of
 Small ->
 "small"

 Medium ->
 "med"

 Large ->
 "large"

port setFilters : FilterOptions -> Cmd msg

port statusChanges : (String -> msg) -> Sub msg

type alias FilterOptions =
 { url : String
 , filters : List { name : String, amount : Float }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

153

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

type alias Photo =
 { url : String
 , size : Int
 , title : String
 }

type alias Model =
 { photos : List Photo
 , status : String
 , selectedUrl : Maybe String
 , loadingError : Maybe String
 , chosenSize : ThumbnailSize
 , hue : Int
 , ripple : Int
 , noise : Int
 }

initialModel : Model
initialModel =
 { photos = []
 , status = ""
 , selectedUrl = Nothing
 , loadingError = Nothing
 , chosenSize = Medium
 , hue = 0
 , ripple = 0
 , noise = 0
 }

photoArray : Array Photo
photoArray =
 Array.fromList initialModel.photos

getPhotoUrl : Int -> Maybe String
getPhotoUrl index =
 case Array.get index photoArray of
 Just photo ->
 Just photo.url

 Nothing ->
 Nothing

type Msg
 = SelectByUrl String
 | SelectByIndex Int
 | SetStatus String
 | SurpriseMe
 | SetSize ThumbnailSize
 | SetHue Int
 | SetRipple Int
 | SetNoise Int
 | LoadPhotos (Result Http.Error (List Photo))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

154

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

randomPhotoPicker : Random.Generator Int
randomPhotoPicker =
 Random.int 0 (Array.length photoArray - 1)

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 SetStatus status ->
 ({ model | status = status }, Cmd.none)

 SetHue hue ->
 applyFilters { model | hue = hue }

 SetRipple ripple ->
 applyFilters { model | ripple = ripple }

 SetNoise noise ->
 applyFilters { model | noise = noise }

 SelectByIndex index ->
 let
 newSelectedUrl : Maybe String
 newSelectedUrl =
 model.photos
 |> Array.fromList
 |> Array.get index
 |> Maybe.map .url
 in
 applyFilters { model | selectedUrl = newSelectedUrl }

 SelectByUrl selectedUrl ->
 applyFilters { model | selectedUrl = Just selectedUrl }

 SurpriseMe ->
 let
 randomPhotoPicker =
 Random.int 0 (List.length model.photos - 1)
 in
 (model, Random.generate SelectByIndex randomPhotoPicker)

 SetSize size ->
 ({ model | chosenSize = size }, Cmd.none)

 LoadPhotos (Ok photos) ->
 applyFilters
 { model
 | photos = photos
 , selectedUrl = Maybe.map .url (List.head photos)
 }

 LoadPhotos (Err _) ->
 ({ model
 | loadingError = Just "Error! (Try turning it off and on again?)"
 }
 , Cmd.none

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

155

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

)

applyFilters : Model -> (Model, Cmd Msg)
applyFilters model =
 case model.selectedUrl of
 Just selectedUrl ->
 let
 filters =
 [{ name = "Hue", amount = (toFloat model.hue) / 11 }
 , { name = "Ripple", amount = (toFloat model.ripple) / 11 }
 , { name = "Noise", amount = (toFloat model.noise) / 11 }
]

 url =
 urlPrefix ++ "large/" ++ selectedUrl
 in
 (model, setFilters { url = url, filters = filters })

 Nothing ->
 (model, Cmd.none)

initialCmd : Cmd Msg
initialCmd =
 list photoDecoder
 |> Http.get "http://elm-in-action.com/photos/list.json"
 |> Http.send LoadPhotos

viewOrError : Model -> Html Msg
viewOrError model =
 case model.loadingError of
 Nothing ->
 view model

 Just errorMessage ->
 div [class "error-message"]
 [h1 [] [text "Photo Groove"]
 , p [] [text errorMessage]
]

main : Program Float Model Msg
main =
 Html.programWithFlags
 { init = init
 , view = viewOrError
 , update = update
 , subscriptions = _ -> statusChanges SetStatus
 }

init : Float -> (Model, Cmd Msg)
init flags =
 let
 status =
 "Initializing Pasta v" ++ toString flags

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

156

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/photos/list.json
https://forums.manning.com/forums/elm-in-action

 in
 ({ initialModel | status = status }, initialCmd)

paperSlider : List (Attribute msg) -> List (Html msg) -> Html msg
paperSlider =
 node "paper-slider"

onImmediateValueChange : (Int -> msg) -> Attribute msg
onImmediateValueChange toMsg =
 at ["target", "immediateValue"] int
 |> Json.Decode.map toMsg
 |> on "immediate-value-changed"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

157

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

6
Testing

This chapter covers

• Writing unit tests
• Writing fuzz tests
• Testing update functions
• Testing view functions

Our Photo Groove application has been delighting users in production for awhile now, and
things have settled down on the development team. Our manager has left for vacation with
vague instructions to “keep the lights on,” and we find ourselves with time to revisit some of
the corners we cut when shipping Photo Groove.

At this point we know we’ll be maintaining this application for the long haul. We’ll need to
add new features, improve existing ones, and do both without introducing bugs to the existing
feature set. That isn’t easy! The longer our application is around, the more important it will be
that the code we write is not just reliable, but also maintainable.

As we saw in Chapter 3, Elm’s compiler is an invaluable tool for maintainability. It can
assist us by finding syntax errors and type mismatches before they can impact our end users,
and this is even more helpful after we make a big change to our code.

However, the compiler has no way to know how our business logic is supposed to work.
Fortunately, we can use another tool to verify that our business logic is still working as
expected: elm-test. In this chapter we’ll learn how to use elm-test to write automated tests
which verify that our business logic still works, including:

• Testing our JSON decoding logic
• Testing our update logic
• Testing our view logic

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

158

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

By the end, we’ll have a more maintainable code base that will be easier to build on as we
continue to iterate on Photo Groove’s feature set in the chapters to come.

Let’s rock!

6.1 Writing Unit Tests
Before we can write our first automated test, we’ll need to introduce the elm-test package to
our code base. Typically we’d do this using the elm-package install command, but setting
up our tests for the first time is a bit more involved. Fortunately, the elm-test command line
tool automates this setup for us.

6.1.1 Introducing Tests

Let’s begin by running this command from the same directory as our PhotoGroove.elm file.

elm-test init

This will generate three things:

1. A new folder called tests
2. A file inside that folder called Example.elm
3. Another file next to Example.elm called elm-package.json

Figure 6.1 illustrates how our project’s new file structure should look.

Figure 6.1 Our project’s file structure after running elm-test init

NOTE You may also see a directory called elm-stuff and a file called elm.js. These are generated by

Elm’s compiler, and we can safely ignore them for the moment.

elm-test init also installed a package called elm-community/elm-test, and made its
contents available only to modules in this new tests directory. We’ll use modules from this
package in the Example.elm file that was created inside the tests directory.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

159

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

RENAMING EXAMPLE.ELM

Let’s open up that Example.elm file. It should have this line at the top:

module Example exposing (..)

As vibrant a name as Example.elm might be, it doesn’t fit very well with our application. Let’s
rename the file to PhotoGrooveTests.elm and change the first line to this:

module PhotoGrooveTests exposing (..)

NOTE Elm module names must match their filenames. If we kept the first line as module Example but

renamed the file to PhotoGrooveTests.elm, we would get an error when we ran our tests.

This module will contain our tests, each of which is an expression that verifies something
about our application’s logic. Although this chapter focuses on using tests to defend against
regressions in our existing application code, this is not the only way to do it! It can be helpful
to write tests before finishing the initial version of the business logic itself, to guide
implementation and help reveal potential design shortcomings early.

When we use the elm-test command to run our tests, each test will either pass or fail.
Failures might indicate our application code has a problem, or that our tests have a problem—
after all, tests can have bugs too! If every test passes, then the test run as a whole passes. If
any test fails, the test run as a whole fails.

UNIT TESTS

The suite : Test value in our PhotoGrooveTests module is an example of a unit test in Elm.
The term unit test means different things depending who you ask, so let’s start by setting a
clear definition of what it means in Elm.

DEFINITION In Elm, a unit test is a test which runs once, and whose test logic does not perform effects. (In

Chapter 4 we learned that an effect is an operation that modifies external state.) Later in this chapter, we will

encounter tests which run more than once.

We’ll contrast unit tests with fuzz tests later on.

EXPECTATIONS

Every unit test requires a single expression which evaluates to an Expectation value.
Here's an Expectation that tests whether 1 + 1 == 2.

expectation : Expectation
expectation =
 Expect.equal (1 + 1) 2

I have it on good authority that 1 + 1 should be equal to 2, so it’s safe to assume that any
test which evaluates to this Expectation will pass when we run it.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

160

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Expect.equal is a function which has the type:

equal : a -> a -> Expectation

We pass it two values and it returns an Expectation which claims the two values are equal. If
they turn out to be equal, then the expectation will pass. If not, it will fail. Failed expectations
usually translate to failed tests, as we will see momentarily.

WRITING OUR FIRST UNIT TEST

Let’s replace the implementation of suite with the following:

suite : Test
suite =
 test "one plus one equals two" (_ -> Expect.equal 2 (1 + 1))

Figure 6.2 highlights the two arguments we’ve passed to the test function here.

Figure 6.2 Arguments passed to the “test” function

The first argument to test is a description of the test. If the test fails, elm-test will display
this text to let us know which test failed. Since the purpose of these descriptions is to help us
identify which test failed, elm-test enforces that they must be unique. Now that we’ve given
this test a description of "one plus one equals two", we can’t give any other test that same
description!

Next let’s look at the argument after the description string:

(_ -> Expect.equal 2 (1 + 1))

Oh hey! It’s our friend Expect.equal from earlier. When the test runs, Expect.equal checks
if the two arguments it received are equal. If they are, it returns a “pass” Expectation;
otherwise, it returns a “fail” Expectation.

Since 2 == (1 + 1), this would be a “pass,” meaning the test as a whole will pass!
Notice that what we pass to the test function is not an actual Expectation value, but

rather an anonymous function which returns an Expectation. This function wrapper is
important, but unit tests never need to reference the argument it receives, so we can always
safely disregard that argument by naming it “_” the way we did here.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

161

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Why The Function Wrapper?
Although Expect.equal 2 (1 + 1) determines if the test passes, we don’t pass that directly to the test function.
We wrap it in an anonymous function first; what we actually pass is (_ -> Expect.equal 2 (1 + 1)) instead.
Why does test expect us to pass it a function instead of a plain old Expectation?

This is done in order to postpone evaluation of the test. Compare these two expressions:

totalA = (10 + 20 + 30)

addNums = (_ -> 10 + 20 + 30)

If we run both of these lines of code, totalA will immediately add 10 + 20 + 30 to get a result of 60. However,
addNums will not do any addition yet! That line of code only defines a function. The addition won’t happen until the
function gets called later.

The very first release of elm-test did not wrap expectations in functions like this, which led to a problem on large
test suites. elm-test would print something like "Starting test run..." followed by a blank screen, followed by a pile of
output only once the last test had finished. There was no opportunity to report progress incrementally, because every
test in the module began evaluating, one after the other, as soon as the module loaded!

Delaying evaluation lets elm-test control when and how to run each test, giving it the flexibility to do things like
report incremental progress on a long-running test suite.

At this point you might be asking yourself, “Self, what exactly is the throwaway value that gets passed to that
function?” Clearly the function takes an argument, because every Elm function must take at least one argument. (There
is, in fact, no such thing as a zero-argument Elm function!) So what's the value that gets passed in?

To answer that, let’s look at the type of the test function:

test : String -> (() -> Expectation) -> Test

Whoa! What’s that funky () thing?
The () value is known as Unit. It contains no information whatsoever. It’s both a value and a type; the () type can

only be satisfied with the () value. We could use it to write a function like this:

ultimateAnswer : () -> Int
ultimateAnswer unit =
 40 + 2

The only way to call ultimateAnswer would be to pass () to it; since it accepts () as an argument, no other value but
() will do. A function which takes only () as an argument returns the same exact value every time it’s called, making it
a very boring function. The only purpose of functions like that is to do things like delay evaluation.

In the above example, the expression 40 + 2 would not be evaluated right when the program starts; instead, it
would only be evaluated when ultimateAnswer () is called. This is not a big deal for a simple expression like 40 +
2, but for a larger expression, which might take a long time to run, delaying evaluation can make a big difference!

Great! Next we’ll use what we’ve learned to write our first unit test for Photo Groove.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

162

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

6.1.2 Unit Testing a JSON Decoder

Take a look back at our photoDecoder, which we used to decode Photo values from the raw
JSON strings our HTTP requests received from the server. photoDecoder describes JSON
values that have two required fields and one optional field. Here’s how we defined it:

photoDecoder : Decoder Photo
photoDecoder =
 decode buildPhoto
 |> required "url" string
 |> required "size" int
 |> optional "title" string "(untitled)"

We’ll write a test for this code which checks if that optional field is serving the purpose we
expect—namely, that if the JSON the server sends us does not contain a title field, the photo
ends up with the default title of "(untitled)".

First we'll write the test using only what we know now, and then we'll learn some new Elm
techniques to make it nicer to read.

WRITING A FAILING TEST FIRST

Let’s start by renaming suite to decoderTest, and implementing it as a failing test so we can
see what failed test output looks like.

Listing 6.2 decoderTest

module PhotoGrooveTests exposing (..)

import Expect exposing (Expectation)
import Fuzz exposing (Fuzzer, list, int, string)
import Test exposing (..)
import PhotoGroove exposing (..)
import Json.Decode exposing (decodeString)

decoderTest : Test
decoderTest =
 test "title defaults to (untitled)" ❶
 (_ -> ❷
 "{\"url\": \"fruits.com\", \"size\": 5}" ❸
 |> decodeString photoDecoder ❹
 |> Expect.equal
 (Ok { url = "fruits.com", size = 5, title = "" })
)

❶ Test description
❷ Anonymous function wrapper
❸ Sample JSON string
❹ Decoding the JSON

You may recall the decodeString function from Chapter 4. It takes a decoder and a string
containing some JSON, then returns a Result.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

163

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

decodeString : Decoder val -> String -> Result String val

Here we’ve supplied photoDecoder as the decoder, and "{\"url\": \"fruits.com\",

\"size\": 5}" as the JSON string. That JSON string is pretty noisey with all those backslash-
escaped quotes, though. Let’s clean that up a bit.

TRIPLE-QUOTED STRINGS

Elm has a triple-quote syntax for writing longer quotes. Table 6.1 shows how we can use it to
rewrite our JSON string above.

Single Quote Triple Quote

jsonSingleQuote =

 "{\"url\": \"fruits.com\", \"size\": 5}"

jsonTripleQuote =
 """
 {"url": "fruits.com", "size": 5}
 """

The triple-quote syntax is more verbose—three quotes is, after all, more than one—but it has
two advantages over the more common single-quote syntax.

1. Triple-quoted strings can span across multiple lines.
2. Triple-quoted strings can include unescaped quotation marks inside them.

Both of these are particualrly useful for JSON strings. For one, they let us dodge a veritable
avalanche of backslashes! For another, it’s reasonable to have long JSON strings in decoder
tests. In those cases, having strings which can span multiple lines really comes in handy.

Since this is a fairly short bit of JSON, we can triple-quote it but keep it on one line. Let’s
change "{\"url\": \"fruits.com\", \"size\": 5}" to """{"url": "fruits.com",

"size": 5}""" and keep moving.

RUNNING ALL TESTS

Our test expects that decoding this JSON string with photoDecoder will return (Ok { url =
"fruits.com", size = 5, title = "" }) - but in a shocking plot twist, it actually will not!

To see what it returns instead, let’s re-run elm-test and check out the failure message.
The elm-test command will search our tests directory for .elm files, and run all the Test

values they expose. In our case, elm-test will find PhotoGrooveTests.elm and an exposed
Test value called decoderTest. If we added a second .elm file to our tests directory, its
exposed Test values would also be included the next time we ran elm-test.

NOTE The exposing (..) in our module PhotoGrooveTests exposing (..)declaration means

our PhotoGrooveTests module exposes all of its top-level values—currently just decoderTest—so other

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

164

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

modules can import them. Later, we’ll learn how to reap some major benefits from having our modules

intentionally expose less, but for now we’ll continue exposing everything.

INSPECTING FAILURE OUTPUT

Let’s run our tests by running this at the command line:

elm-test

We should see this output.

Figure 6.3 Output from the failed test

See the two Ok values with the records inside?
Those represent the arguments we passed to Expect.equal. They differ in that one has

title = "(untitled)" whereas the other has title = "".
It’s no coincidence that the record on the bottom is the record at the end of our pipeline:

"""{"url": "fruits.com", "size": 5}"""
 |> decodeString photoDecoder
 |> Expect.equal
 (Ok { url = "fruits.com", size = 5, title = "" })

As long as our test code is written in a pipeline style that ends in |> Expect.equal, we should
be able to look at our code side-by-side with the test output and see by visual inspection
which value Expect.equal received as which argument. The “value at the top” in our test
should line up with the “value at the top” in the console output, and the “value on the bottom
in our test should line up with the “value on the bottom” in the console output.

FIXING THE FAILING TEST

The failing test output also told us why the test failed: we wrote that we expected the title
field to be "", but actually it was "(untitled)". (You’d think the test description we wrote of
"title defaults to (untitled)" would have tipped us off ahead of time, but here we are.)

This test will pass once we fix the expectation. Let’s change the Expect.equal call to this:

Expect.equal (Ok { url = "fruits.com", size = 5, title = "(untitled)" })

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

165

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Now let's see if that worked, by running elm-test once more. The output should look like this:

Figure 6.4 Output from the passing test

Huzzah! We've written our first passing test!

LEFT PIPE

Our test got easier to read when we switched to the triple-quote syntax, but we still have
those clunky parentheses around our anonymous function. Is there any way we can get rid of
those?

There absolutely is! In Elm, these two lines of code do the same thing:

String.toUpper (String.reverse "hello")
String.toUpper <| String.reverse "hello"

The <| operator takes a function and another value, and passes the value to the function. That
might not sound like it does much, but it’s handy for cases like the one we have here—where
an infix operator would look nicer than parentheses. We can use it to refactor our test like so:

Table 6.1 Replacing Parentheses with Left Pipe

Parentheses Left Pipe

test "title defaults to (untitled)"
 (_ ->
 ...
)

test "title defaults to (untitled)" <|
 _ ->
 ...

Nice! Things are looking cleaner now, but we can stil improve this test.

6.1.3 Narrowing Test Scope

Our test's description says "title defaults to (untitled)" but we're actually testing much
more than that. We're testing the structure of the entire Photo!

This means if we update the structure of Photo - say, to add a new field - this test will
break. We'll have to come in and fix it manually, when we wouldn’t have needed to if the test
did not rely on the entire Photo structure. Even worse, if something breaks about url or size,
we'll get failures not only for the tests that are directly responsible for those, but also for this
unrelated test of title. Those spurious failures will clutter up our test run output!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

166

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

TESTING ONLY THE TITLE

Here’s how our pipeline currently works:

"""{"url": "fruits.com", "size": 5}"""
 |> decodeString photoDecoder
 |> Expect.equal (Ok { url = "fruits.com", size = 5, title = "(untitled)" })

Let's refactor the test to work with title only, by introducing a function called Result.map.

"""{"url": "fruits.com", "size": 5}"""
 |> decodeString photoDecoder
 |> Result.map (\photo -> photo.title)
 |> Expect.equal (Ok "(untitled)")

We’ve made two changes here.

1. We added a step to our pipeline: Result.map (\photo -> photo.title).
2. We changed (Ok { url = "fruits.com", size = 5, title = "(untitled)" }) to the

narrower test of (Ok "(untitled)").

RESULT.MAP

We’ve now seen three functions called map: List.map from Chapter 2, Maybe.map from Chapter
4, and Json.Decode.map from Chapter 5. Now we’re adding Result.map to our repertoire.

Check out the similarities between the types of List.map, Maybe.map, and Result.map:

 List.map : (a -> b) -> List a -> List b
 Maybe.map : (a -> b) -> Maybe a -> Maybe b
Result.map : (a -> b) -> Result x a -> Result x b

Pretty similar! Each map function...

1. Takes a data structure with a type variable we’ve called a here
2. Also takes an (a -> b) function that converts from a to b
3. Returns a variant of the original data structure where the type variable is b instead of a

Here are some examples of different map functions using toString. Note how map consistently
transforms the value inside the container from an integer to a string.

 List.map toString [42] == ["42"]
 Maybe.map toString (Just 42) == (Just "42")
Result.map toString (Ok 42) == (Ok "42")

Transforming a container’s contents is the main purpose of map, but there are also cases
where map does not transform anything, and returns the original container unchanged.

 List.map toString [] == []
 Maybe.map toString Nothing == Nothing
Result.map toString (Err 1) == (Err 1)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

167

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

As we can see with Result.map, sometimes a map function declines to transform an entire
classification of values.

• List.map has no effect on []
• Maybe.map has no effect on Nothing
• Result.map has no effect on any Err value whatsoever!

It’s up to each map implementation to decide how to handle the values it receives, but in
general they should fit this familiar pattern of transforming the contents of a container.

Inferring Implementation Details from a Type
Even without knowing their implementations, we might have been able to guess that List.map and Maybe.map
would not transform empty lists or Nothing values. After all, if a container is empty, there’s nothing to transform!

It’s harder to guess that Result.map would ignore Err values, as there is no equivalent “empty container” for
Result. Believe it or not, once you know what to look for, you can find enough information in the type of Result.map
to be certain that it could not possibly transform Err values!

Here’s its type again. This time let’s take a closer look at the type variable that refers to Err, namely x.

Result.map : (a -> b) -> Result x a -> Result x b

Suppose the implementation of Result.map tried to pass an x value to the (a -> b) transformation function. That
implementation wouldn’t compile! x and a are different types, so passing an x value to a function expecting a would be
a type mismatch. The transformation function can’t possibly affect an Err, because it can’t be passed one!

There is a function which transforms the error, called Result.mapError:

Result.mapError : (x -> y) -> Result x a -> Result y a

Can you spot the difference? Result.mapError accepts a transformation function which takes an x but not an a. It
can’t transform an Ok value because it can’t be passed one, and sure enough, Result.mapError does nothing when
passed an Ok value.

Taking this idea even further, have a look at the identity function, from the Basics module:

identity : a -> a

This function knows so little about its argument that it can’t do anything to it! For example, if it tried to divide whatever
it received by 2, it would have to be identity : Float -> Float instead. The only way to implement an Elm function
with the type a -> a is to have it return its argument unchanged.

identity : a -> a
identity a = a

Inferring implementation details like this can speed up bug hunting. Sometimes you can tell whether a function a
coworker wrote might possibly be the culprit behind a bug you’re tracking down...just by looking at its type! If the
function couldn’t possibly affect the problematic value, then you know you’re clear to move on and search elsewhere.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

168

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

USING .TITLE

There’s one more refactor we can make to our test. Take a closer look at the anonymous
function we’re passing to Result.map.

"""{"url": "fruits.com", "size": 5}"""
 |> decodeString photoDecoder
 |> Result.map (\photo -> photo.title)
 |> Expect.equal (Ok "(untitled)")

In Chapter 4, we saw that .url is a function which takes a record and returns the contents of
its url field. Similarly, .title is a function which takes a record and returns the contents of
its title field.

Let’s use .title in place of the equivalent (\photo -> photo.title) function to
complete our refactor.

 |> Result.map .title

THE UNIT TEST WITH NARROWED SCOPE

Here’s original test we began with.

decoderTest : Test
decoderTest =
 test "title defaults to (untitled)"
 (_ ->
 "{\"url\": \"fruits.com\", \"size\": 5}"
 |> decodeString photoDecoder
 |> Expect.equal
 (Ok { url = "fruits.com", size = 5, title = "" })
)

We refactored it to use triple-quoted strings, to test only the decoded title using Result.map
.title, and to use the <| operator instead of parentheses around our anonymous function.

Listing 6.3 shows our refactored decoderTest in all its glory.

Listing 6.3 Refactored decoderTest

decoderTest : Test
decoderTest =
 test "title defaults to (untitled)" <|
 _ ->
 """{"url": "fruits.com", "size": 5}"""
 |> decodeString photoDecoder
 |> Result.map .title
 |> Expect.equal (Ok "(untitled)")

This works great! We can now re-run elm-test to confirm the refactored test still passes.
However, we’re only testing this one particular hardcoded JSON string. Next we’ll use fuzz

tests to expand the range of values our test covers, without writing additional tests by hand.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

169

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

6.2 Writing Fuzz Tests
When writing tests for business logic, it can be time-consuming to hunt down edge cases—
those unusual inputs which trigger bugs that never manifest with more common inputs.

In Elm, fuzz tests help us detect edge case failures by writing one test which verifies a
large number of randomly-generated inputs.

DEFINITION Elm’s fuzz tests are tests which run several times with randomly-generated inputs. Outside of

Elm, this testing style is sometimes called fuzzing, generative testing, property-based testing, or QuickCheck-

style testing. elm-test went with fuzz because it’s concise, suggests randomness, and is fun to say.

Figure 6.5 shows what we’ll be building towards.

Figure 6.5 Randomly generating inputs with fuzz tests

A common way to write a fuzz test is to start by writing a unit test and then converting it to a
fuzz test to help identify edge cases.

Let’s dip our toes into the world of fuzz testing by converting our existing unit test to a
fuzz test. We’ll do this by randomly generating our JSON instead of hardcoding it, so we can
be sure our default title works properly no matter what the other fields are set to!

6.2.1 Converting Unit Tests to Fuzz Tests

Before we can switch to using randomly-generated JSON, first we need to replace our
hardcoded JSON string with some code to generate that JSON programmatically.

BUILDING JSON PROGRAMMATICALLY WITH JSON.ENCODE

Just like how we use the Json.Decode module to turn JSON into Elm values, we can use the
Json.Encode module to turn Elm values into JSON. Let’s add this to the top of
TestPhotoGroove.elm:

import Json.Encode as Encode

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

170

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Since JSON encoding is the only type of encoding we’ll be doing in this file, that as Encoding
alias lets us write Encode.foo instead of the more verbose Json.Encode.foo.

JSON.ENCODE.VALUE

Whereas the Json.Decode module centers around the Decoder abstraction, the Json.Encode
module centers around the Value abstraction. A Value (short for Json.Encode.Value)
represents a JSON-like structure. In our case we will use it to represent actual JSON, but later
we’ll see how it can be used to represent objects from JavaScript as well.

We’ll use three functions to build our {"url": "fruits.com", "size": 5} JSON on the
fly:

• Encode.int : Int -> Value
• Encode.string : String -> Value
• Encode.object : List (String, Value) -> Value

Encode.int and Encode.string translate Elm values into their JSON equivalents.
Encode.object takes a list of key-value pairs; each key must be a String, and each value
must be a Value.

Table 6.2 shows how we can use these functions to create a Value representing the same
JSON structure as the one our hardcoded string currently represents.

Table 6.2 Switching from String to Json.Encode.Value

String Json.Encode.Value

"""{"url": "fruits.com", "size": 5}"""

Encode.object
 [("url", Encode.string "fruits.com")
 , ("size", Encode.int 5)
]

JSON.DECODE.DECODEVALUE

Once we have this Value we want, there are two things we could do with it.

1. Call Encode.encode to convert the Value to a String, then use our existing
decodeString photoDecoder call to run our decoder on that JSON string.

2. Don’t bother calling Encode.encode, and instead swap out our decodeString

photoDecoder call for a call to decodeValue photoDecoder instead.

Like decodeString, the decodeValue function also resides in the Json.Decode module. It
decodes a Value directly, without having to convert to and from an intermediate string
representation. That’s simpler and will run faster, so we’ll do it that way!

Let’s start by editing our import Json.Decode line to expose decodeValue instead of
decodeString. It should end up looking like this:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

171

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

import Json.Decode exposing (decodeValue)

Then let’s incorporate our new encoding and decoding logic into our test’s pipeline.

Listing 6.4 Using programmatically created JSON

decoderTest : Test
decoderTest =
 test "title defaults to (untitled)" <|
 _ ->
 [("url", Encode.string "fruits.com")
 , ("size", Encode.int 5)
]
 |> Encode.object
 |> decodeValue photoDecoder ❶
 |> Result.map .title
 |> Expect.equal (Ok "(untitled)")

❶ We now call decodeValue instead of decodeString here

FROM TEST TO FUZZ2

Now we’re building our JSON programmatically, but we’re still buiding it out of the hardcoded
values "fruits.com" and 5. To help our test cover more edge cases, we’ll replace these
hardcoded values with randomly generated ones.

The Fuzz module will help us do this. Thanks to elm-test init, it’s already imported at
the top of TestPhotoGroove.elm:

import Fuzz exposing (Fuzzer, list, int, string)

We want a randomly generated string to replace "fruits.com" and a randomly generated
integer to replace 5. To access those we’ll make the substitution shown in Table 6.3.

Table 6.3 Replacing a Unit Test with a Fuzz Test

Unit Test Fuzz Test

test "title defaults to (untitled)" <|
 _ ->

fuzz2 string int "title defaults to (untitled)" <|
 \url size ->

We’ve done two things here.
First we replaced the call to test with a call to fuzz2 string int. The call to fuzz2 says

that we want a fuzz test which randomly generates 2 values. string and int are fuzzers
which specify that we want the first generated value to be a string, and the second to be an
integer. Their types are string : Fuzzer String and int : Fuzzer Int.

DEFINITION A fuzzer specifies how to randomly generate values for fuzz tests.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

172

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

The other change we made was to our anonymous function. It now accepts two arguments:
url and size. Because we’ve passed this anonymous function to fuzz2 string int, elm-
test will run this function 100 times, each time randomly generating a fresh String value and
passing it in as url, and a fresh Int value and passing it in as size.

NOTE Fuzz.string does not generate strings completely at random. It has a higher probability of

generating values that are likely to cause bugs: the empty string, very short strings, and very long strings.

Similarly, Fuzz.int prioritizes generating 0, a mix of positive and negative numbers, and a mix of very small

and very large numbers. Other fuzzers tend to be designed with similar priorities.

USING THE RANDOMLY-GENERATED VALUES

Now that we have our randomly-generated url and size values, all we have to do is to use
them in place of our hardcoded "fruits.com" and 5 values. Here’s our final fuzz test:

Listing 6.5 Our first complete fuzz test

decoderTest : Test
decoderTest =
 fuzz2 string int "title defaults to (untitled)" <|
 \url size -> ❶
 [("url", Encode.string url)
 , ("size", Encode.int size)
]
 |> Encode.object
 |> decodeValue photoDecoder
 |> Result.map .title
 |> Expect.equal (Ok "(untitled)")

❶ url and size come from the string and int fuzzers we passed to fuzz2

Great! We can now have considerably more confidence that any JSON string containing only
properly-set "url" and "size" fields—but no "title" field—will result in a photo whose title
defaults to "(untitled)".

TIP For even greater confidence, we can run elm-test --fuzz 5000 to run each fuzz test function five

thousand times instead of the default of 100 times. Specifying a higher --fuzz value covers more inputs, but

it also makes tests take longer to run. Working on a team can get us more runs without any extra effort.

Consider that if each member of a five-person team runs the entire test suite ten times per day, the default --

fuzz value of of 100 gets us five thousand runs by the end of the day!

Next we’ll turn our attention to a more frequently invoked function in our code base: update.

6.2.2 Testing update functions

All Elm programs share some useful properties which make them easier to test.

1. The entire application state is represented by a single Model value.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

173

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

2. Model only ever changes when update receives a Msg and returns a new Model.
3. update is a plain old function, so we can call it from tests like any other function.

Let’s take a look at the type of update:

update : Msg -> Model -> (Model, Cmd Msg)

Since this one function serves as the gatekeeper for all state changes in our application, all it
takes to test any change in application state is to:

1. Call update in a test, passing the Msg and Model of our choice
2. Examine the Model it returns

TESTING SELECTBYURL

Let’s use this technique to test one of our simplest state changes: when a SetUrl message
comes through the application. For reference, here’s the branch of update’s case-expression
that runs when it receives a SetUrl message.

SelectByUrl selectedUrl ->
 applyFilters { model | selectedUrl = Just selectedUrl }

This might seem like a trivial thing to test. It does so little! All it does is update the model’s
selectedUrl field, right?

Not quite! Importantly, this logic also calls applyFilters. What if applyFilters
introduces a bug later? Even writing a quick test for SelectByUrl can give us an early warning
against that and other potential regressions.

Listing 6.3 shows a basic implementation, which combines several concepts we’ve seen
elsewhere in the chapter.

Listing 6.3 Testing SelectByUrl

selectByUrlSelectsPhoto : Test
selectByUrlSelectsPhoto =
 fuzz string " SelectByUrl selects the given photo by URL " <|
 \url ->
 PhotoGroove.initialModel ❶
 |> PhotoGroove.update (SelectByUrl url) ❷
 |> Tuple.first ❸
 |> .selectedUrl
 |> Expect.equal (Just url)

❶ Begin with the intiial model
❷ Call update directly
❸ Discard the Cmd returned by update

You may recall Tuple.first from Chapter 1. It takes a tuple and returns the first element in
it. Since update returns a (Model, Cmd Msg) tuple, calling Tuple.first on that value
discards the Cmd and returns only the Model—which is all we care about in this case.

Let’s run the test to confirm it works. Now we should see two passing tests instead of one!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

174

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

TIP Notice how elm-test always prints "to reproduce these results, run elm-test --fuzz 100 --seed" and then

a big number? That number is the random number seed used to generate all the fuzz values. If you encounter

a fuzz test which is hard to reproduce, you can copy this command and send it to coworker. If they run it on the

same set of tests, they will see the same output you will; fuzz tests are deterministic given the same seed.

Making Commands Testable
Unfortunately, elm-test does not currently support testing commands directly. However, you can work around this if
you’re willing to modify your update function. First, make a union type which represents all the different commands
your application can run. In our case that would be:
type Commands
 = FetchPhotos Decoder String
 | SetFilters FilterOptions

Then change update to have this type:

update : Msg -> Model -> (Model, Commands)

Next, write a function which converts from Commands to Cmd Msg.
toCmd : Commands -> Cmd Msg
toCmd commands =
 case commands of
 FetchPhotos decoder url ->
 Http.get url decoder
 |> Http.send LoadPhotos

 Setfilters options ->
 setFilters options

Finally, we can use these to assemble the type of update that programWithFlags expects:
updateForProgram : Msg -> Model -> (Model, Cmd Msg)
updateForProgram msg model =
 let
 (newModel, commands) =
 update msg model
 in
 (newModel, toCmd commands)

Now we can pass updateForProgram to programWithFlags and everything will work as before. The difference
will be that update returns a value we can examine in as much depth as we like, meaning we can test it in as much
depth as we like!

This technique is useful, but it is rarely used in practice. The more popular approach is to hold off on testing
commands until elm-test supports it directly.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

175

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

FUZZING COLLECTIONS

We can also use fuzzers to generate collections such as lists. For example, we can call fuzz
(list string) to run a fuzz test which uses a Fuzzer (List String).

Let’s use this to test that LoadPhotos selects the first photo it receives.

Listing 6.3 Testing LoadPhotos

loadPhotosSelectsFirstPhoto : Test
loadPhotosSelectsFirstPhoto =
 fuzz (list string) "LoadPhotos selects the first photo" <|
 \urls ->
 let ❶
 photos = ❶
 List.map photoFromUrl urls ❶
 in ❶
 PhotoGroove.initialModel
 |> PhotoGroove.update (LoadPhotos (Ok photos))
 |> Tuple.first
 |> .selectedUrl
 |> Expect.equal (List.head urls) ❷
photoFromUrl : String -> Photo ❸
photoFromUrl url = ❸
 { url = url, size = 0, title = "" } ❸

❶ This let-expression creates a scope for our test only
❷ List.head (from Chapter 4) returns the first element in the list
❸ We’ll use this function in future tests too

NOTE We could also have randomly generated size and title values like we did with url here. However,

these would have been completely ignored by the test, and would make the test take longer to run. Still, it’s

possible that future changes to LoadPhotos could make it break when given different size and title

values, so including them in the test would be a change worth considering despite the performance cost.

GROUPING TESTS WITH DESCRIBE

These two tests we’ve written are related—they both test state transitions—and it can be
helpful for our test output to highlight this whenever one or both of them fails.

We can group tests together using the describe function, which has this type:

describe : String -> List Test -> Test

When one of the tests in the given list fails, elm-test will print out not only that test’s
description, but also the string passed to describe as the first argument here. For example, if
we moved our selectByUrlSelectsPhoto test into a call to describe "state transitions",
its failure output would include the string "state transitions" like so:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

176

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Figure 6.6 Failure output after using describe

Let's move both of our existing test implementations inside a call to describe, such that they
no longer have top-level type annotations.

stateTransitions : Test
stateTransitions =
 describe "state transitions"
 [fuzz string "SelectByUrl selects the given photo by URL" <|
 \url ->
 ...

 , fuzz (list string) "LoadPhotos selects the first photo" <|
 \urls ->
 ...
]

photoFromUrl : String -> Photo
photoFromUrl = ...

Re-run elm-test. You should still see three happily passing tests!

TIP As our test suites get larger, it can be handy to run only a few tests at a time. Take a look at the

Test.skip and Test.only functions in the documentation for the elm-communtiy/elm-test package

on the package.elm-lang.org website. We can also run only a few test files at a time by passing them as

arguments to elm-test, for example elm-test tests/DecoderTests.elm or elm-test

tests/User/*.elm.

We’ve now tested some decoder business logic, confirmed that running a SelectByUrl
message through update selects the given photo, and verified that LoadPhotos selects the
first photo in the list. Next we’ll take the concepts we’ve learned so far and apply them to
testing our rendering logic as well!

6.3 Testing Views
Our application has several rules concerning how we render thumbnail photos. For example:

• Initially, we don’t render any thumbnails.
• Once the photos load, we render a thumbnail for each of them.
• When you click a thumbnail, that photo becomes selected.

It’s important that these features keep working as we expand our application. By writing tests
for each of them, we can guard against not only future business logic regressions in update,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

177

Licensed to Correl Roush <correl@gmail.com>

http://package.elm-lang.org/
https://forums.manning.com/forums/elm-in-action

but also visual regressions in view as well! In the remainder of the chapter, we will write tests
to verify all three of these rules.

6.3.1 Testing DOM Structure

The functions to test DOM structure come from a package called eeue56/elm-html-test,
which was also installed when we ran elm-test init. We can import the modules we’ll be
using from this package by adding this to the top of TestPhotoGroove.elm.

import Test.Html.Query as Query
import Test.Html.Selector exposing (text, tag, attribute)

NOTE It’s common to alias Test.Html.Query as Query like this for brevity’s sake. We’ll refer to this as

“the Query module” in this chapter, even though the fully-qualified name would be “the Test.Html.Query

module.”

With these modules in hand, we’re ready to write our first view test!

NO PHOTOS? NO THUMBNAILS.

The first rule we’ll test is this one:

• Initially, we don’t render any thumbnails.

Here’s the test we’ll write for that.

noPhotosNoThumbnails : Test
noPhotosNoThumbnails =
 test "No thumbnails render when there are no photos to render." <|
 _ ->
 PhotoGroove.initialModel
 |> PhotoGroove.view
 |> Query.fromHtml
 |> Query.findAll [tag "img"]
 |> Query.count (Expect.equal 0)

There are several steps in this pipeline, so let’s break them down into two parts.

BUILDING A QUERY.SINGLE

The first part of the pipeline is this:

PhotoGroove.initialModel
 |> PhotoGroove.view
 |> Query.fromHtml

This code kicks things off by building a representation of the DOM that our test can examine.
Table 6.5 breaks down the types involved in this expression.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

178

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Table 6.5 Types involved in initialModel |> view |> Query.fromHtml

Expression Type

PhotoGroove.initialModel

Model

PhotoGroove.view

Model -> Html Msg

Query.fromHtml

Html msg -> Query.Single msg

PhotoGroove.initialModel
 |> PhotoGroove.view
 |> Query.fromHtml

Query.Single msg

Passing initialModel to view gives us the Html which will display on Photo Groove’s initial
render. The functions in the Query module describe descend into this Html, starting from its
root node and proceeding down the tree of DOM nodes it describes. Once we’ve narrowed it
down to the nodes we care about, we call one final function to verify something about them,
and produce an Expectation.

Figure 6.7 Finding all the img tags in the DOM

QUERYING HTML

Query functions make use of two different types as they descend into Html:

• Query.Single, which represents a single DOM node
• Query.Multiple, which represents multiple DOM nodes

Some functions work in terms of Single nodes, whereas others work in terms of Multiple
nodes. Representing these as distinct types makes it easier to tell when we expect a query to

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

179

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

have one result versus several. For example, the Query.count function takes Multiple,
whereas the Query.children function takes Single and returns Multiple.

CONVERTING FROM HTML TO QUERY

The Query.fromHtml function begins the process of descending into a Html value, by
returning a Single representing the Html’s root node.

What is that root node in our case? We can tell by looking at the view function which
returned that Html, namely PhotoGroove.view:

view : Model -> Html Msg
view model =
 div [class "content"]

Since view returns a div with a class of "content", when our Query.fromHtml function
returns a Query.Single value, that Single value will refer to this div.

NOTE The complete type of Query.fromHtml is fromHtml : Html msg -> Query.Single msg.

Notice the type variable msg in there? Since view returns a Html Msg, calling Query.fromHtml will return

a Query.Single Msg value.

CONVERTING FROM QUERY TO EXPECTATION

Now that we have our Single value representing the div [class "content"] at the root of
our Html, let’s look at the rest of the pipeline—where we transform that Single into an
Expectation.

Table 6.6 breaks down the types involved in this process.

Expression Type

PhotoGroove.initialModel
 |> PhotoGroove.view
 |> Query.fromHtml

Query.Single msg

Query.findAll [tag "img"]

Query.Single msg -> Query.Multiple msg

Query.count (Expect.equal 0)

Query.Multiple msg -> Expectation

We’ve used two functions to get from Single to Expectation: Query.findAll and
Query.count.

Here’s the type of Query.findAll:

findAll : List Selector -> Single msg -> Multiple msg

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

180

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

We give it a list of selectors—ways to identify a particular DOM node—and a Single, and it
returns a Multiple representing all the descendant nodes which match the given selectors.
We gave it only one selector—tag "img"—which means findAll will return all the img tags in
the DOM tree beneath the div ["content"] at the root of our Single query.

Finally, once we have our Multiple nodes, we’re ready to make a claim about them. In
this case, our test is that we expect no thumbnails to be rendered, so we want to make the
claim that the Multiple query contains zero nodes. This is where Query.count comes in!

count : (Int -> Expectation) -> Multiple msg -> Expectation

PARTIALLY APPLYING EXPECT.EQUAL

Notice that Query.count takes an (Int -> Expectation) function, which we satisfied by
passing it a partially-applied Expect.equal:

Query.count (Expect.equal 0)

As you may recall from earlier, Expect.equal takes two arguments and compares them to
verify that they’re equal. That means these two expressions are equivalent:

Query.count (Expect.equal 0)
Query.count (\count -> Expect.equal 0 count)

One way to read Query.count (Expect.equal 0) is “Count the results in the query, and
expect that count to equal 0.”

COMPLETE VIEW TEST

Here’s the complete implementation of our noPhotosNoThumbnails test, from Model to
Expectation by way of Html and some Query operations.

Listing 6.7 noPhotosNoThumbnails

noPhotosNoThumbnails : Test
noPhotosNoThumbnails =
 test "No thumbnails render when there are no photos to render." <|
 _ ->
 PhotoGroove.initialModel
 |> PhotoGroove.view ❶
 |> Query.fromHtml ❷
 |> Query.findAll [tag "img"] ❸
 |> Query.count (Expect.equal 0) ❹

❶ Generate Html by rendering initialModel
❷ Return Query.Single for that Html’s root div
❸ Find the img nodes inside that Query.Single
❹ Count the img nodes, expect it to be 0

Sure enough, when we run the test, it should pass!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

181

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Next we’ll expand this test to verify not only views resulting from the initial model, but also
ones from models that have photos loaded.

6.3.2 Fuzzing View Tests

The second business rule we want to test is this one:

• Once the photos load, we render a thumbnail for each of them.

CHECKING IF A GIVEN THUMBNAIL WAS RENDERED

Let’s start by writing a function to check whether a given URL has been rendered as a
thumbnail.

thumbnailRendered : String -> Query.Single msg -> Expectation
thumbnailRendered url query =
 query
 |> Query.findAll [tag "img", attribute "src" (urlPrefix ++ url)]
 |> Query.count (Expect.atLeast 1)

This function starts with a Query.Single—which will represent the root of our page’s DOM—
and finds all the img elements within it that have the expected src attribute. Then runs a
Query.count which expects that our query found at least one img element like that.

NOTE It’s better to use Expect.atLeast 1 than Expect.equal 1 because our business logic permits

duplicate thumbnail URLs, and we wouldn’t want our test to incorrectly reject repeats as invalid!

We use (urlPrefix ++ url) for our src check instead of url because that’s what our
viewThumbnail implementation does. The urlPrefix is "http://elm-in-action.com/", so
without prepending that, we would be searching for a src of "foo.jpeg" when in actuality a
src of "http://elm-in-action.com/foo.jpeg" was rendered—meaning this test would never
pass.

CHECKING IF ALL THUMBNAILS WERE RENDERED
Now that we have a function to test whether a single thumbnail was rendered, let’s use it

to build a function which tests whether all thumbnails were rendered. We could test this by
hardcoding some example photos, but why bother? We can get better test coverage by using
fuzz tests to randomly generate URLs, and build photos from those!

We want to generate a list of URLs, so we might think to start by using a fuzz test which
generated a list of strings like we did with our LoadPhotos test earlier:

 fuzz (list string) "URLs render as thumbnails" <|

However, there’s a subtle problem here: the list fuzzer can potentially generate hundreds of
elements. That might not sound like a big deal, but let’s recap what we want this test to do.

1. Generate a list of URLs.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

182

Licensed to Correl Roush <correl@gmail.com>

http://elm-in-action.com/
http://elm-in-action.com/foo.jpeg
https://forums.manning.com/forums/elm-in-action

2. Render a page which creates a thumbnail Html element for each of these URLs
3. Convert that entire Html structure to a Query.Single
4. Traverse every element inside the Query.Single looking for an img with the right src
5. Repeat the previous step for every single one of the URLs

If the list fuzzer generates 300 URLs on average, that means for each of those 300 URLs,
Query.findAll has to traverse 300 nodes searching for the one that matches. That’s a total
of 90,000 nodes to traverse, and we’re not even done yet! Remember how fuzz tests run 100
times by default? If those tests generate 300 URLs on average, the total traversal count would
be 300 times 300 times 100—so we’d be looking at 9 million traversals in a single test run.

That test would take, uh...a bit of time to run.
So let’s not do that! When test suites start taking a long time to run, it slows down the

whole team. Tests accumulate, and it’s important to be mindful of their performance
characteristics to avoid letting slowdowns accumulate as well.

CUSTOMIZING LIST SIZES

We can prevent this combinatoric explosion by restricting the sizes of the lists we generate.
Let’s start our test out like this:

thumbnailsWork : Test
thumbnailsWork =
 fuzz (Fuzz.intRange 1 5) "URLs render as thumbnails" <|
 \urlCount ->

Fuzz.intRange will randomly generate an integer between 1 and 5. We’ll use it to build a list
between 1 and 5 elements. (We already have a test covering the zero-elements case: our
noPhotosNoThumbnails test from earlier.)

Here’s how we can convert from urlCount to a list of URLs.

urls : List String
urls =
 List.range 1 urlCount
 |> List.map (\num -> toString num ++ ".png")

The List.range function takes two integers and makes a list containing all the numbers in
between. We can see it in action in elm-repl:

> List.range 1 5
[1,2,3,4,5] : List Int

Now that we have a reasonably-sized list of URLs, we can build photos from them using the
photoFromUrl function we wrote earlier. Then we can build a query using a pipeline similar to
the one created for our last view test. This time, instead of leaving initialModel unchanged,
we’ll override its photos field to be the list of photos we just created using photoFromUrl on
the fly.

{ initialModel | photos = List.map photoFromUrl urls }
 |> PhotoGroove.view

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

183

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 |> Query.fromHtml

This gives us a Query.Single, which we can use to create an Expectation to complete our
test.

COMBINING EXPECTATIONS WITH EXPECT.ALL

Let’s pause and take a look at what we’ve put together so far. We have:

1. A Query.Single representing the root DOM node of our page
2. A function which checks if a Query.Single renders the given URL as a thumbnail:

thumbnailRendered : String -> Query.Single msg -> Expectation
3. A list of URLs: urls : List String

We can distill these down to a single Expectation using the Expect.all function:

Expect.all : List (subject -> Expectation) -> subject -> Expectation

The purpose of Expect.all is to run a series of checks on a single subject value, and return a
passing Expectation only if they all pass. In our case, the subject will be the Query.Single
value we’ve built up, meaning we need to pass Expect.all a list with this type:

List (Query.Single msg -> Expectation)

We can use thumbnailRendered to get just such a list! Let’s take a look at its type again:

thumbnailRendered : String -> Query.Single msg -> Expectation

We can get our list of checks by partially applying thumbnailRendered like so:

thumbnailChecks : List (Query.Single msg -> Expectation)
thumbnailChecks =
 List.map thumbnailRendered urls

Because we’ve passed a List String to List.map, it will pass each String in that list as the
first argument to thumbnailRendered. The result of this List.map is the List (Query.Single
msg -> Expectation) we needed for Expect.all.

THE FINAL TEST

Putting it all together, here’s what we get.

Listing 6.7 The complete thumbnail test

thumbnailsWork : Test
thumbnailsWork =
 fuzz (Fuzz.intRange 1 5) "URLs render as thumbnails" <|
 \urlCount ->
 let
 urls : List String
 urls =
 List.range 1 urlCount
 |> List.map (\num -> toString num ++ ".png")

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

184

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 thumbnailChecks : List (Query.Single msg -> Expectation)
 thumbnailChecks =
 List.map thumbnailRendered urls
 in
 { initialModel | photos = List.map photoFromUrl urls }
 |> PhotoGroove.view
 |> Query.fromHtml
 |> Expect.all thumbnailChecks

Now that we’ve verified that the thumbnails display as expected, we can move on to testing
that they work properly when a user clicks one!

6.3.3 Testing User Interactions

Our final piece of business logic we’ll be testing is this:

• When you click a thumbnail, that photo becomes selected.

Here we can benefit from the test coverage we’ve obtained through tests we wrote earlier in
the chapter. We already have tests which verify:

• When the photos load, the first one gets selected.
• Whenever update receives a SelectByUrl message, that photo becomes selected.

Having that logic independently verified simplifies what it takes to test this requirement: all we
need to do is test that when the user clicks a thumbnail, the Elm Runtime will send an
appropriate SelectByUrl message to update.

FUZZ.MAP

Once again we’ll want a list of URLs, and once again we’ll want to avoid a combinatoric
explosion by limiting the number of photos we generate to only a handful. Now that we have
multiple tests that want a short list of URL strings, we can avoid code duplication by creating a
custom Fuzzer (List String) value that has these characteristics, using Fuzz.map.

Earlier in the chapter we learned about Result.map, and saw how it compared to
List.map, Maybe.map, and Json.Decode.map. Buckle up, because Fuzz.map is going to be
super duper different from those other map functions.

 Fuzz.map : (a -> b) -> Fuzzer a -> Fuzzer b
Json.Decode.map : (a -> b) -> Decoder a -> Decoder b
 List.map : (a -> b) -> List a -> List b
 Maybe.map : (a -> b) -> Maybe a -> Maybe b

Okay, not really. Fuzz.map works the same way as these other map functions do: it takes a
function which converts from one contained value to another.

Listing 6.8 shows how we can use Fuzz.map to implement our custom fuzzer.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

185

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

Listing 6.8 Custom Fuzzer with Fuzz.map

urlFuzzer : Fuzzer (List String)
urlFuzzer =
 Fuzz.intRange 1 5
 |> Fuzz.map urlsFromCount

urlsFromCount : Int -> List String
urlsFromCount urlCount =
 List.range 1 urlCount
 |> List.map (\num -> toString num ++ ".png")

Now that we have this fuzzer, we can refactor our thumbnailsWork test to use it. First we’ll
remove the urls definition from inside its let-expression, and then we’ll replace the test
definition with this:

thumbnailsWork =
 fuzz urlFuzzer "URLs render as thumbnails" <|
 \urls ->

SIMULATING CLICK EVENTS

Next we’ll write a fuzz test that renders a list of photos and simulates clicking one of them.
Let’s think about the structure of that test. It needs two ingredients:

• A list of one or more photos
• Knowing which photo in that list to click

One way we could set this test up is the same way we did with thumbnailsWork above:

 fuzz urlFuzzer "clicking a thumbnail selects it" <|
 \urls->

There’s a problem with this approach. What if urlFuzzer happens to generate an empty list?
We’d have no photo to click!

GENERATING A NONEMPTY LIST

We can fix this by generating a single URL, plus a list of other URLs to go after it. It’s okay if
that second list happens to be empty, because we’ll still have the single URL to work with.

 fuzz2 string urlFuzzer "clicking a thumbnail selects it" <|
 \urlToSelect otherUrls ->
 let
 photos =
 [urlToSelect] ++ otherUrls

NOTE Another way represent this would be to use a Nonempty List data structure. Check out the

mgold/elm-nonempty-list package if you’re interested in learning more about Nonempty Lists.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

186

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

THE :: OPERATOR

Incidentally, when we have a single element to add to the front of a list like this, the ::
operator is both more concise and more efficient than what we’ve done here.

The following two expressions produce the same list, but the version that uses :: is more
efficient because it does not create an extra list in the process.

[urlToSelect] ++ otherUrls
 urlToSelect :: otherUrls

CHOOSING WHICH PHOTO TO CLICK

This test is looking better, but there’s another problem. How do we decide which photo to
click? We could decide to choose the first one every time, but then our test wouldn’t be very
complete. We’d only be testing that clicking the first thumbnail works, not that clicking any
thumbnail works.

Could we select which photo to click at random? Well, as we saw in Chapter 3, generating
random numbers is an effect (represented in Elm as a Cmd), and elm-test tests are not
permitted to run effects.

What we can do instead is to generate two lists at random: one list to go before the URL
we’ll click, and another to go after it.

fuzz3 urlFuzzer string urlFuzzer "clicking a thumbnail selects it" <|
 \urlsBefore urlToClick urlsAfter ->
 let
 photos =
 urlsBefore ++ urlToClick :: urlsAfter

NOTE Another way to represent this would be to use a List Zipper data structure. Check out the

rtfeldman/selectlist package if you’re interested in learning more about List Zippers.

We’ve almost got the list we want, but not quite. Since we want to make sure we click the
right one, its URL needs to be unique within the list of photos. We can do this by giving it a
different extension from the others; we used ".png" in our urlFuzzer definition, so we’ll use
".jpeg" here.

url =
 urlToSelect ++ ".jpeg"

photos =
 urlsBefore ++ url :: urlsAfter

HTML.TEST.EVENTS

It’s time to simulate the click event! We’ll use the Html.Test.Event module to do this, so let’s
add it at the top of PhotoGrooveTests and alias it to Event for brevity.

import Test.Html.Event as Event

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

187

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

This gives us access to a function called Event.simulate which simulates user events, such as
clicks, and checks whether they result in the expected message being sent to update.

Here’s how we’ll use it.

Listing 6.10 Event.simulate

clickThumbnail : Test
clickThumbnail =
 fuzz3 urlFuzzer string urlFuzzer "clicking a thumbnail selects it" <|
 \urlsBefore urlToSelect urlsAfter ->
 let
 url =
 urlToSelect ++ ".jpeg"

 photos =
 (urlsBefore ++ url :: urlsAfter)
 |> List.map photoFromUrl

 srcToClick =
 urlPrefix ++ url
 in
 { initialModel | photos = photos }
 |> PhotoGroove.view
 |> Query.fromHtml
 |> Query.find [tag "img", attribute "src" srcToClick]
 |> Event.simulate Event.click ❶
 |> Event.expect (SelectByUrl url) ❷

❶ Simulate that a user clicked this img
❷ Expect that this message was sent to update

Those last three lines are new! Here’s what’s different about them.

1. We used Query.find instead of Query.findAll. This is different in that Query.find
expects to find exactly 1 node, and returns a Single instead of a Multiple. If it finds
zero nodes, or multiple nodes, it immediately fails the entire test.

2. Event.simulate Event.click simulates a click event on the node returned by
Query.find. It returns an Event value, representing what the Elm runtime will produce
in response to that click event.

3. Event.expect (SelectByUrl url) converts the Event into an Expectation, by
checking that the event resulted in a (SelectByUrl url) message being sent to
update.

If we run all this, sure enough, it works!

FINAL TESTS

With this test in place, we have now covered all three cases of our rendering logic that we set
out to cover:

• Initially, we don’t render any thumbnails.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

188

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

• Once the photos load, we render a thumbnail for each of them.
• When you click a thumbnail, that photo becomes selected.

Great success!

6.4 Summary
We’ve learned plenty in this chapter, including:

• How to introduce tests to an existing Elm application
• The similarities between Result.map, List.map, Maybe.map, and Json.Decode.map
• Building JSON values using Json.Encode
• How to use Json.Decode.decodeValue instead of decodeString
• Describing expectations using Expect.equal, Expect.atLeast, and Expect.all
• Writing unit tests using the test function
• Writing fuzz tests by passing fuzzers to fuzz, fuzz2, and fuzz3
• Testing the update function by passing handcrafted messages to it in tests
• Assembling Html values and querying them with Test.Html.Query
• Descending through the DOM using Query.findAll
• Simulating sending events to rendered Html using Event.simulate

Here’s the final PhotoGrooveTests.elm file.

Listing 6.11 PhotoGrooveTests.elm

module PhotoGrooveTests exposing (..)

import Expect exposing (Expectation)
import Fuzz exposing (Fuzzer, list, int, string)
import Test exposing (..)
import PhotoGroove exposing (..)
import Json.Decode exposing (decodeValue)
import Json.Encode as Encode
import Test.Html.Query as Query
import Test.Html.Selector exposing (text, tag, attribute)
import Test.Html.Event as Event

decoderTest : Test
decoderTest =
 fuzz2 string int "title defaults to (untitled)" <|
 \url size ->
 [("url", Encode.string url)
 , ("size", Encode.int size)
]
 |> Encode.object
 |> decodeValue photoDecoder
 |> Result.map .title
 |> Expect.equal (Ok "(untitled)")

stateTransitions : Test

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

189

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

stateTransitions =
 describe "state transitions"
 [fuzz string "SelectByUrl selects the given photo by URL" <|
 \url ->
 PhotoGroove.initialModel
 |> PhotoGroove.update (SelectByUrl url)
 |> Tuple.first
 |> .selectedUrl
 |> Expect.equal (Just url)
 , fuzz (list string) "LoadPhotos selects the first photo" <|
 \urls ->
 let
 photos =
 List.map photoFromUrl urls
 in
 PhotoGroove.initialModel
 |> PhotoGroove.update (LoadPhotos (Ok photos))
 |> Tuple.first
 |> .selectedUrl
 |> Expect.equal (List.head urls)
]

photoFromUrl : String -> Photo
photoFromUrl url =
 { url = url, size = 0, title = "" }

noPhotosNoThumbnails : Test
noPhotosNoThumbnails =
 test "No thumbnails render when there are no photos to render." <|
 _ ->
 PhotoGroove.initialModel
 |> PhotoGroove.view
 |> Query.fromHtml
 |> Query.findAll [tag "img"]
 |> Query.count (Expect.equal 0)

thumbnailRendered : String -> Query.Single msg -> Expectation
thumbnailRendered url query =
 query
 |> Query.findAll [tag "img", attribute "src" (urlPrefix ++ url)]
 |> Query.count (Expect.atLeast 1)

thumbnailsWork : Test
thumbnailsWork =
 fuzz urlFuzzer "URLs render as thumbnails" <|
 \urls ->
 let
 thumbnailChecks : List (Query.Single msg -> Expectation)
 thumbnailChecks =
 List.map thumbnailRendered urls
 in
 { initialModel | photos = List.map photoFromUrl urls }
 |> PhotoGroove.view
 |> Query.fromHtml

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

190

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

 |> Expect.all thumbnailChecks

urlFuzzer : Fuzzer (List String)
urlFuzzer =
 Fuzz.intRange 1 5
 |> Fuzz.map urlsFromCount

urlsFromCount : Int -> List String
urlsFromCount urlCount =
 List.range 1 urlCount
 |> List.map (\num -> toString num ++ ".png")

clickThumbnail : Test
clickThumbnail =
 fuzz3 urlFuzzer string urlFuzzer "clicking a thumbnail selects it" <|
 \urlsBefore urlToSelect urlsAfter ->
 let
 url =
 urlToSelect ++ ".jpeg"

 photos =
 (urlsBefore ++ url :: urlsAfter)
 |> List.map photoFromUrl

 srcToClick =
 urlPrefix ++ url
 in
 { initialModel | photos = photos }
 |> PhotoGroove.view
 |> Query.fromHtml
 |> Query.find [tag "img", attribute "src" srcToClick]
 |> Event.simulate Event.click
 |> Event.expect (SelectByUrl url)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

191

Licensed to Correl Roush <correl@gmail.com>

https://forums.manning.com/forums/elm-in-action

A
Getting Set Up

This covers installing

 Node.js (6.9.2 or higher) and NPM

 The Elm Platform

 The Elm in Action Repository

 Recommended optional tools

INSTALLING NODE.JS AND NPM

In addition to having the Elm Platform installed, the examples in this book require having
Node.js 6.9.2 or higher and NPM 3.10 or higher installed as well. If you haven’t already, visit
https://nodejs.org and follow the instructions to download and install them.

NOTE The Node.js installer on https://nodejs.org also installs NPM for you, so if you install Node that way,

you will not need to install NPM separately.

To confirm that you have Node.js 6.9.2 or higher and NPM 3.10 or higher installed, you should
be able to run these commands in your terminal and see similar output:

$ node ‐‐version
v6.9.2

$ npm ‐‐version
3.10.9

If you have Node installed but not NPM, then your installation of Node is probably not the one
from http://nodejs.org. Please make sure you have NPM installed before continuing!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

192

Licensed to Correl Roush <correl@gmail.com>

INSTALLING THE ELM PLATFORM

Now that you have NPM installed, you can use it to get the Elm Platform along with the elm-
test and elm-css command line interfaces:

npm install ‐g elm elm‐test elm‐css

TIP If npm gives you a lengthy error involving the word EACCESS, visit https://docs.npmjs.com/getting-

started/fixing-npm-permissions for how to resolve it. If you are unable to resolve it, you can fall back on

installing the Elm Platform directly from http://elm-lang.org/install - but this will only get you through Chapters

1 through 5. Starting in Chapter 6, being able to run npm install -g will be required to run the examples!

Let’s verify that the Elm platform was installed properly:

elm‐make ‐‐version
elm‐make 0.18.0 (Elm Platform 0.18.0)

If you see a version higher than 0.18.0, then as of this writing, you are living in the future!
Hello from the past, where 0.18.0 is the latest release.

NOTE Any version that starts with 0.18 should work fine with this book, but according to semantic

versioning, a version number beginning with 0.19 or higher indicates breaking changes. In such a case,

there’s a good chance your examples will not compile! Try npm install -g elm@0.18.0 to get a

compatible version.

OBTAINING THE ELM IN ACTION REPOSITORY

This book does not require using Git or any Git knowledge. If you are not a Git user, you can
download and extract a zip archive of the repository at https://github.com/rtfeldman/elm-
in-action/archive/master.zip and proceed directly to the next section!

Git users can download the repository by running this:

git clone https://github.com/rtfeldman/elm‐in‐action.git

The repository has been tagged with various checkpoints. Suppose you are about to read
Chapter 2, Section 2.2.1. You can visit this URL to obtain all the code necessary to work
through the examples in Section 2.2.1:

https://github.com/rtfeldman/elm‐in‐action/tree/2.2.1

You can replace the 2.2.1 in that URL with a different section number to view the code at the
start of that section.

For example, if you want to peek ahead and see where things stand at the end of Section
2.2.1, you can bring up the 2.2.2 tag by visiting https://github.com/rtfeldman/elm-in-
action/tree/2.2.2 in a browser. Alternatively, you can run git checkout 2.2.2 from a
terminal if you ran git clone on the repository earlier.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

193

Licensed to Correl Roush <correl@gmail.com>

INSTALLING RECOMMENDED OPTIONAL TOOLS

To get syntax highlighting and other niceties, visit http://elm-lang.org/install#syntax-
highlighting and select your editor of choice to find an appropriate Elm plugin. Make sure your
editor is configured to convert tabs to spaces, as tab characters are syntax errors in Elm!

I also strongly recommend installing elm-format: https://github.com/avh4/elm-format
I absolutely love elm-format. It automatically formats Elm code according to a nice,

consistent standard. I use it for personal projects, my whole team at work uses it, and I have
my editor configured to run it whenever I save. (Several editors enable this by default, but if
not, there are easy instructions in the above link for how to enable format-on-save.)

All of the examples in this book are formatted with elm-format, so using it will make life
easier as you work through them!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/elm-in-action

194

	Elm in Action MEAP V05
	Copyright
	Welcome
	Brief contents
	Chapter 1: Welcome to Elm
	1.1 How Elm Fits In
	1.2 Expressions
	1.2.1 Using elm-repl
	1.2.2 Building Expressions
	1.2.3 Booleans and Conditionals

	1.3 Functions
	1.3.1 Defining Functions
	1.3.2 Importing Functions
	1.3.3 Creating scope with let-expressions
	1.3.4 Anonymous Functions
	1.3.5 Operators

	1.4 Collections
	1.4.1 Lists
	1.4.2 Records
	1.4.3 Tuples

	1.5 Summary

	Chapter 2:
Your First Elm Application
	2.1 Rendering a Page
	2.1.1 Describing a page using the Html Module
	2.1.2 Building a Project

	2.2 Handling User Input with the Elm Architecture
	2.2.1 Representing Application State with a Model
	2.2.2 Handling Events with Messages and Updates

	2.3 Summary

	Chapter 3:
Compiler as Assistant
	3.1 Documenting Guarantees with Type Annotations
	3.1.1 Adding Optional Type Annotations
	3.1.2 Annotating Functions with Type Variables
	3.1.3 Reusing Annotations with Type Aliases
	3.1.4 Annotating Longer Functions

	3.2 Case-expressions and Union Types
	3.2.1 Using case-expressions
	3.2.2 Enumerating possibilities with Union Types
	3.2.3 Holding Data in Union Types
	3.2.4 Representing Flexible Messages with Union Types

	3.3 Generating Random Numbers with Commands
	3.3.1 Describing Random Values with Random.Generator
	3.3.2 Introducing Commands to the Elm Architecture
	3.3.3 Generating Random Values with Random.generate

	3.4 Summary

	Chapter 4:
Talking to Servers
	4.1 Preparing for Server-Loaded Data
	4.1.1 Modeling Incremental Initialization
	4.1.2 Resolving Data Dependencies

	4.2 Fetching Data from a Server
	4.2.1 Describing HTTP Requests
	4.2.2 Handling HTTP Responses
	4.2.3 Sending HTTP Requests
	4.2.4 Gracefully Handling Errors

	4.3 Decoding JSON
	4.3.1 Decoding JSON Strings into Results
	4.3.2 Decoding JSON Collections
	4.3.3 Decoding JSON HTTP Responses

	4.4 Summary

	Chapter 5: Talking to JavaScript
	5.1 Using Custom Elements
	5.1.1 Importing Custom Elements
	5.1.2 Handling Custom Events
	5.1.3 Responding to Slider Changes

	5.2 Sending Data to JavaScript
	5.2.1 Creating a Command using a Port
	5.2.2 Receiving Data from Elm
	5.2.3 Timing DOM Updates

	5.3 Receiving Data from JavaScript
	5.3.1 Receiving realtime data from JavaScript via Ports
	5.3.2 Receiving initialization arguments via Flags

	5.4 Summary

	Chapter 6:
Testing
	6.1 Writing Unit Tests
	6.1.1 Introducing Tests
	6.1.2 Unit Testing a JSON Decoder
	6.1.3 Narrowing Test Scope

	6.2 Writing Fuzz Tests
	6.2.1 Converting Unit Tests to Fuzz Tests
	6.2.2 Testing update functions

	6.3 Testing Views
	6.3.1 Testing DOM Structure
	6.3.2 Fuzzing View Tests
	6.3.3 Testing User Interactions

	6.4 Summary

	Appendix A: Getting Set Up

