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Foreword: Scott 
Hanselman

I never did a formal Computer Science course. My 
background was in Software Engineering. For a 

long time I didn’t understand the difference, but later 
I realized that the practice of software engineering is 
vastly different from the science of computers.

Software Engineering is about project management and testing and 
profiling and iterating and SHIPPING. Computer Science is about 
the theory of data structures and O(n) notation and mathy things 
and oh I don’t know about Computer Science.

Fast forward 25 years and I often wonder if it’s too late for me 
to go back to school and “learn computer science.” I’m a decent 
programmer and a competent engineer but there are…gaps. Gaps I 
need to fill. Gaps that tickle my imposter syndrome.

I’ve written extensively on Imposter Syndrome. I’m even teased 
about it now, which kind of makes it worse. “How can YOU have 
imposter syndrome?” Well, because I’m always learning and 
the more I learn the more I realize I don’t know. There’s just SO 
MUCH out there, it’s overwhelming.

Even more overwhelming are the missing fundamentals. Like when 
you’re in a meeting and someone throws out “Oh, so like a Markov 
Chain?” and you’re like “Ah, um, ya, it’s…ah…totally like that!”

If only there were other people who felt the same way. If only there 
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was a book to help me fill these gaps.

Ah! Turns out there is. You’re holding it.

Scott Hanselman @shanselman August 12, 2016 Portland, 
Oregon

Scott Hanselman has been computering, blogging, and teaching for many 
years. He works on Open Source .NET at Microsoft and has absolutely no 
idea what he’s doing.



Foreword: Chad 
Fowler

I’ve been honored to be asked to write the foreword 
for several books over the course of my career. Each 

time, my first reaction is something like “Oh wow, 
how exciting! What an honor! HEY LOOK SOMEONE 
WANTS ME TO WRITE THEIR FOREWORD!!!” 
My second reaction is almost always, “Oh no! Why 
me? Why would they ask me of all people? I’m just 
a saxophone player who stumbled into computer 
programming. I have no idea what I’m doing!”

No offense to Rob intended, but this may be the first foreword I 
feel qualified to write. Finally, a book whose very title defines my 
qualifications not just to write the foreword but to participate in 
this great industry of ours. A handbook for impostors. It’s about 
time.

You know that friend, classmate, or family member who seems to 
waste too many precious hours of his or her life sitting in front 
of a computer screen or television, mouth gaping, eyes dilated, 
repetitively playing the same video game? In my late teens and 
early twenties, that was me. I made my living as a musician and 
had studied jazz saxophone performance and classical composition 
in school. I was an extremely dedicated student and serious 
musician. Then I got seriously addicted to id Software’s Doom. I 
played Doom all the time. I was either at a gig making money or at 
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home playing the game. My fellow musicians thought I was really 
starting to flake out. I didn’t practice during the day or try to write 
music. Just Doom.

I kind of knew how personal computers worked and was pretty 
good at debugging problems with them, especially when those 
problems got in the way of me playing a successful game of Doom 
death-match. I got so fascinated by the virtual 3D rendered world 
and gameplay of Doom that my curiosity led me to start learning 
about programming at around age 20. I remember the day I asked 
a friend how programs go from text I type into a word processor 
to something that can actually execute and do something. He gave 
me an ad hoc five minute explanation of how compilers work, 
which in different company I’d be ashamed to admit served my 
understanding of that topic for several years of professional work.

Playing Doom and reading about C programming on the still-
small, budding internet taught me all I knew at the beginning 
about networking, programming, binary file formats (We hacked 
those executables with hex editors for fun. Don’t ask me why!), 
and generally gave me a mental model for how computer systems 
hung together. With this hard-won knowledge, I accidentally 
scored my first job in the industry. The same friend who had 
explained compilers to me (thanks, Walter!) literally applied for a 
computer support job on my behalf. At the “interview”, the hiring 
manager said “Walter says you’re good. When can you start?”

So, ya, I really stumbled into this industry by accident. From 
that point on, though, I did a lot of stuff on purpose. I identified 
the areas of computer technology that were most interesting to 
me and systematically learned everything I could about them. I 
treated the process like a game. Like a World of Warcraft skill tree, 
I worked my way up various paths until I got bored, intimidated, 
or distracted by something else. I covered a lot of territory over 
many hours of reading, asking questions of co-workers, and 
experimentation.

This is how I moved rather quickly from computer support to 
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network administration to network automation. It was at this time 
that the DotCom bubble was really starting to inflate. I went from 
simple scripting to object oriented programming to co-creating a 
model/view/controller framework in Java for a major corporation 
and playing the role of “Senior Software Architect” only a few 
short years after packing the saxophone away and going full time 
into software development.

Things have gone pretty well since then, but I’ve never gotten over 
that nagging feeling that I just don’t belong here. You know what I 
mean? You know what I mean. You’re talking about something you 
know well like some database-backed Web application and a co-
worker whips out Big-O notation and shuts you down. Or you’re 
talking about which language to use on the next project, and in a 
heated discussion the word “monad” is invoked.

Oh no. I don’t know what to say about this. How do I respond? 
How can I stop this conversation in a way that doesn’t expose me 
for the fraud I am? WHAT THE HELL IS A MONAD?

Haha, ya.

I hope that non-response made sense, you think as you walk 
toward the restroom, pretending that’s why you had to suddenly 
leave the discussion.

In daily work, I find myself to be at least as effective as the average 
programmer. I see problems and I come up with solutions. 
I implement them pretty quickly. They tend to work. When 
performance is bad, I fix it. When code is hard to understand I find 
a way to make it easier to understand. I’m pretty good at it I guess.

But I didn’t go to college for this stuff. I went to college and 
studied my ass off, but all I have to show for it is an extremely 
vast array of esoteric music knowledge that would bore the 
hell out of anyone who isn’t a musician. In college you learn 
about algorithms. That sounds hard. When I write code, I don’t 
use algorithms I think. Or do I? I’m not sure. I don’t invoke 
them by name most of the time. I just write code. These college 
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programmers must be writing stuff that’s unimaginably more 
sophisticated since their code has algorithms!

And how can my code perform well if I didn’t use Big-O notation 
to describe its performance and complexity characteristics? What 
the hell does “complexity” even mean in this context? I must be 
wasting so many processor cycles and so much memory. It’s a 
miracle my code performs OK, but it does.

I think most of my success in the field of computer software 
development comes from my belief that:

1.	 A computer is a machine. In some cases it’s a machine I own. I 
could break it into tiny pieces if I wanted.

2.	 These machines aren’t made of magic. They’re made of parts 
that are pretty simple. They’re made in ways that tens of 
thousands of people understand. And they’re made to conform 
to standards in many cases.

3.	 It’s possible to learn about what these components are, how 
they work, and how they fit together. They’re just little bits of 
metal and plastic with electricity flowing through them.

4.	 Everything starts with this simple foundation and grows as 
simple blocks on top.

5.	 All of the hard sounding stuff that college programmers say is 
just chunks of knowledge with names I don’t know yet.

6.	 Most of this stuff can be learned by a young adult in four years 
while they’re also trying to figure out who they are, what they 
want to do with their lives, and how to do as little work as 
possible while enjoying youth.

7.	 If someone can learn all this stuff in just a four year degree, it’s 
probably pretty easy to hunt down what they learn and learn it 
myself one concept at a time.
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8.	 Finally, and most important, somehow I get good work done 
and it doesn’t fall apart. All this stuff I don’t know must be 
just a bonus on top of what I’ve already learned.

All this is just stuff you can learn! Wow. In fact, the entirety of 
human knowledge is just a collection of stuff that you can learn 
if you want to. That’s a pretty amazing realization when you fully 
absorb it. A university doesn’t magically anoint you with ability 
when you graduate. In fact, most people seem to leave university 
with very little actual ability and a whole lot of knowledge. Ability 
comes from the combination of knowledge, practice, and aptitude.

So, what separates us impostors from the Real Deal? Knowledge, 
practice, and aptitude. That’s it. Knowledge is attainable, practice 
is do-able, and we just have to live with aptitude. Oh well.

Here’s a big secret I’ve discovered: I’m not the only impostor 
in the industry. The first time I met Rob, he interviewed me for 
a podcast. We ended up talking about Impostor Syndrome. On 
hearing my interview, several people told me “Wow, I feel like that 
too!” The more I dig, the more I think we all feel like that at some 
points in our careers.

So, welcome to Impostor Club! I’m kinda bummed now that I 
know it’s not as exclusive as I had thought, but it’s nice to have 
company I guess.

Anyway, now we have a handbook.

Ironically, reading and using this handbook might cause you to 
graduate from the club. If that happens, I wish you luck as you 
enter full scale computer software programmer status. Let me 
know how it feels. I’ll miss you when you’re gone.

Chad Fowler August 12, 2016 Memphis, Tennessee

Chad Fowler is the CTO of Wunderlist, which is now a part of Microsoft. He 
is also a Venture Capitalist with BlueYard Capital 

http://wunderlist.com/
http://blueyard.com/


Preface

Back in November of 2008, Jeff Atwood published 
a post that proved somewhat embarrassing. It 

was entitled Your Favorite NP-Complete Cheat and 
it sparked a bit of a controversy. Jeff’s posts are often 
somewhat controversial, but this one was special.

It had to do with this quote, which Jeff later redacted:

… Nobody can define what makes a problem NP-complete, exactly, but 
you’ll know it when you see it.

It turns out that many people can define what makes a problem 
NP-complete. When I read this I had no idea what any of it meant 
anyway, but I felt badly for Jeff. It’s something that keeps me awake 
at night: the fear of being utterly, publicly, horribly wrong. But 
there’s something that scares me a bit more.

Spreading ignorance is my true nightmare. There’s a subtle (yet 
incredibly important) difference between trying and failing at 
something vs asserting a complete falsehood as truth. Not only 
do you look foolish, but you make life harder for people who 
truly know the subject you’ve failed to understand properly. 
These people now have to spend their time fixing the mess you’ve 
created.

You might have the best of intentions; you might believe, in the 
moment, that your experience is sufficient enough to speak out on 

https://blog.codinghorror.com/your-favorite-np-complete-cheat/
http://stackoverflow.com/questions/210829/what-is-an-np-complete-in-computer-science
http://stackoverflow.com/questions/210829/what-is-an-np-complete-in-computer-science
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a given subject. None of that matters if you’re wrong. If you cross 
the line between “I think that…” and “This is the way it is”, you 
better be right.

An anonymous commenter left a wonderfully eloquent reply 
to Jeff’s post that perfectly captures the essence of why it is so 
important to triple check your subject when asserting something 
publicly. I love this comment. I go back and read it once a year or 
so to help keep me grounded, to make sure I go deeper, take an 
extra day or week … to care that much more whenever I write a 
post on a topic or give a presentation.

I want to share this comment with you. It has haunted me with 
every chapter written in this book. I hope that when you’re done 
here, this comment will haunt you as well. I am using a screen 
shot because I don’t know who the author is and I wanted to 
capture his/her/their exact words closely.
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On Being Wrong
I will be wrong in this book. It might seem odd to start off this 
way, but I think it’s important. Without failure, we do not learn 
and grow. As much as anything: this book represents my failure in 
equal measure with any success I might have. If we’re going to get 
anywhere in our careers, we must seek out challenge and, along 
with it, failure. Failure is growth, growth is learning.

Embrace it.

Now, to this book: it is a compendium in summary form. I cannot 
possibly dive into things in as much detail as they deserve. For 
that, I do apologize … but it’s not the point of my writing this 
book.

I wrote this for people like me: self-taught developers who have 
never taken the time to learn foundational concepts. If you’re 
brand new to programming, this is not the book for you. I expect 
you to have been programming for a few years, at least.

I also wrote this book for fellow explorers. If you’re the entitled 
lazy type who expect full demos with code you can copy and paste 
– you won’t find that here. I’m going to give you enough detail 
so that you can have an intelligent conversation about a topic. 
Enough, hopefully, to get you interested. If you want to know 
more: that’s up to you. Explore away my explorer friend!



xix

The Imposter’s Handbook

Your Feedback
A book is like any program you might write: full of bugs. I will be 
releasing new editions of this over time and I’m sure they will be 
largely influenced by good people like you. I plan on failing and, 
with that, I plan on learning. This book is a living thing! I’ve 
researched as much as I possibly could in order to surface every 
detail on every subject – but I will fail at this.

Our industry has been around long enough that many of these 
details have eroded, changed meaning over time, and have 
resurfaced anew. Many concepts have stayed intact… others have 
not.

Much of what you’re about to read is heavily arguable and I’ve 
tried to point out these little arguable points, and also where I 
share my opinion. As Obi-wan once said:

You’re going to find that many of the truths we cling to depend greatly 
on our own point of view.

For instance: I wrote a section on software patterns and practices 
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(Patterns, Principles, BDD, TDD, etc.). These subjects make people 
argue a lot. I wrote another on databases (relational and non) and 
another on programming languages. It’s simply not possible to 
write about these subjects and 1) keep them objective and 2) avoid 
kicking a hornet’s nest.

So why did I include them? I believe that some discussion is 
better than none at all. I’ve been as careful as I can to highlight 
contentious subjects and places where I have an opinion - but you 
may find that I could finesse a bit more. Or you might find that I’m 
flat out wrong.

Which I think is outstanding. You have my email address (I 
emailed this book to you) - please feel free to drop me a line! I’ll 
happily amend things if I need to or, at the very least, you and I can 
have a discussion.

This is a living book. It will change and I want you to be a part of 
that!

Cover Photo Credit
The image used for the cover of this book (and the inspiration for 
the splash image on the website) comes from NASA/JPL:
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The image is entitled HD 40307g, which is a “super earth”:

Twice as big in volume as the Earth, HD 40307g straddle the line 
between “Super Earth” and “mini-Neptune” and scientists aren’t sure 
if it has a rocky surface or one that’s buried beneath thick layers of gas 
and ice. One thing is certain, though: at eight times the Earth’s mass, 
its gravitational pull is much, much stronger.

David Delgado, the creative director for this series of images 
describes the inspiration for HD 40307g’s groovy image:

As we discussed ideas for a poster about super Earths – bigger planets, 
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more massive, with more gravity – we asked, “Why would that be a 
cool place to visit? We saw an ad for people jumping off mountains in 
the Alps wearing squirrel suits, and it hit us that this could be a planet 
for thrill-seekers.

When I saw this image for the first time I thought this is what it 
felt like when I learned to program. Just a wild rush of freakishly 
fun new stuff that was intellectually challenging while at the same 
time feeling relevant and meaningful. I get to build stuff? And have 
fun!?!? Sign me up!

This is also what this last year has been like writing this book. I 
can’t imagine a better image for the cover of this book. Many 
thanks to NASA/JPL for allowing reuse.



Computation

As programmers, we instruct machines to solve 
problems for us. How did this even become 

possible? Algorithms have existed for millennia, but to 
use them you had to do things by hand, which is error 
prone. People began writing the solutions to complex 
problems in books, called “Mathematical Tables”. These 
people were called “computers” and in 19th and 20th 
centuries their jobs were given to machines which were 
also called “computers”. This is the story of how it 
happened.

Let’s get deep for a minute. Moving beyond computers and 
programming, going behind everything we take for granted today. 
Let’s dim the lights, turn on some Pink Floyd and get completely 
radical for a minute. Let’s consider the very nature of our universe 
and what it means to compute things…

This might sound absurd, but stay with me. In April of 2016, 
scientists and philosophers gathered in New York to discuss that 
very question:

The idea that the universe is a simulation sounds more like the plot 
of “The Matrix,” but it is also a legitimate scientific hypothesis. 
Researchers pondered the controversial notion Tuesday at the annual 
Isaac Asimov Memorial Debate here at the American Museum of 
Natural History.

Moderator Neil deGrasse Tyson, director of the museum’s Hayden 
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Planetarium, put the odds at 50-50 that our entire existence is a 
program on someone else’s hard drive. “I think the likelihood may be 
very high,” he said.

The problem with well-meaning articles like this one is that they 
tend to go for the low-hanging fruit, dumbing-down the core of 
what should otherwise be a compelling idea – simply to appeal to a 
mass readership.

Which is unfortunate, because the question has a solid foundation: 
the physical universe is indeed computed. The very nature of the 
physical universe describes a progressive system based on rules:

•	 Cause and effect: what you and I think of as “conditional 
branching”

•	 Consistent, repeated patterns and structure: the magical 
numbers pi, phi, and e (among others) hint at a design we can 
only perceive a part of. Indeed, Plato suggested that the world 
we see is just an abstraction of its true form.

•	 Loops: the two ideas above (cause and effect, pattern 
repetition) interact repeatedly over time. A day is a repeated 
cycle of light and dark, life is the same way – as is a planet 
orbiting the sun, the sun orbiting the center of the galaxy.

This has the appearance of what we think of today as a program – 
either one very big one or many small ones interacting. I suppose it 
depends on whether your Deity of Choice is into microservices or 
not…

Nature's Strange Programs
At this point you might think I’m probably taking this whole idea 
a bit too far – but I’d like to share a story with you about Cicadas.

I was watching a fascinating show a few weeks back called The 

http://www.magicicada.org/magicicada_2016.php
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Code, which is all about math and some of the interesting patterns 
in the universe. At one point it discussed a small insect that lives 
in North America, the magicicada, which has the strange trait of 
living under ground for long periods during its young life.

These periods range from 7 years to 17 years although the most 
common periods are from 13 to 17 years. That’s a very long time, 
but that’s not the most surprising thing about them. The strangest 
aspect of these creatures is that they emerge from the ground on 
schedule: 7 years, 13 years, or 17 years.

Those are prime numbers. This is not an accident; it’s a 
programmed response to a set of variables. Trip out, man…

The emergence, as it’s called, is a short time (4-6 weeks) that the 
cicadas go above ground to mate. They sprout wings, climb trees 
and fly around making a buzzing noise (the males) to attract a 
mate. Why the prime number thing? There are a few explanations 
– and this is where things get a bit strange.

Predatory Waves

We know that predators eat prey, and each is constantly trying 
to evolve to maximize their chances of staying alive. Cats have 
amazing hearing, eyesight and stealth whereas mice counter that 
with speed, paranoia and a rapid breeding rate. You would think 
this kind of thing balances, but it doesn’t.

It comes and goes in waves as described in this article from 
Scientific American:

As far back as the seventeen-hundreds, fur trappers for the Hudson’s 
Bay Company noted that while in some years they would collect an 
enormous number of Canadian lynx pelts, in the following years 
hardly any of the wild snow cats could be found … Later research 
revealed that the rise and fall … of the lynx population correlated 

https://en.wikipedia.org/wiki/Periodical_cicadas
http://www.newyorker.com/tech/elements/the-cicadas-love-affair-with-prime-numbers
http://www.newyorker.com/tech/elements/the-cicadas-love-affair-with-prime-numbers
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with the rise and fall of the lynx’s favorite food: the snowshoe hare. 
A bountiful year for the hares meant a plentiful year for lynxes, while 
dismal hare years were often followed by bad lynx years. The hare 
booms and busts followed, on average, a ten-year cycle…

A recent hypothesis is that the population of hares rises and falls 
due to a mixture of population pressure and predation: when hares 
overpopulate their environment, the population becomes stressed 
… which can lead to decreased reproduction, resulting in a drop in 
next year’s hare count.

This much makes sense and isn’t overwhelmingly strange … until 
this theory is applied to the cicada:

Now, imagine an animal that emerges every twelve years, like a cicada. 
According to the paleontologist Stephen J. Gould, in his essay “Of 
Bamboo, Cicadas, and the Economy of Adam Smith,” these kind of 
boom-and-bust population cycles can be devastating to creatures with 
a long development phase. Since most predators have a two-to-ten-
year population cycle, the twelve-year cicadas would be a feast for any 
predator with a two-, three-, four-, or six-year cycle. By this reasoning, 
any cicada with a development span that is easily divisible by the 
smaller numbers of a predator’s population cycle is vulnerable.

This is where the prime number thing comes in (from the same 
article):

Prime numbers, however, can only be divided by themselves and one… 
Cicadas that emerge at prime-numbered year intervals … would find 
themselves relatively immune to predator population cycles, since it 
is mathematically unlikely for a short-cycled predator to exist on the 
same cycle. In Gould’s example, a cicada that emerges every seventeen 
years and has a predator with a five-year life cycle will only face a peak 
predator population once every eighty-five (5 x 17) years, giving it an 
enormous advantage over less well-adapted cicadas.

Who would have thought a tiny insect could master math in this 
way?



5

The Imposter’s Handbook

Overlapping Emergences

Another fascinating theory behind the prime-numbered emergence 
of these cicadas is the need to avoid overlapping with other cicada 
species. We’re dealing with prime numbers here, and it just so 
happens that the multiples of 13 and 17 overlap the least of any 
numbers below and immediately after them:

Natural Computation

This is natural computation, there is simply no getting around 
that. There’s nothing magical or mystical about what these cicadas 
do – they’re adhering to the patterns and structure of physical 
world.

Bernoulli’s Weak Law of Large Numbers states that the more 
you observe the results of a set of seemingly random events, the 
more the results will converge on some type of relationship or 
truth. Flip a coin 100 times, you’ll have some random results. The 
more you flip it, the more your results will converge on a fifty-fifty 
distribution of heads vs. tails.

https://en.wikipedia.org/wiki/Law_of_large_numbers
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We’re seeing the same thing with cicada emergences. After 
millions and millions of years of evolution, a natural emergence 
pattern is resolving that is based on math and the need to avoid 
overlap. We’re seeing the computational machinery behind 
evolution itself, revealed by the Weak Law of Large Numbers. 
Prime number distribution in two completely different population 
controls (predators and emergence).

Fascinating stuff. Let’s get back on track…

What Is Computation?
Human beings have understood that there is some process at work 
in the natural world, and they’ve struggled to express it in a way 
other than mysticism and spirituality. This is a tall order: how do 
you explain the mechanics behind the physical world?

Philosophers, mathematicians and logicians throughout history 
have been able to explain highly complex processes with equations 
and numbers. The Sieve of Eratosthenes, for example, is a simple 
algorithm for finding all the prime numbers in a bound set. It was 
described at around 250 B.C. We’ll be playing around with this 
algorithm later in the book.

Algorithms have been around for millennia, and if you ever 
wanted to use one you needed to break out your rocks and sticks, 
calculating things by hand.

In the early 17th century people who were really good at math 
were hired to sit down and calculate things. From encoding and 
decoding ciphers to tide tables and ballistic trajectories – if you 
needed to know the answer to a mathematical question you could 
hire a human computer to figure it out for you, or you could just 
go buy a book of Mathematical Tables in which they wrote their 
calculations for general use.

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
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In the early 19th century, when the Industrial Revolution was in 
full swing and steam machines were powering humans forward, 
a number of mathematicians wondered if it was possible to have 
these amazing machines execute calculations along with pulling 
rail cars and lifting heavy loads. Human computers were error-
prone, and their mistakes were costly, so the need was there.

These machine-minded mathematicians, however, had to find the 
answer to a very basic question: What does it mean to compute 
something? How do you tell that to a machine?

For philosophers this goes even deeper. If our very existence is a 
computed process, do we become gods when writing programs 
and creating applications? In a sense, yes; we’re the creator and 
omniscient controller of every aspect of the programs we write.

Taking this further: if we truly live in a “lazy” universe that repeats 
old patterns instead of creating new, novel ones then it makes 
sense that all of the patterns, machinery and computation in our 
universe is repeated in the digital one of our creation.

Going even further: this suggests that our existence could very well 
be a repetition of this set of patterns, machinery and computation 
itself! A derivation, if you will. This would suggest that god (in 
whatever sense you observe the word) is probably a machine.

Deep stuff – and that’s where I’ll leave it.

COMPUTATION IN THE STEAMPUNK AGE

If I were to ask you what is the square root of 94478389393 – 
would you know the answer? It’s unlikely – but if you did know 
the answer somehow, it would be due to some type of algorithm in 
your head that allows you to step through a process of deduction. 
Or maybe you have eidetic memory?

If you did have a photographic memory, you would be in luck if 
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you lived a few hundred years ago. Before we had calculators, 
going all the way back to 200BC, people used to write down 
mathematical calculations in books called mathematical tables. 
These were a gigantic pile of numbers corresponding to various 
calculations that are relevant in some way. Statistics, navigation, 
trajectory calculations for your trebuchet – when you needed to 
run some numbers you typically grabbed one of these books to 
help you.

The problem was that these books were prone to error. They were 
created by human computers, people that sat around all day long 
for months and years on end, and just figured out calculations. Of 
course, this means that errors can sneak in, and when they did, it 
took a while to find the problem.

Errors like this are annoying and, in some cases, deadly. Ships were 
reported to have run aground because of errors in navigation tables 
– which were traced to errors in the mathematical tables used to 
generate them.

Charles Babbage, a mathematician, philosopher, and engineer 
decided that it was time to fix this problem. The industrial 
revolution was in full swing and machines were changing 
humanity at a rapid pace. Babbage believed they could also change 
mathematics by removing the need for a human being to be 
involved in routine calculations.

The Difference Engine

In the early 1820s Babbage designed The Difference Engine, a 
mechanical computer run by a steam engine. His idea was that, 
through a series of pulleys and gears, you could compute the 
values of simple functions.
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Difference Engine #2. Babbage conceived a number of machines, none of them 
were completely built, however. The machine you see here was built by the London 
Museum of Science in the 1990s based on Babbage’s plans. Image credit: Com-

puter History Museum.

Babbage’s machine could be “programmed” by setting up the gears 
in a particular way. So, if you wanted to create a set of squares, you 
would align the gears and start cranking the handle. The number 
tables would be printed for you and, when you were done, a little 
bell would ring.

Babbage had found a way to rid mathematical tables of errors, 
and the English government was all over it. They gave him some 
money to produce his machine, but he only got to part of it before 
the project imploded. After 10 years of designing, redesigning and 
arguing with other scientists – the government pulled the plug.

Which was OK with Babbage, he had another idea.

The Analytical Engine
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Babbage believed his difference engine could do more. He was 
inspired by the Jacquard Loom, which was a programmable loom 
that could create complex patterns in textiles. The loom used 
a series of pins moving up and down to direct the pattern – and 
Babbage thought he could use the same idea for his machine using 
punch cards.

The idea was a simple one: tell the machine what to do by 
punching a series of holes in a card, which would, in turn, 
affect gear rotation. An instruction set and the data to act on – a 
blueprint for the modern computer.

According to the plans, this machine had memory, could do 
conditional branching, loops, and work with variables and 
constants:

The programming language to be employed by users was akin to 
modern day assembly languages. Loops and conditional branching were 
possible, and so the language as conceived would have been Turing-
complete as later defined by Alan Turing.

Plans for the Analytical Engine. Image credit: Computer History Museum.

Babbage knew he was onto something:

https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Analytical_Engine
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As soon as an Analytical Engine exists, it will necessarily guide the 
future course of the science. Whenever any result is sought by its aid, 
the question will then arise: By what course of calculation can these 
results be arrived at by the machine in the shortest time?

The interesting thing is that Babbage was focused on mathematical 
calculations. Someone else realized his machine could do so much 
more.

Ada Lovelace

Ada Lovelace is widely regarded as the very first programmer, 
although some contend that this statement is not only arguable, it 
also undermines her true importance: understanding the true affect 
of Babbage’s Analytical Engine.

She was a brilliant mathematician and, interestingly, was the 
daughter of Lord Byron. In 1833 she met Babbage and instantly 
recognized the utility of what he wanted to build. They worked 
together often, and she helped him expand his notions of what the 
machine could do.

In 1840 Lovelace was asked to help with the translation of a talk 
Babbage had given at the University of Turin. She did, and in the 
process added extensive notes and examples to clarify certain 
points. One of these notes, Note G, stood out above the others:

Ada Lovelace’s notes were labeled alphabetically from A to G. In note 
G, she describes an algorithm for the Analytical Engine to compute 
Bernoulli numbers. It is considered the first published algorithm 
ever specifically tailored for implementation on a computer, and Ada 
Lovelace has often been cited as the first computer programmer for this 
reason.

https://en.wikipedia.org/wiki/Ada_Lovelace
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Lovelace’s Note G. Image Credit: sophiararebooks.com.

Besides Bernoulli’s numbers, she added this gem:

[The Analytical Engine] might act upon other things besides number, 
were objects found whose mutual fundamental relations could be 
expressed by those of the abstract science of operations, and which 
should be also susceptible of adaptations to the action of the operating 
notation and mechanism of the engine…Supposing, for instance, that 
the fundamental relations of pitched sounds in the science of harmony 
and of musical composition were susceptible of such expression and 
adaptations, the engine might compose elaborate and scientific pieces 
of music of any degree of complexity or extent.

Some historians question how much Lovelace contributed to the 
first programs written for Babbage’s Analytical Engine. We’ll never 
really know the true answer to this question, but we do know 
that Lovelace completely understood the potential power of this 
machine.
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Lost For a Century

The Analytical Engine was a bit of an oddity for the time. Babbage 
would muse on his plans until his death in 1871. Others picked up 
interest in his work, some even recreating parts of what Babbage 
specified in his plans – but none of these subsequent machines 
worked properly, and no one really seemed to care.

Babbage’s Analytical Engine faded into scientific obscurity.

Researchers began to design electronic computers in the 1930s 
and 40s and although they were aware of Charles Babbage and the 
Analytical Engine, they hadn’t taken the time to analyze Babbage’s 
ideas:

The Mark I showed no influence from the Analytical Engine and 
lacked the Analytical Engine’s most prescient architectural feature, 
conditional branching. J. Presper Eckert and John W. Mauchly 
similarly were not aware of the details of Babbage’s Analytical 
Engine work prior to the completion of their design for the first 
electronic general-purpose computer, the ENIAC.

The need for faster, better computation ramped up in the 1930s 
and 40s as war broke out across Europe and the rest of the world. 
This caused much “parallel thinking”, if you will, about models of 
computation and the idea of a computer.

War and Computers

The World Wars of the early 20th century pushed mathematicians 
and engineers to create the modern computer, as we know it. 
ENIAC, the world’s first electronic computer (which we’ll discuss 
in the next chapter) was designed to calculate artillery tables and 
ballistic trajectories for use on the battle field.

In 1939 Alan Turing designed and built the Bombe, which helped 

https://en.wikipedia.org/wiki/Bombe
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the allies compute the daily settings for the German encryption 
device called Enigma. The machine depicted in the movie The 
Imitation Game named “Christopher”, was the Bombe.

A few years later Tommy Flowers designed Colossus, based on 
Turing’s idea of a computational machine which, again, we’ll 
discuss in the next chapter. This led to the Colossus Mark 1 which 
was the forerunner to ENIAC which led to EDVAC, which is the 
modern digital computer as we know it.

In terms of computation, all the hard work was done by Babbage, 
Lovelace, Turing and Church. They figured out how a machine 
could solve problems for us, coming up with blueprints, rules, and 
abstractions. All they needed was the engineering.

The rest of the 20th century handled that part. Growing up I 
clearly remember the advent of the home computer. My parents 
bought me a TRS-80 when I was 11 and my brother taught me 
how to use a for loop (using BASIC) to print a tree on the screen.

Good friends of mine got an Apple II in the early 80s and I 
still, very fondly, remember playing King’s Quest and Castle 
Wolfenstein on days when we should have been outside riding our 
bikes or playing baseball or football.

Today we have phones in our pockets that are exponentially more 
powerful than these machines – but they use the exact same 
methods of computation laid out by Babbage, Lovelace, Turing and 
Church. I bought my first iPhone right when it came out, back in 
June of 2007. That was almost 10 years ago!

What will happen in the next 10 years?

The Future of Computation
There are many smart people wondering where computational 
theory is taking us next, as you might imagine. Computer 

https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/TRS-80
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scientists are hard at work exploring holographic memory and 
quantum computing, and many others are wondering if there are 
things we might have missed in the last century.

My brother helped me out quite a bit with this chapter. He was 
good enough to listen to my ideas and push me in interesting 
directions – and didn’t laugh at me too much.

So, to wrap this part of the book up, I wanted to do a blurb on 
where computational theory and computer science is going, in 
general. My brother asked me if I had ever heard of the Ubiquity 
Symposia:

A Ubiquity symposium is an organized debate around a proposition or 
point of view. It is a means to explore a complex issue from multiple 
perspectives. An early example of a symposium on teaching computer 
science appeared in Communications of the ACM (December 1989).

Sounds very academic, doesn’t it? But that’s where you find the 
thinkers doing their thinking.

Anyway, he pointed out to me that there was a symposium on 
exactly my question: What Is Computation:

What is computation? This has always been the most fundamental 
question of our field. In the 1930s, as the field was starting, 
the answer was that computation was the action of people who 
operated calculator machines. By the late 1940s, the answer was 
that computation was steps carried out by automated computers to 
produce definite outputs. That definition did very well: it remained the 
standard for nearly fifty years. But it is now being challenged. People 
in many fields have accepted that computational thinking is a way of 
approaching science and engineering. The Internet is full of servers that 
provide nonstop computation endlessly. Researchers in biology and 
physics have claimed the discovery of natural computational processes 
that have nothing to do with computers. How must our definition 
evolve to answer the challenges of brains computing, algorithms never 
terminating by design, computation as a natural occurrence, and 
computation without computers?

http://ubiquity.acm.org/symposia.cfm
http://ubiquity.acm.org/symposia.cfm
http://ubiquity.acm.org/article.cfm?id=1870596
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All these definitions frame computation as the actions of an agent 
carrying out computational steps. New definitions will focus on new 
agents: their matches to real systems, their explanatory and predictive 
powers, and their ability to support new designs. There have been some 
real surprises about what can be a computational agent and more lie 
ahead.

To get some answers, we invited leading thinkers in computing to tell 
us what they see. This symposium is their forum. We will release one of 
their essays every week for the next fifteen weeks.

Jackpot. I asked my brother which of the papers he thought I 
should read first, and his answer was very typically my brother:

Well mine, of course!

Of course he wrote a paper on this subject … why wouldn’t that 
happen? Sigh … big brothers…

So this is where I will leave this subject: staring off into the future 
while thinking about the past. I invite you to read through the 
papers in this symposia, starting with my brother’s of course. 
They’re rather short and quite interesting if you like academics.

http://ubiquity.acm.org/article.cfm?id=1889839


Complexity

Complexity Theory deals with how difficult a given 
problem is. There are multiple classifications 

(P, NP, NP-Complete, NP-Hard, Exp, etc) that 
identify classes of problems based on the idea of time 
complexity. Over the years complexity theorists have 
found that many problems are related in some abstract 
way, and can be reduced, quite interestingly, from one 
to another.

As a programmer, you solve problems. You should know if the 
problem is considered easy, hard, or impossible. In addition, you 
should be able to identify the type or classification of a problem 
that you’re trying to solve.

Every summer I get together with friends from college for the 
weekend. We’ll rent a cabin in the mountains, go on hikes, fish and 
try not to hurt ourselves playing American football. I look forward 
to it every year; it’s the only chance I get to see most of these 
people.

I’m sure you have a group of friends just like this one. People 
you’ve known for a very long time. Seeing them is always a treat… 
deciding what you want to do when you see them… well that’s 
when things get more than a bit complex.

Making decisions as individuals is hard enough. Adding more 
people to the decision process takes something that was hard and 
makes it feel almost impossible.
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Consider this scenario: my friends and I have just returned from a 
day fishing for trout in a high mountain lake. We’re tired, hungry, 
and more than a little thirsty. We’ve cleaned ourselves up and 
someone asks:

So, anyone up for going somewhere for a pint?

There are 6 of us standing in the same room. I’m sure the scene 
isn’t hard to imagine – we look from one to the other, trying to 
gauge what our answer will be. Someone says “sure”, another says 
“yeah where?” and a third says “I don’t drink but I’m happy to tag 
along if I can find something to eat”.

Uh oh. Group inertia!

You’ve had these discussions, I’m sure. They’re not very fun 
because it’s difficult to figure out what’s going to work out the 
best for everyone; there are just too many parameters to consider. 
Joe doesn’t like bitter beers, Kim wants a cocktail, Kevin doesn’t 
drink but is craving a pretzel and Olga wants to go her favorite pub 
20 miles away because she knows the bartender and can get us a 
discount.

These situations are usually resolved by one person (typically the 
loudest) suggesting that everyone get in the damn car, we’ll start 
out at place X and move on from there. This approach works 
remarkably well for a small group of people. If the group were to 
grow, however, that’s when things get really complex.

What do I mean by really complex, however? In normal 
conversation we could just assume that this means “it’s really hard 
to figure out”. As programmers, however, we should have a more 
precise way of thinking about complexity. We deal with it every 
day – it’s what we do. When your boss (or client) asks you the Big 
Question: how hard is it to add feature X?, how do you respond?

If you’re like me, you might typically say “I’ll have a look and let 
you know”. Maybe you’ve done feature X before and you might say 
“it’s doable”.
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Shouldn’t we have better words for this conversation? Perhaps a 
way to more clearly define exactly how complex a given problem 
might be? Yes. We, as programmers need to be able to do this. The 
ability to clearly understand the complexity of a problem can save 
your boss or client tons of time and money. You might even avoid 
getting fired… like me… which is something I’ll explain in more 
detail in just a few minutes.

Let’s head back into the hills and see if we can figure out where 
my friends and I can go grab a pint and a bite to eat. Our situation 
is getting complicated, let’s see if we can figure out just how 
complicated it’s getting.

Simple Solutions And P Time
My 6 friends and I are standing in the middle of the room, staring 
at each other, trying to figure out where we’re going to go. People 
are stating their criteria and asking questions at the same time, 
and it’s turning into a bit of a muddle.

Aaron, whose cabin we’re staying at, speaks up and says:

Here’s a list of the two pubs in town, and Olga’s favorite pub 20 miles 
away. Put a check next to the one you want to go to. We’ll go to the 
one with the most checks.

This type of solution is simple to implement and, best of all for the 
6 of us, happens in a reasonable time frame. What’s a reasonable 
time frame you ask? Good question! The answer is a bit abstract, 
but important nonetheless: it’s less than the amount of time that 
would prevent us from doing it in the first place.

If deciding on a pub took us 15 minutes, we might get a bit 
frazzled, but we’d still do it. 30 minutes and we’re grumpy for sure 
– anything more than that would be anarchy.

Thinking about this in terms of programming, we can think of “a 
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reasonable time” as the time we might consider it acceptable and 
relevant to execute a routine for a given set of inputs. Sorting 100 
things should come back in less than a millisecond, for instance. 
Sorting 1,000,000 things we might be willing to wait for a second 
or two.

Crunching analytics on billions of records, we might wait a few 
hours. Indexing a huge corpus of free text might take an entire 
night, or possibly a few days!

Using Aaron’s democratic sorting process for selecting a pub is, 
best of all, fast. It also has another advantage: it scales really well. 
If our group of 6 turned into a group of 12, the process would take 
twice as long. A group of 15 would take 2.5 times as long.

Notice that I’m talking about the complexity of our democratic 
sorting process using time? This is the key to understanding 
Complexity Theory: you think about complexity in terms of time 
as you scale the inputs that go into the algorithm that you’re using 
to solve the problem.

We can describe the way our democratic sorting process will scale 
using a bit of math:

T = 2x

Where T is the overall process time in minutes and x represents 
the number of friends. The equation that describes this scaling is a 
very simple one, and if you’re a mathematician, you would call this 
type of a equation a polynomial equation:

In mathematics, a polynomial is an expression consisting of variables 
and coefficients which only employs the operations of addition, 
subtraction, multiplication, and non-negative integer exponents. An 
example of a polynomial of a single variable x is x2 − 4x + 7. An 
example in three variables is x3 + 2xyz2 − yz + 1.

https://en.wikipedia.org/wiki/Polynomial
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When the complexity of an algorithm scales according to a 
polynomial equation, mathematicians say that it scales in “P 
time”, where P stands for polynomial. These algorithms are the 
simplest and often the most boring to work with. List operations, 
for example, are P time algorithms. Things like sorting, searching, 
zipping and enumerating all happen in P time.

Complexity Theory, however, isn’t exactly concerned with the 
algorithms that are used to solve a problem. It focuses on the 
problems themselves. We wouldn’t say that our democratic sorting 
process executes in P time, that only matters to the programmers. 
A mathematician is much more concerned with the problem itself, 
and how difficult it is to solve. If one were sitting next to me, she 
would say that our pub selection problem is “in P”.

In more concrete terms, P is a complexity class that describes 
the set of all problems solvable in P time. Things like sorting and 
searching arrays, arranging your sock drawer and finding your cat 
who’s been wandering the neighborhood.

In other words: simple problems. These tend to be less interesting 
and not typically what programmers want to spend their time 
solving. Have you ever had to create a sorting algorithm by hand? I 
have! I had to do it for this book – and I’m going to make you do it 
with me in a few chapters. It was an interesting exercise but I don’t 
think I’d want to be a programmer if writing sorting algorithms 
was what I did all day.

99% of the time you and I are working with a class of problems 
that are not in P. They are significantly more complex (and 
therefore a bit more interesting) and have a classification all their 
own.

Hard Problems (Exp)
Aaron’s democratic pub selection process will indeed help us find 
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a pub in short order, but it’s a bit too simplistic. It would be nice if 
we had a chance to consider everyone else’s opinion before making 
our own choice.

Olga speaks up with a suggestion:

How about each of us takes 30 seconds to explain where we want to go 
and why. Then we can decide after that.

This is a much nicer way to do things, and also a bit more 
complicated. Let’s think about Olga’s idea in terms of math.

Each of the 6 of us will be making a decision. With Aaron’s 
democratic method, there were only 6 decisions + 1: each of us 
decided where we wanted to go – that’s 6 decisions, plus one more 
in deciding the winner.

With Olga’s way of doing things, each of us needs to make 6 
decisions apiece:

»» I need to decide what I want to do

»» I need to listen to the other 5 people in the room and then 
decide if I’m going to change my mind

That’s 6 people * 6 decisions, which is 36 total decisions. If this is 
all it took to make a group decision like ours, we would still be in P 
time because the equation for calculating the time required is still 
a polynomial equation:

T=n^2

This is not the extent of what we need to do, unfortunately. We’re 
trying to optimize the selection of where we go – which means that 
I need to make a decision based on Aaron’s, and Aaron’s is based 
on Olga’s, and Olga’s is based on Todd’s which is also based on 
Kim’s…
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If you’re brain is starting to hurt while thinking this through, 
I don’t blame you. It’s hard for any human mind to grasp the 
complexity of this type of process! In mathematical terms, this is 
a factorial process, or n! where n is the number of people involved.

You can visualize this with a graph:

Each node on our graph represents one of my friends and each 
line represents a “weighting” in terms of a decision. If all we cared 
about was a measurement for each of the nodes, we would have a 
simple 36-part decision process. We want more than this, however. 
We want to optimize the combination of decisions, which is a 
factorial process.

This long-winded explanation is a way of saying that this problem 
is extremely complex. Rather than use the word “extremely”, 
however, a mathematician would say it’s “exponentially complex”, 
or that it is solvable in Exp time.

If we were to add a 7th person to our group – say my friend Kaveh 
finally shows up – the time to solve this problem would increase 
exponentially by an order of magnitude.
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In pure mathematical terms, exponential time problems are 
solvable in:

T = 2^n

Where T is time, n are the inputs.

Exponential time is a very, very, very long time. It encompasses 
problems that could take millennia to complete… even millions, 
or billions of years. The sun can blow up 10 times over and our 
Exp problem could still be executing… chugging along… trying to 
figure out the optimal solution for us.

With small cases like ours, it would take us a long time to decide 
where to go, but it’s likely that the sun would still be around when 
we’re finished. Just because a problem is in Exp doesn’t mean that 
it will always take a long time to solve. This is just a classification 
of complexity. Keep this in the back of your mind – I’ll be coming 
back to it in a bit.

Almost every problem we can think of is in Exp. In fact, all of the 
problems we care about solving are in Exp. I’ll get to explaining 
why that’s true in just a bit –  first, let’s see what lies beyond 
exponential time.

All Solvable Problems (R)
Simply put, R represents all of the problems that are solvable in 
finite time. In other words: any problem that we can solve is classified in 
R.

You might be confused by some of this as these definitions overlap. 
Problems in P are “solvable”, aren’t they? As are problems in Exp? 
Doesn’t this mean they’re also in R?
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Yes. These classifications are sets of problems within given 
timescales. A problem that takes 10 seconds to solve is still 
solvable within finite time. It’s also solvable in exponential time. 
These timescales overlap! It might be easier to see this in an 
illustration:

Infinitely Complex Problems Beyond R
What problems could possibly take an infinite amount of time to 
solve? Believe it or not, some deceptively simple ones. There are 
people who make a living researching these things, if you can 
believe it.

There’s a very famous problem that lies beyond R, and it’s 
known as The Halting Problem. You might have heard of it –  it was 
introduced by Alan Turing in the very same paper he used to 
introduce the Turing Machine. We’ll get to Turing, his machine, 
and the Halting Problem in detail later on – but I’ll summarize it 
very quickly here.

Imagine you’ve written a program and you want to know if it will 
end at some point (aka “halt”). Will it return an answer? Will it 
crash? As it turns out: it’s not possible to write a generalized program that 
can decide if any other program will halt. This type of problem is called 
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undecidable.

The proof of this is rather elegant and I’ll get into it in a later 
chapter. It has to do with feeding our halt-checking program back 
to itself, tweaking the internals before we do, which will throw the 
machine into an infinite loop. The “infinite loop” part is the thing 
that makes this problem undecidable.

There are quite a few other undecidable problems as well. In fact, if 
you dive into Complexity Theory a bit more you’ll find that most of 
the problems that exist are undecidable, the proof of which is quite 
fascinating and a bit beyond my ability to explain. If you want to 
know more, have a look at MIT Open Courseware. There are hours 
of material up there.

Let’s get back to the Halting Problem, however. I mention that it’s 
solvable beyond R, but the strange thing is that the classification 
for this problem is something else entirely. It’s classified as NP-
Hard.

What does that mean? Let’s dive into NP.

Determinism, Nondeterminism, and Mag-

ical Guesses
We have our three main complexity classes defined:

»» P, which is the set of problems solvable in polynomial time. In 
other words: easy

»» Exp, which is the set of problems solvable in exponential time. 
In other words: hard

»» R, which is the set of all solvable problems

https://ocw.mit.edu/index.htm
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What do I mean, however, by the term solvable? As programmers 
we might think of writing a program to solve a given problem, or 
maybe constructing an algorithm of some kind. For the sake of 
moving things along, let’s assume that these are the same things, 
and I’ll talk about solutions in the context of a computer program.

When you sit down to solve a problem (let’s say it’s sorting an 
array), you lay out a set of instructions in code for the processor to 
execute. Conditional branches, loops, variables, etc. Hopefully you 
test your code because you need to make sure that the computer 
can determine the correct answer.

This is how we write computer programs: deterministically. We 
execute a routine and get a result. Based on that result, we’ll 
execute another one, and then another. Each result links together 
until we arrive at an answer.

There is another way to arrive at this result, which is 
nondeterministically. In a nondeterministic system we execute a 
routine and get a result, from that point we might execute one of 
a series of next steps. We don’t know which next step from that 
series will be executed – it will be decided at that time.

Once that next step is executed (whatever it is), we might execute 
one of another series of steps – once again having no idea which 
step in that series it will be until it’s chosen. We keep on doing 
this until we arrive at the answer. When we do have our answer, 
there’s simply no way of determining how we got there, at least 
from our deterministic program’s point of view.

You can think of nondeterminism as using a series of lucky guesses 
or random chance (each of which is always correct) to figure 
out the answer to a given problem. If we were able to program a 
computer this way, things would get very interesting indeed.

Let’s revisit the pub selection problem above, where my friends 
and I are trying to decide where to go have a pint and, possibly, 
a bit to eat. If I could use a nondeterministic algorithm to help 
us make this decision, we could leave in very short order! I could 
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phrase the problem in a very particular way, and then off we would 
go:

»» “If we go to the Leaking Moose, would everyone be optimally 
happy?” Answer: no

»» “If we go to the Iron Tongue, would everyone be optimally 
happy?” Answer: no

»» “If we go to the Cougar’s Kitchen, would everyone be 
optimally happy?” Answer: yes

There it is! To arrive at this answer all I needed to do was to iterate 
over the possible choices and ask a simple yes or no question. 
My nondeterministic algorithm was able to arrive at the answer 
directly, because it’s capable of correct lucky guesses every single 
time.

I’ll explain more in a second (there is an explanation to this, trust 
me) – but it’s important to understand what just happened. We 
took an exponentially complex problem and solved it in P time 
using a lucky nondeterministic process.

This might sound a bit magical, but there are quite a few people 
studying the notion of nondeterminism, trying to figure out if 
it’s possible to have a nondeterministic algorithm that can solve 
exponentially complex problems like our pub selection problem. 
They like this notion so much that they’ve identified a whole group 
of exponentially complex problems that can be solved in P time if 
only we had this amazing nondeterministic algorithm.

These problems are classified as NP: problems solvable in P time 
given a nondeterministic algorithm. NP can be thought of as a 
bit of a mythical time frame, because we simply don’t know if a 
nondeterministic algorithm is possible. If it is possible, then we 
can say that a given problem (like our pub selection problem) is 
solvable in nondeterministic polynomial time; which is what NP 
stands for.
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More formally: a problem is classifiable in nondeterministic 
polynomial time (NP) if it is:

»» Solvable in exponential time (Exp)

»» Verifiable in polynomial time (P)

»» Also solvable in polynomial time by nondeterministic methods

NP is where the action is. From the programs we write on a daily 
basis to the games we play at night with our family and friends: NP 
problems are what our brains enjoy the most.

Does P=NP?
We know, so far, that problems in P are pretty simple and can 
be solved in polynomial time using deterministic methods (aka 
“computers”). Problems in NP are quite a bit more complex, but 
become very simple if we have nondeterministic methods.

But we don’t have those just yet. The question is: will we ever 
have the ability to solve problems nondeterministically? Some 
people believe it’s just a matter of time before we have a computer 
chip or algorithm capable of nondeterministic processing. Others 
think it’s a bunch of silliness. If a nondeterministic algorithm is 
ever developed that can solve these problems, then all of the 
problems in NP suddenly become solvable in P time. Put in 
mathematical terms: P=NP. If such an algorithm could never exist, 
then P≠NP. We can’t make either claim right now because we 
simply don’t know the answer.

I explained, above, that you can think of nondeterminism as 
a “lucky guess”, which is sort of true. You can also think of it 
as a computer’s ability to make the right choice given a set of 
possibilities. There are languages that are capable of carrying 
these ideas out. Prolog, for example, allows you to define two 
functions with the same definition. The programmer does not tell 



30

Complexity

the runtime which to choose (which would be deterministic), the 
runtime decides. There are various ways that this is carried out, 
including “backtracking”, where one function is tried, and if it 
fails, the runtime will back up and try the second function with 
the same definition. This is brute force, and won’t solve our pub 
selection in P time… yet. Someday? Maybe?

Who knows…

Reductions and NP
I was able to use nondeterminism to solve the pub selection 
problem in P time by reducing the problem into a series of yes/no 
questions. The original problem was something a bit different:

What are the optimal pubs for optimal group happiness?

This type of problem is exceedingly difficult in that we’re trying 
to optimize a combination of things: people and pubs. For 
most people (myself included), this isn’t something your brain 
is equipped to handle –  it’s just not possible to keep all of the 
permutations together in your mind! These types of problems 
are called combinatorial optimizations and, as I mention, are very 
complex. But how complex are they?

Consider the definition of NP as it relates to this problem:

»» Solvable in exponential time (check)

»» Verifiable in polynomial time (no)

»» Solvable in polynomial time by nondeterministic methods (no)

This means that this problem in not classifiable within NP and is, 
instead, in Exp. Sort of what you might expect as this problem is 
exceptionally hard.
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Our reduction to a decision problem, however, is a different 
matter:

If we go to the Leaking Moose, would everyone be optimally happy?

This problem is solvable in exponential time, so we know it’s in 
Exp. It’s verifiable in polynomial time –  all I have to do is ask if 
people are happy once we’re at the Leaking Moose. Finally, we 
already know that our nondeterministic algorithm can solve this 
problem in P time because we just did it.

That means our decision problem is classifiable in NP. This is 
where things get weird because, in essence, it’s the same problem! 
I just reduced it from an optimization problem to a decision 
problem!

This type of thing is very common - where one version of a 
problem is classified differently than its decision problem 
reduction. The good news (I think) is that there are two 
classifications for just such an issue:

»» NP-Hard: problems that can be reduced to other problems in 
NP, but are not within NP themselves

»» NP-Complete: decision problems classifiable in NP

I don’t blame you if your head is swimming right now. I know 
mine is… and I’m the one writing this book! If it helps: decision 
problems are almost always NP-Complete because of the 
ability to verify the answer to the problem (make sure it’s yes). 
Combinatorial problems are NP-Hard.

Before we move on to some examples, I want to revisit a statement 
I made above, about The Halting Problem being classified as NP-
Hard. If you’ve stayed with me through this whole explanation you 
might be able to reason through the answer.

As we know: solving The Halting Problem is beyond R; solvable 
only with an infinite amount of time. It is, however, a simple 
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decision problem: will this program halt? Because of that, other 
problems in NP can be reduced to it, and that’s all you need for a 
classification of NP-Hard.

NP-Complete and Decisions
One of the main goals of turning a complex problem into a 
decision problem is the idea of verification. With our initial, 
combinatorial pub selection problem, we can only verify that 
we have indeed gone to the optimal pub for our group by going 
through every iteration of the decision process for each person 
and each pub. A pub crawl might not sound so bad, but visiting 
each friend (and each combination of friends) to ask if they like the 
place would get more than a little tedious.

The decision problem variation, however, is very easy to verify, as 
we did above.

These types of problems were formalized by Leonid Levin and 
Stephen Cook in the early 1970s, when they formulated the Cook-
Levin Theorem. This theorem states that any problem in NP can be 
reduced to what’s known as The Boolean Satisfiability Problem (or 
SAT):

In computer science, the Boolean Satisfiability Problem … is the 
problem of determining if there exists an interpretation that satisfies 
a given Boolean formula. In other words, it asks whether the variables 
of a given Boolean formula can be consistently replaced by the values 
TRUE or FALSE in such a way that the formula evaluates to TRUE.

This problem sounds intimidating, but it’s really not. The best way 
to think about it is to consider a very long if statement (pseudo 
code):

if ((x and y) and (x and not y)) or ((x or y) and 

https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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(x or not y)) then

//...

Given this, SAT wants to know what values for x and y will return 
true?

Imagine a flow chart, with lots of branches, end points and 
ultimately a satisfiable terminus which returns true. This is a 
variation of SAT.

Now, imagine the last program you wrote (or the one you’re 
writing now). There are business rules, database queries, and 
probably some type of UI that a user can use. At its core, this 
program is a bunch of decisions and can be described by a large 
decision tree. This is also a variation of SAT.

I suppose if you look hard enough, you could find a software 
project that exists to solve a problem in P. Most of them don’t, 
however, if they expect to deliver any kind of value. Software exists 
to make complicated things easier. Given this, most of what we do 
on a daily basis is to deal with problems in NP.

This is an important thing to recognize, mostly because problems 
can usually be reduced from one to the other, as we’ve seen. Put 
another way: it’s highly likely that a mathematician somewhere has 
tried to solve the very problem that you’re working on right now. 
To understand what I mean, we need to take a small trip back in 
time.

Classic NP-Complete Problems
In the early 1970s, mathematician Richard Karp expanded 
Cook and Levin’s work with his paper Reducibility Among 
Combinatorial Problems. In this paper, Karp showed that you 
could reduce a number of NP problems to SAT in polynomial 
time, and he came up with a list called “Karp’s 21 NP-Complete 

http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf
http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf
https://en.wikipedia.org/wiki/Knapsack_problem
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Problems”:

Figure 1.2: Karp’s 21 NP-Complete problems.

One of the best things you can do for your career is to get to know 
these and other NP-Complete problems, at least at a high level. 
They’re fascinating to understand! Who knows? You might even 
save your job someday…

Let’s take a look at a few.

Knapsack

This problem has been around for over 100 years, and is a 
combinatorial optimization problem that centers on packing a bag 
for the weekend:

Given a set of items, each with a weight and a value, determine the 
number of each item to include in a collection so that the total weight 
is less than or equal to a given limit and the total value is as large as 

https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Knapsack_problem
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possible.

Once again, we’re trying to optimize combinations of values: price 
and weight for a limited space.

Clique

This problem was first formulated in 1935, and has to do with 
graphs and graph theory:

Consider a social network, where the graph’s vertices represent people, 
and the graph’s edges represent mutual acquaintance. Then a clique 
represents a subset of people who all know each other, and algorithms 
for finding cliques can be used to discover these groups of mutual 
friends.

You can see how the solution to this problem could apply to any 
social aspect of an application, or grouping of like “things” that are 
self-assembling.

Bin Packing

This problem is a variation of Knapsack, and is once again a 
combinatorial optimization problem that you encounter quite often 
in the programming world:

… objects of different volumes must be packed into a finite number 
of bins or containers each of volume V in a way that minimizes the 
number of bins used.

If you’ve ever had to pack up your house or apartment and move, 
you’ve had to deal with the Bin Packing problem. This is a classic 
NP-Hard problem because of its combinatorial nature, and the fact 
that verifying that you’ve optimally packed things up means that 

https://en.wikipedia.org/wiki/Clique_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
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you have to carry out every possible iteration to prove yours is the 
best.

We can reduce this to a decision problem, however, by iterating 
over bin configurations and asking if the current configuration is 
optimal. This reduction turns the combinatorial problem into a 
decision problem, which would classify it as NP-Complete.

Traveling Salesman

The classic NP-Hard problem of trying to figure out the cheapest 
way to send a salesman on a trip:

Given a list of cities and the distances between each pair of cities, what 
is the shortest possible route that visits each city exactly once and 
returns to the origin city?

Once again, a combinatorial optimization problem, which we can 
recognize now as NP-Hard. You can reduce this in P time to an NP-
Complete decision problem by simply enumerating through every 
valid path and asking the question “is there a path that’s shorter”?

Approximations And Laziness
If you follow any of the links for these problems, you’ll see that 
there are algorithms that exist which “solve” them in some cases 
in P time. These are called approximations and are very useful if 
you can tolerate their inexact nature.

For Traveling Salesman, you could start from Los Angeles and head 
to the next nearest city, which (for our example) might be San 
Francisco. When you get there, you see that of all the destinations 
you could get to, Reno is the next nearest, so you go there. This 
approach is called “nearest neighbor” and is classified as a “greedy 

https://en.wikipedia.org/wiki/Travelling_salesman_problem
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algorithm”, which means you do what suits your current position 
and value on the graph. Nearest neighbor usually returns a path 
within 25% of the shortest one, on average. Would that work for 
you? For many companies it just might.

In The Real World
I’d like to share a story with you about getting fired, and how I 
could have avoided it. Before I do, let’s go over what we know so 
far:

»» Simple, rather boring problems can be solved in a short 
amount of time; what a mathematician would call “P” time.

»» More difficult problems, such as a group of people trying to 
decide on the optimal location for a pint and some food, are 
more complex and solvable in exponential time, or “Exp”.

»» Some problems are so complex that they can’t be solved in all 
the time we can possibly have (R, or “finite time”), and are 
simply undecidable. For instance: Turing’s Halting Problem.

»» There are special subclasses of problems that are of great 
interest to us, specifically: exponentially complex problems 
that we can solve in P time with a nondeterministic lucky 
guess. These problems are in a classification called “NP”. 
We can further divide this complexity class into decision 
problems that we can quickly verify (NP-Complete) and more 
complicated problems that are in Exp, but that other problems 
in NP can be reduced to in P time (NP-Hard).

We can visualize this on a timeline:
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It might take a few reads to have this all sink in, but you might be 
wondering something: why in the world should I care? For that, I’d like 
to share a story.

Where’s The Party?

In 2010 I was hired to build a Ruby on Rails site for a client that 
wanted to enrich the lives of college freshman. The idea was 
simple: let’s help these new students make friends and find interesting 
things to go do.

Simple enough! I had been building web sites for the previous 12 
years, this should be straightforward. Indeed it was! I built the 
core of the site, integrated the designs, and all was well until a 
status meeting we had one Tuesday afternoon:

So, Rob how’s the progress on the algorithm?

Not knowing what algorithm they were talking about, I asked. 
They responded:

You know, the one that is going to match students with other students 
and places to go, etc. We were told you were good with this kind of 
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thing…

Oh no. It’s true: one of the reasons I got the job was because I had 
a background in analytics, but I didn’t think I’d be doing any of it 
for this site! They hired me to build a Rails app!

This is where my ego took over. I hate saying “no” to clients, and 
somewhere in my mind was a cowboy looking for adventure… so I 
said what turned out to be some fatal words: tell me more…

The “algorithm” turned out to be this:

»» Gather a basic interest profile from new signups. Things like 
favorite music, extrovert/introvert, favorite actor, etc.

»» Create a tagging system for submitted events. Anyone could 
submit an event to the system - but they had to tag it so we 
could match on it.

»» Optimally match new students to other students and also to 
events that they would find interesting.

At this point in the chapter you should know what we’re dealing 
with here. That’s right: a combinatorial optimization. I could 
probably reduce this problem to any of Karp’s NP-Complete 
problems, but (here, now, in the future) I don’t need to do that 
to know that this problem is going to require some lengthy 
discussions.

Back then, I simply said “let me take a look”.

You probably know where this is going to end up. I got fired. I 
looked into various ways to solve the problem but quickly realized 
that this isn’t something that:

1.	A Ruby on Rails site could handle

2.	Anything that could happen in real time

3.	I would even know how to start implementing
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I pushed back as best I could, the client insisted this is why I 
was hired, I asked them to show me where I agreed to this in the 
contract… but it didn’t matter. I got fired and the project blew up.

If I knew then what I know now about exponential time 
algorithms, approximations, decision problems and all the other 
lovely things discussed in this chapter – I might have been able to 
walk the client through the problem and why, no matter how many 
developers they hired then fired, they would never get what they 
wanted.

Maybe.

Have you worked on a project like this? I’m sure you have. Or, if 
not, it’s likely you will. People try to tackle NP-Complete and NP-
Hard problems all the time –  after all we have machine learning 
and big data don’t we?

The good news for you? Hopefully you will now be able to spot 
these efforts from the start and, hopefully, help your team think 
approach the problem with care.



Lambda Calculus

B efore there were computers or programming 
languages, Alonzo Church came up with a set 

of rules for working with functions, what he termed 
lambdas. These rules allow you to compute anything 
that can be computed. You use Lambda Calculus every 
day when you write code. Do you know how it works? 
As a programmer, understanding Lambda Calculus can 
enhance your skills.

In the early 20th century, mathematicians began to ponder what 
it means to have a machine solve problems for you. The question 
was a simple one: how do you compute something?

The steps to solving certain problems (aka: algorithms) had 
been known for millennia; the trick was to be able to give these 
algorithms to a machine. But how? More than that: is there a 
limit to what a machine can calculate? Are there solutions that 
machines simply cannot compute?

This led to some interesting discoveries in the early 20th century, 
most notably by two men: Alan Turing and Alonzo Church. We’ll 
talk about Alan Turing in a later chapter.

This section is about Alonzo Church’s contribution: the Lambda 
Calculus. I should note here, as I’ve done in so many chapters, that 
I could spend volumes diving into the details of Lambda Calculus. 
What you will read here is a simple summary of the very basics. I 
do, however, think the missing details are quite important and if 



42

Lambda Calculus

you care, I would urge you to have a look online – there are quite a 
few resources.

So, consider this a gentle introduction, the results of my recent 
headlong dive into the subject. Hopefully you will read enough to 
ignite your curiosity – which it should! What you’re about to read 
is the foundation of computer programming.

Credit Where Due

I’ve read quite a few articles and text books on Lambda Calculus 
and I wanted to list them here, as I would never have been able to 
understand the basics otherwise.

At the top of the list is this detailed explanation of Y Combinator 
and Ω Combinator from Ayaka Nonaka. It is outstanding. I wanted 
to add some details about combinators and almost gave up, until I 
found this post.

Next is Jim Weirich’s amazing keynote on the Y Combinator. I 
remember watching it years ago, having my mind blown. I watched 
it three times over when writing this chapter and most of it still 
goes over my head. I link to it again below.

Ben Hall has an amazing Github repository that has all kinds of 
Church encoding magic. If you find yourself lost in any of this, go 
study the code in his repo. The Church encoding you see below is 
based directly on his work.

Finally, I’d like to thank James G (last name omitted… but you 
know who you are) for his patience helping me understand a small 
but crucial aspect of reduction and substitution. In the original 
version of this chapter I managed to get a few things wrong; I 
wouldn’t consider them critical, but they were wrong nonetheless. 
After a number of lengthy, wonderful emails James convinced me 
of these errors, which I was able to cross-check and verify easily. 

https://medium.com/@ayanonagon/the-y-combinator-no-not-that-one-7268d8d9c46#.czis6rxni
https://www.youtube.com/watch?v=FITJMJjASUs
https://github.com/benji6/church
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Thanks James!

The Basics
Alonzo Church introduced Lambda Calculus in the 1930s as he 
was studying the foundations of mathematics. As a programmer, 
you might recognize the description:

The λ-calculus is, at heart, a simple notation for functions and 
application. The main ideas are applying a function to an argument 
and forming functions by abstraction. The syntax of basic λ-calculus 
is quite sparse, making it an elegant, focused notation for representing 
functions. Functions and arguments are on a par with one another. The 
result is an intensional theory of functions as rules of computation, 
contrasting with an extensional theory of functions as sets of ordered 
pairs. Despite its sparse syntax, the expressiveness and flexibility of 
the λ-calculus make it a cornucopia of logic and mathematics.

A lambda is simply an anonymous function that can be thought 
of as a value. Most modern programming languages have some 
notion of an anonymous function, expression, or lambda. Lambda 
Calculus is where this idea arose. In fact Lambda Calculus is the 
foundation of what we consider programming today.

Lambda Calculus is an abstract notation that describes formal 
mathematical logic. There are no numbers or types; only functions. 
Like modern functional languages, a function in Lambda Calculus 
can be treated as a value. By arranging these functions carefully, 
you can build out some very interesting structures.

In this chapter we’ll use Lambda Calculus directly, but we’ll also 
jump into ES2016 (JavaScript) to see how some of the ideas might 
work with modern code.
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Some Rules
The rules of Lambda Calculus are rather simple:

»» There are only functions, nothing else. No data types (strings, 
numbers, etc) of any kind

»» You can substitute functions using variables

»» You can reduce one function to another through application

»» You can combine multiple terms in Lambda Calculus to create 
a higher-order function called a combinator, which is where 
the fun begins

There are rules which you can apply to these functions and 
combinators, and we’ll get into a bunch of them using Lambda 
Calculus and also a bit of JavaScript.

Anatomy
Let’s see our first function:

This is a Lambda Calculus function, sometimes called a “term” 
or “expression”. The first thing to notice is the Greek lambda (λ) 
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on the left, which denotes a lambda function. The next bit is the 
x, which is the argument to the function. The final part of the 
expression is the body, which is the third x and is segregated from 
the argument by a ..

Using JavaScript, you could think of this function with this code:

function thing(x){return x};

The function keyword is equivalent to the λ symbol. Our function 
takes an argument x and returns x. While this is, indeed, an 
anonymous function in JavaScript, there is a more applicable 
syntax that can be used with ES6:

(x => x)

This is a pure lambda expression in the following ways:

»» It takes in an argument, x, and since we’re using a single line 
the value x is also returned

»» It is a functional closure, which means we can set this 
expression to a variable and invoke it anywhere without 
worrying about scoping issues

»» lambdas are the same as values

In this way, JavaScript follows Lambda Calculus conventions rather 
closely.

Function Application
Let’s revisit our first function:
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λ x.x

This function takes an argument x and returns it. We can apply a 
value to this function like so:

λx.x (y)

This notation means “substitute all occurrences of x with y” and 
is called function application. It’s just the same as if we did this in 
JavaScript:

(x => x)(y)
//or
function thing(x){return x}(y) //returns y;

This function: x.x in Lambda Calculus has a special name: the 
identity function. Whatever you pass to it is returned. It’s also 
called the I Combinator – which we’ll discuss in a bit.

Consider this function and application:

λx.y (z)

What do you think will happen here? It would be the same as 
doing this in JavaScript:

let z = 3;
function thing(x){return y}(z);

Here I’m using the value 3 just for clarity, though it’s worth 
restating that there are no numbers in Lambda Calculus. There are 
representations of numbers, which we’ll get to in a minute, but no 
strict numbers.
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With this function: λx.y, it doesn’t matter what you pass into it, 
some value y will be returned. This is called the constant function 
as it returns a constant value of y no matter what you pass in for x.

Bound and Free Variables
When you apply a value to a function, there are some rules. The 
first thing you have to know is what types of variables you’re 
working with. Note: I’m not referring to data types as there are 
none in Lambda Calculus; I’m referring to one of two different 
designations for variables:

In this expression we’re dealing with two variables: x and y. The 
variable x is in the function head as the argument and thus is 
bound to this expression. The variable y on the other hand is not 
bound to any lambda function, so it’s known as “free”.

The difference between the two is very important. I can substitute 
x in this function if (and only if) I make sure to substitute every 
occurrence of the bound variable x. So if I wanted to change x to z, 
for instance, I could:

λz.z y 

This wouldn’t change the meaning of the function. If, however, I 
decided to change y we could run into trouble. To understand why, 
we need to dive into substitutions and reductions.

Substitution and Reduction
When you apply a value to a function, you substitute that value in 
the function itself. Substitution is left-applicative, which means you 
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start on the left and move to the right as required.

For instance, let’s substitute and then reduce this function:

λx.x 3

The first thing to do is to state that all bound occurrences (that’s 
important, they have to be bound) of x will be replaced with 3 in 
the body, x:

λx.x 3
λx[x:=3]
3

This notation: x[x:=3] can be read as “replace all bound 
occurrences of x in body x with 3”. Now, I know I said that there 
are no numbers in Lambda Calculus - and this is true! I’m using 3 
here simply to show how substitution and reduction work.

Let’s apply this to JavaScript. Consider this expression:

let y = 3;
const fn = (x => y)(1);

What do you think the value of fn will be? The same principles 
apply here: we’re substituting all instances of x with 1 in our 
equation, which doesn’t matter as we’re returning y, which is set 
to 3. This is, once again, the constant function so it’s no surprise 
that whatever we set x to doesn’t matter.

Let’s try this again with the identity function:

let y = 3;
const fn = (x => x)(1);
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In this case fn would “reduce” to 1.

Applying Multiple Values
You can create lambda functions that handle multiple values as 
well. It would be tempting to write them like this:

λxy.t

But this would be incorrect. Functions in Lambda Calculus only 
have an arity of 1 - which means they can only have one argument 
or one bound variable. To write this expression properly we would 
need to reorder things:

λx.λy.t

This is called currying: breaking a function with multiple arguments 
into chained functions with an arity of 1. We’ll talk about currying 
more in a later chapter.

In this expression, the lambda function x has a body of λy.t. This 
might look confusing, but if you remember that everything in 
Lambda Calculus is a function, it makes a bit more sense.

This corresponds to this lambda in JavaScript:

(x => y => x + y);

Reductions get interesting at this point. Consider this function:
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λx.λy.y x

We need to apply the substitution from left to right, so our first 
substitution will be “replace all bound values of x with x”:

λx.λy.y x
λy.y[x:=x]
λy.y

There is no substitution in the body, λy.y, which leaves us with 
λx.(λy.y), which is the constant function, which means we can 
reduce further to λy.y and we’re set.

We can see this reduction in action with JavaScript as well:

const first = (y => y);
const second = (x => first(x));
console.log(second(first));
//[Function: first]

In more concrete terms, let’s revisit the JavaScript expression 
above (x => y => x + y). This time we’ll reduce it by running 
a substitution for x and y… in other words “invoking” the lambda:

(x => y => x + y)(2)(3);

In this code, x is set to 2 and then passed to y. The resulting 
function would then be y => 2 + y, which we apply 3 to, 
resulting in our answer, 5. This is straight up Lambda Calculus.

But what about this?

(x => x)(y => y)(2)(3);
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This won’t work and we’ll get an error. Can you reason as to why? 
Let’s make it work and then step through it:

(x => x)(y => y)(2); //2

This substitution and reduction happens in the exact same way, 
but the result of one lambda is passed to the next. So, y => y is 
passed to x => x, which returns whatever was passed to it as it’s 
the identity function.

This leaves the value 2, which is then passed to y => y, which is 
once again the identity function that returns 2.

To see this in more detail, set y => y to y => 5. In this case y 
=> 5 is passed to x => x which, once again, just returns y => 
5. If we pass 2 to that it’s ignored completely, so we get an answer 
of 5.

Order Of Operations
Just like any mathematical operation, the use of parentheses can 
affect the order of operations in lambda expressions. Consider this 
function:

λx.(λy.y x)

How do you think this would reduce? The parentheses dictate 
the order of operations so we would first reduce the body of the 
function like so:

λx.(λy.y x)
λx.(y[y:=x])
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λx.x 

If we omit the parentheses, something different happens:

λx.λy.y x
(λy.y)[x:=x]
λy.y

A completely different result.

These are the basics of Lambda Calculus, now let’s see what we 
can do with it!

Church Encoding
Lambda Calculus looks a lot like programming doesn’t it? 
Unfortunately this can cause confusion for a number of people 
trying to grasp it. Programming languages have numbers, strings, 
control structures and conditional branching built in; Lambda 
Calculus just has functions.

It’s important to muse on this for a bit before we push forward. 
Put yourself in a classroom seat at Princeton, back in the early 
1930s. Alonzo Church is trying to represent constructs that we 
take for granted today: conditional branches, loops, and higher 
order functions that can be used to compute things.

In order to do this, he set about creating representations for 
various values and operations. This is called Church encoding, 
and allows us to use booleans, numbers, conditional statements, 
and loops to construct things called combinators which are, 
unsurprisingly, combinations of functions that do a thing. We’ll 
take a look at those later on; for now let’s do the simplest of 
computations with Church encoding.
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Booleans
How would you convey a simple conditional construct, like an 
if statement, using only symbolic functions? We need to have 
something like this:

if(true) x
else y

The first step is to have a notion of what “true” means in Lambda 
Calculus, and we have that with the following representation:

λx.λy.x

The first bound variable is returned for a true statement in Lambda 
Calculus. Conversely, a false statement returns the second bound 
variable:

λx.λy.y

Formalizing this to JavaScript we might have:

let True = (x => y => x);
let False = (x => y => y);
True(true)(false) //true 
False(true)(false) //false

That’s a great start! Now we need to stretch this further in order 
to have a conditional statement. We need to evaluate 3 things; 
returning the first value if true, second if false. Using Lambda 
Calculus and leveraging Church encoding, we can use this 
expression:
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λx.λy.λz.x y z

Translating this to JavaScript:

let If = (x => y => z => x(y)(z));

Our first argument, x, will be set to the function under evaluation. 
The arguments y and z will then be given to x to evaluate. The 
result of that will be the result of our If function.

Now, let’s apply things. We can reuse our definitions of True and 
False to see if our If works:

let True = (x => y => x);
let False = (x => y => y);
let If = (x => y => z => x(y)(z));
If(True)("TRUE")("oops..");//TRUE
If(False)("oops")("FALSE");//FALSE

Yay! We have booleans and conditional statements, now we just 
need to work with some values.

Numbers
You can represent numbers in Lambda Calculus by arranging a 
function to, basically, encapsulate and call itself.

It might be easier to see this rather than to explain:

λf.λx.x = 0
λf.λx.f (x) = 1
λf.λx.f (f(x)) = 2
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λf.λx.f (f(f(x))) = 3

This might look rather arbitrary at first, but there is some logic at 
work here. Consider this statement:

f(x) = x

A function of x is equal to x. This means the function essentially 
has no value at all. This, therefore, represents 0:

λf.λx.x

There is no reduction to be done here as nothing is applied. Thus f 
has a representative value of 0.

Now, consider this statement:

λf.λx.f x
(λx.f) x[f:=x]
λx.x

The application of this function results in the identity function, 
which is a bit like multiplying by 1.

Let’s try this with JavaScript. The first thing we need to do is to set 
up a calculate function that will figure out how many times a 
given function is called. This function will accept a Church number 
and invoke it with a return that is itself a function. Every time that 
result function is invoked, it will increment itself:

let calculate = f => f(x => x + 1)(0);

Now let’s define some Church numbers:
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let calculate = f => f(x => x + 1)(0);

let zero = f => x => x;
let one = f => x => f(x);
let two = f => x => f(f(x));
let three = f => x => f(f(f(x)));

calculate(zero) // 0
calculate(one) // 1
calculate(two) // 2
calculate(three) // 3

Very nice! We now have a way of representing numerical values 
with nothing but a set of functions.

There is a whole lot more we can do here; things like addition, 
subtraction, multiplication, simple list operations and so on. In 
fact, we can encode our way to a Turing complete programming 
language. Which is really no surprise as the exercise we’ve 
just gone through is the foundation of what we think of as 
programming itself.

Combinators
We have booleans, numbers, and conditional branching; let’s see 
what else we can do with Lambda Calculus. Before we get there, 
I should note that we’ve already been working with combinators, 
which are simply combinations of smaller functions that do a thing.

More precisely, a combinator is defined as:

… a higher-order function that uses only function application and 
earlier defined combinators to define a result from its arguments.

In other words, we have lambda expressions and bound variables, 
nothing else. Let’s see what we can do.

https://en.wikipedia.org/wiki/Combinatory_logic
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Loops and The Omega Combinator

Every good programming language needs to have the ability to 
loop, so let’s see if we can implement that. We’ve seen that the 
identity function returns whatever is passed to it, so you might be 
tempted to do something like this:

λx.x (λx.x)
x[x:=λx.x]
λx.x

This works once, but not multiple times. We can see this with 
JavaScript and Church numbers:

let zero = f => x => x;
let one = f => x => f(x);
let two = f => x => f(f(x));

A previously-defined lambda can call itself, but there’s no way to 
call a lambda from within its own definition. We’ve been working 
with JavaScript a lot and we’re able to work with variables and 
labels so it might seem like we can do this, but with pure Lambda 
Calculus, there are no such conventions as functions don’t have a 
name.

But what if you could create recursion as a function itself? We 
already have a bit of a start with the identity function:

λ x.x (λ x.x)
x[x:= λ x.x]
λ x.x

In this application, however, it only returns what’s on the 
right. How can we get it to repeat? What if we added one more 
application of x?
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λx.xx (λx.xx)
x[x:=λx.xx]
λx.xx λx.xx

The Omega Combinator

Well now, look at that. A function that not only returns what 
it’s given, but also its replica. This is called the Ω combinator, or 

“looping” combinator as it allows for recursively looping over a 
given function.

What does this look like in JavaScript? Let’s see:

let Omega = x => x(x);
console.log(Omega(Omega));
//RangeError: Maximum call stack size exceeded  

A recursive loop. This is interesting, but how can we apply some 
other function to this recursion? In other words, we have a basic 
looping structure, but it doesn’t really do anything.

What would be more fun is to have a recursive function that would 
execute a given function once per iteration. In other words, what 
you and I might consider a for/each construct.

The Y Combinator

The Y combinator is a recursive, fixed-point function. It’s 
sometimes called the “fixed-point combinator” as well. If you’re 
like me you might not know what “fixed-point” means.

It is, essentially, when the result of a given function is the same as 
the input:
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yf = f(yf) forall f

Consider this function:

f(x) = x^2  - 3x + 4

If I set x=2, then the input will equal the output. This is the fixed 
point of this function. We want to expand on this idea, but instead 
of passing in a value to the Y combinator, we want to pass in a 
function, invoke it, and then get that function back so we can 
invoke it again later on.

This is what the Y combinator does: you give it a function as an 
argument which it invokes. It then returns that function back out 
to you.

More formally, the Y combinator is defined as:

Y=λf.(λx.f(xx))(λx.f(xx))

It looks just like the Ω combinator doesn’t it? The main difference, 
however, is that instead of just replicating xx, we’re replicating the 
application f(xx), where f is the initial function itself. In addition, 
the Y combinator allows you to pass in a second expression which 
represents the number of times you want the loop to execute. 
We’ll see this below.

If you’re stuck on this (which I was, for a very, very long time), 
go through the building up of the Ω combinator to see how the 
recursion/replication works. Ideally you should see the exact 
same pattern at work here; all we’re doing is adding an additional 
function definition (f) and then invoking it.

In JavaScript it looks a bit different. You can’t reference f in the 
second lambda definition as you’ll get an error, so you need to 
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wrap it with an additional lambda:

let Y = f => (x => x(x))(x => f(y => x(x)(y)));

The Y-Combinator in JavaScript

This is interesting, but what can you actually do with it? Let’s see.

We need a function to iterate over, which you can think of as the 
code block you might pass to a foreach statement. As with all 
computer science books, Fibonacci must appear at some point, so 
let’s use that:

let fib = f => n => n <= 1 ? n : f(n-1) + f(n-2);

If you don’t recall, Fibonacci defines a set where a given number 
is the sum of the two previous numbers in the set. The first few 
numbers are:

1, 1, 2, 3, 5, 8, 13...

The expression above simply takes in a number, n, and checks to 
see if it’s less than or equal to 1. If it is, then it’s returned. If it’s 
not, then the function calls itself to figure out previous values.

There is a better, faster way to write this which I’ll go into in the 
chapter on algorithms. It’s important to note, however, that it 
wouldn’t be a pure lambda expression if I did that. We want a self-
contained function expression. No variables, no conditionals, etc. 
Just functions - Lambda Calculus style.

Let’s use Y Combinator to implement our function:
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let Y = f => (x => x(x))(x => f(y => x(x)(y)));
let fib = f => n => n <= 1 ? n : f(n-1) + f(n-2);
let yFib = Y(fib);
yFib(10);
//55

Yes! It works! We’ve just used Y combinator to execute our fib 
function 10 times, which yields the result 55.

Want to play around with some other combinators and see what 
you can create? Head over to Ben’s Github repo and have a play!

Summary
My head is starting to hurt a bit; it might be time to move on. 
Hopefully you have a grasp on the basics of what Lambda Calculus 
is and why it’s important. Simple functions that do a simple thing, 
which you can arrange carefully to do more complicated things in a 
symbolic way.

A very powerful way to compute things, which allowed Alonzo 
Church to make this claim:

All total functions are computable.

Put another way: if it can be computed, Lambda Calculus can 
compute it. Turing agreed with this, and in 1937 he proved that 
his Turing machine provided the same computational abilities as 
Lambda Calculus, which led to the Church-Turing conjecture. We’ll 
discuss that in a later chapter.

Today, this type of statement is kind shrug-worthy. We have 
powerful computers that can compute almost anything – so what? 
Back then, however, people with pencils and papers were the ones 
doing the calculations and they were limited in their ability.

This led mathematicians to ponder just what could be computed 

https://github.com/benji6/combinators-js
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in terms of complexity –  the human brain is only capable of so 
much. What was missing was a method of computation that could 
guarantee a result if the thing to do the computing had unlimited 
resources. Like a mechanical computer.

Those came along in just a few short years after Church and 
Turing’s work and guess what we use today for programming these 
things?

Lambda Calculus.



Machinery

Babbage, Lovelace, Church and Turing laid the 
foundation for how a machine could be used to 

compute things, but how did this actually come about? 
The abstract notions of machinery and computation led 
engineers like Jon von Neumann, JP Eckert and John 
Mauchly to design and build the very first electronic 
computer. Every computer that exists today is based on 
these abstractions and designs.

Over the years, the notion of an abstract ability to compute things 
has taken on many forms. Let’s visit that now, starting off with a 
little history, once again. We’ll visit Plato and ponder the true 
nature of things, drop in on Bernoulli in the 1500s and wind our 
way to Russia in the early 1900s. We’ll visit Blechley Park and Alan 
Turing in the early 20th century, eventually ending up back in the 
United States with John von Neumann, the creator of the modern 
computer.

Probability and The Theory of Forms
At sometime around 400 BC, Plato mused that the world we see 
and experience is only a partial representation of its true form. In 
other words: an abstraction. The real world is either hidden from 
us, or we’re unable to perceive it.

He based this notion on his observations of nature: that there is a 
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symmetry to the world, to our very existence, that lies just beyond 
our ability to fully perceive it. Phi, the Golden Ratio, pi, and e are 
examples of some cosmic machinery that is just outside of our 
grasp.

To many, the natural world appears to be a collection of random 
events, colliding and separating with no guiding purpose. To a 
mathematician, however, these random events will converge on an 
apparent truth if we simply study them for a long enough time.

The Italian mathematician Gerolamo Cardano suggested that 
statistical calculations become more accurate the longer you run 
them. Jacob Bernoulli proved this in 1713 when he announced The 
Law of Large Numbers in his publication Ars Conjectandi which 
was published after he died.

This law has two variations (weak and strong) – but you can think 
of it this way: if you flip a coin long enough, the statistical average 
will come closer and closer to 50% heads, 50% tails. This might 
seem obvious – after all there are only two sides to a coin and why 
wouldn’t it be a fifty-fifty distribution?

The simple answer is that reality tends to do its own thing 
most of the time, with apparent disregard for our mathematical 
postulations. The fact that we can completely rely on statistical 
models over a long enough period is astounding.

This is what keeps casinos in business. All they have to do is to 
make sure the mathematical odds of each of their games is in their 
favor, and over time the money they make on those games will 
reflect those odds increasingly closely. It doesn’t matter if you walk 
in tomorrow and win all their money – statistics says they will get 
it back if they wait long enough.

Flipping a coin, however, is just a single event. Playing a game of 
craps or a hand of black jack consists of a series of events, one 
dependent on the next. Does the law of large numbers still hold?

https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Ars_Conjectandi
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Markov Chains
The Russian mathematician Andrey Markov said yes, and set about 
to prove it in the early 1900s with what has become known as the 
Markov chain.

If you’ve ever used a flow chart, then you’ll recognize a Markov 
chain. It is usually described graphically as a set of states with 
rules that allow transition between those states:

A famous Markov chain is the so-called “drunkard’s walk”, a 
random walk on the number line where, at each step, the position 
may change by +1 or −1 with equal probability. From any position 
there are two possible transitions, to the next or previous integer. 
The transition probabilities depend only on the current position, not 
on the manner in which the position was reached. For example, the 
transition probabilities from 5 to 4 and 5 to 6 are both 0.5, and all 
other transition probabilities from 5 are 0. These probabilities are 
independent of whether the system was previously in 4 or 6.

A Markov chain looks a bit like a flow chart, and in many ways 
that’s exactly what it is: a probability graph of related events. This 
fits nicely with the notion of an abstract computing machine.
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In the above diagram, each orange circle is a “state” and the arrows 
dictate transitions possible between each state. Except for 1 and 
10, the only transitions possible at any state along the chain is 
the next direct state or the one prior. Notice also that none of the 
states allows for a “loop back”, or a transition back to itself.

This diagram represents a very simple abstract computation, or a 
“machine”.

Finite State Machine
If we focus only on the notion of state and transitions, we can turn 
a Markov chain into a computational device called a Finite State 
Machine (or Finite Automata).

A simple machine does simple work for us. A hammer swung in 
the hand and striking a nail translates various forces into striking 
power, which drives a nail into wood. It doesn’t get much simpler 
than that.

The nail, as it is hit, moves through various states, from outside 
the wood to partially inside the wood to fully inside the wood. The 
nail transitions from state to state based on actions imparted to it 
by the hammer.

The action of the hammer transitioning the nail through various 
states constitute a state machine in the simplest sense.

Deterministic

We discussed determinism a few chapters back, and we also 
discussed Finite State Machines a little bit. Let’s go a bit deeper.

A Finite State Machine (FSM) is an abstract, mathematical model 
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of computation that either accepts or rejects something. We can 
apply this abstraction to our hammer and nail process above, so we 
can describe things mathematically. We start by diagramming the 
state of the nail:

»» Outside the wood is the starting state

»» Partially driven into the wood is another state

»» Fully driven into the wood is a final state, also called 
acceptance

»» A bent nail is also a final state, but not the state we want so it 
is a rejection state

We can relate these states together through various transitions or 
actions, which is the striking of the hammer:
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This is a deterministic finite state machine, which means that 
every state has a single transition for every action until we finally 
reach acceptance or rejection. In other words: when we hit the 
nail, it will go into the wood until its all the way in, which is our 
accepted state (denoted by a double circle) – there is no other 
course of action.

Being a good programmer (which I’m sure you are), you’re 
probably starting to poke holes in this diagram. That’s exactly what 
you should be doing! It’s why these things exist!

Our FSM only describes moving the nail through three states with 
only three actions. Furthermore, there is no rejection state for 
when I partially hit the nail and bend it. How do we account for 
that?

Nondeterministic

A non-deterministic finite state machine has one or more 
transitions for a set of actions, and these transitions are essentially 
“random”. A nondeterministic machine is capable of transitioning 
from one state to the next as a result of some random choice, 
completely independent of a prior state.

As a programmer, you can think of a nondeterministic machine as 
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a program that will produce different results when run multiple 
times – even with the same input given.

Let’s update our FSM to be nondeterministic by introducing partial 
hits which can sometimes bend the nail:

Here, I have two possible transitions for the initial state: I hit the 
nail, or I miss and bend the nail (yelling loudly when I do). I’ve 
added an additional action on the second state as well – the one 
that loops back to itself. This is the action taken when the nail has 
not been fully driven into the wood.

The conditional step of hitting the nail multiple times is 
deterministic, however the random step of bending the nail is not 
as we don’t know if it will happen before we start hammering. 
Sort of. There are all kinds of variables and probabilities at play 
here from muscle twitches to fatigue, hammer integrity and 
wind direction. It will all come together at some point and the 
probabilities are so out there that we might as well consider this to 
be a random event.
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Alphabets and Language

Let’s move away from hammers and into the world of code and 
machine processes. You’ll often hear people talking about FSMs 
working over a particular alphabet, string, or language. This is 
particularly relevant in computer science.

At the lowest level, our alphabet is a bunch of 1s and 0s – bits and 
bytes on a disk or in memory that we need to understand. This 
is how computer science people thought about the world decades 
ago: as holes on a piece of paper fed into a machine.

Let’s do another FSM, but this time we’ll do some real 
computering. Let’s take a string of bits and write a routine that will 
tell us if there is an even number of 1s in the supplied string.

We’ll start out with the two possible states:

The double-circle here is our accept state, and if that’s also our 
final state we have acceptance. Now we need to account for the 
action of reading each character in our string, one at a time.

If we read a 1, we’ll have an odd number of ones. If we read a 1 
while in the odd state we’ll transition to the even state. Another 1 
and we’re back to the odd state:
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What happens if we read in a 0? We do nothing and just keep on 
reading:

Limitations

Here is the part where we come to the naming of things. An FSM 
relies on a simple, known or finite set of conditions. The inputs are 
1s or 0s, we have 1Mb of RAM to work with, or maybe 10Mb of 
hard drive space – these are finite conditions and tend to describe 
simpler constructs.

Street lights, alarm clocks, vending machines – these are perfectly 
good Finite State Machines. An iPhone is not.

To understand this, think about our 1s and 0s example above. 
What if we wanted to sum all of the 1s and then divide that by 
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the sum of all the 0s to get a randomization factor? In short: we 
can’t describe this with an FSM. There is no notion of a summing 
operation.

The basic problem is this: you can’t store state outside of the current 
state. In other words: there is no persistence, or RAM.

We can’t calculate the digits of pi, or perform map/reduce 
operations. We can, however, parse Regular Expressions (ugh).

Much of the world runs on FSMs, but for what you and I do to 
make a living – we need a computational model that allows for a 
little more complexity.

Pushdown Machine
If we want to sum things with our computation, we need to move 
away from the concept of an FSM and add computational power 
to our machine. To sum things, our machine will at the very least 
need to remember the last state. We can add a facility for this 
called a stack.

A stack is quite literally that: a stack of data that you can add to 
(push) or remove from (pop). If we alter our FSM to have a stack, 
we can now compute a whole new set of problems:
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This, however, is no longer a Finite State Machine – it’s called a 
Pushdown Machine (also called Pushdown Automata or PDA). 
This machine has a lot more computational power because the 
state transitions are decided by three things working together:

»» The input symbol (a 1 or a 0)

»» The current state

»» The stack symbol

With this new power we can compute running totals of 1s, creating 
a summing operation, and a whole lot more.

The notion of a stack is very powerful, but it’s also a bit limited. 
You can only compute something that the space on the stack can 
handle. In other words, if we had 10 possible states and only 5 
slots in our stack and we wanted to run a summing operation as 
before, we could easily run out of memory and our application 
would crash.

The Pushdown Machine is bounded by its stack and is, therefore, 
limited in terms of what it can compute. But what if the stack 
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didn’t have a limit?

This problem was solved by Alan Turing.

Turing's Machine
In the mid 1930s, Alan Turing published what has become one 
of the cornerstones of computational theory as well as computer 
science in general: his paper, entitled On Computable Numbers.

Written when he was just 24 years old, On Computable Numbers 
described a computational process in which you stripped away 
every “convenience” and introduced a machine with a read/write 
head and some tape. The tape has a set of cells, each of which 
holds a simple symbol of some kind, and you can move that tape 
under the head so the machine could read from it, or write to it:

We may compare a man in the process of computing a real number to 
a machine which is only capable of a finite number of conditions q1: 
q2. .… qI; which will be called “ m-configurations “. The machine is 
supplied with a “tape “ (the analogue of paper) running through it, 
and divided into sections (called “squares”) each capable of bearing 
a “symbol”. At any moment there is just one square, say the r-th, 
bearing the symbol ℇ(r) which is “in the machine”. We may call this 
square the “scanned square “. The symbol on the scanned square may 
be called the “scanned symbol”. The “scanned symbol” is the only 
one of which the machine is, so to speak, “directly aware”. However, 
by altering its m-configuration the machine can effectively remember 
some of the symbols which it has “seen” (scanned) previously. The 
possible behaviour of the machine at any moment is determined by the 
m-configuration qn and the scanned symbol ℇ(r). This pair qn, ℇ(r) 
will be called the “configuration”: thus the configuration determines 
the possible behaviour of the machine. In some of the configurations 
in which the scanned square is blank (i.e. bears no symbol) the 
machine writes down a new symbol on the scanned square: in other 
configurations it erases the scanned symbol. The machine may also 

https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
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change the square which is being scanned, but only by shifting it 
one place to right or left. In addition to any of these operations the 
m-configuration may be changed… It is my contention that these 
operations include all those which are used in the computation of a 
number.

Each “machine” that Turing describes is designed to take another 
machine as its input, which allows for massive computational 
power. Alonzo Church had the same notion with Lambda Calculus: 
functions that take other functions as arguments. This flexible 
structure is the foundation of modern computer science.

We can write a Turing Machine (using mathematical notation) 
to describe the number 4 (M4). We can write another machine 
to describe the number 6 (M6) – and yet another to perform 
multiplication on a set of numbers (MX).

We can then write a final Turing Machine that accepts M4 and M6, 
and uses MX to run the multiplication. This is central to Turing’s 
idea: small, concise machines orchestrated to derive a final result . 
1s and 0s are all we need to describe and compute any problem we 
can describe to the machine.

This led Turing to claim something rather extraordinary:

If an algorithm is computable, a Turing Machine can compute it

This is another way of stating what Alonzo Church asserted two 
years prior:

All total functions are computable

This became known as the Church-Turing Conjecture, and was an 
extraordinary claim for the time. Prior to the idea that machines 
could calculate something for us, mathematicians would declare 
that a given problem was effectively calculable if someone could sit 
down and figure it out with a pencil and some paper.

Church and Turing, however, gave us a different way to run 
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calculations and, therefore, a different way to think about what we 
can compute, in general. Put in a simpler way: if you can describe it 
with a Turing machine or with a set of functions, it can be computed.

Basics

A Turing machine is an abstract computational device that can 
compute anything that you can program. It’s important to note 
that this is not supposed to be a real machine although some have 
actually made one.

It’s an incredibly simple construct that can simulate any 
computational algorithm, no matter how complex.

A Turing Machine has four main parts:

»» A set of symbols, defined in an alphabet or language the 
machine can understand (usually just 0s and 1s)

»» An infinitely long “tape” which contains a single row of 
symbols that can be anything

»» A read/write head that reads from the tape and writes back to 
it

»» Rules for reading and writing from the tape
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If you create an instruction set that is capable of running on a 
Turing machine, it is said to be Turing Complete. All you need for 
Turing-completeness is:

»» Conditional branching

»» Loops

»» Variables and memory

Stripping To The Essence

Turing was trying to create a model of computation that could, 
essentially, scale to any problem thrown at it. A Turing machine 
has more computational power than the machines previously 
discussed because a Turing machine has an infinite amount of 
storage (in the form of a “tape”) to read from and to store state to. 
Now, being good computer scientists we might get stuck on the 
notion of an “infinite” bit of tape. Such a thing might be a bit hard 
to come by in the real world.
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Believe it or not, it doesn’t matter; this is a conceptual machine 
after all. The amount of tape use, the speed of the tape through the 
machine and/or the symbolic alphabet that you choose to use with 
it – none of these variables effect the overall computational power 
of a Turing machine. As we learned last chapter: if you can describe 
it with a Turing machine, it’s computable.

It’s a rather wonderful computational model, and it’s derived from 
the idea of stripping the notion of computation itself to the barest 
minimum, as Turing further described in his paper:

Computing is normally done by writing certain symbols on paper. We 
may suppose this paper is divided into squares like a child’s arithmetic 
book. In elementary arithmetic the two-dimensional character of 
the paper is sometimes used. But such a use is always avoidable, and 
I think that it will be agreed that the two-dimensional character 
of paper is no essential of computation. I assume then that the 
computation is carried out on one-dimensional paper, i.e. on a tape 
divided into squares.

Reading and Writing
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Given that a Turing Machine can write to, as well as read from, 
a tape full of symbols, we now can store an “infinite” amount of 
information (assuming we have an infinite tape).

A quick tangent here. The term infinite is used a lot when 
discussing Turing Machines – don’t get hung up on it. If you need 
to, translate it as “just enough”. In other words, your computer 
can store massive amounts of information – but someday it will fill 
up. At that point you can go get another hard drive – and someday 
you’ll fill that up. But then you’ll get another drive … the space 
your machine has on disk has nothing to do with its computing 
power – same with the size of RAM. These things do have a lot to 
do with how long you’ll have to wait, however…

State, in a Turing Machine, is stored on the tape that it is given to 
read from:

The behaviour of the computer at any moment is determined by 
the symbols which he is observing, and his “state of mind” at that 
moment. We may suppose that there is a bound B to the number of 
symbols or squares which the computer can observe at one moment. If 
he wishes to observe more, he must use successive observations.

The “tape” is being observed by moving under what Turing called 
a “head”, something that can both read and write. As the tape 
moves, the machine observes the symbols and the “state of mind” 
of the machine changes because the information within changes.

By the way: it’s quite fun to see Turing’s treatment of the machine 
in human terms.

We may now construct a machine to do the work of this computer. To 
each state of mind of the computer corresponds an “m-configuration” 
of the machine.

Multiple machines, multiple configurations – all usable by other 
machines with different configurations: this is the essence of the 
Turing machine.
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Universal Turing Machine

One very interesting feature of a Turing Machine is that it can read 
in and simulate another Turing machine, even a copy of itself. In 
the 1930s, when On Computable Numbers was written, machines 
were built for a specific purpose. A drill made holes, an elevator 
lifted things, etc so it made sense that computing machines would 
be purpose-built in the same way.

Turing proposed something altogether different. His abstract 
machine was able to simulate any other abstract machine – making 
it a universal computational device.

This idea had quite a profound effect, as you can imagine. The 
question what can we solve? was no longer interesting – with the 
Church-Turing Conjecture the question evolved to something a bit 
more profound: what can’t we solve?.

In a wonderful bit of cheek, Turing provided the answer in the very 
same paper he used to introduce his machine.

The Von Neumann Machine
We started this book by thinking about complexity and 
computation in general. We then got a little steampunk, and 
explored the early 1800s and Babbage’s Analytical Engine – only 
to find out that he and Ada Lovelace had designed the first Turing-
complete language out of punch cards.

We explored Turing machines in this chapter and got to know 
both the Church-Turing Conjecture as well as its counterpart: The 
Halting Problem.

We have a couple of ways of computing anything that is 
computable – but we’re still stuck in the land of theory. This 
changed in the early 1940s with John von Neumann, JP Eckert and 
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John Mauchly.

Oh, and Turing too, as it turns out.

That Tape Can Hold a Whole Lot More

We know that a Turing machine works on a very simple idea: a 
read/write head and an infinite supply of tape. The machine has 
some type of instruction set that influences the current state of the 
machine. It’s simple enough to conceive of a tape and a read/write 
head – but what about that instruction set? Where does it live?

Initially, the idea of producing a working computer was that you 
would produce it for a specific purpose – maybe a calculator or 
prime number generator – a dedicated machine hard-wired to do a 
dedicated process. This seemed to defeat the notion of a “universal 
computing device”, but the hardware simply wasn’t there yet.

At almost the same time, Turing and von Neumann were plotting 
to fix this. They both came up with the same answer: make the 
instructions themselves part of the tape. This is what we call a 
program today.

The Automatic Computing Engine
In 1946, just after the war, Turing designed and submitted plans to 
the National Physics Laboratory (NPL) for an electronic “general 
purpose calculator” called the Automatic Computing Engine – 
using the term Engine in homage to Charles Babbage. A number 
of these machines were created, and they stored their processing 
instructions as part of the machine’s data.
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Turing’s ACE Machine. Image credit: Antoine Taveneaux. You can 
see this on display at the London Science Museum.

In an interesting historical side note: the NPL wasn’t sure that 
creating such a machine would work. They were unaware of 
Turing’s work during the war, where he worked with an electronic 
computer every day (Colossus) to help break Nazi ciphers. He 
couldn’t tell them this, however, as he was sworn to secrecy.

ENIAC and EDVAC
In the early 1940s JP Eckert and John Mauchly were designing 
ENIAC, the world’s first electronic computer. Governments were 
realizing quickly that computers would give them the edge during 
wartime, and the race was on.

The existence of Colossus, the machine that helped crack German 
codes during World War II – is known today. Back then, however, 
this was a big secret that no one outside of Blechley Park knew 
about. I bring this up because the initial designs for computers, 
underway with various science teams around the globe, were done 
in secret and without much sharing.
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ENIAC, for instance, was developed to calculate ballistic 
trajectories and other top-secret calculations. It was Turing-
complete and programmable, but to program it you had to 
physically move wires around.

ENIAC Operators

In 1943 Eckert and Mauchly decided to improve this design by 
storing the instruction set as a program that was stored next to the 
data itself. This design was called the EDVAC.

By this time the Manhattan Project (the US Atomic Bomb project) 
was rolling, and von Neumann, being a member of the project, 
needed computing power.

He took interest in ENIAC and later EDVAC which led him to 
write a report about the project, detailing the idea of a stored-
program machine. This is where things get controversial. For one 
reason or another – maybe because the paper was an initial draft 
– von Neumann’s name was the only name on the report, even 
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though it was mainly Eckert and Mauchly’s idea.

As well as Turing’s – but he couldn’t tell them that because it was 
still a secret.

This gets further complicated by a colleague of von Neumann’s, 
who decided to circulate the first draft to other scientists. Soft 
publishing it, if you will. These scientists got very interested 
in the paper and … well … we now have the generally incorrect 
attribution of stored programs to von Neumann.

One of von Neumann’s colleagues, Stan Frankel is quoted as 
saying:

Many people have acclaimed von Neumann as the “father of the 
computer” (in a modern sense of the term) but I am sure that he 
would never have made that mistake himself. He might well be called 
the midwife, perhaps, but he firmly emphasized to me, and to others 
I am sure, that the fundamental conception is owing to Turing— in so 
far as not anticipated by Babbage… Both Turing and von Neumann, 
of course, also made substantial contributions to the “reduction to 
practice” of these concepts but I would not regard these as comparable 
in importance with the introduction and explication of the concept of 
a computer able to store in its memory its program of activities and of 
modifying that program in the course of these activities.

As you might imagine, Eckert and Mauchly were not happy about 
this. Either way, this new idea now has a name.

Von Neumann Architecture
Historical silliness aside, we have now arrived at a modern 
day computer and the birth of modern computer science. von 
Neumann’s machine should look reasonably familiar:
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von Neumann Architecture

This machine architecture allows us to create, store, and deliver 
functions as a set of symbols. Thinking about this in depth can 
twist your brain a little bit.

A Turing machine is an abstract construct and the initial attempts 
to create one ended up with rather large bits of machinery 
that needed to be fiddled with by hand in order to run a given 
calculation. von Neumann was able to abstract that fiddling, which 
meant that Turing Machines could be built with nothing more than 
code and Turing’s original vision of a “Universal Turing Machine” 
was complete.

To grasp this in a more real sense – think of a pocket calculator.
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It does only one thing: math. Now open the calculator on your 
computer.

My Mac’s Calculator.
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It does exactly the same thing as the calculator above, but there’s 
no hardware involved. I can also change it to do scientific and 
programming calculations on the fly, which is kind of magical. The 
Mac calculator is as much of a machine as the one you hold in 
your hand, but it’s made of nothing more than pixels.

You can thank Mauchly, Eckert and von Neumann for this. 
Machines running within machines. When you consider various 
code execution environments (like the JVM, the CLR, or Google’s 
V8 Engine) that are running on virtualized machines in the cloud 
this whole idea tends to start spiraling.

How many abstract machines are involved to execute the code 
you’re writing today? When you run a VM or Docker (or some 
container functionality of your choice), these are machines within 
machines executing machines made up of smaller machines within 
other machines…

It’s machines all the way down.



Big O

Have you ever written some code that you were 
rather proud of? It’s a pretty good feeling to 

see a test pass so you can move on to solving another 
problem or, better yet, writing more tests. 

Any coder can solve a problem given enough time, solving it well, 
however – that’s what we want to do! But what does that even 
mean?

Simply put: it means that your code does what the spec requires, 
it can scale, and it’s written in a way that other developers will 
understand your intentions in the future. This chapter focuses on 
the second part of that sentence: the “it can scale” part.

How can you demonstrate that your code can scale using 
something more than just waving your arms? You can use Big-O. 

You can find the code used in parts of this section up at my github repo. In 
addition, you can buy 17 video walkthroughs of the algorithms you see 
in this chapter and others from here.

The videos cover some new ground as well, and use languages other than C#.

Big-O notation mathematically describes the complexity of an 
algorithm in terms of time and space. It is intimidating and quite 
a few developers I’ve encountered (coworkers, at conferences and 
so on) will instantly withdraw from a conversation at the first 
mention of “Order N” or the like. 

It can come off as elitist if you examine someone else’s code and 

http://https://github.com/imposters-handbook/sample-code/tree/master/algorithms
https://goo.gl/2XZCHc
http://https://goo.gl/2XZCHc
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casually drop Big-O into a conversation. It can also mean that 
you’ll pass your next interview when you interviewer asks you 
about the complexity of some code you’ve written and whether you 
can improve it to be log n vs. n^2…

A Word About Data Structures

Before we get going I think it’s worth addressing the examples 
you’re about to see. I’ll be using a basic array for every single one 
of them, and if you’re not a JavaScript developer you might think 
to yourself that’s ridiculous! I would never write code like that! 
And I would understand.

.NET, for example, has a remarkable amount of list types, both 
generic and non, that allow you to write rather powerful, exact 
code for the task at hand. Elixir and other functional libraries allow 
you to choose freely between an enumerable, a list, a dictionary or 
a map.

Your choice of data structure depends squarely on the type of data 
you’re working with and then what you’re trying to do with that 
data. But do you know why you’re making these choices? Do you 
know why these structures exist in the first place?

Each data structure in .NET (or Java or Elixir) was created for use 
in a particular type of algorithm. If you weren’t formally trained in 
data structures (as I wasn’t), you would just pattern your choice 
from what you’ve read in blogs or been told by a more senior 
developer. This works fine for many, but you’re reading this book 
because you want to go a bit deeper, to learn the concepts that 
underly so many decisions you’ve made in the past.

To ask “why this data structure?” is to also ask “how are we using 
this data”, which then naturally leads to “which algorithms are 
we going to implement?”. The answers to these questions are 
somewhat interdependent, which presents a problem for me in 



90

Big O

terms of writing this book in that I have to start somewhere.

So I’m going to level the playing field. All we’re going to use 
in this chapter is an array and some integers - much like any 
coding interview. I’m doing this because I want to be able to focus 
on complexity as a means for making educated choices about 
algorithms and, correspondingly, the data structures you choose to 
work with.

We’ll get into data structures and algorithms later in the book, for 
now I ask you to suspend what you know about various list types 
and to just go with the flow. Yes, the examples are contrived, but 
only because I didn’t have a choice!

Onward…

A Super Simple First Step: O(1)
Let’s just jump right in and see what kind of mess we can make 
here, shall we? Let’s say I have an array of 5 numbers:

const nums = [1,2,3,4,5];

Now, let’s say I ask you to get the first number from this array. 
Obviously if you look at it can you say “oh - sure that’s a 1”. A 
program doesn’t have eyes, however, so it needs a way to pull that 
number out.

Being the smart person you are, you decide that it's a simple 
matter of using an index – the very first index as a matter of fact. 
We’re using JavaScript here so we can get the value thus:

const nums = [1,2,3,4,5];
const firstNumber = nums[0];
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Now comes the question: how complex was that operation? 
If you were like me just a few years ago I would have said “not 
complicated at all – I just took the first element of the array”. This 
is a correct answer, but we can be more specific by thinking about 
complexity in terms of operation per input.

We have 5 inputs here because there are 5 elements in the array. 
How many operations did we need to perform on these inputs to 
derive a result for our algorithm? Only one as it turns out. How 
many operations would we need to perform if there were 100 
elements in the array? Or 1000? Maybe 1,000,000,000? Still: only 
one. We just take the very first element at index 0.

We can capture that inelegantly long paragraph in a more scientific 
way by saying that our algorithm was “on the order of 1 operation 
for all possible inputs”, or better yet: O(1). This notation is 
pronounced “order 1” or, more casually, constant time. For all 
inputs to our algorithm there is and will always be only one 
operation required.

As you’ve probably guessed, O(1) algorithms are pretty efficient 
and also quite desirable!

Iterations And Order(n)
Now that you were able to figure out how to pull the first item 
from our array, let’s try something more complicated: let’s sum the 
items in the array. 

Again, let’s use some code:

const nums = [1,2,3,4,5];
let sum = 0;
for(let num of nums){
  sum += num;
}
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Now we get to ask ourselves the same question: how many 
operations do we have per input to our algorithm? This time the answer 
is different: we have to add each number to a running sum, so we 
have to operate on each one. This means one operation per input. 

Using Big-O time notation, we would say this is O(n), or “Order 
n” where n is the number of inputs. This type of algorithm is also 
referred to as “linear”, or that it has “linear scaling” (think of 
describing a line on a graph: y = 2x or something of the sort).

Analysis

This type of scaling is common when you calculate a result by 
iterating over a collection of values like we’re doing above. It’s 
a simple way of doing things, but it has implications in terms of 
complexity which we can see if we ask ourselves a simple question: 
how does this scale?

As opposed to our O(1) algorithm, our CPU is doing a bit more 
work in our summing operation above –  in fact it’s doing n 
times the amount of work of our O(1) algorithm. If we have an 
array of 10 items it won’t matter; but what happens if our array 
has 1,000,000 elements? Now we need to worry a bit as we have 
1,000,000 operations to perform.

It might seem academic, but it’s a good question to ponder 
whenever you write a loop (or worse: a nested loop which we’ll 
address in the next section): “is there a way I can make this 
algorithm a bit more efficient?”. For our summing operation - no, 
there isn’t. We have to consider every element. For other things, 
however, sometimes a bit of math might do the trick. 

Consider our very same array:

const nums = [1,2,3,4,5];
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What if I told you to write a summing function for a sorted, 
contiguous array of integers that starts with the number 1? Ahhhh 
this time things are different as we know a bit more about our 
input.

We can use a bit of interesting math here, specifically something 
that Carl Friedrich Gauss figured out while in grade school. If you 
want the full explanation, follow the link above; otherwise I'll just 
get to it.

We can use this equation to figure out the sum of the series 
[1…n]:

S = n(n+1)/2

Plugging this into our example array, we would have:

5(5 + 1)/2 = 15

How do we know what n is? Simple! It's the very last element of 
the array. Now we can change our algorithm a bit:

const sumContiguousArray = function(ary){
  //get the last item
  const lastItem = ary[ary.length - 1];
  //Gauss's trick
  return lastItem * (listItem + 1) / 2;
}
const nums = [1,2,3,4,5];
const sumOfArray = sumContiguousArray(nums);

The answer here will be 15!

Notice that we're not running an iteration? That makes our O(n) 

http://mathworld.wolfram.com/ArithmeticSeries.html
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algorithm a whole lot faster as we're now in constant time thanks 
to Mr. Gauss. You might be thinking “but wait, if we have to figure 
out the length of the array and pull off the last element and run the 
calculation – isn’t that O(3) or something?”.

This is something we should get straight about Big-O right up 
front: yes that would be the literal complexity, but we’re not interested 
in that. All we care about is that it’s constant time, meaning that 
the time complexity will not change based on the number of 
inputs.

Constant time algorithms are always referred to as O(1). Same 
with linear time. An algorithm might literally be O(n + 5) but in 
Big-O that’s just O(n).

The Not So Good Approach: O(n ^2)
Let’s up the complexity a bit. It was suggested in today’s standup 
that I don’t make very good integer arrays, and that it’s possible 
that I might have duplicated one of the elements. I insisted that I 
did not! However we decided it might be a good idea if you were to 
create a routine to verify this.

There are some simple solutions to this, and some that are quite a 
bit more efficient. Let’s start with the simple, brute force solution 
which require a nested for loop:

const hasDuplicates = function(num){
  //loop the list, our O(n) op
  for(let i = 0; i < nums.length; i++){
    const thisNum = nums[i];
    //loop the list again, the O(n^2) op
    for(let j = 0; j < nums.length; j++){
      //make sure we're not checking same number
      if(j !== i){
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        const otherNum = nums[j];
        //if there's an equal value, return
        if(otherNum === thisNum) return true;
      }
    }
  }
  //if we're here, no dups
  return false;
}
const nums = [1,2,3,4,5,5];
hasDuplicates(nums);//true

It works, but it’s not ideal. Here we’re iterating over our array, 
which we already know is O(n), and another iteration inside it, 
which is another O(n). For every item in our list, we have to loop 
our list again to calculate what we need. This type of complexity 
is O(n ^2), or “Order n squared” and as you can imagine, it’s not 
very efficient and is considered quite inelegant.

Analysis

The big problem is this: if we have 1000 numbers in our list, we’ll 
have 1000 * 1000 = 1,000,000 operations! That’s bad.

If you remember only one thing from this chapter, let it be this: 
there is almost always a better way! In fact, this is one of those 
things where once you see it, it’s pretty hard to not see it again. 
Nested loops working over the same collection - always 
O(n^2). 

These problems appear often in coding interviews as well, where 
the simplest answer is to brute force your way through an “n^2” 
solution, trying to figure out how it’s possible to do things better.

Which you might be wondering right now… so let’s play Big Job 
Interview!
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Me: well, this solution works, true, but I’m wondering if we can do better? 
Is there a way we might be able to improve on your O(n^2) solution?

You: possibly – 

Me: sure, chicken. If it makes you feel better to be told an answer as opposed 
to figuring it out yourself… then…

You: passive-aggressive bullying isn’t cool Rob

Me: sorry… I don’t know the answer either…

In a few sections we’ll revisit this problem and see if we can make 
it better.

Refining To Order(log n)
We’ve been relying on a brute force approach to work with our 
array up to this point which works, but as I keep saying it’s 1) 
inefficient and 2) inelegant. We want to do both of those things so 
we don’t just look the part of super stellar programmer!

For the next task, let’s search through our array for a given 
number. If you don’t have a CS degree (having a few search 
algorithms at the ready) – how would you go about such a thing. 
Once again: yes, we have eyes but a program doesn’t, so we need 
to have a systematic (and deterministic) way of finding a given 
value in a collection.

The simplest way to go about this process is to think about the 
time complexity of the operation, which is what we’ve been doing. 
Instead of offhandedly saying “we’ll have to search the array top to 
bottom” or “just iterate until you find the number”, we can now 
use a simpler, more direct term: O(n). 

If we use a brute force approach, we just loop over the entire array 
once to find the number we’re looking for. This means that in the 
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worst case scenario (which is how we think when we use Big-O) 
we have to perform one operation per input.

Can we do better than a linear O(n)? It turns out that yes, we 
indeed can if we make a few assumptions.

Assumption 1: we’ve noticed that the list is sorted; can we 
assume that it is sorted for this exercise? For the purpose of 
illustration, I’ll say yes, we can.

Assumption 2: I didn’t mention anything about in-place; can we 
use more than just the given array? Sure, why not.

Given these two assumptions, we can use a clever algorithm called 
binary search. We’ll get into the details later on, but this algorithm 
is performed in a set of simple steps where we split the list in half, 
discard the half we don’t need, then go on splitting until we have 
the value we’re looking for.

Let’s see if we can use this approach to find the number 2 in our 
array:

Binary Search



98

Big O

As you can see, by splitting the list and discarding the half without 
our target value each time, we’re able to find the number we’re 
looking for in far fewer operations. 

This type of algorithms is called divide and conquer and works on the 
mathematical principle of logarithms. If you’re like me (just a year 
ago) you haven’t had to think about logarithms in quite a few years 
and, perhaps, you’ve forgotten how they work.

Let’s take a quick tangent to review how they’re helping us here.

Quick Logarithm Review
In essence, logarithms help make working with exponents a bit 
easier. Let’s do some quick math and hopefully things will be a bit 
clearer. What if I asked you to figure out what x is here:

x^3 = 8

To answer this you simply need to take the cube root of 8 to get 2. 
Simple enough! What if we changed things up now:

2^x = 512

This makes things a bit harder, doesn’t it? How would you solve 
for x here? If you’re a math person you already know the answer; 
but if you’re like me and have forgotten most of your math the 
answer wouldn’t exactly pop out at you. What we need here are 
logarithms.

If we used logarithms we could rewrite this equation like this:
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log2(512) = x

This equation says “log base 2 of 512 equals some number x”. 
The key here is the “base 2” part. It means that we’re thinking in 
2s, and we want to know how many times to multiply 2 to arrive 
at 512. That’s all logarithms do! How do we solve this equation? 
Duh! With a calculator of course!

The important part here is the recognition that logarithms 
basically deal with splitting a given number into some type of base. 
The default base is 10, which means you should be able to guess at 
the answer of this expression:

log(100) = x

The question you’re asking here is how many times do you 
multiply 10 by itself to arrive at 100? The answer is 2!

OK, so let’s get back to the problem at hand. We’re splitting a list 
of numbers in half, continually, until we get down to single value 
that we want. The key to this is the name of the algorithm itself: 
binary search… splitting things in half.

We’re dealing with 2s which means our logarithm will be base 2. 
So this operation can be expressed like this:

log2(n) = x

Which brings us to an interesting thing about Big-O which I’m 
repeating now and I’ll be repeating again later: the exact math doesn’t 
matter. What matters is that this is logarithmic - nothing else. 
We can even do away with the base and x - we just care that the 
operation is O(log n). 
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Analysis

If we were to use an O(n) scan on our list we would have had to 
perform n = 5 operations in order to find our target number 2. 
By splitting the list and evaluating the number at the split (thus 
discarding the half without our number), we were able to bring the 
number of operations down to 3.

You might be thinking “hey wait a minute! Splitting and evaluating 
is 2 operations!” and this is true - but they are 2 O(1) operations 
so we just consider the entire thing to O(1). 

Cutting from 5 operations down to 3 isn’t terribly exciting. But 
what if we had 100 total elements? If you whip out a calculator and 
run some math, you’ll find that:

log2(100) = 7

OK that’s not exactly true. The number is something a bit more 
like 6.643856. But we can reason through this in a simpler way.

We’re programmers and have a reasonable facility for base 2 
multiplication, hopefully. We know that multiples of 2 are 2, 4, 6, 
8, 16, 32, 64 and finally 128. The number we want is somewhere 
between 64 and 128, so we round up to be safe. This gives us 7.

Why do we care? Because we can see how our search algorithm 
scales! We upped our inputs by a factor of 20, but our operations 
only went up by 4.

That is why we care about doing this entire exercise! We can prove, 
with math now, that our approach here is better than scanning the 
entire list for a given number.
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Rethinking O(n^2) With O(n log n)
A few sections ago I asked you to find duplicate numbers in our list 
of numbers and we decided to iterate over every number (which is 
O(n)) and then do it once more to see if our current number was 
repeated. 

This put an O(n) operation inside of another O(n), which we can 
simplify to O(n * n) which is O(n^2), which is a Bad Thing.

But wait a minute… didn’t we just use a nifty algorithm to find 
a number within our list that was much more efficient than our 
brute force linear scan? Yes!

So here’s a quiz: what is the Big-O of using our binary search inside of our 
linear scan? Let’s break it down.

Iterating and Searching

We have an O(n) as before with our array iteration – we know that 
much. We now have a single operation within the iteration that is 
O(log n). Putting the two together we have O(n * log n) which we 
can just think of now as O(n log n).

So: in terms of time complexity, we have a better algorithm here! It 
will provably scale better than our original brute force approach as 
well!

const nums = [1,2,3,4,5];
const searchFor = function(items, num){
  //use binary search!
  //if found, return the number. Otherwise...
  //return null. We'll do this in a later chapter.
}
const hasDuplicates = function(nums){
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  for(let num of nums){
    //let's go through the list again and have a 
look
    //at all the other numbers so we can compare
    if(searchFor(nums,num)){
      return true;
    }
  }
  //only arrive here if there are no dups
  return false;
}

Finding duplicates with binary search

Common Uses

You see O(n log n) complexity in a number of algorithms, but 
they are most common when doing sorts. We’ll get into sorting 
algorithms later on, but the most commonly used (because they’re 
the most efficient) are Quicksort and Merge Sort. Each is O(n log n) 
with a few variations which we’ll discuss in a later chapter.

Going Even Further

Our interviewer is digging our style right now and decides to up 
the game, one more time.

What if I told you that you could assume there was only one duplicate 
number?

Well now… that's an interesting development. Let's consider 
everything that we just did and see how we can bring this O(n log 
n) algorithm down just a bit more.
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The first question we should ask ourselves is can we do some math 
to avoid an iteration? A few sections ago we used Gauss' trick to 
sum a series of integers, which could help us here. To do that, we'll 
need to perform three operations:

»» Find out what the sum should be for an array without 
duplicates. For this all we need is the highest number in the 
array past to us. Since we know it's sorted, that's the last 
element and we know this is a constant time thing at O(1).

»» Find out the actual sum. This will necessarily be an O(n) scan.

»» Subtract the non-duplicate sum from the actual sum and that's 
the number we're looking for! This is also O(n).

If we're right, this will bring our algorithm down to O(n).

Here's our new algorithm:

const findDuplicate = function(ary){
  //sum what we're given
  let actualSum = 0;
  //our O(n) scan
  ary.forEach(x => actualSum += x);
  //get the last item
  const lastItem = ary[ary.length - 1];
  //create a new array
  const shouldBe = lastItem * (lastItem + 1) / 2;
  return actualSum - shouldBe;
}
const nums = [1,2,3,4,4,5];
const duplicate = findDuplicate(nums);

Nice work! Our interviewer is impressed!
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A Quick Break for Math Geeks
One of the YouTube channels I love watching is Numberphile. 
They tackle all kinds of interesting math problems and concepts, 
creating 10 minute videos illustrating the results.

One day, while researching the math tricks you just read about 
(specifically Gauss' trick) I stumbled on this video, which asks the 
question:

What is the sum of [1 + 2 + 3 + 4 + … ∞]? 

What do you think the answer is? You would think it would be 
a pretty large number if not infinity itself. But then… the answer 
turns out to be -1/12.

No, seriously. Fair warning: you will get lost down this rabbit 
hole…

Thinking in Big-O
By now you should be able to equate certain basic operations in 
code to a given Big-O. If you practice this for a bit, you’ll be able to 
quickly spot patterns and, ideally, improve them if you know the 
right algorithm to do so.

Specifically:

Random access to a given element in a collection is always 
O(1), depending on how the list is indexed. Arrays, for instance, 
allow you to access elements randomly if you know their index. 
HashSets allow you to access if you know what the value is (the 
hashed value is the index). Dictionaries allow you random access 
if you know what they key is, and so on. These types of operations 
are always O(1) which means if they are combined with other 
Big-O, they will remain static or constant time.

https://www.youtube.com/channel/UCoxcjq-8xIDTYp3uz647V5A
https://www.youtube.com/watch?v=w-I6XTVZXww
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List iterations are always O(n). If you need to evaluate every 
item in a list for a given algorithm, this means it will at least be 
O(n). Sometimes you can get around this with some trickery, 
which I’ll discuss later on.

Nested Loops on the same collection are always at least 
O(n^2). Loops within loops … sometimes necessary, but can 
usually be improved by thinking about data structures (which we’ll 
do later on).

Divide and Conquer is always O(log n). The very act of dividing 
a list into smaller sublists is logarithmic. If you have an O(1) 
operation once the list is split apart, then the Big-O for the entire 
operation is O(1 * log n) which is just O(log n).

Iterations that use divide and conquer are always O(n log n). 
Think about looping a list and then executing some algorithm to 
search for list value or, possibly, to run some kind of sorting.   

If you solve a problem by adding another nested loop for every 
input that you have: that’s O(n!) which is bad and you should 
probably find another job!

Space Complexity vs. Time Complexity
You may have noticed that I’ve been using the term time complexity 
a lot in this chapter, as that’s what we’ve been focused on: how 
long will it take to do a given operation given n inputs. In data analysis 
speak this is called a dimension and is just a way to think about how 
complex an algorithm is.

There is another dimension that is also important: space. In other 
words: what are your algorithms resource requirements?

The same type of Big-O classifications still apply in that we still 
refer to things such as O(n) or O(1) “space”, but the meaning is 
somewhat different. Space where? The answer is: it doesn’t 
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matter. “Computer resources somewhere” is all we care about.

However. There is a bit of reasoning we should be able to apply so 
we can go a bit deeper.

When a program executes it has two ways to “remember” things: 
the heap and the stack. I’ll get into the details of each later on, but 
for right now just consider the stack to be the thing we’re worried 
about. It’s the thing that remembers the variables in the scope of 
the currently executing routine. When a variable is declared in a 
block of code, it’s stored on the stack. When a block of code goes 
out of scope, the variables are removed from the stack. Sometimes 
the scope is the current block, other times it’s the current function 
or procedure.

Why do we care? The short answer is that you can easily run out 
of resources before you run out of time depending on how you’ve 
written your program. The simplest way to think about this is 
the dreaded “Stack Overflow Exception” which simply means 
you’re executing some kind of loop that has used up every last 
bit of space on the stack. This can (and often does) happen with 
a recursive routine as each value remains on the stack until all 
functions have executed.

Working with strings is another way to cause yourself space 
complexity problems. For example, if you use a loop to build a 
string, your space complexity might be as bad as O(nm) where n 
is the number of iterations and m is the length of the string. Not 
so bad if you’re just building out memes, but if you’re trying to 
evaluate string patterns in a book… that could be bad.
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Now that we understand how to quantify 
complexity, let’s look into the various ways that 

we can work with data in order to increase efficiency. As 
I mentioned in the beginning of the previous chapter: 
algorithms, complexity and data structures work hand 
in hand. 

Arrays are simple to work with but make life hard if you’re 
trying to find a particular value. Dictionaries help with that, but 
are slightly more involved. Hash Sets (or Hash Tables) are lovely 
because the hash of their value is also their key, so accessing data 
is done in constant time and is O(1) if you know the value you 
want. From there things get quite a bit more involved.

Some languages offer a plethora of choices when it comes to 
working with data, but all of these choices are variations of (or 
small improvements upon) a standard, core set of data structures 
that every programmer should know. That’s what we’ll take a look 
at in this chapter.

You can find the code used in parts of this section up at my github repo. In 
addition, you can buy 17 video walkthroughs of the structures you see in 
this chapter and others from here

Arrays
You know about arrays, I’m sure. Unless you work in JavaScript 

http://https://github.com/imposters-handbook/sample-code/tree/master/algorithms
https://goo.gl/2XZCHc
http://https://goo.gl/2XZCHc
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every day, however, it's unlikely you use them much. They're very 
lightweight and simple to use, but there is also weirdness.

When you declare a non-dynamic array, you must specify its size 
upfront. This size cannot change. In most modern languages we 
don’t think about this – but in some older languages this is still the 
case.

Arrays hold values which are referenced by an index. They allow 
very fast random access, which means you can access any value 
from an array using a O(1) routine as long as you know the index.

Arrays are typically bound to a specific length once they are 
created. If you need to add an item to an array, the language you’re 
working in will typically copy the original plus whatever value you 
want to add to approximate dynamically changing the array’s size.

This can be a costly operation, as you can imagine. Let’s see why.

Resizing

Many languages allow you to dynamically resize an array (Ruby 
and Python, e.g.) while other, more strict languages, do not (C# 
and Java e.g.). Ruby and Python allow for dynamic arrays which 
are basic arrays, but with some magic behind the scenes that help 
during resizing. C# and Java have different structures (like Lists) 
built specifically for expanding and shrinking.

Arrays are allocated in adjacent blocks of memory when they are 
created. There is no guarantee that additional memory can be 
allocated adjacent to an array if you need to add an element, so it 
becomes necessary to copy and rebuild the array at a new memory 
location, which is a costly process.

Strings, for instance, are simply arrays of characters. If you append 
a string with another string value in C#, for instance, an array 
copy/rebuild needs to happen. This is why working with strings in 
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a loop is typically not a good idea.

Arrays in JavaScript

JavaScript, however, is an interesting case. Arrays in JavaScript are 
just objects with integer-based keys that act like indexes. They are 
instantiated from the Array prototype, which has a few “array-like” 
functions built into it.

Here is a description from Mozilla:

Arrays are list-like objects whose prototype has methods to perform 
traversal and mutation operations. Neither the length of a JavaScript 
array nor the types of its elements are fixed. Since an array’s length 
can change at any time, and data can be stored at non-contiguous 
locations in the array, JavaScript arrays are not guaranteed to be 
dense; this depends on how the programmer chooses to use them. In 
general, these are convenient characteristics; but if these features are 
not desirable for your particular use, you might consider using typed 
arrays.

Hey, it’s JavaScript.

Why Choose an Array?

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
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Arrays are the simplest data structure with the least amount of 
rules. Bits of data are stored in contiguous memory, so they are 
also have the smallest footprint of any data structure.

If all you need is to store some data and iterate over it, arrays are 
a fine choice, especially if you know the indices of the items you’re 
storing. Random, O(1) access to values in an array is also a great 
reason to choose an array over other, more “ceremonial” data 
structures.

The final reason to keep arrays fresh in your mind is The Big 
Job Search. Coding interviews will almost always involve 
working with an array of values at some level (usually integers), 
so understanding their restrictions (and advantages) is quite 
important.

Stack
I discussed the idea of a stack in the previous chapter when 
describing a Pushdown Machine. It’s just like an array, but it has a 
few restrictions:

»» You can’t access items randomly using an index

»» You can only add and retrieve items in the stack from the “top”

»» It has three explicit methods: Push, Pop, and Peek.

A term that is often used for the nature of a stack is “Last In, First 
Out” or LIFO. You push an item onto a stack, peek to see the value 
that’s currently on top of the stack and then pop that item off of 
the stack.

The simplest way to think about the stack is by visualizing one of 
my big pet peeves: a stack of plates. The ones on the bottom never 
get used because we always grab the plates on the top!
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Why Choose a Stack?

Stacks are useful in quite a number of surprising ways. They are 
perfect when you need to know the very last value that was seen in 
a loop. You might want to know this when you’re:

»» Reversing a string

»» Traversing a graph or a tree

»» Checking an opening/closing structure of some kind (such as 
balanced parentheses in a sentence)

Honestly, the biggest reason you want to know what a stack is 
(and does) is for interviews. They come up often! You might not 
use them regularly in your current job, but you never know when 
they might fit something you’re trying to do.

Queue
A queue is also like an array, but with some additional rules:

»» You can’t access values randomly using an index

»» You can only add values in one end and retrieve them from the 
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other

»» It has two explicit methods: Enqueue and Dequeue

A queue queues things in a queue, and is described as “First In, 
First Out” or FIFO. You enqueue an object into the “end” of the 
queue and dequeue it from the “front”.

It’s likely you’ve used queues often so I won’t labor the point for 
too long. It’s also a word that’s kind of tough to type so I’ll keep 
this section short.

An interesting thing about a queue is that you can create one with 
two stacks. This is one of those interview questions that you’ll 
likely need to know at some point in your career! How would you 
go about doing this?

The mechanism is pretty obvious: you have an “in” stack and an 
“out” stack – the tough part is deciding at which point you’ll move 
items from the “in” stack onto the “out” to avoid collisions. If you 
do it one at a time then things can easily get out of order! Imagine 
calling enqueue 5 times, then dequeue once, then enqueue again. 
Your stacks would be a mess!

How would you avoid this? I’ll leave it to you…

Linked List
There are two types of linked lists: singly and doubly linked. 
Both of these are graphs (which we’ll discuss in a minute), which 
means you can think of them as two dimensional structures with 
associations.

A singly linked list consists of a set of “nodes” in memory, that 
have two elements:

»» The value you want to store
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»» A pointer to the next node in line

A doubly linked list is exactly the same, but contains an additional 
pointer to the previous node.

Operations

Nodes in a linked list don’t need to reside next to each other in 
memory, and therefore can grow and shrink as needed.

Their loose structure allows you to insert values into the “middle” 
of the list by simply resetting a few pointers. Same for deleting a 
node in a linked list.

The downside to linked lists is that finding an item means you 
have to traverse the list to get to the item you want, which is an 
O(n) operation, always. Arrays, on the other hand, allow you O(1) 
access if you know the index.
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Linked lists are null-terminated, which simply means if a node’s 
pointer is null, then that signifies the end of the list.

The first item in a linked list is called the head, the rest of the list 
is, typically, called the tail. Some languages refer to the tail being 
the last item in the list – there is no hard definition so if you hear 
about “tailing the list” just think about the end of it and hope for 
some context.

Why Choose a Linked List?

The primary reason to choose a linked list over something like an 
array is simplicity and the ability to grow and shrink as needed. 
Also because you're in an interview.

Working with them can be a bit weird, but also kind of interesting 
in that they are very self contained and lightweight:  

public class LinkedListNode{
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  public int Value { get; set; } 
  public LinkedListNode Next { get; set; }
  public LinkedListNode(int Value)
  {
      this.Value = value;
  }
}
var a = new LinkedListNode(1);
var b = new LinkedListNode(2);
var c = new LinkedListNode(3);

a.Next = b;
b.Next = c;

Iteration is best thought of as “traversal” because you don’t really 
know when a linked list will end – so you end up using something 
like a while loop:

var thisNode = a;
while(thisNode != null){
  //do something
  //...
  //traverse
  thisNode = thisNode.Next;
}

Hash Table
Arrays are fast for reading data, linked lists are good for writing 
data and having more flexibility. A hash table is a combination of 
the two.

A hash table stores its data using a computed index, the result of 
which is always an integer. The computation of this index is called 
a hash function and it uses the value you want to store to derive 
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the key:

var value = "Rob";
const myLameHashFunction = function(val){
  return val.length;
}

Most modern programming languages have a hash function you 
should use; don’t create your own. I’ll go into why in just a second.

Once you have a key, you can store your value. The key/value pair 
is often referred to as a bucket or slot.

Speed

Hash tables are great when you want quick access to certain 
values. Because their value is also their index, hash table reads are 
O(1). This can be complicated, however, if a hashing function is 
overly complex. You will typically leave this to whatever framework 
or language you’re using, so assuming O(1) is fine.

Similarly, adding values to a hash table does not involve (typically) 
any traversals – you just hash the value and create the key. This 
leads to really good performance, however in the real world this 
doesn’t happen that often.

Even the best hashing algorithms will create duplicate keys (called 
collisions) if the data size is large enough. When this happens, 
your reading and writing can be reduced to O(n/k), where k is the 
size of your hash table, which we can just reduce to O(n).

Collisions will likely happen in any hash table implementation, so 
most implementations have built-in ways of handling these. Let’s 
take a look at two common ways to deal with collisions: open 
addressing and separate chaining.
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Open Addressing

Open addressing resolves a collision by finding the next available 
slot, and dropping the value there.

Let’s assume I’m using my Lame Hash Function with a new 
name: “Kim”. The key produced will be a 3 since my Lame Hash 
Function only uses the length of the value instead of something 
more intelligent. The key produced (3) will collide with my 
existing entry for “Rob”, which is also a 3. Using open addressing 
to resolve the collision, “Kim” will be added to the first slot at the 
end, which is 4.

To find “Kim” in the table, open addressing dictates that we do an 
O(n) scan from index 3 (where “Kim” should be) and then work 
our way down until we find the value.

This presents some interesting problems – what if “Doug” and 
“Dana” want to join our list? They can, but they’re indexes will be 
5 and 6. It spirals from there.

This is called clustering and it can quickly turn a lovely, fast hash 
table into a simple O(n), not fast hash table.
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Separate Chaining

Separate chaining involves combining two data structures that 
we’ve already looked at: arrays and linked lists.

When a key is hashed, it’s added to an array that points to a linked 
list. If we have only one value in our hash table for a given key, 
then we’ll have a linked list with only a single element.

However, in the case of key 3, the linked list can expand easily and 
accommodate “Kim” as well:

Why Choose a Hash table?

Hash tables are one of the most common data structures you’ll find 
in modern languages because they are fast. As long as the hashing 
algorithm is comprehensive and capable, the hash table will be 
O(1).

One of the main drawbacks, however, is again the hashing 
algorithm. If it’s too complex then it will take longer to run, and 
you will still have 0(1) read/write but it could actually be slower 
than executing an O(n) over an array, for instance.
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Oh yeah - and because you're in an interview.

Dictionary
A dictionary is exactly like a hash table except it has a unique key 
for accessing a given value. This has an advantage over hash tables 
in that you can’t have a dictionary with the same key - so collisions 
are not something you need to worry about.

Given that a key is guaranteed to be unique, dictionaries provide 
O(1) access to any element, as long as you know what the key is. 
The downside is that dictionaries can be a bit larger than hash 
tables and therefore have increased space complexity. Most of the 
time this isn’t something you need to worry about.

Dictionaries are ubiquitous in programming, even more so than 
arrays and hash tables. If you’re a JavaScript developer you might 
be wondering about this assertion – after all, the only type of list 
you get to work with is an array… which isn’t exactly true.

Under the covers, your array is really a dictionary with integer 
keys, as is a plain old object:

var nums = [23,4,42,15,16,8,3];
//this array is really a dictionary
//which is also used to represent an object
nums[0] == 23; //true
nums[1] == 4; //true
nums[2] == 42; //true

Trees
Trees are another type of graph (which is a collection of associated 
nodes that I’ll get into in a just a minute) with a hierarchical 
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structure. As opposed to linked lists, which are linear, trees can 
have 0 or more child nodes.

Every tree has a single root node. Every child of the tree descends 
from this root node and has only one parent.

You work with tree data structures every day: your computer’s file 
system is a tree:

Using a tree data structure usually involves traversing using 
recursion, which can be expensive in terms of space complexity. 
Every time you recurse a child node, the stack has to store the 
values for that scope and you could run out of space.

There are other ways to traverse a tree by iterating using a Queue 
and a Stack - I’ll get to that in the Algorithms chapter, specifically 
Breadth-first and Depth-first traversal.

Binary Tree
A binary tree is something you’ve likely seen. It’s a type of graph, 
but with some rules applied, which are straightforward: each node 
can have 0, 1, or 2 child nodes, but only 1 parent:
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Binary trees can represent a number of interesting things, 
including decisions. Each node represents a given state that is the 
result of a yes or no decision. 

Another interesting aspect of a binary tree is that each level of the 
tree represents a logarithmic value:
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At level 0 we have log2(0) = 1 Node. At level 1 we have log2(1) 
= 2 and finally log2(2) = 4 nodes.

You can also visualize the divide and conquer search algorithm we 
used in the last chapter with a binary tree. Each split operation 
represents another level of a binary tree.

Heap
A heap is an inverted tree that is a set of interconnected nodes that 
store data in a particular way, which is called the heap property. 

Every child node belongs to a parent node that has a greater 
priority (or value, whatever) – this is called a max heap. A min 
heap is the opposite: every parent has a value less than all of its 
children.

Put another way: if we’re dealing with a max heap then every node 
on a top level has a greater value then every node on the next level 
down.

We can see this in a recent family picture of mine, where we all 
posed based on our ages:
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We couldn’t afford a camera so we had to draw it out

Usage

A heap (and its variants, which I’ll get to later on) can be used in 
any algorithm where ordering is required. Arrays are random, and 
allow random access to any element within them. Linked lists can 
change dynamically but finding something within them is O(n) 
(linear); heaps are a bit different.

You can’t do O(1) random access and a single node knows nothing 
about its children. This means you need to do some type of 
traversal to find what you’re looking for. Given the structure of 
the tree, however, finding things is considerably easier than with a 
linked list:

We found Tommy, age 11, easily here. However we could easily 
have had to traverse over a few times if he was on the end there 
next to Jujubee, age 10.

So what are heaps good for then? It turns out they’re wonderful if 
you’re doing comparative operations – something like “I need all 
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people in this heap with an age greater than 23”. Doing that in a 
linked list would be quite slow – same with an array and a hash as 
no order is implied.

Why Choose a Heap?

Heaps are used in data storage, graphing algorithms, priority 
queues and sorting algorithms. In many languages you’ll find data 
structures that will give you the same kind of ordered structure if 
you choose your keys wisely.

For instance: in C# you could use a SortedList or a 
SortedDictionary, storing objects with parent/child 
associations.

The primary advantage of heaps is performance. They’re very 
fast when it comes to searching as they are pre-sorted and don’t 
involve the extra step of an O(log n) split – it’s just a traversal.

Binary Search Tree
A binary search tree is just like a heap in that it is organized based 
on the values of the nodes, with one major addition: there is also a 
left to right value priority.

The rules are:

»» All child nodes in the tree to the right of a root node must be 
greater than the current node

»» All child nodes in the tree to the left must be less than the 
current node

»» A node can have only two children
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Binary Search Tree

The advantage of a binary search tree is, obviously, searching. It’s 
very easy to find what you’re looking for as you’ll see down below. 
The downside is that insertion/deletion can be time consuming as 
the size of the tree grows.

For instance, if we remove 13 from the tree above, a decision needs 
to be made as to which node will ascend and take its place. In this 
case I could choose 15 or 12. This operation seems simple on the 
face of it, but if 15 had children 14 on the left and 16 on the right, 
some reordering would need to happen.

Digital Tree (or Trie)
A digital tree (or “trie”, which most pronounce “try” even though 
the term comes from retrieval) is a specialized tree used in 
searching, most often with text. In many cases it can outperform 
a binary search tree or hash table, depending on the type of search 
you’re doing.
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Tries allow you to know if a word (or part of a word) exists in a 
body of text. The easiest way to understand a trie is to see one, so 
here goes:

This trie has an empty root node, and from there letters are added 
as child nodes. The power of a trie is evident with the prefix “imp” 
- in this section of the trie there are 6 distinct words represented 
by 20 total nodes:

»» Imp

»» Imposter (and Imposters)

»» Impossible
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»» Impart

»» Impasse

The advantages of this structure are speed and space. Finding a 
word in this structure is O(m), where m is the length of the word 
you’re trying to find. 

Tries also have a major advantage when it comes to space 
complexity. Common prefixes are reused so repetition within the 
structure is kept at a minimum.

Finally, the major advantage of a trie is that you’re able to search 
the structure for partial matches based on a prefix. This kind of 
thing is great for word completion.

Have you ever wondered how code completion works in your 
favorite editor, or how Google can do the below so quickly?

That’s right: using tries.

Graphs
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I’ve been mentioning graphs quite a lot in this chapter and it’s 
time, finally, to dive in and get to know these data structures a bit 
more. 

Graphs are one of the most useful and most used data structures 
in computer science. In short, a graph is a set of values that are 
related in a pair-wise fashion. Again, the easiest way to understand 
this (if it’s not intuitive) is to see it:

As you’re probably figuring: graphs can describe quite a few things. 
Let’s take a look at a few.

GRAPH THEORY AND THE BRIDGES OF KÖNIGSBERG

If you took calculus in school, you probably learned about the 
origins of graph theory with Leonhard Euler’s Seven Bridges of 
Königsberg problem:

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
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The city of Königsberg in Prussia (now Kaliningrad, Russia) was set 
on both sides of the Pregel River, and included two large islands which 
were connected to each other and the mainland by seven bridges. The 
problem was to devise a walk through the city that would cross each 
bridge once and only once, with the provisos that: the islands could 
only be reached by the bridges and every bridge once accessed must be 
crossed to its other end. The starting and ending points of the walk 
need not be the same.

It might be easier to visualize the problem … which gives me 
another reason to draw!

The Seven Bridges of Königsberg.

In trying to solve this problem, Euler reasoned that the route on 
land was not important, only the sequence in which the bridges 
were crossed. Given this, he could relate the land to the bridges in 
an abstract way, using the idea of nodes that are accessible by an 
edge.

In other words, a graph.
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Now that we have our graph, we can restate the problem:

Can you visit vertices A, B, C and D using edges 1 through 7 only 
once?

Before reading on, take a second and see if you can solve the 
problem just tracing your finger across the page. Or draw it out 
on a paper yourself and see if you can trace a line using a pencil 
or pen, visiting nodes A through D using edges 1 through 7 only 
once.

In mathematical terms, a simple path access every vertex. A Euler 
path will access every edge just once – that’s the one we want, a 
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Euler path.

The Solution

There is an algorithm we can use to solve this problem, which is to 
determine the number of degrees each vertex has and apply some 
reasoning. A degree is how many edges a given vertex has, by the 
way.

Euler reasoned that a graph’s degree distribution could determine 
whether a given edge must be reused to determine the path. 
His proof, in short, is that a graph must have either zero or two 
vertices with an odd degree in order to have a Euler path (a path 
which visits each edge just once).

Let’s tabulate the seven bridges graph:
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Here we have four vertices with odd degrees, which tells us that 
there is no Euler path and, therefore, that the Seven Bridges 
Problem has no solution.

So What?
I wouldn’t blame you if you’re wondering right now why I’ve 
included the Seven Bridges Problem in this book as well as a 
discussion of Euler. These seem to be more math-related than 
anything in computer science, don’t they?

In your next job interview you may very well be asked how you 
would solve some algorithmic problem that you (hopefully) will 
recognize as graph-based. Fibonacci, Traversal, Balancing, or a 
Shortest Path problem –  if you can spot a graph problem you’ll 
have a leg up on the question.

Directed And Undirected Graphs

There are different types of graphs, as you can imagine. One which 
you’ll want to be familiar with is a directed graph, which has the 
notion of direction applied to its edges:
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These types of graphs are useful for describing traffic flow of 
some kind, or any system in which movement is not bi-directional 
in every case. There is also an undirected graph which you can 
think of as a series of two-lane highways that connect towns in 
a countryside. Travel is bidirectional between each town and not 
directed along a given path.

Weighted and Unweighted Graphs

Values can be applied to various aspects of a graph. Each vertex, for 
instance, might have a weight applied to it that you’ll want to use 
in a calculation of some kind:
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Maybe you’re going on a trip, trying to figure out the most efficient 
way to see the cities you like the most.

There is also an edge-weighted graph, which is useful for 
calculating optimal paths:
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Cycles

When you have vertices connected in a circular fashion, it’s called a 
cycle. We can see one of these as part of our first graph above:
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Cycles are fairly common in directed graphs. If a graph doesn’t 
have a cycle, however, it has a special name.

Directed Acyclic Graphs (DAGs)

If we redraw the graph above with edges that don’t cause any 
cycles, we’ll have a directed acyclic graph, or DAG:
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DAGs are useful for modeling information and processes, like 
decision trees, algorithmic processing or data flow diagrams. Many 
of the data structures that we’ve been playing with up until now 
have been DAGs, including all of the trees and linked lists.
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You don’t need to know how to write a sorting or 
searching algorithm from scratch, frameworks 

do that for us. You do, however, need to know how 
they work because 1) it’s likely you will be asked 
some details about them during interviews and 2) 
understanding their complexity could be the difference 
between keeping and losing your job! There's not a lot 
to say about these algorithms by way of introduction, 
so let's jump right in.

You can find the code used in parts of this section up at my github repo. In 
addition, you can buy 17 video walkthroughs of the algorithms you see 
in this chapter and others from here.

Bubble Sort
Let’s start with the simplest sorting algorithm there is: bubble 
sort. The name comes from the idea that you’re “bubbling up” the 
largest values using multiple passes through the set.

So, let’s start with a set of marbles that we need to sort in 
ascending order of size:

http://https://github.com/imposters-handbook/sample-code/tree/master/algorithms
https://goo.gl/2XZCHc
http://https://goo.gl/2XZCHc
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A reasonable, computational approach to sorting these marbles is 
to start on the left side and compare the first two marbles we see, 
moving the larger to the right.

As you can see, the smaller marble is already on the left so there’s 
no change needed:

Then we move on to the next two, which are the dark blue and the 
pink, switching their positions because pink is smaller than dark 
blue:
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The same goes for yellow and dark blue, although an argument 
could be made that the author’s drawing skills don’t make it clear 
that dark blue is slightly larger.

The last two are simple: the green marble is much smaller than the 
dark blue, so they switch positions as well.
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OK, we’re at the end of our first pass, but the marbles aren’t sorted 
yet. The green is out of place still.

We can fix this by doing another sorting pass. This one will go a 
bit faster because blue and red are in order, red and yellow are in 
order, but green and yellow are not – so we make that switch:
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Not too hard to figure it out from here. The green ball needs to 
move 1 more time to the left, which means one more pass to sort 
the marbles – making 3 passes in total.

Eventually, we get there:

Bubble sorts are not efficient, as you can see.

JavaScript Implementation

Implementing bubble sort in code can be done with a loop inside a 
recursive routine. That sentence right there should raise the hairs 
on the back of your neck! Indeed, bubble sort is not very efficient 
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(as we’ll see in a minute).

Here’s one way to implement it:

//the list we need to sort
const list = [23,4,42,15,16,8];

const bubbleSort = (list) => {
  //a flag to tell us if we need to sort this list 
again
  var doItAgain = false;
  const limit = list.length;
  const defaultNextVal = Number.POSITIVE_INFINITY;
  //loop over the entries
  for (var i = 0; i < limit; i++) {
    let thisValue = list[i];
    let nextValue = i + 1 < limit ? list[i+1] : 
defaultNextVal;
    //compare values
    if(nextValue < thisValue){
      list[i] = nextValue;
      list[i+1] = thisValue;
      //since we made a switch we'll set a flag
      //as we'll need to execute the loop again
      doItAgain = true;
    }
  }
  if(doItAgain) bubbleSort(list);
}
bubbleSort(list);
console.log(list);

Executing this code with Node we should see this:

[ 4, 8, 15, 16, 23, 42 ]
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Complexity Analysis

As you can see, we’re using recursion as well as a for loop, which 
should set off some alarms. If you recall from the chapter on Big-O, 
nested loops operating on the same list almost always means 
O(n^2) and this algorithm is no exception to that, even if we're 
using recursion.

The use of recursion also means we're potentially taking up O(n) 
space as well and opens up the possibility of a stack overflow 
exception given enough items to sort.

Merge Sort
Merge Sort is one of the most efficient ways you can sort a list of 
things and, typically, will perform better than most other sorting 
algorithms. In terms of complexity, we're using a divide and 
conquer approach, which should tip you off that this is going to 
be at least O(log n). Once we divide the array, we need to sort the 
items which is going to be an O(n) operation since we need to 
address each item. That means this algorithm's complexity is O(n 
log n).

Merge Sort works by splitting all the elements in a list down to 
smaller, two-element lists which can then be sorted easily in one 
pass. The final step is to recursively merge these smaller lists back 
into a larger list, ordering as you go - this is the O(log n) part:
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Now we need to merge the lists. The rules for this are simple: 
compare the first elements of adjacent lists, the lowest one starts 
the merged list – this is the O(n) part:

This is straightforward with lists of one element being combined 
into lists of two elements. But how do we match up lists of two 
elements?

The same way. When combining the [6,7] list with the [3,8] list, 
we compare the 3 with the 6 – the 3 is smallest so it goes first. 
Then we compare the 6 with the 8 and the 6 is smaller, so it goes 
next. Finally we compare 7 and 8 and add them accordingly:
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Now, you might be thinking “wait a minute – how do we know 
that a smaller number isn’t sitting to the right of the 6? Wouldn’t 
that mess up the sort?” That’s a good question.

It’s not possible to have a lower number to the right of any 
element in a merged list – when the [6,7] list was created we 
sorted it. This is the power of Merge Sort: the leftmost numbers 
are always smaller which gives us a lot of power.

OK, so now we continue on in the same way, merging the final 
lists of 4. We start on the left-hand side of each list, comparing the 
values, and adding the lowest to the merged list first:

And we’re done! Here’s the full operation, in case you’d like to see 
it top to bottom:
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JavaScript Implementation

Implementing merge sort in code is a bit tricky. You need to 
have two dedicated routines, one for splitting the list and one for 
merging.

The first step is to recursively split the list:

const list = [23,4,42,15,16,8,3];
const mergeSort = (list) => {
  //if there's only one item in the list
  //return. This is our recursion check.
  if(list.length <= 1) return list;

  //cut list in half
  const middle = list.length/2;
  const left = list.slice(0,middle);
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  const right = list.slice(middle,list.length);

  //recursively run through the splits
  //left and right will be separated down to 
single elements
  return merge(mergeSort(left), mergeSort(right));
};

In this routine we’re just splitting whatever list comes in right 
down the middle. If the list only has one entry, we’re returning. 
This prevents the recursive call on the last line from blowing up.

Next is our merge function:

const merge = (left, right) => {
  var result = [];
  //if the left and right lists both have elements
  //run a comparison
  while(left.length || right.length){
    //if there are items in both sides...
    if(left.length && right.length){
      //if the first item on left is
      //less than right...
      if(left[0] < right[0]){
        //take the first item on the left
        result.push(left.shift());
      }else{
        //take the first item on the right
        result.push(right.shift());
      }
    }else if(left.length){
      //just take left
      result.push(left.shift());
    }else{
      //just take right
      result.push(right.shift());
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    }
  }
  return result;
}
console.log(mergeSort(list));

This routine takes two lists and compares their leftmost values. If 
one of the lists is empty then the left-most value from the other 
list is appended as the result.

Running this we get:

[ 3, 4, 8, 15, 16, 23, 42 ]

Hurrah!

Quicksort
Quicksort is a divide and conquer algorithm that uses a pivoting 
technique to break the main list into smaller lists. These smaller 
lists use the pivoting technique until they are sorted. The 
complexity of quicksort, however, is not constant because the 
pivot (as you're about to see) is determined at random and the 
partitioning of the list can put the algorithm at a disadvantage.

In the worst case, quicksort is O(n^2) when the pivot is the 
smallest or largest element in the list. In the best case it's O(n log 
n), like merge sort. We'll discuss this a bit more at the end of this 
section; for now let's get to know this algorithm.

There are two ways to implement quick sort. Let’s go over 
how the algorithm works and then I’ll discuss the different 
implementations.

We’ll start with a set of 8 elements (sorry, no cats or marbles this 
time).
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We need a pivot, so we’ll choose the very last element of the list 
(by convention).

The next step is to partition our list so that all elements in the list 
that are less than our pivot are in a separate partition to the left, 
and all the elements greater are in a partition to the right. There 
are various ways to do this, but the simplest is to start at the 
beginning of the list – in this case a 5 – and if it’s smaller we’ll 
leave it in place.

The next element is a 2, so we’ll leave that there as well.
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Then we come to an 8, which is greater than our pivot, which 
means we need to move it.

I’ll pick it up and move it behind the pivot as it’s a larger number, 
and I’ll move the pivot down one position. There’s already a 
number there – a 7 – so I’ll move that to where the 8 was.

Now the 7 is the next thing to evaluate. It’s greater than 6 so I’ll 
do the same maneuver, switching the 3 and the 7, putting the 7 in 
the position my pivot was just in.
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The next elements are 1 and 4 – which are both smaller than 6. 
This means we’re done with our first partitions!

We now have two new lists – the numbers less than 6 on the left 
and the numbers greater than 6, on the right. Six itself in its final 
position, so we’ll ignore it for now.

Now we pick a pivot for the new lists in exactly the same way – 
the last element in each list. This means that 8 is the pivot on the 
right, 4 is the pivot on the left.

The neat thing here is that there are no numbers greater than 8 in 
our list on the right, so there’s nothing we need do.
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The list on the left, however, can be separated in exactly the 
same way we did before. We’ll compare once again from the first 
position – it’s a 5 so we’ll stick it behind our 4, and move the 
number to the left of the 4 (a 1) to 5’s old position.

And just like that – we’re done!

Avoiding a Mess

If our list was presorted for whatever reason (and it turns out that 
yes, this does happen) then our sorting routine here would take a 
very, very long time. We’d have to split and order the list for every 
element, turning the complexity to O(n^2).

To get around this we can select our pivot intelligently. This 
requires an initial step where you find the median value of a list 
and then make that the pivot. From there the sorting operation 
will usually beat out merge sort because the sorting happens in-
place, which means we have decreased space complexity and fewer 
overall operations.

JavaScript Implementation

Again we’ll use recursion to help us split the list into partitions. 
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The one tricky thing here is that we need to remove the pivot from 
the evaluation, which is commented inline:

const list = [23,4,42,8,16,15];
const quickSort = (list) => {
  //recursion check. If list is empty or of length 
1, return
  if(list.length < 2) return list;
  //these are the partition lists we'll need to 
use
  var left=[], right=[];
  //default the pivot to the last item in the list
  const pivot = list.length -1;
  //set the pivot value
  const pivotValue = list[pivot];
  //remove the pivot from the list as we don't 
want to compare it
  list = list.slice(0,pivot).concat(list.
slice(pivot + 1));
  //loop the list, comparing the partition values
  for (var item of list) {
    item < pivotValue ? left.push(item) : right.
push(item);
  }
  //recursively move through left/right lists
  return quickSort(left).concat([pivotValue], 
quickSort(right));
};

console.log(quickSort(list));

Selection Sort
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Selection sort is likely the simplest possible way to sort a list. It’s 
how you and I might think of telling a duck to do it if a duck had 
hands and needed to get a job as a coder at Amazon.

This algorithm works by scanning a list of items for the smallest 
element, and then swapping that element for the one in first 
position. This continues with the remaining items until the list is 
sorted.

The complexity of selection sort ranges from O(1) when the list is 
already sorted to O(n^2) when the list is presorted in the reverse 
order you want. The O(1) complexity makes this an interesting 
choice if there’s a chance of sorting a pre-sorted list (or a list of 
equal objects) – which happens fairly often.

We’ll start out with an unsorted list of 7 elements:

The first task is to find the lowest number, which (in the worst 
case scenario) is a linear scan:

Once we’ve found the lowest element, we swap it with the first 
element in the list, as we know this is where the lowest element 
belongs.
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Then we do it all over with the remaining items. In this case the 
next lowest element is a 2.

So we swap the two with the element that was in second position.



157

The Imposter’s Handbook

Rinse, repeat. We keep scanning the list for the lowest item 
and swapping it for the items that aren’t in their final position 
(shaded):

Not a very efficient operation. My doodles have rebelled, 
apparently – but our last operation is swapping the 4 and the 7 and 
then we’re done!
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Implementation in JavaScript

This one is straightforward – no need for recursion. We can use 
two loops: the first will loop over our list, the second will loop 
forward for every step:

const list = [23,4,42,8,16,15];
const selectionSort = (list) => {
  for (var i = 0; i < list.length; i++) {
    //default the min value to first item
    //all we need do is track the index for now
    var currentMinIndex = i;
    //loop, skipping the currentMinIndex
    for(var x = currentMinIndex + 1; x < list.
length; x++){
      //if the current list item is less than the 
current min value...
      if(list[x] < list[currentMinIndex]){
        //reset the index
        currentMinIndex = x;
      }
    }
    //has the index changed?
    if(currentMinIndex != i){
      //if yes, switch the values in the list
      var oldMinValue = list[i];
      list[i] = list[currentMinIndex];
      list[currentMinIndex] = oldMinValue;
    }
  }
  return list;
};
console.log(selectionSort(list));
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Heap Sort
Heap sort is a bit like selection sort in that it moves unsorted 
data to a sorted “partition” selectively. The difference, however, is 
that it uses a heap to do so. If you recall, a heap is a tree structure 
where parent nodes in one level are either greater than (max heap) 
or less than (min heap) child nodes in descendant levels.

Heap sort is O(n log n), however it has an advantage over quicksort 
of being O(n log n) in the worst case scenario, whereas quicksort in 
the worst case in O(n^2).

We have an unsorted list of numbers, as always.

The first step is to move these numbers into a heap:
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As we go along, however, we realize that we would violate the heap 
rules if 42 was to be placed before 23, so we swap them.
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Now we have a valid heap.
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In the same way, 15 and 4 would be in violation – so we swap 
them.
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We end by adding 16 and 8, swapping positions for the 15 and 16 
so we avoid violations. We now have a completed heap from our 
original list.
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At this point we move on to the final stage, which is systematically 
removing the root of the heap, putting it back into the list.
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As we add items back to our list, the heap is adjusted to make sure 
it remains valid. Here, we need to move 23 to the root as it’s larger 
than its sibling, 16. 8 tags along for the ride as it’s still in a valid 
position.

Next, we add 23 back to our list, and then elevate 16 to the root, 
as it’s larger than 8. However, this means that 8 doesn’t have a 
parent, so we move it over and place it under the 15.
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We keep going in this way until all the nodes in our heap are gone.
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Binary Search
Binary search is a fascinating thing. At first glance it seems rather 
ridiculous – the list you’re searching over has to be sorted first! 
This isn’t so nuts if you store your data in a binary tree (a BTREE) 
which we’ve discussed already.

Again, this algorithm is divide and conquer which should give a 
clue – I hope it does because we've already had a look at it in the 
Big-O chapter! 

The deal is this: you split a list of sorted items and decide, from 
there, whether the item you’re looking for is in the left or right list. 
You can decide this accurately because the list is sorted.

You then split that list and check to see if values on the right or 
left of the split are greater, lesser, or equal to the value you’re 
searching for.

Keep going until you find what you want.

Let’s take a look.

We have an ordered set to play with. How it became ordered is a 
mystery – as are the numbers – which we will figure out later in 
the book.

What we need to do is to find the number 23. Now, you and I 
both have eyes, but a computer doesn’t – so we need to give it an 
intelligent way to find the number 23.

To do this, we’ll split the list in two, right down the middle, 
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and remove the entire half that is less than, or greater than, our 
number. In this case it’s the side with 15 and below.

Since our list is sorted, we know the number we’re looking for is in 
the remaining set. So, let’s do the same thing. We’ll split that list 
down the middle (or close to it).

The 42 is on the right – which means it and everything after it can 
be removed.
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Now we’re left with only two elements, which again we split down 
the middle. Evaluating each side, we see that the number we’re 
looking for is on the right! We can remove the 16 and we’re done!

JavaScript Implementation

Looking through a list by splitting it in half continually is fairly 
straightforward. In this routine we’ll search for a value and return 
its index:

const list = [4,8,15,16,23,42];
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const binarySearch = (list, lookFor) => {
  //define the range
  var min=0, max=list.length;
  var middle;
  //while there is something to search for...
  while(min <= max){
    //define the middle of the range
    middle = Math.floor((min + max) / 2);
    //if we've landed on it...
    if(list[middle] === lookFor){
      return middle;
    }else{
      //if we haven't landed on it, where is it?
      //if the middle is less than the value we're
      //looking for, reset the min
      //otherwise reset the max
      list[middle] < lookFor ? min=middle : 
max=middle;
    }
  }
  return -1;
};

console.log(binarySearch(list,3));

Graph Traversal
We've learned how to split lists apart using binary search, but how 
do we search over something a bit more complex, such as a graph? 
As you've noticed, many of the data structures we've been working 
with are based on graphs, so traversing them properly is quite 
important.

Before we go on, it's important to understand that you can carry 
out these operations in one of two ways: using recursion or using 
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iteration. One is clever and one is costly – thankfully I'm referring 
to the same method: recursion.

Every time a recursive function is executed, the variables that the 
function uses remain in scope and are stored on the stack. I know 
I've brought this up before, but it's worth repeating: recursion is 
interesting and clever, but can also be costly.

I point this out because you will be asked something like this in an 
interview someday. Recursion and space complexity are not friends 
– so come prepared to understand why. Let’s go a bit deeper.

Using Recursion

For the sake of variety, let's do this with C#. Here is a basic 
representation of a node in a binary tree:

public class BinaryNode
{
  public int Value { get; }
  //child nodes
  public BinaryNode Left { get; set; }
  public BinaryNode Right { get; set; }

  public BinaryNode(int value)
  {
    Value = value;
  }
  public bool IsLeaf(){
    return this.Left == null && this.Right == 
null;
  }
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  public void Traverse(BinaryNode node){
    if(node.Left != null){
      Traverse(node.Left);
    }
    if(node.Right != null){
      Traverse(node.Right);
    }
    //Leaf node!
    if(this.IsLeaf()){
      //we're done!
    }
  }
}

A node instance has a value as well as two possible descendants, 
Left and Right. The Traverse method allows you to start from 
any node in the tree and then traverse through each node, doing 
something exciting and amazing.

There are a number of ways to run calculations with this class. 
We can hard code what we need done in the Traverse method 
(searching for a value, for instance) or we can pass along some 
kind of callback, perhaps a Func<T,bool>. For the sake of 
keeping things at a pace for this book, I'm going to sidestep 
implementation details here and simply wave my arms and say 
"don't worry about this for right now".

The reason why is that this code, while clever, is also a bit 
inefficient. I already discussed the stack overflow problems above, 
but what if you wanted to control what type of search you wanted 
to perform? In other words, what if you wanted to go deep into 
the tree as you knew the thing you're looking for was likely at the 
lower levels of the tree?

Conversely: what if you wanted to go wide instead? Recursion can be 
tweaked to address these things, but then you're altering your class 
to accommodate what should really be the responsibility of an 
entirely different bit of code altogether.
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Using Iteration

Instead of filling up our stack, what if we used a simple loop? 
I’ll use C# again for this, but hopefully you can translate it to 
whatever language works for you.

Let’s strip out the Traverse method and go with a more cohesive 
BinaryNode class:

public class BinaryNode
{
  public int Value { get; }
  //child nodes
  public BinaryNode Left { get; set; }
  public BinaryNode Right { get; set; }

  public BinaryNode(int value)
  {
    Value = value;
  }
  public bool IsLeaf(){
    return this.Left == null && this.Right == 
null;
  }
}
Now let’s fill out our nodes:
var rootNode = new BinaryNode(0);
rootNode.Left = new BinaryNode(1);
rootNode.Right = new BinaryNode(2);
rootNode.Left.Left = new BinaryNode(3);
rootNode.Left.Right = new BinaryNode(4);
rootNode.Right.Left = new BinaryNode(5);
rootNode.Right.Right = new BinaryNode(6);

This will give us a two level tree, which will be good enough to 
traverse. But how? It turns out there are two ways: Breadth-first 
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and Depth-first. These types of traversals are typically referred to 
as “breadth-first search” and “depth-first-search”.

Depth First Search
Let’s start by visualizing our graph:

With a depth-first search, we want to go as deep as possible into 
the graph from either the left or the right. Traditionally it’s done 
from the left.

The idea is to go as deep as you can and then backtrack your way 
back up and then over to the right until the traversal of the tree is 
done.

With my crude drawing skills, it might look something like this:
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We start at the root, proceed to 1 and then 3. Then backtrack to 4, 
back up and over to 2, then 5 then 6.

To implement this we need a data structure that will keep track 
of the very next descendant as well as the current sibling. We will 
always follow the next descendant, and if it doesn’t exist, we’ll go 
with the last saved sibling. If both of those don’t exist we’re done 
with our tree.

For this, we can use a stack. Here’s some basic code, once again in 
C#:

public class DFS{
  public void Traverse(BinaryNode root){
    var stack = new Stack<BinaryNode>();
    BinaryNode thisNode = null;
    //push the root onto the stack
    stack.Push(root);
    while(stack.Count > 0){
      thisNode = stack.Pop();
      Console.WriteLine(thisNode.Value);
      //push right then left
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      if(thisNode.Right != null){
        stack.Push(thisNode.Right);
      }
      if(thisNode.Left != null){
        stack.Push(thisNode.Left);
      }
    }
  }
}

All we need to do is to keep track of how many nodes there are left 
to traverse. We know that by using a stack and pushing values onto 
it if they exist down below.

Let’s load it up and run it!

public class DFS{
  public void Traverse(BinaryNode root){
    //...
  }
  public void Run(){
    var rootNode = new BinaryNode(0);
    rootNode.Left = new BinaryNode(1);
    rootNode.Right = new BinaryNode(2);
    rootNode.Left.Left = new BinaryNode(3);
    rootNode.Left.Right = new BinaryNode(4);
    rootNode.Right.Left = new BinaryNode(5);
    rootNode.Right.Right = new BinaryNode(6);
    this.Traverse(rootNode);
  }
}

The result, when we execute this, is right on the money:

0
1
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3
4
2
5
6

“Going deep” on a graph is useful if you’re interested in the nature 
of parent/child relationships. 

You could also look through a binary tree and see if it is in fact 
a binary search tree, with all of the node values set as required. 
We know from reading the last chapter that a binary search tree 
requires that every child node to the right of a given node must 
have a greater value; every child node to the left must have a lesser 
one.

Is depth-first the best choice for this? You might check a lot 
more nodes than you need to! Let’s have a look at an alternative: 
breadth-first.

Breadth First Search
With breadth first search we need to track the nodes of a tree in 
each level before traversing to the next level. This means we need 
to track every node and its children in order. 

For this we can use a queue:

public class BFS{
  public void Traverse(BinaryNode root){
    var queue = new Queue<BinaryNode>();
    BinaryNode thisNode = null;
    //push the root onto the queue
    queue.Enqueue(root);
    while(queue.Count > 0){
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      //remove the next item from the queue
      thisNode = queue.Dequeue();
      //do whatever calc
      Console.WriteLine(thisNode.Value);
      //add the children into the queue
      if(thisNode.Left != null){
        queue.Enqueue(thisNode.Left);
      }
      if(thisNode.Right != null){
        queue.Enqueue(thisNode.Right);
      }
    }
  }
}

If we load it up just like we did in the last section and run it, we 
will have a completely different result:

0
1
2
3
4
5
6

We’re traversing the graph one level at a time, which makes great 
sense if we’re trying to evaluate all of the parent nodes first, which 
we would be doing if we’re validating a binary search tree. 



Algorithms: 
Advanced

I wasn’t sure about using the terms “advanced” and 
“simple” for these chapters on algorithms. I don’t 

want you to think these are harder to implement or 
to figure out –  they’re not (necessarily). The reason 
I chose these terms is that it’s more likely you’ll find 
yourself getting paid to implement a shortest path 
algorithm or graph traversal at some point in your 
career. It’s unlikely that you’ll be hired to implement 
bubble sort. I also wanted to provide a framework for 
you to create your own algorithms for solving the more 
interesting problems you work on every day. This, to 
me, is the most important part of this chapter, so we’ll 
start there.

You can find the code used in parts of this section up at my github repo. In 
addition, you can buy 17 video walkthroughs of the algorithms you see in 
this chapter and others from here.

DYNAMIC PROGRAMMING
No, this section is not about Ruby, Python, JavaScript, etc. 
Dynamic programming is a way to solve a problem using an 

http://https://github.com/imposters-handbook/sample-code/tree/master/algorithms
https://goo.gl/2XZCHc
http://https://goo.gl/2XZCHc
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algorithm in a fairly prescribed way. It sounds complicated, but it’s 
anything but.

Dynamic programming gives us a way to elegantly create 
algorithms for various problems and can greatly improve the way 
you solve problems in your daily work. It can also help you ace an 
interview.

Definition

Let’s start with a quick definition so we know what dynamic 
programming is and how it works. At its core, dynamic 
programming is simply solving an optimization problem by 
guessing in a systematic way. It’s almost laughable to think about 
dynamic programming in terms of this definition, but as you’ll see 
it turns out to be rather powerful.

To use dynamic programming, the problem you’re solving must be:

»» An optimization problem. We saw one of these in Chapter 1 
(the Bin Packing Problem) when I tried to optimize storage for 
my daughter’s things.

»» Dividable into subproblems. With dynamic programming 
you can recurse over and solve in order to solve the larger, 
objective problem.

»» Have an optimal substructure. That’s a mouthful, but what 
it means is that the subproblems you solve must be complete 
unto themselves. In other words, if you solve subproblems x, y 
and z in order to solve objective problem A, then the solutions 
to x, y and z should be sufficient on their own to solve A. You 
don’t need to use x plus some other algorithm.

»» Reducible to P time through memoization. Some of the 
problems you can solve with dynamic programming are 
solvable in exponential time (like Fibonacci), however this can 
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be reduced to P time through memoization. Another fun word, 
but you can think of this basically as “caching” the answers to 
the subproblems and then applying.

I wouldn’t blame you if you’re underwhelmed at this point. The 
name “dynamic programming” seems pretty bland, and the 
underlying techniques more than a little vague. You’ll understand 
it well in a few sections as we solve some problems with it, I 
promise.

Before we get there, it’s important to understand where the name 
came from and why dynamic programming even exists.

Origins
This is a funny story (emphasis mine):

An interesting question is, ‘Where did the name, dynamic 
programming, come from?’ The 1950s were not good years for 
mathematical research. We had a very interesting gentleman in 
Washington named Wilson. He was Secretary of Defense, and he 
actually had a pathological fear and hatred of the word, research. 
I’m not using the term lightly; I’m using it precisely. His face would 
suffuse, he would turn red, and he would get violent if people used 
the term, research, in his presence. You can imagine how he felt, then, 
about the term, mathematical. The RAND Corporation was employed 
by the Air Force, and the Air Force had Wilson as its boss, essentially. 
Hence, I felt I had to do something to shield Wilson and the Air Force 
from the fact that I was really doing mathematics inside the RAND 
Corporation. What title, what name, could I choose? In the first place 
I was interested in planning, in decision making, in thinking. But 
planning, is not a good word for various reasons. I decided therefore to 
use the word, ‘programming.’ I wanted to get across the idea that this 
was dynamic, this was multistage, this was time-varying—I thought, 
let’s kill two birds with one stone. Let’s take a word that has an 

https://www.researchgate.net/publication/220243993_Richard_Bellman_on_the_Birth_of_Dynamic_Programming


182

Algorithms: Advanced

absolutely precise meaning, namely dynamic, in the classical physical 
sense. It also has a very interesting property as an adjective, and that 
is it’s impossible to use the word, dynamic, in a pejorative sense. Try 
thinking of some combination that will possibly give it a pejorative 
meaning. It’s impossible. Thus, I thought dynamic programming was a 
good name. It was something not even a Congressman could object to. 
So I used it as an umbrella for my activities.

If you want to read Richard Bellman’s original paper on dynamic 
programming, you can do so here.

There you have it: the name means nothing. The dynamic 
programming design process, however, is behind some of the 
most powerful algorithms we know of. We’ll see those in the next 
section.

The best way to see its power, however, is to just do it. So let’s! 
We’ll use dynamic programming to help us get through a job 
interview.

Fibonacci
You knew Fibonacci was going to come up in this book at some 
point didn’t you! Well, here it is. I’m using it here because it’s the 
simplest way to convey the dynamic programming process. Also: 
you will be asked how to solve Fibonacci at some point in your 
career, and you’re about to get three different approaches!

Which leads right to a great opening point: our jobs are about 
solving problems. When you go to these interviews, they mostly 
want to see how you would go about solving something complex. 
As it turns out, the Interviewing For Dummies book says that 
Fibonacci is a great question for just that case.

https://www.rand.org/content/dam/rand/pubs/papers/2008/P550.pdf
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Definition

So let’s start with a definition, just in case you don’t know or 
remember what a Fibonacci Sequence is:

A series of numbers in which each number ( Fibonacci number ) is the 
sum of the two preceding numbers. The simplest is the series 1, 1, 2, 3, 
5, 8, etc.

Lovely. Why do we care about these numbers? These numbers 
(and the algorithm we’re about to discuss) underpin nature’s 
symmetry:

The Fibonacci numbers are Nature’s numbering system. They appear 
everywhere in Nature, from the leaf arrangement in plants, to the 
pattern of the florets of a flower, the bracts of a pinecone, or the scales 
of a pineapple. The Fibonacci numbers are therefore applicable to the 
growth of every living thing, including a single cell, a grain of wheat, a 
hive of bees, and even all of mankind.

If you divide each successive number by itself (so: 5/3, 8/5…) you 
converge on a fascinating number called phi:

What makes a single number so interesting that ancient Greeks, 
Renaissance artists, a 17th century astronomer and a 21st century 
novelist all would write about it? It’s a number that goes by many 
names. This “golden” number, 1.61803399, represented by the Greek 
letter Phi, is known as the Golden Ratio, Golden Number, Golden 
Proportion, Golden Mean, Golden Section, Divine Proportion and 
Divine Section.  It was written about by Euclid in “Elements” around 
300 B.C., by Luca Pacioli, a contemporary of Leonardo Da Vinci, in 
“De Divina Proportione” in 1509, by Johannes Kepler around 1600 
and by Dan Brown in 2003 in his best selling novel, “The Da Vinci 
Code.”

Absolutely fascinating stuff. Our interviewer, however, is waiting 

http://jwilson.coe.uga.edu/emat6680/parveen/fib_nature.htm
http://jwilson.coe.uga.edu/emat6680/parveen/fib_nature.htm
http://www.goldennumber.net/
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patiently for us to come up with an algorithm for calculating a 
Fibonacci Sequence to the nth position – so let’s get to it!

THE PAINFUL WAY

The interviewer has asked us a standard question:

How would you derive a Fibonacci sequence up to a given position?

In other words, if we’re given a value of 10, the interviewer will 
want to see the first 10 Fibonacci numbers. We can solve this (and 
more!) using dynamic programming.

The first step is to break the problem down into smaller problems 
(called subproblems) that we can solve. If we’re trying to derive a 
Fibonacci sequence to the 10th position, we can do it with pen and 
paper like this:

»» The first number in the Fibonacci sequence is 0

»» The second number is 1

»» The third number is 0+1=1

»» The fourth number is 1+1=2

And so on. This would answer the interviewer’s question (about 
the sequence) but it wouldn’t show them what they’re after: our 
ability to solve a problem programmatically. We can do this with 
the next step in dynamic programming: recursively solve the 
subproblems until the objective problem is solved.

It’s easiest if we see some code at this point. Here’s my Fibonacci 
solver implemented in JavaScript:

const calculateFibAt = (n) => {
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  fibCount = fibCount+1;
  if(n < 2){
    return n;
  }else{
    return calculateFibAt(n-2) + 
calculateFibAt(n-1);
  }
}

for(var i = 0; i<=10; i++){
  console.log(calculateFibAt(i));
}

Running this (using Node):

0
1
1
2
3
5
8
13
21
34
55

Great! By the way I tried four times to write this from memory 
and completely failed. You would think this little routine would be 
embedded in my mind but … oh well. If it took you a few times to 
come up with it don’t feel bad! Recursive programming takes some 
getting used to.

The code in this routine works, is straightforward, and is standard 
interview fare. We’re feeling happy about ourselves at this point, 
when the interviewer says:
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Talk to me about the complexity of this routine in terms of time and 
also space…

Uh-oh… time for some Big-O! Good news for us is the that we 
started this part of the book off with a discussion of Big-O and 
our brains are burning right now, thinking “right… wasn’t there 
something bad about using recursion?”

Complexity Analysis

Let’s start off by thinking in terms of time complexity. How 
long will it take to run our recursive algorithm? You can see why 
you might get fired by changing the loop value to 1000. In short: 
this routine scales horribly. To see this, let’s add a counter to the 
function:

var fibCount=0;
var calculateFibAt = function(n){
  fibCount = fibCount+1;
  var calc;
  if(n < 2){
    return n;
  }else{
    return calculateFibAt(n-2) + 
calculateFibAt(n-1);
  }
}

for(var i = 0; i<=10; i++){
  var fib = calculateFibAt(i);
  console.log("The Fibonacci number at position " 
+ i + " is " + fib + "; It took " + fibCount + " 
calls to fib to get here");
}
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When we run this:

The Fibonacci number at position 0 is 0; It took 1 
calls to fib to get here
The Fibonacci number at position 1 is 1; It took 2 
calls to fib to get here
The Fibonacci number at position 2 is 1; It took 5 
calls to fib to get here
The Fibonacci number at position 3 is 2; It took 
10 calls to fib to get here
The Fibonacci number at position 4 is 3; It took 
19 calls to fib to get here
The Fibonacci number at position 5 is 5; It took 
34 calls to fib to get here
The Fibonacci number at position 6 is 8; It took 
59 calls to fib to get here
The Fibonacci number at position 7 is 13; It took 
100 calls to fib to get here
The Fibonacci number at position 8 is 21; It took 
167 calls to fib to get here
The Fibonacci number at position 9 is 34; It took 
276 calls to fib to get here
The Fibonacci number at position 10 is 55; It took 
453 calls to fib to get here

453 calls! Good grief! As you can see, the number of calls to our 
routine goes up more than exponentially with each additional 
input:

»»  Input 0 resulted in 1 call

»»  Input 1 resulted in 2

»»  Input 2 resulted in 5 calls

»»  Input 6 resulted in 59
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»»  Input 10 resulted in 453

If you really want to have some fun, let it run for 15 minutes and 
see how many calls it takes to calculate calculateFibAt(32)… 
it’s 18,454,894!!!

Another way to think about this is from the top down. Here we 
can visualize the complexity for calculating the Fibonacci number 
in 10th position using a graph:

This is horribly inefficient. Look how many times fib(6) and fib(7) 
are called! The interviewer seems happy with our answer and then 
asks us:

Tell me about the space complexity…

Right. We learned from the last section that a recursive routine 
will push values onto the stack repeatedly; once for every single 
call of the current function. If you do this enough you’ll run into a 
stack overflow exception, which is bad.

As mentioned before: recursion and space complexity aren’t 
friends. 
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Sounds good. So how would you improve this routine?

This is where we get to the next step of dynamic programming. 
We can reduce the time and space complexity of our algorithm by 
using memoization. We can do this because the solution to each 
subproblem is optimal, meaning that it can stand alone and we 
don’t need anything else to use its value.

In Big-O terms, we can use the memoized solution in linear time, 
O(n) where n is the position we’re interested in, which will speed 
things up tremendously. What about space complexity? Can you 
figure out a way to do this in constant space? I’ll talk about that in 
the next section.

THE FASTER WAY

Memoization is simply caching. In more formal terms it’s 
remembering the solution to a subproblem so you don’t have to 
calculate it again recursively. This only works if the subproblems 
are in an optimized substructure. You can think of that as a large 
graph (like the one above), where you can simply replace fib(6) 
with the number 8. That’s darn optimal if you ask me.

To accomplish this, I’ll store the results of our loop in an some 
kind of data structure; the question is which one? We’ve learned 
about a whole mess of them in a previous chapter… which would 
be the best?

All we need to do is to remember some values in memory and then 
to iterate over them. If this is all you need, don’t overthink it! 

Since we know that Fibonacci numbers start with 0 and 1, I can 
use those seeds to calculate the remaining numbers:

var fibFaster = function(n){
  var sequence = [0,1];
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  for(var i=2; i<=n; i++){
    sequence.push(sequence[i -2] + sequence[i-1]);
  }
  return sequence;
}

console.log(fibFaster(10));

The result, when run:

[ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]

Perfect. But what about time complexity? This is simple to reason 
through, but before we do let’s run this faster Fibonacci routine 
1000 times. You should see that it returns almost instantly.

Complexity Analysis

We want to find the fibonacci numbers up to a given number n, 
which means we’ll need to perform some operation for each n. 
If you recall from a few chapters back, iterating over a collection 
is always O(n). Accessing a value from an array using its index is 
always O(1), so our total operation here is O(n * 1) which is O(n).

But what about the space complexity? We’re not using recursion 
so that means we won’t be potentially overloading the stack, which 
is a good thing. We have a few variables and an array for every n 
number that we’re evaluating, so our space complexity is also O(n).

You might be thinking “hey wait a minute you have a loop variable 
in there too!” and yes, that’s true, but with Big-O you’re more 
concerned about the nature of algorithm. In this case it’s simply 
O(n).

Can we do better here? Yes. Well… sort of. Right now we’re 
returning an array of fibonacci numbers up to the nth number. We 



191

The Imposter’s Handbook

could ask our interviewer at this point if they’re interested in the 
whole sequence or just the nth number?

Just the nth number will do.

Perfect. This means we can now use a greedy algorithm, which 
is a term you should remember for interviews. Let’s take a small 
diversion (again).

Greedy Algorithms
A greedy algorithm does what’s best at that moment. Put in math 
terms: 

A greedy algorithm  is an algorithmic paradigm that follows the 
problem solving heuristic of making the locally optimal choice at 
each stage with the hope of finding a global optimum.

Say what?

Let’s do this with code, then I’ll see how well I can explain the 
idea. We’ll start by redoing our fibFaster function:

var fibConstantSpace= function(n, fn){
  let twoFibsAgo = 0, oneFibAgo=1, currentFib=0;
  //make sure to output the first two
  for(var i=2; i<=n; i++){
    currentFib = twoFibsAgo+oneFibAgo;
    twoFibsAgo = oneFibAgo;
    oneFibAgo = currentFib;
  }
  return currentFib;
}

No more arrays required! What we’re doing here is simply 
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“remembering” only what we need to remember, essentially 
“locally optimizing” our decision making by setting these values to 
variables and forgetting the rest.

That’s a greedy algorithm in practice. Our interviewer likes this, 
but has a question:

Can you think of a way to make this a bit more flexible for calling 
code? Right now you’re just returning the nth fibonacci number; what 
if I wanted to do something else in my calling code?

If this happens to you in an interview, take it as a good sign. You’ve 
nailed the question so far! They’re happy with your response and 
are likely just wanting to see how much better you are than the 
question allows.

We’re using JavaScript, so ideally the answer is jumping out at you. 
Most languages support the idea of callbacks, something that will 
yield control of the current iteration/operation. We can use that 
here to yield the currentFib value back to the calling code:

var fibConstantSpace= function(n, fn){
  let twoFibsAgo = 0, oneFibAgo=1, currentFib=0;
  //make sure to output the first two
  if(fn){
    fn(0);
    fn(1);
  }
  for(var i=2; i<=n; i++){
    currentFib = twoFibsAgo+oneFibAgo;
    twoFibsAgo = oneFibAgo;
    oneFibAgo = currentFib;
    if(fn) fn(currentFib);
  }
}
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There we go! The best of both worlds: we can report back each 
number so the calling code can do whatever it wants or we can just 
return the final value.

Use In Heuristics

Greedy algorithms can be useful when solving some very complex 
problems. A few chapters ago we took a look at some very tough, 
NP-Hard optimization problems, one of which was The Traveling 
Salesman Problem.

One way to approximately solve this problem is using a heuristic 
(that’s a fancy word for “rule of thumb”) called Nearest Neighbor:

The nearest neighbour algorithm was one of the first algorithms used 
to determine a solution to the traveling salesman problem. In it, the 
salesman starts at a random city and repeatedly visits the nearest city 
until all have been visited. It quickly yields a short tour, but usually not 
the optimal one.

In other words: there’s no master plan here. Nearest Neighbor 
just looks at the next cheapest city and goes there. This is a classic 
greedy algorithm. 

Another greedy solution is finding your way out of a maze. You 
just put your right hand on the nearest wall and keep walking until 
you’re out. Not the optimal solution, but it will solve the problem.

For a final example: consider Agile Development. Teams gather 
quickly in the morning so everyone’s aware of what’s going on 
with everyone else. Adjustments are welcomed and deployment 
rapid - it’s all about quick adaptation to the changes in the 
development process.

Now, if you were to step back and look at a software project as a 
series of decisions which you could represent on a graph (which 

https://en.wikipedia.org/wiki/Nearest_neighbour_algorithm
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you can), then Agile is, itself, a greedy algorithm! It might not be 
the optimal solution to success for a project, but it is a solution! 
You’re simply doing the next, closest thing that makes the most 
sense to the team and client without a master (waterfall) plan in 
place.

Bellman Ford
One of the most fascinating uses of graphs is in the optimization of 
path traversal, which can be used in a vast number of calculations.

As mentioned in the previous chapter, graphs can be used to 
represent all kinds of information:

»» A network of any kind. Social (friends) or digital (computers 
or the internet), for example

»» A decision tree

»» Contributions from members of any kind to a cause of any 
kind

»» Atomic interactions in physics, chemistry or biology

»» Navigation between various endpoints

If you apply weighting to the edges or vertices, you can run useful 
calculations for just about anything. One of the most common is 
finding the shortest path between two vertices.

There are numerous algorithms to touch on at this point, but I 
have to round this chapter out by discussing the two you should be 
aware of: Bellman-Ford and Dijkstra. In this section we’ll discuss 
Bellman-Ford; Dijkstra comes next.
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The Problem Graph

This algorithm is named after Richard Bellman (the same person 
who wrote about dynamic programming) and Lester Ford Jr. It 
shares a lot with Dijkstra’s algorithm (which we’ll see next), but 
has one major advantage: it can accommodate negative edges.

Let’s see how it works. Consider this graph:

This is an edge-weighted, directed graph. We want to calculate 
the shortest paths between our source vertex S and the rest of the 
vertices, A through E. We can do this using dynamic programming.

Now, if you were to stare at this and I told you what your task 
was (to calculate the smallest cost between S and the rest of the 
vertices), you would probably get overwhelmed! I know I did.

The good news is that we have the Bellman-Ford algorithm, which 
makes this calculation rather fun. Rather than spend many words 
on it, let’s do it visually, then implement it with some code.

We will be using memoization to keep our calculations in P time, 
so let’s setup a memoization table that we can update as we run 
our calculations. We know that there are only 6 vertices, so we 
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only need to track, at most, 6 total costs. The only cost we know is 
the base cost: 

δ(S,S)=0

Note: if you’re not familiar with that squiggle, δ, it’s a “delta”, 
which indicates a difference. This equation states that the 
difference (or “cost”) from S to S is 0.

For the rest of the vertices, we don’t know so we’ll set them all to 
infinity. Why infinity? Simply because the calculation we do later 
will be based on finding the smaller value, and infinity guarantees 
that the initial state will not remain.

Here’s our setup:

Great. The plan is to calculate the cost of each outgoing edge, for 
each vertex in our graph. This will be 6 total calculations which 
we’ll repeat in iterations. The number of iterations i you need to 
perform when using Bellman-Ford is: i=|V|−1.

Why is this? You’ll see in a second, but the crux of it is that we’re 
calculating the distances between all nodes and remembering the 
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smallest ones. This is called relaxation: we start with the largest 
values we can think of (infinity) and then slowly relax the costs 
through an iterative calculation.

OK, enough words, let’s do this.

Iteration 1

We’ll start with our source, S, and move clockwise around the 
graph. From S we have two outgoing edges with the values 4 and 
-5. These costs (Csa and Cse) associate S with A and E so we’ll add 
them to our table using this calculation:

Csa=δ(S,S)+δ(S,A)

Cse=δ(S,S)+δ(S,E)

You can visualize this on the graph itself. We’re using the cost of 
the highlighted edges below and adding them to the initial cost of 
S to S (which is 0):
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If this seems complicated, let it wash over you. As we move 
through this it will make more sense.

OK, we’re still in our first iteration of calculating the costs between 
S and the rest of the vertices. Let’s now move to A and calculate 
the outgoing edges from A:

A only has a single outgoing edge with a cost of 6, so we take that 
cost and add it to A’s current cost (which is 4). This gives us a 
value of 10, which we add to our memo table.

Now we move on to B, which has a current cost of infinity. This 
means that we don’t have a path from S to B yet, which means we 
can’t calculate it in this iteration. So we skip it.

Next up is C, which does have a current cost of 10. It also has an 
outgoing edge to B which is good news as we’ll be able to use that 
in the next iteration. For now, let’s update our table:
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The current cost of the path to C is 10, so adding -2 to that (which 
is the cost of the edge between C and B) gives B a current cost of 8.

Now we’re up to D. What do you think we do here? The current 
cost is set to infinity, which means we haven’t calculated a path to 
it yet, so we skip it.

Finally we close off this iteration by calculating the outgoing edges 
from E:

By now you should be able to reason what will happen. We know 
that E has a current cost of -5, so we add that to the cost of the 
edge between E and D, which is 8. This gives a cost from S to D 
equal to 3.
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Great! We now have costs for all the vertices! It’s time to do 
another iteration to see if we can relax these values a bit more.

Iteration 2

Let’s step through this a bit quicker this time. We’ll start with S 
again, our source, and note that the cost of the outgoing edges 
does not improve on the costs we’ve recorded (4 and -5). This 
makes sense as these are single edges and there really is no way to 
improve the costs here:

If we move to A, again the only outgoing edge we can evaluate is A 
to C, which is 6. The cost from S to C remains the same at 10, so 
there’s no improvement here and we can move on.

Next up is B, which now has a cost associated with it so we can 
use it in our calculations. The current cost to get to B is 8, so 
getting from B to A is 11 total, which is not an improvement over 
A’s current cost of 4.

Then we come to C, which is 10. We’ve already calculated C to B 
as 8 and there’s no improvement here, so we can move on again.

Seems a bit boring, doesn’t it? We keep skipping things – but 
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that’s OK! It’s about to get a bit more exciting when we consider 
D, our next vertex.

The current value of D is 3 and has two outgoing edges to A and C. 
The value of the edge from D to A is 10, so adding the current cost 
of D (3) to this edge cost of 10 would be 13. This doesn’t reduce 
A’s cost so we leave it. But what about edge D to C?

This produces a cost of 6, which means we can lower C’s cost in 
our memo table to 6:

The excitement! Can you feel it! Now, as you might imagine, 
changing C like this means we’ll be able to change more values in 
our table – but that will have to wait for the next iteration.

Speaking of, we’re back to E now and there are no changes we can 
make here, so we’ll skip on to the next iteration.

Iteration 3

We skipped S and A last time and that’s still the case this time: 
there are no changes we can make to improve our current costs for 
these vertices. Same for boring old B, again. We can’t improve the 
cost of A, which is its only outgoing edge.
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C, however, makes things interesting. The current cost of C is now 
6, which means we can reduce the cost of B to 4:

Oh my that’s so exciting isn’t it! From this point we go to D and E 
just like before, skipping them as there’s no way to improve their 
costs.

We can also use some more reasoning here. Since B was the only 
change we made from the last iteration, we can just evaluate its 
outgoing edge to see if it will improve A. Since B’s current cost is 
4 and A’s current cost is 4, then no improvement will happen if we 
add the cost of the edge from B to A, which is 3.

So we’re done! The shortest paths for each vertex are now 
calculated.

Implementing With JavaScript

I’m sure you’ll find some ways to improve this code, which is 
great! I’ve made it a little more verbose for clarity, which I think 
will help if you’re still having problems getting your head around 
this algorithm.

//define the vertices - these can just be string 
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values
var vertices = ["S","A", "B", "C", "D", "E"];

Next up is our memoization table. This can be a simple JavaScript 
object:

//our memoization table, which I'll set to an 
object
//defaulting as described
var memo = {
  S : 0,
  A : Number.POSITIVE_INFINITY,
  B : Number.POSITIVE_INFINITY,
  C : Number.POSITIVE_INFINITY,
  D : Number.POSITIVE_INFINITY,
  E : Number.POSITIVE_INFINITY
}

Now we need to define the graph itself. For this I simply need to 
track which vertices are involved and the costs associated with the 
relationship:

//this is our graph, relationships between 
vertices
//with costs associated
var graph = [
  {from : "S", to : "A", cost: 4},
  {from : "S", to :"E", cost: 6},
  {from : "A", to :"C", cost: 6},
  {from : "B", to :"A", cost: 3},
  {from : "C", to :"B", cost: 2},
  {from : "D", to :"C", cost: 3},
  {from : "D", to :"A", cost: 10},
  {from : "E", to: "D", cost: 8}

];
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Looking good! At this point you should be able to reason how we’ll 
use these data structures to iterate over our graph. In short, we 
need to:

»» Iterate over the vertices array

»» Using the current vertex from our vertices array, we select the 
outgoing edges from the graph array.

»» Once we have the outgoing edges, we run a quick calculation 
using our memo object. The calculation is straightforward: we 
take the cost of the current vertex and add it to the cost of the 
current outgoing edge. If that value is less than the cost of the 
current edge, we update the memo for the current edge.

Translating that word salad to code:

//represents a full iteration of Bellman-Ford on 
our graph
const iterate = () => {
  //do we need another iteration?
  //decided below
  var doItAgain = false;
  //loop all vertices
  for(fromVertex of vertices){
    //get the outgoing edges
    const edges = graph.filter(path => {
      return path.from === fromVertex;
    });
    //loop the outgoing edges
    for(edge of edges){
      const potentialCost = memo[edge.from] + 
edge.cost;
      //reset the cost as needed
      if(potentialCost < memo[edge.to]){
        memo[edge.to] = potentialCost;
        //if the cost was changed we need to loop 
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again
        doItAgain = true;
      }
    }
  }
  //return the flag
  return doItAgain;
}

Great! Now all we need to do is to iterate over our iterate function 
and we’re good to go:

for(vertex of vertices){
  //loop until no changes
  if(!iterate()) break;
}
console.log(memo);

You’ll notice that I’m only iterating to vertices.length – 1. Can you 
reason why? If you run this code (using Node), you should see:

{ S: 0, A: 4, B: 4, C: 6, D: 3, E: -5 }

These are the exact values of our exercise above. Nicely done!

Analysis and Summary

This is dynamic programming in action. Dividing the objective 
problem (finding the shortest paths) into smaller problems 
(calculating the costs between each vertex). We then recursed over 
the smaller problems (the iterate function) and used memoization 
to derive the answer.

There is room for improvement, however. Think about the 
process we went through in the first section. I only needed 3 total 
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iterations to derive the shortest paths. The code I wrote, however, 
required 5. How would you optimize this?

In addition, I’m not using recursion in a code sense. I am calling 
the same function repeatedly, but there’s probably a tighter, cleaner 
way to do this using a true recursive function. Can you see how?

Finally, here’s something to ponder: does the order in which 
we evaluate the vertices matter? If yes, why? If no … why not? 
Rearrange the code a bit and see if you come up with a different 
answer than you see here.

The Bellman-Ford algorithm is quite effective, as we can see, but 
it can also take a long time to run. In terms of complexity, the 
algorithm runs in O(V * E) time, where V is the number of vertices 
and E is the number of total edges. It can work well for simple 
graphs, but for more complex (or dense) graphs, it is not the most 
efficient algorithm.

Djikstra
In the last section we iterated over a simple graph using Bellman-
Ford to find the shortest paths from a single vertex (our source) to 
all other vertices in the graph.

The complexity of Bellman-Ford is O(|V|E), which can 
approximate O(n^2) if every vertex has at least one outgoing edge. 
In other words: it’s not terribly efficient.

Dijkstra’s algorithm requires only one iteration, however and has a 
complexity of O(|V| log V), which is much more efficient. Let’s see 
why.

As with Bellman-Ford, we’ll use a directed, weighted graph with 6 
vertices. In addition, we’ll setup a memo table with our source S 
set to 0 and the rest of the vertices set to infinity:
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There is a difference here, however, and it’s critical! Dijkstra 
doesn’t work with negative edge weights! I have adjusted this 
graph so that we don’t have any negative weights, as you can 
see. Specifically the edges between S and E as well as C to B. In 
addition I’ve added a few edges to show that the algorithm will 
scale easily regardless of the number of edges involved.

Starting At The Source

The first step is to evaluate the source, S. We do the same thing 
as before, with Bellman-Ford, where we tally up the cost of the 
outgoing edges and store them in the memo table. In addition, 
we’ll mark S as complete:
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This is another way that Dijkstra differs from Bellman-Ford: each 
vertex is visited only once.

The next vertex is chosen using these rules:

»» It must not have been visited previously

»» It has the smallest cost of the remaining unvisited vertices In 
our case, this would be vertex E.

Traversing Each Vertex

The next vertex that we’ll visit is E. The cost to reach E is 2, which 
is less than 4, and E has not been visited previously:
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We then update the memo table, setting D to 3 (which is the cost 
of S to E plus the cost of E to D). We then mark E as visited.

The next vertex in our table that is unvisited with the lowest cost 
is D, so we calculate that next:

D has two outgoing edges: to A and to C. The cost of A would 
be 3+1 which is 4 and no improvement, so we leave A as it is in 
our table. C has no cost, so we update it to 6, which is the current 
value of D (3) + the cost to get to C.

The next vertex we’ll visit is A. It has the least cost and has not 
been visited before:
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The current cost of A is 4 and the edges going out of A go to 
vertices D, C and B. The cost of reaching D through A is 7, which 
is not an improvement of D’s current cost of 3, so we leave it. 
Same with C: reaching C through A does not reduce C’s cost, so 
we leave it. B, however, is still infinity so we’ll set it to 9, which is 
A’s cost plus the cost to reach B, which is 5.

C is the next vertex we’ll choose as its current cost is 6 and it 
hasn’t been visited:

C has only one outgoing edge: to B. The current cost of C is 6 and 
adding 1 to it would be less than the current cost of B, so we’ll 
update B’s cost to 7.
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There is only one vertex left, which is B:

The only candidate for improvement is A, with a current cost of 
4. This is less than the tentative cost of B to A, which is 10, so we 
leave it as it is. We’re done!

All of our vertices are visited, so we’re done! We can be sure we 
calculated the shortest path by using our Bellman-Ford code from 
the last section to make sure it matches, and it does!

Implementing With JavaScript

The code you’re about to see is probably a lot more verbose than 
you might write it. I like clarity, mostly for my own sake, because 
you can bet I’ll be looking over this page and this code quite a few 
times in the future! I want to remember what I was thinking.

To start with, let’s alter our implementation of Bellman-Ford in the 
last section to have a memo table with a little more smarts:

//The memoization table, which needs to have some 
smarts
//using an ES6 class here
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class MemoTable{
  //build the table using the vertices
  constructor(vertices){
    //set the root manually
    this.S = {name: "S", cost: 0, visited: false};
    this.table = [this.S];
    for(var vertex of vertices){
      this.table.push({name: vertex, cost: Number.
POSITIVE_INFINITY, visited: false});
    }
  };
  //all non-visited vertices
  getCandidateVertices(){
   return this.table.filter(entry => {
     return entry.visited === false;
   });
  };
  //lowest cost, non-visited vertex
  nextVertex(){
   const candidates = this.getCandidateVertices();
   //if there are candidates, find the one
   //with lowest cost
   if(candidates.length > 0){
     return candidates.reduce((prev, curr) => {
       return prev.cost < curr.cost ? prev : curr;
     });
   }else{
     //otherwise return null
     //this will help determine if we need to
     //iterate
     return null;
   }
  };
  //update current cost
  setCurrentCost(vertex, cost){
    this.getEntry(vertex).cost =cost;
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  };
  setAsVisited(vertex){
    this.getEntry(vertex).visited = true;
  };
  getEntry(vertex){
    return this.table.find(entry => entry.name == 
vertex);
  };
  getCost(vertex){
    return this.getEntry(vertex).cost;
  };
  toString(){
    console.log(this.table);
  }
};

I’ve added the logic for retrieving a given entry as well as updating 
its values. In addition I’ve added logic for determining the next 
vertex to traverse to based on the rules of Dijkstra that we saw 
above.

Next, we have our graph:

//the vertices for our memo table
//I could also use a filter or map on the graph 
below
//to avoid duplication; but this is nice
//and clear
const vertices = ["A", "B","C", "D", "E"];
//our graph
const graph = [
  {from : "S", to :"A", cost: 4},
  {from : "S", to :"E", cost: 2},
  {from : "A", to :"D", cost: 3},
  {from : "A", to :"C", cost: 6},
  {from : "A", to :"B", cost: 5},
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  {from : "B", to :"A", cost: 3},
  {from : "C", to :"B", cost: 1},
  {from : "D", to :"C", cost: 3},
  {from : "D", to :"A", cost: 1},
  {from : "E", to: "D", cost: 1}
];

This array represents the visual graph we worked with above. 
Now we just need to evaluate our graph using our MemoTable 
functionality:

//create the table
const memo = new MemoTable(vertices);
//let's do this!
const evaluate = vertex => {
  //get the outgoing edges of the vertex
  const edges = graph.filter(path => {
    return path.from === vertex.name;
  });
  //loop the edges...
  for(edge of edges){
    //calculate the costs
    const currentVertexCost = memo.getCost(edge.
from);
    const toVertexCost = memo.getCost(edge.to);
    const tentativeCost = currentVertexCost + 
edge.cost;
    //if we can improve the cost to the
    //connected vertex...
    if(tentativeCost < toVertexCost){
      //do it!
      memo.setCurrentCost(edge.to, tentativeCost);
    }
  };
  //set this vertex as visited
  memo.setAsVisited(vertex.name);
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  //get the next vertex
  const next = memo.nextVertex();
  //if there is a next vertex, let's do this
  //again...
  if(next) evaluate(next);
}
//kick it off from the source vertex
evaluate(memo.S);
memo.toString();

The code looks a bit familiar – it follows what I did (for the most 
part) with Bellman-Ford but this time I’ve added a few tweaks 
to accommodate setting a vertex as visited, and I’m also using 
recursion off the memoization table instead of a loop.

What do you think? Can you improve this without losing its 
clarity? Let’s run it and make sure it works. Again, using Node:

[ { name: 'S', cost: 0, visited: true },
{ name: 'A', cost: 4, visited: true },
{ name: 'B', cost: 7, visited: true },
{ name: 'C', cost: 6, visited: true },
{ name: 'D', cost: 3, visited: true },
{ name: 'E', cost: 2, visited: true } ]

Right on! That’s the exact answer we got above!



Compilation

Compilation is a set of five discrete steps: lexical 
analysis, parsing, semantic analysis, optimization 

and code generation. Every compiler does this exact 
same thing, but some are more capable than others. 
The main differences between compilers is in the 
optimization and code generation steps.

A stack is a way to store program data and is a per thread process. 
The stack is very fast and is used for value types. The heap is a per 
application process and is used for reference types. You can make 
your application more efficient by understanding how these two 
interact.

Garbage collection is the process of freeing up application memory 
(the heap) automatically. This is not a free process and requires 
system resources. There are a number of strategies used for 
garbage collection (GC), but tracing is the most widely used.

How a Compiler Works
A compiler simply brings different things together and makes them 
one thing. In a programming sense, a compiler is a program that 
reads the code you write and generates something that the runtime 
engine can execute.

Compilation can happen on command – for instance using a make 
file. It can happen just in time (JIT) or at runtime with a thing 



217

The Imposter’s Handbook

called an interpreter.

They can compile code to different languages (CoffeeScript to 
JavaScript, e.g) or down to byte code … or something in between. 
C#, for instance, compiles to an intermediate language (MSIL), 
which is then compiled to native code upon execution. This has 
the advantage of portability – meaning that you could create a 
compiler for different platforms (Windows 32-bit, 64-bit, Mac, 
Linux, etc) without having to change the code.

But how do these things work? Let’s take a look at a high level.

The Compilation Process

Compilation in a computer is just like compilation in your head 
when you read these words. You’re taking them in through your 
eyes, separating them using punctuation and white space, and 
basing the meaning of those words on emphasis.

These words are then turned into meaning in your mind, and at 
some point sink into your memory … causing (hopefully) some 
type of action on your part.

A compiler does the same things, but with slightly larger words. 
The main compilation steps are:
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»» Lexical Analysis

»» Parsing

»» Semantic Analysis

»» Optimization

»» Code Generation

Every compiler goes through these steps.

Lexical Analysis
Lexical Analysis simply analyzes the code that’s passed to the 
compiler and splits it into tokens. When you read this sentence, 
you use the whitespace and punctuation between the words to 
“tokenize” the sentence into words, which you then label.

A compiler will scan a string of code and separate it into tokens as 
well, labeling the individual elements along the way:

The program within the compiler that does this is called the lexer. 
So, using our code sample, the lexer will generate these pseudo 
code tokens (using tuples):

{keyword, "if"}
{paren, }
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{variable, "x"}
{operator, "=="}
{number, "10"}
{left-brace, }

The thing being analyzed by the lexer is the lexeme. A token is 
what’s produced from this analysis. Yay for more random words to 
know!

Parsing
After the lexer has tokenized the incoming code string, the parser 
takes over, applying the tokens to the rules of the language – also 
known as a formalized grammar.

Pushing this back into the realm of written language: the 
words you’re reading now are tokenized using whitespace and 
punctuation – the next process is to parse their meaning and, 
essentially, what they’re supposed to mean.

A parser analyzes the tokens and figures out the implicit structure:
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We know, at this point, that we have an if statement. This is just 
one line of code, of course, however our entire codebase would be 
parsed in exactly this way: turning tokens into language structures.

Semantic Analysis
Now we get to the fun part. Semantic Analysis is where the 
compiler tries to figure out what you’re trying to do. We have an 
if block for our code, but can the predicates be resolved to truthy/
falsey expressions? Do we have more than one else associated with 
it? Consider this sentence:

Kim and Jolene want to go to her party

We can reason that “Kim and Jolene” are the subjects, “to go” is 
the verb and “party” is the indirect object. But who is her? When a 
compiler goes through semantic analysis, it has to reason through 
the same thing. For instance:
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var x = 12;
var squareIt = function(x){
    return x * x;
};
y = squareIt(x);
console.log(y);

What will y evaluate to? If you’re thinking 144 – you’d be right. 
Even though we’ve reused x here, the JavaScript interpreter figured 
out what we meant, even though we tried to confuse it.

var x;
console.log(x);
x = "Hello!";

If you’re Brendan Eich (creator of JavaScript) and it’s 1995 and 
you have 10 days to create a language – what choices do you make 
when it comes to semantic analysis?

I’m sure many of you are thinking “hang on – JavaScript is not a 
compiled language – it’s interpreted” and you’d be correct. They 
still go through the same steps.

I bring up JavaScript because it’s precisely these decisions, made at 
the semantic analysis level, that have caused developers so much 
confusion over the years. If you’ve used the language, you’ll know 
what I mean.

Lexical Scoping
Most object-oriented languages are lexically scoped, which means 
the scope of a variable extends to the block of code that contains it. 
So, in C#, for instance:

public class MyClass {

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
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  public MyClass(){
    var x = 100;
  }
}

The scope of x in this case is only within the constructor. You 
cannot access x outside of it.

Let’s change the code so we can rely on lexical scoping to make x 
available to all properties and methods in MyClass:

public class MyClass {
  int x;
  public MyClass(){
      x = 100;
  }
}

All we needed to do was to declare the variable within the 
MyClass code block.

JavaScript, however, does things differently. Scopes in JavaScript 
are defined by function blocks. So, strictly speaking, JavaScript is 
sort of lexically scoped.

Consider this code:

if(1 === 1){
  var x = 12;
}
console.log(x); //12

If lexical scoping was enforced here we should see undefined. But 
what happens in C#? Let’s try it:

public class ScopeTest
{
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  [Fact]
  public void TheScopeOfXIsLexical()
  {
    if(1 == 1){
        var x = 12;
    }
    Console.WriteLine(x);
  }
}

If I run this test, I get the expected response:

error CS0103: The name 'x' does not exist in the 
current context

The reason for the difference? A different semantic analysis for the 
C# compiler vs. the JavaScript interpreter.

There are more issues that I’m sure you’re aware of: hoisting, 
default global scope for variables with var, confusion about this. 
There are many things written about these behaviors and I don’t 
need to go into them here. I bring all of “this” up simply to note 
the choices made by semantic analysis.

Optimization
Once the compiler understands the code structures that are put 
in place, it’s time to optimize. Of all the steps in the compilation 
process, this is typically the longest.

There are almost limitless optimizations that can occur; little 
tweaks to make your code smaller, faster, and use less memory and 
power (which is important if you’re writing code for phones).

Let’s optimize that previous sentence: compiler optimization 
produces faster and more efficient code. Reads the same doesn’t it? 
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The same meaning, anyway – compilers don’t care about creative 
expression.

Which is a very important point. Modern languages are leaning 
more on syntactic niceties and shortcuts (aka “syntactic sugar”). 
This is great for developers like me, who enjoy reading code where 
the intent is clear. It’s not so great for the optimizer.

Ruby and Elixir are prime examples of this. A number of 
constructs in these languages are optional (parentheses for 
example), and a compiler must work through various syntactic 
shortcuts to figure out the instructions. This takes time.

Does a meaningful_variable_name need to be 24 characters 
long. Not to the compiler, which will often rename the variable to 
something shorter. List operations as well – often you’ll see arrays 
substituted for you, behind the scenes.

How about this rule – does this rule make sense?

X=Y*0::X=0

Basically, any time you see a number multiplied by 0, replace it 
with 0. Seems to make sense … but …

public class MultiplyingByZero
{
  [Fact]
  public void UsingNaN()
  {
    double x = Double.NaN;
    Console.WriteLine(x * 0); // NaN
  }
}

Yeah that won’t work because NaN <> 0. It will work if x is an 
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integer, however.

Compiler optimizations are at the center of “what makes a 
language good” – something we’ll get into more, later on.

Code Gen
Our code has been parsed, analyzed, and optimized – we’re ready 
for output! This is one of the simpler steps: we just need to package it 
up and off we go.

Intermediate Language Output

A number of platforms out there will compile code text files into 
an intermediate structure, which will be further compiled later on. 
Code that runs in a virtual machine (like Java) will do this, and 
later compile it down to machine-level code.

C# does this as well, and compiles into an actual second language 
called IL (or MSIL). People don’t typically read or write IL directly 
(unless you’re Jon Skeet) – but it is possible to dig down into it to 
see what’s going on.

When a C# program is run for the first time, the IL is recompiled 
down to native machine code, which runs quite fast. It’s also JIT 
compiled every time it’s run, after that. The term JIT stands for 
Just In Time – which usually means “last possible moment”

Getting The JITters

When discussing multistep compilation, you’ll often hear other 
developers talk about “the JITter” and what it will do to your code.

In some cases it will output code optimized for an executable that 
will then run it. Other times it will produce native byte code that 
runs at the processor level.

http://stackoverflow.com/users/22656/jon-skeet
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Interpreters

Dynamic languages, like Ruby, JavaScript, or Python, typically 
use a different approach. I say typically because multiple runtime 
engines have been created that will produce byte code for you from 
each of these languages. More on that in a later section.

You can think of these languages as “scripting languages” – in 
other words, they are scripts that are executed by a runtime engine 
every time they are invoked.

Ruby, for example, has the MRI (Matz’s Ruby Interpreter) which 
will read in a Ruby file, do all the things discussed above, then 
execute things as needed. You have to go through the full set of 
compiler steps every time a routine needs to be executed. This 
is not as fast as native code, obviously, which has already been 
analyzed, parsed and optimized.

JavaScript is interpreted on the fly in the same way as earlier 
versions of Ruby, depending on where you use it. The browser will 
load in and compile any script files referenced on a page, and will 
hold the compiled code in memory unless/until you reload the 
browser.

Node works in the same way: it will compile your source files and 
hold them in memory until you restart the Node runtime.

LLVM
One of the biggest names in the compilation space (if not the 
biggest) is LLVM:

The LLVM Project is a collection of modular and reusable compiler and 
toolchain technologies. Despite its name, LLVM has little to do with 
traditional virtual machines, though it does provide helpful libraries 
that can be used to build them. The name “LLVM” itself is not an 
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acronym; it is the full name of the project.

So you can use LLVM “stuff” to build your own compiler. One 
that you’ve probably heard of is CLANG which is an LLVM-based 
compiler for C.

Native Gem/Module Pain

You know when you go to install a Node module or Ruby gem and 
you get some nasty message about native bindings or build tools 
required? The reason for this is that some of these modules use C 
libraries that need to be compiled to run. You see this a lot with 
database drivers, for instance, which want to be super fast.

With Node, you’ll usually see a reference to node-gyp rebuild, 
which is a module specifically created for compiling native 
modules.

This can cause headaches, especially when you have other 
developers working on Windows. The workaround, typically, 
is to install Visual Studio, referencing C++ build tools during 
the install. Installing these things on a Windows Server is one 
of the most frustrating things about using Node on Windows in 
production.

GCC
The GCC project is from GNU:

The GNU Compiler Collection includes front ends for C, C++, 
Objective-C, Fortran, Java, Ada, and Go, as well as libraries for these 
languages (libstdc++, libgcj,…). GCC was originally written as the 
compiler for the GNU operating system.
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GCC and LLVM do the same things… sort of. They’re both 
compiler toolchains that also provide compilers for C, C++, Java 
and Go (among others).

The main differences have been speed (with GCC typically being 
a bit faster) and licensing. GCC uses the GPL and LLVM uses a 
license based on MIT/BSD which is a little more permissive.

Apple moved from the GCC to LLVM back in 2010/2011 and it 
caused a lot of code to break, especially for Rails developers. Those 
darn native gems!

Garbage Collection
Garbage collection (GC) is the process of cleaning up the heap. It’s 
a facility of managed languages such as C# (and other CLR-based 
languages), Java (and anything that runs on the JVM) as well as 
dynamic languages such as Ruby, Python and JavaScript (and many 
others).

Some languages, like Objective-C, do not have garbage collection 
directly. This was a choice Apple made to keep their phones as fast 
as possible. You can, if you want, implement Automatic Reference 
Counting (ARC) which is a feature of LLVM.

When you write code in Objective-C, you allocate memory as you 
need and specify pointers vs value types explicitly. When you’re 
done with the variable, you deallocate it yourself.

Correction on ARC

In previous versions of this book I made the claim that “most 
developers don’t use ARC”, which is false. I made this claim 
based on a conversation I had 5 years ago with an iOS developer 
friend. At that time Objective-C developers needed to know how 
to manually manage memory, and some didn’t trust ARC to work 
perfectly.
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This has changed. Use of ARC is standard these days. A comment 
from a reader (Adrian Kosmaczew) sums it well:

… after ARC was introduced in 2010 (I was in the room during the 
WWDC in San Francisco when they announced it) Apple rebuilt 
pretty much every single app in Mac OS X with it, and ended up 
removing the garbage collection (which had been added to Objective-C 
in Mac OS X Leopard, back in 2007) a few years later. iOS never had 
the GC for the reasons of performance you mention in your book; that 
is correct. Having a “mark and sweep” GC was too much to handle for 
the small CPU of the original iPhones, and as such we devs ended up 
using “retain” and “release” calls to make sure objects didn’t die before 
we had a chance to use them.

The original Objective-C runtime (originally designed for the 
NeXTSTEP operating system in 1989) used a simpler GC scheme 
based in resource counting. What ARC does is to perform a static 
analysis of the source code and to insert the calls to “retain” and 
“release” automatically where needed. The final binaries are 100% 
compatible with older versions of OS X and iOS, because there’s no 
runtime library needed.

Now the Objective-C GC is 100% deprecated, and everybody in the 
“Apple galaxy” uses ARC these days. There are only two known cases 
of retain cycles one has to take care of when using it (that is, from a 
lambda to an object holding it, and from an object to another through 
strong references) but apart from that, it works beautifully well. 
Actually, the concept was quite revolutionary, it trades a bit of a longer 
compilation cycle with binaries that literally never leak.

There are a number of things to know about GC:

»» It’s not free. Determining what objects and memory are 
subject to collection requires overhead and can slow things 
down
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»» It’s undecidable. This is as Turing illustrated with the Halting 
Problem: it’s just not possible to know if a process will 
complete, therefore it’s not possible to know if memory will 
ever not be needed

»» It’s the focus of a lot of amazing work. Speeding up GC 
means speeding up the runtime, so language vendors spend 
much time on it.

Saying that GC “cleans up the heap” is not going to satisfy the 
curious, so let’s dive into it a bit.

As with all things computer science, there are multiple ways to go 
about reducing the memory size of the heap and they all center 
on probability analysis. Some are sophisticated, some are very 
outdated and buggy.

The most common strategy for GC is tracing, to the point that 
unless you say otherwise, people will assume this is what you 
mean.

Tracing
Tracing is the most widely used method of garbage collection. 
When you create an object on the heap, a reference to it exists on 
the stack.
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As your program runs, the garbage collector will take a look 
at a set of “root” objects and their references, and trace those 
references through the stack. Objects on the heap can refer to 
other objects, so the trace can be much more complex than what is 
represented here.

As the trace runs, the GC will identify objects that are not 
traceable – meaning they aren’t reachable by other objects that 
are traceable. The untraceable objects are then deallocated and the 
memory freed.
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The advantages of tracing are:

»» It’s accurate. If objects aren’t referenced they are targeted for 
deallocation and that’s that.

»» It’s easy. You just have to find the objects!

The disadvantages are:

»» When will the GC get around to executing?

»» What happens when there are multiple threads? The stack for 
one thread might not have any references, but what about the 
other threads running?

Obviously, it gets tricky. Within the tracing strategy there are 
various algorithms for marking and chasing down memory to be 
cleaned up, with different levels of speed and complexity. 

This is a really deep topic, full of algorithms, probability and 
statistical analysis … and I could fill up many pages on the smallest 
details. Alas I have the rest of the book to write and so I need to 
clip the discussion here.

If you want to know more, Google away!

Reference Counting
Reference counting works almost exactly like tracing, but instead 
of running a trace, an actual count of references is made for 
each object. When the count goes to 0, the object is ready to be 
deallocated.
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The advantages to reference counting are:

»» It’s simple. Objects on the heap have a counter which is 
incremented/decremented based on references to that 
object (from both the heap and the stack) rather than a trace 
algorithm.

»» There’s less guesswork as to “when” GC will happen. 
When local reference variables fall out of scope, they can be 
decremented right away. If that count goes to 0 then GC can 
happen shortly thereafter

»» The asymptotic complexity (Big-O) of reference counting is 
O(1) for a single object, and O(n) for an object graph

Sounds simple and rather obvious doesn’t it? What about this code 
(pseudo code):

public class Customer{
  public int ID {get;set;}
  //...

  public Order CurrentSalesOrder{get;set;}
  public Customer(int id){
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      //fetch the current order from the db
      this.CurrentSalesOrder = 
db.getCurrentOrder(id);
  }
}

public class Order{
  public int ID {get;set;}
  //...

  public Customer Buyer{get;set;}
  public Order(GUID key){
      this.Customer = db.getCustomerForOrder(key);
  }
}

This code is quite common. What we have here is a circular 
reference on the heap. You could create an instance of the 
Customer and along with it comes a reference to an Order … 
which has a reference back to the Customer.

The reference count for these objects will always be > 1, so they 
are, in effect, little memory bombs eating up RAM.



235

The Imposter’s Handbook

Compile-time
If you have a sophisticated enough compiler it should be able to 
analyze what variables need what memory, where, and (possibly) 
for how long. Without it, Objective-C developers have had to 
manage memory themselves, allocating and deallocating within the 
code (much like C).

The XCode compiler analyzes the code written and decides the 
memory use upfront, freeing the runtime from the overhead of 
GC. It does this by using the notion of strong, weak, and unowned 
objects, each with an explicit level of protection that would, 
again, take me pages to explain properly (along with some goofy 
drawings).

The essence is this: using strong variables keeps them in memory 
longer, based on other strong references they’re related to. If you 
have a weak reference to an object it tells the compiler “no need 
to protect the referenced object for longer than now”. Finally with 
unowned you’re making sure that a strong reference won’t keep an 
object alive for longer than you want – so you explicitly say “make 
sure this object goes away”.

If you want to know more about this, there’s a great article here 
that discusses the ideas in terms of the human body:

A human cannot exist without a heart, and a heart cannot exist 
without a human. So when I’m creating my Human here, I want to 
give life to him and give him a Heart. When I initialize this Heart, I 
have to initialize it with a Human instance. To prevent the retain cycle 
here that we went over earlier (i.e. so they don’t have strong references 
to each other), your Human has a strong reference to the Heart and we 
initialize it with an unowned reference back to Human. This means 
Heart does not have a strong reference to Human, but Human does 
have a strong reference to Heart. This will break any future retain 
cycles that may happen.

https://realm.io/news/hector-matos-memory-management/


Software Design 
Patterns

People have been writing code in object-oriented 
languages for a long time and, as you might guess, 

have figured out common ways to solve common 
problems. These are called design patterns and there 
are quite a few of them.

In 1994 a group of programmers got together and started 
discussing various patterns they had discovered in the code they 
were writing. In the same way that the Romans created the arch 
and Brunelleschi created a massive dome – the Gang of Four (as 
they became known) gave object-oriented programmers a set of 
blueprints from which to construct their code. The Gang of Four 
are:

»» Erich Gamma

»» Richard Helm

»» Ralph Johnson

»» John Vlissides

This entire chapter will be argumentative. I hate to say it, but 
there’s just no escaping it: how we build software is still evolving. 
You might disagree with what you read here, which is fine. I’ll 
do my best to present all sides – but before we get started please 
know this: I’m not arguing for or against anything.
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These concepts exist; you should know they exist. You should 
know why people like or dislike them and, what is more important, 
what they argue about when they argue. And oh how they do.

When We Started Thinking In Objects…

The idea of “objects” in computer program design has been 
around since the late 50s and early 60s, but it was the release of 
Alan Kay’s Smalltalk in the 70s that really started to push the idea 
forward.

In the 80s the notion of “purely object-oriented languages” started 
cropping up and in the 90s it went through the roof when Java hit 
the scene.

We live in the aftermath of Java’s eruption.

Computer programs used to be a set of instructions, executed line 
by line. You could organize your code into modules and link things 
expertly :trollface: with GOTO statements. This had an amazing 
simplicity to it that kept you from over-thinking what it is you 
were trying to create.

This changed with the spread of object-oriented programming 
(OOP). People began building more complex applications, and the 
industry needed a different way of thinking about a program. We 
no longer write programs, we architect them.

For most developers, thinking in objects is natural. We write code 
that represents a thing and we can align that thinking with solving 
certain problems for a business.

This might come as a bit of a surprise, but there are a growing 
number of developers who are becoming less and less interested in 
OOP. For most developers, this is all they know.

Many, however, are questioning this.
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You might be wondering: why are you bringing this up? The 
answer is simple: I want to challenge your assumptions before we 
even get started talking about software design. Everything that 
lives in this chapter has sprung from OOP. Not everyone believes 
any of this is a good thing.

One of the best opinion pieces that I’ve ever read, opposing OOP, 
is entitled Object Oriented Programming is an expensive disaster 
which must end by Lawrence Krubner. If you can allow yourself 
to get past the inflammatory title, it’s worth every minute of your 
time. At least to get the juices flowing.

He brings up Alan Kay’s original vision:

The mental image was one of separate computers sending requests 
to other computers that had to be accepted and understood by the 
receivers before anything could happen. In today’s terms every object 
would be a server offering services whose deployment and discretion 
depended entirely on the server’s notion of relationship with the servee.

As Lawrence later points out, this is a strikingly apt description of 
the Actor Model in Erlang, which is a functional language.

This next statement is arguable, and it might make you angry. It 
might make you want to dismiss everything you’ve read thus far 
and maybe skip ahead to another chapter … which is fine it’s your 
book. I do hope you’ll at least consider pondering Lawrence’s main 
point, which I believe he puts together rather well:

My own experience with OOP involves long meetings debating 
worthless trivia such as how to deal with fat model classes in Ruby 
On Rails, refactoring the code into smaller pieces, each piece a bit 
of utility code, though we were not allowed to call it utility code, 
because utility code is regarded as a bad thing under OOP. I have 
seen hyper-intelligent people waste countless hours discussing how to 
wire together a system of Dependency Injection that will allow us to 
instantiate our objects correctly. This, to me, is the great sadness of 

http://www.smashcompany.com/technology/object-oriented-programming-is-an-expensive-disaster-which-must-end?utm_content=buffer1a700&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://www.smashcompany.com/technology/object-oriented-programming-is-an-expensive-disaster-which-must-end?utm_content=buffer1a700&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://propella.sakura.ne.jp/earlyHistoryST/EarlyHistoryST.html
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OOP: so many brilliant minds have been wasted on a useless dogma 
that inflicts much pain, for no benefit. And worst of all, because OOP 
has failed to deliver the silver bullet that ends our software woes, every 
year or two we are greeted with a new orthodoxy, each one promising 
to finally make OOP work the way it was originally promised.

This is what we do when we implement software design patterns. 
From one perspective: we waste precious time on worthless trivia. 
From another perspective we act disciplined and build for the future.

Does the answer lie somewhere in the middle? To be honest with 
you: I don’t know. You can’t build something “half way” and 
expect it to work right. In many ways you commit, or you don’t do 
it. Building software is a rather precision process and doing it well 
requires rigor.

Let’s wander through some of the principles that Lawrence 
discusses, and see if we can make sense of it all.

You can find the code used in parts of this section up at my github repo. In 
addition, you can buy 17 video walkthroughs of the patterns you see in 
this chapter and others from here

CREATIONAL PATTERNS

When working with an OO language you need to create objects. 
It’s a simple operation, but sometimes having some rules in 
place will help create the correct object, with the proper state and 
context.

Constructor
Most OO languages have a built-in way of creating an instance of a 
class. Here’s one in C#:

http://https://github.com/imposters-handbook/sample-code/tree/master/algorithms
https://goo.gl/2XZCHc
http://https://goo.gl/2XZCHc
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public class Thing {
  //the constructor
  public Thing(){
    //set some class variables, etc
  }
}
var thing = new Thing(); //a constructor in C#

Here’s a constructor in Ruby:

thing = Thing.new

Other languages, like JavaScript, require you to use a specific 
construct:

var Thing = function(){
  //body
}
var thing = new Thing();

You can invoke this function directly, but if you use the new 
keyword it will behave like a constructor. This is very important if 
you’re keen on creating an object in a valid state.

Factory
Sometimes instantiating an object can be rather involved, and 
might require a little more clarity. This is where the Factory 
Pattern comes in.

For instance: our Customer class might have some defaults that 
we want set:
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public class Order{}

public class Customer
{
  public string Id { get; set; }
  public string Name { get; set; }
  public string Email { get; set; }
  public string Status { get; set; }
  public List<Order> Orders { get; set; }

  public static Customer FromDefaults ()
  {
    var customer = new Customer { Status = 
"unregistered", Name = "Guest" };
    customer.Orders = new List<Order> ();
    return customer;
  }

  public static Customer FromExisting (IDictionary 
values)
  {

    var customer = new Customer ();
    //populate the values on the class, validating 
etc.

    return customer;

  }
}

Our Customer class isn’t really all that complex, but you do gain 
some clarity by calling Customer.FromDefaults(). This can 
become important as your code base grows because it’s not terribly 
clear what’s going on if you simply use new Customer().



242

Software Design Patterns

For very complex class construction you could create a dedicated 
factory class. You see this often in Java. For instance, we could pull 
the instantiation logic completely out of our Customer and into a 
CustomerFactory:

public class Customer{
  public string Id {get;set;}
  public string Name {get;set;}
  public string Email {get;set;}
  public string Status {get;set;}
  public List<Order> Orders {get;set;}
}

public class CustomerFactory
{
  public Customer FromDefaults ()
  {
    var customer = new Customer { Status = 
"unregistered", Name = "Guest" };
    customer.Orders = new List<Order> ();
    return customer;
  }

  public Customer FromExisting (IDictionary 
values)
  {
    var customer = new Customer ();
    //populate the values on the class, validating 
etc.

    return customer;
  }
}
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var customerFactory = new CustomerFactory();
var customer = customerFactory.FromDefaults();

Again: this is a bit simplistic. You can do a lot more with a factory 
class, such as deciding which object to create altogether. Your 
application might have the notion of an Administrator that 
inherits from Customer:

public class Administrator : Customer {
  //specific fields/methods for admins
}

You can use a variation of the Factory Pattern (called the Abstract 
Factory Pattern) to decide whether an Administrator should be 
returned or just a Customer:

public class CustomerFactory
{
  public Customer FromDefaults ()
  {
    var customer = new Customer { Status = 
"unregistered", Name = "Guest" };
    customer.Orders = new List<Order> ();
    return customer;
  }

  public Customer FromExisting (IDictionary 
values)
  {
    if (values.Contains ("Email")) {
      if (values ["Email"].ToString () == "admin@
example.com") {
        var admin = new Administrator ();
        //populate values
        return admin;
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      } else {
        var customer = new Customer ();
        //populate the values on the class, 
validating etc.

        return customer;
      }
    } else {
      return null;
    }
  }
}
var customerFactory = new CustomerFactory();
var customer = customerFactory.FromDefaults();

This pattern is useful but it can spiral on you if you are really into 
patterns. Consider this question on StackOverflow:

What is a good name for class which creates factories? 
(FooFactoryFactory sounds silly imo)?

This happens with C# as well:

I make extensive use of the interface-based Typed Factory Facility in 
Windsor, but there are times when I must pass a lot of arguments to 
a factory around with the factory itself. I’d much prefer to create a 
factory factory with these arguments so that I don’t need to muddy up 
the constructors of objects more than I need to.

The term “FactoryFactory” has become a bit of a joke in dynamic 
and functional language circles, throwing some shade at 
excessively zealous OOP programmers. Personally I think I might 
take a second and think through what I’m doing before using 
anything with a name like FooFactoryFactory, but then again 
I’m not building massive, monolithic applications either.

http://stackoverflow.com/questions/2186458/what-is-a-good-name-for-class-which-creates-factories-foofactoryfactory-sounds
http://stackoverflow.com/questions/21392089/factoryfactory-facility-in-castle-windsor
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The point is: you now know the pattern, perhaps be reasonable 
with its use.

Builder
The Factory pattern can only do so much until it becomes too 
convoluted. This usually happens with very complex objects. Many 
developers consider this a “code smell” (when you find yourself 
needing it, it means there’s a simpler way). Overly complex objects 
are ripe for bugs and, typically, means you’ve probably over-
thought your solution.

There are times, however, that a Builder makes sense. Consider 
a class that .NET developers use all the time: System.Text.
StringBuilder.

Strings are immutable in C#, so if you try to build a string from 
many string fragments, you can run into the memory problem as 
seen here:

public class NaiveStringBuilder {
  IList<string> _strings;
  public NaiveStringBuilder(){
    _strings = new List<string>();
  }
  public void Append(string val){
    _strings.Add(val);
  }
  public override string ToString(){
    var result = "";
    foreach (var s in _strings) {
     // a new string is built each time
      result = result + s + " ";
    }
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    return result;
  }
}

var naiveBuilder = new NaiveStringBuilder();
naiveBuilder.Append("This");
naiveBuilder.Append("could be");
naiveBuilder.Append("very long");
naiveBuilder.Append("and blow up");
naiveBuilder.Append("your program...");
var result = naiveBuilder.ToString();//BOOM

If you ever find yourself writing a string concatenation routine in a 
loop, stop. It’s a memory problem just waiting to happen.

The good news is that the C# team contemplated this and decided 
to help out, using the Builder pattern with System.Text.
StringBuilder:

var goodBuilder = new System.Text.StringBuilder();
goodBuilder.Append("This ");
goodBuilder.Append("won't ");
goodBuilder.Append("blow up ");
goodBuilder.Append("my program ");
var result = goodBuilder.ToString(); //yay!

If you’re curious about how the StringBuilder works, you 
can view the source code online. There’s a lot going on in there! 
The thing to take away, however, is that an instance of an object 
(System.String) is being built for us in a very specific way to 
avoid problems. This is what the Builder Pattern is good for.

There is a more elegant way of doing this, however…

Method Chaining
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Instead of calling stringList.Add("...") or using a 
StringBuilder directly, you can encapsulate what you’re doing 
into a class that uses a fluent interface, otherwise known as 
Method Chaining:

public class Message
{
  System.Text.StringBuilder _stringBuilder;
  public Message (string initialValue)
  {
    _stringBuilder = new System.Text.StringBuilder 
();
    _stringBuilder.Append (initialValue);
  }
  public Message Add (string value)
  {
    _stringBuilder.Append(" ");
    _stringBuilder.Append(value);
    return this;
  }
  public override string ToString ()
  {
    return _stringBuilder.ToString ();
  }
}

var message = new Message("Hello")
                .Add("I might be")
                .Add("a really long string")
                .ToString(); 
//Hello I might be a really long string

Singleton
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A Singleton is a class that only allows one instance of itself. It’s 
not an easy thing to do correctly and many blog posts have been 
written about the perils of Singletons and threading or multiple 
processes.

You should know the pattern, however. Here’s a rather naive one 
in C#:

public class SingleThing
{
  //single instance holder
  private static SingleThing _instance;
  //disallow calling constructor directly
  protected SingleThing () { }
  //access to the instance
  public static SingleThing Instance ()
  {
    if (_instance == null) {
      _instance = new SingleThing ();
    }
    return _instance;
  }
}

The problem with this code is that it will likely work fine most of 
the time. Until it gets used more and the Instance method is called 
simultaneously and a nasty collision happens. Or if, more likely, 
someone decides to use your code in a threaded environment.

The problems with the Singleton (in C#, at least) have been 
explored by some very bright people, including Jon Skeet. The 
referenced article explores 5 or 6 different ways you can do it!

Interestingly, in JavaScript land, Node only uses Singletons for its 
moduling system. It can do this because Node is single threaded 
and mounts each module when it is used the first time.

http://csharpindepth.com/Articles/General/Singleton.aspx
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STRUCTURAL PATTERNS

Code needs to have some structure, so we use things like methods, 
modules, and classes. As code becomes more complex, these 
modules and classes might also need some structure to reduce 
confusion and unneeded complexity. That’s what we’ll take a look 
at here.

Adapter
The Adapter Pattern is all about making one interface work with 
another. You see them used often with data access tools (ORMs) 
where the abstracted query interface needs to work against 
different databases, such as PostgreSQL, SQL Server, etc.

For instance, we might create a way of working with a database 
that we really like, so we’ll abstract it into a basic interface of some 
kind:

public abstract class GroovyQuery{
  //groovy interface
  //find
  //fetch
  //save
}

public class GroovyPostgresAdapter: GroovyQuery{
  //implements groovy interface for PostgreSQL
}

public class GroovySQLServerAdapter: GroovyQuery{
  //implements groovy interface for SQL Server
}
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You just need to pick the correct adapter for the database 
you’re working with. This can be done manually or by way of 
configuration and some higher-level patterns which we’ll see later 
on.

Bridge
The Bridge Pattern is quite subtle and tends to look a lot like the 
Adapter Pattern, but it’s one step up the abstraction curve. You use 
the Bridge Pattern when your abstraction gets complicated enough 
that you need to split things out.

People really like our GroovyQuery tool and we want to add a 
feature: document queries. It turns out that you can store JSON 
happily in PostgreSQL and also in SQL Server – so we decide to 
implement a document API that handles parsing and so on:

public abstract class GroovyQuery{
  //groovy interface
  //Find
  //Fetch
  //Save
  public abstract T GetDocument<T>();
  public abstract T SaveDocument<T>();
  public abstract IList<T> FetchDocuments<T>();
  //etc
  //etc
}

This is a very interesting idea! The problem is that we now have 
to go and implement it for every adapter. Unless we abstract the 
document interface and bridge it to our GroovyQuery:

public abstract class GroovyQuery{
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  //groovy interface
  //Find
  //Fetch
  //Save
  public IDocumentQueryable Documents();
  //etc
}

//a document query interface
public interface IDocumentQueryable{
  T Get<T>();
  T Save<T>();
  IList<T> Fetch<T>();
}

//implementation of the document query interface 
for
//relational systems.
public class RelationalDocumentQueryable : 
IDocumentQueryable{
  GroovyQuery _adapter;
  public RelationalDocumentQueryable(GroovyQuery 
adapter){
    this._adapter = adapter;
  }
   //implement Get, Save, Fetch
}

//our SQL Server adapter
public class GroovySQLServerAdapter: GroovyQuery{
  public GroovySQLServerAdapter(){
    this.Documents = new 
RelationalDocumentQueryable(this);
  }
   //implement Get, Save, Fetch
}
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The neat thing about this new structure is we can change our 
IDocumentQueryable interface and the implementation, without 
breaking any of our adapters.

Composite
The Composite Pattern deals with parent-child relationships that 
are composed to create a whole object. They can grow and shrink 
dynamically and child objects can move between parents.

Our GroovyQuery tool is really picking up steam! People are 
really happy with it, mostly because we have a cool document 
abstraction they can use next to your typical ORM interface. The 
problem is we need more speed!

It turns out that the some of the drivers we’ve been using don’t 
implement connection pools – basically a set of 10 or so open 
connections to the database that we keep alive so we don’t need to 
take the time establishing a connection for each query.

We can create our own incredibly naive implementation using the 
Composite Pattern:

public class Connection
{
  public bool CheckedOut { get; set; }
  public Connection (string connectionString)
  {
    //connect
  }
  public void Close ()
  {
    //close the connection
  }
}
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public class ConnectionPool
{
  public IList<Connection> Pool;
  public ConnectionPool (string connectionString)
  {
    this.Pool = new List<Connection> ();
    for (var i = 0; i < 10; i++) {
      this.Pool.Add (new Connection 
(connectionString));
    }
  }
  public void Checkout ()
  {
    //grab a list of connections which aren't 
checked out
    //return the first
  }
  public void Checkin ()
  {
    //tick the boolean
  }
  public void Drain ()
  {
    foreach (var connection in this.Pool) {
      connection.Close ();
    }
    this.Pool = new List<Connection> ();
  }
}

I hesitated to show a ConnectionPool example as I’m sure many 
of you will be poking holes in it (as you should)! Pooling is a hard 
thing to do and I don’t recommend writing your own. I include 
it here because it’s a real-world example that’s easily understood 
(as opposed to the mind-numbing Foo and Bar nonsense you see 
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everywhere).

If the ConnectionPool goes away, so do all the connections. If 
there are no children (in other words the IList<Connection> 
is empty, there is no ConnectionPool. The parent and children 
work together to provide functionality.

If you work in an IDE (such as Visual Studio or Eclipse) – each of 
the UI elements you see is a component that has a parent. This, 
again, is the Composite Pattern.

Decorator
The Decorator Pattern adds behavior to an object at runtime. You 
can think of it as “dynamic composition”.

We could use the Decorator Pattern as an alternative to the Bridge 
Pattern above for our GroovyQuery engine:

public abstract class GroovyQuery
{
  //groovy interface
  public abstract T GetDocument<T> ();
  public abstract T SaveDocument<T> ();
  public abstract IList<T> FetchDocuments<T> ();

  public IDocumentQueryable Documents;
  //etc
}

public interface IDocumentQueryable
{
  T Get<T> ();
  T Save<T> ();
  IList<T> Fetch<T> ();
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}

//implementation of the document query interface 
for
//relational systems.

public class RelationalDocumentDecorator : 
IDocumentQueryable
{
  GroovyQuery _adapter;

  //Find, Fetch, and Save use the _adapter passed 
in
  public RelationalDocumentDecorator (GroovyQuery 
adapter)
  {
    this._adapter = adapter;
  }
  //implement Get, Save, Fetch for Documents below
}

With our RelationalDocument Decorator we’re able to 
“decorate” the GroovyQuery base object with the ability to work 
with JSON documents.

Facade
A Facade hides implementation details so clients don’t have to 
think about it. We can use a Facade for our GroovyQuery to pick 
an adapter for the calling code, so they don’t need to worry about 
how to wire things together as you can see here:

using System;
using System.Collections.Generic;
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namespace Facade
{

  //abstract base class
  public abstract class GroovyQuery
  {
    public GroovyQuery (string connectionString) { 
}
  }

  //implementation for PostgreSQL
  public class PostgreSQLQuery : GroovyQuery {
    public PostgreSQLQuery(string 
connectionString) 
      : base(connectionString){}
  }

  //implementation for SQL Server
  public class SQlServerQuery : GroovyQuery
  {
    public SQlServerQuery (string 
connectionString) 
      : base(connectionString) { }
  }

  //a simple class that hides the selection 
details
  public class QueryRunner
  {

    string _connectionString;

    //Find, Fetch, and Save use the _adapter 
passed in
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    public QueryRunner (string connectionString)
    {
      _connectionString = connectionString;
    }

    public void Execute ()
    {

      GroovyQuery runner;
      if (_connectionString.StartsWith 
("postgresql://",
        StringComparison.
InvariantCultureIgnoreCase)) {
        runner = new PostgreSQLQuery (_
connectionString);
      } else if (_connectionString.StartsWith 
("sqlserver://",
        StringComparison.
InvariantCultureIgnoreCase)) {
        runner = new SQlServerQuery (_
connectionString);
      } else {
        throw new InvalidOperationException ("We 
don't support that");
      }
      //execute with the runner
    }

  }
}

Flyweight
In the initial versions of GroovyQuery we decided it would be 
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very useful to introspect our database whenever a write needed 
to happen (insert or update query). We did this because knowing 
more about each table (data types, primary key fields, column 
names, and default values) would be extremely helpful in crafting 
up a very usable API.

Unfortunately this became very slow when the system came under 
load, so we opted to implement the Flyweight Pattern.

Now, when GroovyQuery starts up, it runs a single query that 
introspects every table in our database, and then loads up a series 
of small objects that can be used throughout our application:

public class Table{
  public string Name {get;set;}
  public string PrimaryKeyField {get;set;}
  //column and data type information...
}

public abstract class GroovyQuery{
  //the API as we've come to know it
  List<Table> _tables;
  public void Initialize(){
    _tables = new List<Table>();
    //query the database for meta information
    //load up the _tables list
  }
}

Now, whenever we run an insert or update query we can reuse one 
of the Table instances we have in memory, avoiding the need to 
make a special query call on each write operation. This pattern can 
scale reasonably well to quite a large number tables, and helps to 
scale our app to thousands of write operations per second.
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BEHAVIORAL PATTERNS

We’ve figured out various ways to create our GroovyQuery 
class as well as how to enable functionality by structuring things 
a certain way. Now let’s see how we can use patterns to simplify 
how clients can use our GroovyQuery operations.

Command
The Command Pattern formalizes requests from one API to the 
next.

Our data access tool, GroovyQuery, is all about writing and 
reading data from the database. It does this by creating SQL 
statements that our adapter then executes. We could do this by 
passing in a SQL string and a list of parameters – or we could 
formalize it into a command:

public class QueryParameter
{
  public QueryParameter (string name, string 
value)
  {
    this.Name = name;
    this.Value = value;
  }
  public string Name { get; private set; }
  public string Value { get; private set; }
}
public interface IQueryCommand
{
  string SQL { get; set; }
  IList<QueryParameter> Parameters { get; set; }
  IDbCommand BuildCommand ();
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}
public class QueryCommand : IQueryCommand
{
  public string SQL { get; set; }
  public IList<QueryParameter> Parameters { get; 
set; }
  public IDbCommand BuildCommand ()
  {
    //return a command that can be executed
    //...

  }
}

This is our new GroovyQuery class:

public class GroovyQuery
{
  //the API
  //...

  public IDataReader Execute (IQueryCommand cmd)
  {
    //build the command and execute it
    var dbCommand = cmd.BuildCommand ();
    //...

  }
}

One thing about formalizing a request like this is that we can scale 
it to specific needs:

public class CreateUserCommand : QueryCommand
{
  public CreateUserCommand (string name, string 
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email, string password)
  {
    this.SQL = @"insert into users(name, email, 
hashed_password)
               values(@1, @2, @3);";

    this.Parameters = new List<QueryParameter> ();
    this.Parameters.Add (new QueryParameter("@1", 
name));
    this.Parameters.Add (new QueryParameter("@2", 
email));
    this.Parameters.Add (new QueryParameter("@3", 
                           SomeHashingAlgorithm 
(password)
                         ));
  }
  private string SomeHashingAlgorithm (string val)
  {
    //some solid hashing here...

    return "";
  }
}

A little naive, perhaps, but this command encapsulates what it 
means to add a User to our system for SQL and the parameters 
required.

Mediator
We want to formalize our document storage capabilities, however 
adding methods and abstractions to our GroovyQuery will make 
the API more complex, which goes against some programming 
principles we’ll discuss in a later chapter.



262

Software Design Patterns

In short: simplicity is our goal. We want our class abstractions to 
do one thing and to do it well.

Let’s formalize our document storage idea with the Mediator 
Pattern. A Mediator is simply a class that sits between two other 
classes, facilitating communication. It’s often used in message-
based applications, but we can use a simplified version here:

public class DocumentStore{
  GroovyQuery _adapter;
  public DocumentStore(GroovyQuery adapter){
    _adapter = adapter;
  }
  public T Save<T>(T item){
    //parse and save the object
  }
  public T Get<T>(){
    //pull the record, dehydrate
  }
  public IList<T> Fetch<T>(){
    //pull the list, dehydrate
  }
  string Dehydrate<T>(T item){
    //turn the object into JSON
  }
  T Hydrate<T>(string json){
    //resolve
  }
}

Here, we’re mediating between our database adapter and any class 
type of T. The adapter doesn’t need to know anything at all about 
T, and T knows nothing about the adapter.

Observer



263

The Imposter’s Handbook

The Observer Pattern facilitates event-based programming. You 
use this pattern whenever you wire up events in a language like 
C# or JavaScript (using the EventEmitter in Node or listening to 
DOM events in the browser).

Many frameworks have the mechanics for observation already built 
in, but let’s take a look at how we can construct an observer by 
hand by adding methods to our GroovyQuery that get fired when 
certain events occur. These are commonly referred to as callbacks:

public interface IListener
{
  void Notify<T> (T result);
  void Notify ();
}
public abstract class GroovyQuery
{
  //API methods etc
  //...

  public IList<IListener> Listeners { get; set; }
  public GroovyQuery ()
  {
    //constructor stuff
    //...

    this.Listeners = new List<IListener> ();
  }
  public virtual IDataReader Execute (IDbCommand 
cmd)
  {
    //the execution stuff
    //notify all listeners
    foreach (var listener in this.Listeners) {
      listener.Notify ();//optionally send along 
some data
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    }
  }
}

There are other ways to do this in C# – namely using virtual 
methods that inheriting classes can implement directly.

State
The State Pattern changes an object’s behavior based on some 

internal state. Often this is done by creating formalized state 
classes.

We want to know what current state our QueryCommand is in – if 
it’s new, succeeded, or failed. Let’s create some classes that tell us 
this. We’ll start with the QueryCommand and a base class for the 
state:

public class QueryCommand
{
  public QueryState State { get; set; }
  //...

  public QueryCommand ()
  {
    this.State = new NotExecutedState (
      "Query has not been run"
    );
  }
  //pass execution off to the state bits
  public T Execute<T> ()
  {
    return this.State.Execute<T> (this);
  }
}
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public abstract class QueryState
{
  protected string Message { get; set; }
  public QueryState (string message)
  {
    this.Message = message;
  }
  public abstract T Execute<T> (QueryCommand cmd);
}

Next we implement each possible state as an explicit class:

public class SuccessState : QueryState 
{
  public SuccessState (string message) : base 
(message) { }
  public override T Execute<T> (QueryCommand cmd)
  {
    throw new InvalidOperationException (
      "This query already executed successfully"
    );
  }
}
public class FailState : QueryState
{
  public FailState (string message) : base 
(message) { }
  public override T Execute<T> (QueryCommand cmd)
  {
    throw new InvalidOperationException (
      "This query already failed execution"
    );
  }
}
public class NotExecutedState : QueryState
{
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  public NotExecutedState (string message) : base 
(message) { }
  public override T Execute<T> (QueryCommand cmd)
  {
    try {
      //run query execution… and if it works
      cmd.State = new SuccessState (
        "Query executed successfully"
      );

    } catch (Exception x) {
      //on error
      cmd.State = new FailState (x.Message);
    }
    //return query results
  }
}

Notice in this code how the actual execution is handed to the 
QueryState? This probably seems a bit counterintuitive, but 
if you think of it as a formalized state of the QueryCommand 
it makes more sense. It also allows you to forgo a big switch 
statement.

Strategy
The Strategy Pattern is a way to encapsulate “doing a thing” and 
applying that thing as needed. Code is the easiest way to explain 
this pattern, as it’s quite simple and useful.

Our document query capability is working well, but it turns out 
that SQL Server has excellent support for XML, and some users 
have asked that we support that along with JSON storage.

We can do this using the Strategy Pattern. We’ll start by defining 
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our GroovyQuery class and the interfaces we need:

public interface IDocumentQueryable
{
  T Get<T> ();
  T Save<T> ();
  IList<T> Fetch<T> ();
}
public abstract class GroovyQuery
{
  //groovy interface
  public abstract T GetDocument<T> ();
  public abstract T SaveDocument<T> ();
  public abstract IList<T> FetchDocuments<T> ();

  public IDocumentQueryable Documents;
  //etc
}

public interface IStorageStrategy
{
  T Hydrate<T> (string document);
  string Dehydrate<T> (T item);
}

Next we implement two strategies for storing documents, one for 
XML and the other for JSON:

public class JsonStorageStrategy : 
IStorageStrategy
{
  public string Dehydrate<T> (T item)
  {
    //turn the object into JSON, return the JSON
  }
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  public T Hydrate<T> (string json)
  {
    //resolve from JSON
  }
}

public class XmlStorageStrategy : IStorageStrategy
{
  public string Dehydrate<T> (T item)
  {
    //turn the object into XML
  }
  public T Hydrate<T> (string xml)
  {
    //resolve from XML
  }
}

Finally we implement the DocumentStore with the needed 
strategies:

public class DocumentStore
{
  GroovyQuery _adapter;
  IStorageStrategy _parser;
  public DocumentStore (GroovyQuery adapter)
  {
    _adapter = adapter;
    _parser = new JsonStorageStrategy ();
  }
  public DocumentStore (GroovyQuery adapter, 
IStorageStrategy parser)
  {
    _adapter = adapter;
    _parser = parser;
  }
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  public T Save<T> (T item)
  {
    var document = _parser.Dehydrate (item);
    //parse and save the object
  }
  public T Get<T> ()
  {
    //pull the record, dehydrate
    //get the results
    return _parser.Hydrate<T> (result);
  }
  //...

}

In The Real World…
Many of you will likely notice that I left a few patterns out of the 
above list – namely the Visitor Pattern, Memento, Template, etc. 
These are useful patterns to know about, but their use is rather 
rare.

For instance the Visitor Pattern – it’s useful if you’re parsing tree 
structures (like Expression Trees in C#) but in everyday code, this 
is kind of rare. For me, at least.

Also: as you implement patterning as we’ve done here, the code 
you write tends to become more generalized and you end up 
writing a lot more of it just to do a simple operation. This is not 
what these patterns are for.

A design pattern should make things simpler. If you implement 
one, have a look at your code before and after, and see if it makes 
more sense or less.



Software Design 
Principles

As you build applications using the patterns we 
learned in the previous chapter, you begin to see 

some common side effects.

For instance: the Strategy, Adapter, Mediator and Bridge Patterns 
lead you to think a little bit more about better ways to manage 
dependencies between classes. You also begin to create rules and 
reasons why code should even exist in the first place.

Obviously, this is not a small topic. In this chapter we’ll discover 
the key principles you should understand, who came up with them, 
and why.

You can find the code used in parts of this section up at my github repo. In 
addition, you can buy 17 video walkthroughs of the patterns you see in 
this chapter and others from here.

Coupling and Cohesion
You’ve likely heard these terms before, they’re thrown around a lot 
and have fairly straightforward definitions:

»» Cohesion applies to how well you’ve thought out the concepts 
(and concerns, for that matter) of your application. In other 
words: how related are the functions of each module or class? 

http://https://github.com/imposters-handbook/sample-code/tree/master/algorithms
https://goo.gl/2XZCHc
http://https://goo.gl/2XZCHc
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You put your Membership code into a Membership module 
and your User code in a User model. The functionality here is 
cohesive (meaning the ideas bond together logically).

»» Coupling is kind of the opposite of cohesion. When you 
couple two or more things, their separate notion becomes one. 
In our code above we had an example where Membership 
created a newUser during the registration process. This 
coupled Membership to User. If we moved/renamed/got rid 
of the notion of a User we’d have an error in our Membership 
code. This is tight coupling.

You want high cohesion, low coupling. Your classes and modules 
should make sense for isolating ideas, and not rely on each other to 
exist. This is the goal, at least.

These ideas were invented in the 60s by Larry Constantine 
and later formalized in a white paper called Structured Design 
(Yourdon and Constantine, 1979):

For most of the computer systems ever developed, the structure 
was not methodically laid out in advance – it just happened. The 
total collection of pieces and their interfaces with each other 
typically have not been planned systematically. Structured design, 
therefore, answers questions that have never been raised in many 
data processing organizations.

It’s a fascinating and easy read, and I highly suggest it.

SEPARATION OF CONCERNS
Separation of Concerns is about slicing up aspects of your 
application so they don’t overlap. These are typically thought 
of (by developers) as horizontal concerns (they apply to the 
application as a whole): such as user interface, database, and 
business logic. The term can equally (and confusingly) be applied 

http://www.win.tue.nl/~wstomv/quotes/structured-design.html
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to more abstract ideas, such as authentication, logging and 
cryptography.

Finally there are vertical concerns, which deal with more business-
focused functionality such as Content Management, Reporting, and 
Membership.

Some Opinion

I had a discussion once with a developer who suggested I separate 
SQL from my data access code so I can have a “cleaner separation 
of concerns”.

Another time it was suggested to me that dividing my .NET 
code into separate library projects was a great way to separate 
the concerns of my application, instead of having all those files 
together in one place.

Ruby on Rails (which is responsible for the spread of the term) 
famously suggested that the Model View Controller approach they 
used was a great “separation of concerns” as it decoupled data 
access and business logic from HTML. The reality is it did exactly 
the opposite. A Rails view is HTML strewn with artifacts (which 
are Models) created in a Controller that deal directly with data 
access.

There is no separation there. Ruby on Rails version 3.0 tried to get 
there with more generic implementations (so called Railties), but 
this ended slowing everything down.

The term “Separation of Concerns” honestly doesn’t mean 
anything anymore. But it used to, and I’ll devote the rest of the 
chapter to that meaning.
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The Origin Of The Term

The origin of the term comes from this quote from one of my 
favorite computer science people, Edsger W. Dijkstra:

Let me try to explain to you, what to my taste is characteristic for 
all intelligent thinking. It is, that one is willing to study in depth 
an aspect of one’s subject matter in isolation for the sake of its own 
consistency, all the time knowing that one is occupying oneself only 
with one of the aspects. We know that a program must be correct and 
we can study it from that viewpoint only; we also know that it should 
be efficient and we can study its efficiency on another day, so to speak. 
In another mood we may ask ourselves whether, and if so: why, the 
program is desirable. But nothing is gained — on the contrary! — by 
tackling these various aspects simultaneously. It is what I sometimes 
have called “the separation of concerns”, which, even if not perfectly 
possible, is yet the only available technique for effective ordering of 
one’s thoughts, that I know of. This is what I mean by “focusing one’s 
attention upon some aspect”: it does not mean ignoring the other 
aspects, it is just doing justice to the fact that from this aspect’s point 
of view, the other is irrelevant. It is being one- and multiple-track 
minded simultaneously.

Every application we build is composed of a vertical subset 
of processes and rules that try to solve a business need. An 
eCommerce application will have a sales aspect, a membership 
aspect, accounting, and fulfillment. These are concerns of the 
application.

Can we apply this type of thinking to more horizontal ideas? In 
other words, can we study in depth the notion of logging? Or data 
access? I’m sure friends of mine would argue that I have, indeed, 
done the latter many times! Studying these horizontal aspects of 
our application might make the application better, but I don’t think 
it will make it more correct.

Now this is where we come up against the weight of history and 
a little trick that every politician knows: If you say something 

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
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long enough it becomes true. I think it’s the same with the phrase 
“separation of concerns”. It’s reminiscent of the phrase “I could 
care less” or “hone in on”. These phrases make no sense at all, but 
for some reason popular American English vernacular has twisted 
them to mean something and, as time goes on, they get adopted.

I think the same is true with Separation of Concerns. It’s a catchall 
phrase which means “I’m trying to do the right thing”, whatever 
that thing may be. Perhaps it’s an effort at file organization or 
using one of Fowler’s enterprise patterns (which we won’t be 
discussing in this book) to abstract away a part of your application 
… at this point it doesn’t matter.

So: when in conversation and someone invokes this trite little 
phrase, perhaps ask them for some detail. After a few years of 
doing this you should have some fun tales to share.

YAGNI And DRY
I remember when I started learning Ruby. I loved the simplicity of 
the language as well as its dynamic design which, I know, many 
people dislike. You had to have some rigor and much care when 
building programs with Ruby because you didn’t have a compiler 
and static type checking.

This was freeing, and it was also a little scary.

Part of this rigor was learning a new set of jargon. YAGNI (You 
Aint Gonna Need It) and DRY (Don’t Repeat Yourself) – neither 
of which came from the Ruby community – started becoming more 
popular precisely because the practices you needed to adopt to 
write good Ruby code leaned squarely on you, as developer, rather 
than your tooling.

More (and better) testing replaced compiler checks. Test-driven 
Development (TDD, which we’ll get to in a later chapter) helped 
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in this regard as well – forcing you to justify the code you needed 
to write with a set of tests. In other words: if a test didn’t mandate 
some code’s existence, you didn’t need that code.

Don’t Repeat Yourself is something that most developers understand. 
Duplicated code is difficult to maintain. With large applications, 
this is almost impossible – but it is an important idea to keep a 
focus on.

If you have an application with 300 classes and 50,000 lines of 
code, you’re bound to have some kind of duplication. The trick is 
to spot it and, hopefully, to simplify your future by abstracting it in 
some way.

The Wrong Abstraction

In January of 2016 Sandi Metz wrote a great article about the perils 
of focusing too much on DRY. The punchline being:

… duplication is far cheaper than the wrong abstraction… prefer 
duplication over the wrong abstraction…

The article sprang from a talk she gave at RailsConf in 2014.

The main idea is that you don’t want to create abstractions solely 
for the sake of avoiding repetition; it needs to fit your overall 
approach. If you can’t fit it, just let the duplication be.

Tell, Don’t Ask
Another Rubyism that I quite like came from Ruby’s inspiration: 
Smalltalk. Whenever you invoke a method on a Ruby class you 
send it a message. You tell that instance that you need it to do 

http://www.sandimetz.com/blog/2016/1/20/the-wrong-abstraction
https://youtu.be/8bZh5LMaSmE


276

Software Design Principles

something, or that you need some data back of some kind.

If you ask an object instance a question, then you’ll need to know 
something about that object or its state, which breaks the notion 
of encapsulation.

If you think back to our GroovyQuery from a previous chapter, 
imagine this as our API:

using System;

using System.Data;

public class GroovyQuery
{
  public bool IsCommandValid (IDbCommand cmd)
  {
    //logic
  }
  public bool IsConnectionAvailable ()
  {
    //check connection pool to see if one is ready
  }
  public IDataReader Execute (IDbCommand cmd)
  {
    //execution
  }
}

To use this API effectively I would need to ask two questions and 
finally get around to telling the class what to do (Execute). In 
short: I need to know way more about the API than is needed.

A better way to do this is by moving a few things around:

using System;
using System.Data;
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public class GroovyQuery2 //Telling
{
  bool CommandIsValid (IDbCommand cmd)
  {
    //logic
  }
  bool ConnectionIsAvailable ()
  {
    //check connection pool to see if one is ready
  }
  public IDataReader Execute (IDbCommand cmd)
  {
    var commandIsValid = CommandIsValid (cmd);

    if (ConnectionIsAvailable () && 
commandIsValid) {
      //execution
    } else {
      throw new InvalidOperationException ("Can't 
run this query");
    }

  }
}

The responsibility for deciding whether the query can run is now 
within GroovyQuery, which is where it should be.

Law Of Demeter (or: Principle of Least 

Knowledge)
The Law of Demeter (LoD, or “Deep Dotting”) is an offshoot of 
loose coupling. In short: you shouldn’t have to “reach through” 
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one object to get to another. This can be further nuanced to mean 
you shouldn’t have to reach deeply into one object to do the thing 
you need to do.

Let’s examine both.

Our Membership system is working well, but some users aren’t 
behaving themselves so we need to give them a bit of a timeout. 
With our first go we decide to drop a Suspend method on User 
because we’re telling them they’re suspended:

public class DB
{
  public User GetUser (int id)
  {
    //call to the DB, getting record
    //returning an empty user for now
    return new User ();
  }
}

public class User
{
  public String Status { get; set; }
  public void Suspend ()
  {
    this.Status = "suspended";
  }
}

public class Membership
{
  DB _db;
  public Membership ()
  {
    _db = new DB ();
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  }
  public User GetUser (int id)
  {
    //get the user
    return _db.GetUser (id);
  }
}

To suspend a user we need to access them from the Membership 
module and then suspend them:

var membership = new Membership();
membership.GetUser(1).Suspend();

This is a violation of LoD. We had to reach through Membership 
to get to the User. You might be wondering … so what?

It’s a subtle point, sure, but the more you think on it the more you 
realize how you’re muddying the principles we’ve been reading 
about.

In essence: we’ve punched a hole in our membership abstraction 
by dividing the responsibility for changing the user between two 
different classes. Cohesion is breaking down and coupling is going 
up.

It doesn’t make sense to involve Membership at all here, except 
for the fact that we need to get at the User. So let’s make a choice, 
and it’s a simple one: Membership has the responsibility of adding 
and retrieving users (aka changing them) so let’s have it update 
the user’s status as well:

public class DB
{
  public User GetUser (int id)
  {
    //call to the DB, getting record
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    return new User ();
  }
  public void Save (object item)
  {
    //save to DB
  }
}

public class User
{
  public String Status { get; set; }
}

public class Membership
{
  DB _db;
  public Membership ()
  {
    _db = new DB ();
  }
  public User GetUser (int id)
  {
    //get the user
    return _db.GetUser (id);
  }

  public void SuspendUser (int id)
  {
    var user = this.GetUser (id);
    user.Status = "suspended";
    _db.Save (user);
  }
}

Some developers will focus on “dot counting”, claiming that the 
use of too many dots is, all by itself, a violation of LoD. Sometimes 
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it is, sometimes not.

Consider this API:

var liTag = new Html.Helpers.HtmlTags.Lists.ULTag.
LiTag();

This API is kind of ridiculous, I must say. However it’s an 
organizational choice and not necessarily a violation of LoD. This 
could be horrible namespacing for all we know! Or it could be 
a lack of imagination. We don’t know the inner workings of the 
Html helper library (and trust me, you don’t want to), so it’s not 
exactly accurate to call for a violation just by looking at dots.

I was reading my friend Phil Haack’s blog while researching this 
subject, and he had a great quote from Martin Fowler:

I’d prefer it to be called the Occasionally Useful Suggestion of Demeter.

I hate to leave you with vagary, but hopefully you can see how 
“deep dotting” and LoD aren’t always the same thing.

Dependency Injection
One way to loosen up your code is to send in the dependencies 
that a class needs through its constructor. The best way to see this 
is with some code.

Our Membership class is using the database to retrieve and save a 
User:

public class Membership{
  DB _db;

http://haacked.com/archive/2009/07/14/law-of-demeter-dot-counting.aspx/
http://twitter.com/martinfowler/status/1649793241
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  public Membership(){
      _db = new DB();
  }
  public User GetUser(int id){
      //get the user
      return _db.GetUser(id);
  }
  public void SuspendUser(int id){
      var user = this.GetUser(id);
      user.Status = "suspended";
      _db.Save(user); //Coupling
  }
}

This couples the Membership class to the DB class which 
is responsible for data interactions. We’ve read The Imposter’s 
Handbook, so we know that coupling is bad – but how can we 
change this?

The simple answer is to inject the dependency through the 
constructor rather than to invoke it in place:

public class Membership
{
  DB _db;
  public Membership (DB db)
  {
    _db = db;
  }
  public User GetUser (int id)
  {
    //get the user
    return _db.GetUser (id);
  }
  public void SuspendUser (int id)
  {
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    var user = this.GetUser (id);
    user.Status = "suspended";
    _db.Save (user); //Coupling
  }
}

Now our class doesn’t need to know how to instantiate DB, which 
is one step in the right direction. There’s still a bit too much 
coupling, however as our Membership class cannot be used unless 
a DB instance is passed in.

Let’s see how we can loosen this up a bit more.

Interface-based Programming
Many languages support the idea of interfacing with an ability, 
rather than a type itself. With C# and Java these are called 
Interfaces. With languages such as Swift and Elixir this is done 
with Protocols. For our purposes I’ll use interfaces, so translate as 
you need.

The goal of working with interfaces is to describe an ability of your 
application. In our case all we care about is that we can retrieve 
and save a record from a data store. It’s important to keep this 
interface light because doing so will actively increase cohesion and 
drive down coupling:

public interface IDataStore {
  public void Save<T>(T item);
  public T Get<T>(int id);
  public IList<T> Fetch<T>();
}
This is a good start. We can now use our new 
interface:
public interface IDataStore
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{
  void Save<T> (T item);
  T Get<T> (int id);
  IList<T> Fetch<T> ();
}

public class Membership
{
  IDataStore _db;
  public Membership (IDataStore db)
  {
    _db = db;
  }
  public User GetUser (int id)
  {
    //get the user
    return _db.Get<User> (id);
  }
  public void SuspendUser (int id)
  {
    var user = this.GetUser (id);
    user.Status = "suspended";
    _db.Save (user);
  }
}

Much better. We still have coupling to the notion of an 
IDataStore, but it’s unavoidable at this point (unless we want to 
work directly with eventing, but that’s probably overkill). We can 
now implement an IDataStore to do all kinds of things for us, 
such as:

»»  Store data in a relational system

»»  Store data in a NoSQL system

»»  Store data directly in memory for testing purposes
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Using interfaces like this is a cornerstone of object-oriented 
programming. Injecting them, as we’re doing here, is a great way 
to keep your code isolated.

It does come at a price.

Inversion Of Control
As you build out your application, paying attention to interfaces 
and dependency injection, you will start to see the number of 
dependencies for a given class begin to spiral a bit out of control. 
The best way to see this is with some code.

In the real world, our Membership class will probably need quite a 
few external dependencies:

»»  A hashing library for password storage

»»  An email library for sending a new user a note

»»  A rules module for accepting new users

»»  A logger module for logging

This means our constructor is going to grow:

public class Membership{
  IDataStore _db;
  IEmailer _email;
  ICrypto _crypto;
  ILogger _logger;
  IRulesEngine _rules;
  public Membership(IDataStore db,
    IEmailer email,
    ICrypto crypto,
    ILogger logger,
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    IRulesEngine rules){
    _db = db;
    _email = email;
    _crypto = crypto;
    _logger = logger;
    _rules = rules;
  }
  public void Register(IRegisterable user){
    //validations etc
    if(_rules.CanRegister(user){
        user.Status="Registered";
        user.HashedPassword = _crypto.
HashPassword(user.Password);
        _db.Save(user);
        _email.SendWelcome(user);
        _logger.Info("New user added: " + user.
Email);
        return user;
    });
  }
}

This is nuts. Every time we want to use Membership we’ll need to 
create instances of its dependencies which, themselves, likely have 
dependencies of their own we’ll need to create (and then inject). 
This is simply sweeping the dependency coupling somewhere else.

This is where Inversion of Control comes in. With Inversion of 
Control you have a separate mechanism (called a “container”) 
which is responsible for creating and injecting all the dependencies 
you need and then giving those injected objects to you when you 
need it.

Here is some pseudo code for an IoC container modeled after my 
friend Nate Kohari’s excellent Ninject Project:

//our app start

http://www.ninject.org/
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public void Main(){

  Container container = new Container();
  container.Bind<IMembershipStore>().
To<PostgreSQLAdapter>();
  container.Bind<IEmailSender>().
To<MailgunSender>();
  container.Bind<ILogger>().To<Log4Net>();
  container.Bind<ICrypto>().
To<SuperCryptoThingy>();
  container.Bind<IMembership>().To<Membership>();

  //get an instance of Membership
  var membership = container.Get<IMembership>().
InSingletonScope();

}

We have our interfaces mapped to concrete implementations in a 
single place. If we ever need to change anything, we just change it 
here.

When we need an instance, we simply need to access our 
container, which needs to be global to our application. The 
container then orchestrates the instantiation of the classes we 
want. A bonus to this is that we can set a “scope” on the object. 
For instance in the example above I’m setting the lifecycle to a 
Singleton.

You can do many other things with Inversion of Control containers 
– and they are quite useful.

Is This Really Useful?

You might be getting the sense that we’re creating a bit of a “meta” 
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programming system here, where object instantiation is removed 
from the language constructs themselves and into this separate…
mechanism of our own creation.

This is where we start getting subjective. There are quite a few 
developers out there who see patterns like the above as flaws 
in the language or, more broadly, as flaws in object-oriented 
programming itself. We started off this entire part of the book with 
a quote from Lawrence Krubner:

I have seen hyper-intelligent people waste countless hours discussing 
how to wire together a system of Dependency Injection that will allow 
us to instantiate our objects correctly. This, to me, is the great sadness 
of OOP: so many brilliant minds have been wasted on a useless dogma 
that inflicts much pain, for no benefit.

Now that we understand a bit more about dependency injection 
and inversion of control containers – do you think you’ll waste 
“countless hours”? To be honest: yes, I have. But it was my fault.

Keeping your containers happy and working properly is not as 
simple as it seems. As your application grows and becomes more 
complex, it becomes easier to find yourself creating circular 
dependencies. For instance: we might decide to create an ILogger 
implementation that saves logs to a database. We decide to reuse 
our IDataStore, which requires an instance of ILogger which 
requires an instance of IDataStore…

These problems, as you might be sensing, typically have to do 
with application design rather than object-oriented programming. 
Which seems to be a recurring problem in our industry.

If a language, platform or framework leads you down a snarled 
path of bad design, it’s usually your fault. Or is it?

I’d like to leave this chapter with a great quote from Gary 
Bernhardt, which he offered during his amazing talk The Birth and 
Death of JavaScript:

https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
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The behavior that you see a tool being used for is a behavior that tool 
encourages

It’s easy to dismiss recurring structural problems as ignorance on 
the programmer’s part. If the same problem occurs throughout 
the development community, however, is it really a problem of 
ignorance?

I don’t have an answer.



Functional 
Programming

Functional Programming: some people love it 
and claim it’s the only way to write software. 

Others see it as a fad and roll their eyes. Let’s come 
away from those extremes. Functional Programming 
is based in a foundational concept which we learned 
about a few chapters ago: Lambda Calculus. It’s not 
magical, nor is it something you should ignore because 
you’re amazing. It is simply something you need to 
understand.

Like most things in Computer Science, functional 
programming is full of jargon, idioms and practices that, at first, 
might be a bit opaque. If you take the time, however, to let it 
soak in… functional programming can change the way you write 
software if you come from an object-oriented background.

A Change In Thinking

I learned a functional language two years ago; one that I love using: 
Elixir. It has changed the way I think about programming. It’s the 
only functional language I know, so I’ll be using it to do some of 
the demos you’re about to see.
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For others, I’ll be using JavaScript/ES6. I chose this language 
because 1) most programmers know it at least a little bit and 2) it 
has some functional characteristics - at least to the level where you 
can get your point across.

We’ll cover four main topics in this chapter:

»» Immutability (things that can’t/don’t change)

»» Purity (functions rely only on what they’re given)

»» Side Effects (functions only operate on data they’re given)

»» Currying (breaking big functions down to little ones)

I also threw in a very brief discussion about functors and monads 
at the very end, something I barely understand but I think is 
critical to have a think on.

Off we go…

Immutability
The first word that comes to mind whenever you hear “functional 
programming” is usually “immutable”. As I am sure you know, 
it means “not changeable” in plain English, but how does that 
translate to programming? Moreover: who cares?

If you’re an object-oriented (OO) programmer you’re used 
to creating classes and then instantiating them. You set their 
properties and send them messages which change their properties 
or tell you something about themselves. This is not possible with 
functional programming.

There are no objects, no classes, no “state” as you might think of 
with OO. There are only functions which transform things. You 
give a function what it needs, it hands you back what you want 
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(hopefully). This might sound incredibly confining, but there 
are practices that go along with this idea that make it rather 
compelling. Let’s take a look.

If you want to follow along, you should have Elixir (version 1.3 or 
so) installed, as well as Node (version 6+).

Simple Immutability with Elixir

Consider this assignment:

friend = %{name: "Clara"}
IO.inspect friend 
#%{name: "Clara"}

This is a map in Elixir and it looks a lot like an object in JavaScript 
or a hash in Ruby. The difference is you can’t do this:

friend = %{name: "Clara"}
friend.name = "Mike"

#** (CompileError): cannot invoke remote function 
friend.name/0 inside match
[Finished in 0.159s]

The error message is a bit odd as it has to do with the way Elixir 
tries to match values (pattern matching), but essentially it means 
“you can’t change Clara’s name to Mike”. So what do we do?

We ask the Map library to update the map. This is going to look a 
bit weird, but once I explain it more you’ll hopefully understand:

friend = %{name: "Clara"}
friend = Map.put(friend, :name, "Mike")
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IO.inspect friend
#%{name: "Mike"}

I do not blame you if you’re completely underwhelmed at this 
point… and more than a little confused. There’s just no graceful 
way to go about this, so I’m throwing you in the deep end straight 
away.

Here’s what just happened:

»» We created a map with a name key set to “Clara”

»»  We asked the Map library to put the value “Mike” in Clara’s 
place

»» The Map library gave us back a completely new map … sort of

»» The friend variable was rebound to the new map

Elixir provides some helpful features which you don’t find in more 
“strict” functional languages. For instance: in Erlang (a functional 
language that Elixir is based on) you can’t do what we just did 
(rebinding friend). You would need to create a whole new variable 

- something like renamed_friend to hold the result of the 
Map.put/2 operation. Elixir is less strict, so it looks like we’re 
changing the friend variable.

A natural thought that you might be having at this point is wait a 
minute, if I need to update a map, I need a whole new one? Isn’t 
this horrible for memory? This is a very good question! The short 
answer is: no, it’s not. This is because Elixir simply uses a pointer 
under the covers. The initial friend map is still there and the 
updated map points back to it. This keeps things rather light and 
you don’t fall into the immutability traps that you have in other 
languages (strings with .NET, for example). Furthermore: this kind 
of thing is only possible with a functional language.

That’s the technical tear down, let’s discuss something a bit more 
intangible: this code is just ugly. I would agree with you there too. 
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Fortunately what I wrote is not idiomatic. I said at the beginning 
that functional programming is all about transforming data 
through a set of functions. Let’s rewrite our code to support that 
idea:

%{name: "Clara"} |> Map.put(:name, "Mike") |> 
IO.inspect

Much better. That toothy thing is the “pipe” operator and works in 
much the same way as its Unix counterpart. The result of a given 
function is piped into a following one as its first argument, and so 
on.

Before we end our introduction to immutability, I want to 
underscore the notion of rebinding. Let’s change our code a bit, 
and I’ll reintroduce our friend variable:

friend = %{name: "Clara"}
friend |> Map.put(friend, :name, "Mike") |> 
IO.inspect
IO.inspect friend

Running this you’ll see that our friend variable wasn’t changed at 
all. Map.put/2 simply passed back a new map with the updated 
key, which we piped into IO.inspect directly. Thus we have two 
different outputs:

Formalizing Data with Structs
I don’t want to leave you with the impression that data in a 
functional language like Elixir is just tossed around without any 
formalized rules. There are no classes in Elixir, but their close 
relatives, “Structs”, do provide some of their utility.
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Let’s formalize our code, making our intentions clearer and giving 
our friends some structure:

defmodule Friend do
  defstruct name: "Clara", age: 0
end

defmodule Immutability do
  def change_name(friend, new_name) do
    Map.put(friend, :name, new_name)
  end
  def get_friend do
    %Friend{}
  end
end
Immutability.get_friend |> IO.inspect

This looks better don’t you think? Structs allow you to set defaults 
for your data, and give it a prescribed structure. Elixir also gives 
you some shorthand for updating a struct:

#...

friend = Immutability.get_friend
%{friend | name: "Mike"} |> IO.inspect
IO.inspect friend

Once again, we get the same result as we did with Map.put/2 
above as the rebinding returns an immutable new Friend struct:

%{name: "Mike"}
%{name: "Clara"}
[Finished in 0.22s]
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Transforming Data
If you’re new to functional programming ideas than none of this 
is probably convincing. It takes a while to get into the functional 
groove, so let’s write some more code.

Three things to focus on for this section are:

»» We are transforming data by passing it through a set of 
functions

»»  We like smaller functions

»»  We can treat functions the same as values

The latter comes straight from Lambda Calculus. In fact all of this 
does - that’s where functional programming has its roots in case 
that wasn’t obvious. In addition, things work better overall if we 
focus on smaller, clearer functions.

To see this in action, let’s do some math, shall we?

defmodule Ops do
  def square_it(num), do: num * num
  def double_it(num), do: num + num
  def root_it(num), do: :math.sqrt(num)
  def print_it(num), do: IO.inspect num
end

4 |> Ops.square_it
  |> Ops.double_it
  |> Ops.root_it
  |> Ops.print_it

# 5.656854249492381
# [Finished in 0.274s]  
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What we have done here is fairly typical in the functional world. 
Small, concisely-named functions are arranged as needed, and we 
can simply pass some data along. This type of approach can work 
with anything, you just have to change your thinking a bit.

Discussion: Why Would You Do Any of This?

Right now you might be thinking about how certain things 
might be solved with functional programming, maybe translating 
problems you work on every day? It’s an interesting thing to 
ponder, but from my experience it takes a good two weeks to really 
hit that AHA! moment… at least for me.

What you need is a reason to care about it all in order to pull you 
through the process of changing your thinking. Let’s see if I can 
help with that.

First: no, functional programming is not perfect nor the answer to 
everything, of course. But it does greatly expand your ability to 
think through a solution!

The first advantage of functional programming is its immutability. 
Quite a few bugs in OO are caused by the state of something not 
being correct, or what you wanted. You might have quite a few 
tests that show that yes, indeed, this code should work provided X, 
Y and Z conditions are met, but then condition ∑ comes along and 
screws the whole thing up!

If you write code that depends on anything going on outside of it, 
you’re prone to these types of errors. It’s the same reason most 
developers loathe global variables - one change and it ripples 
throughout your program, causing things to break.

Functional programming is different in that, ideally, a function 
should receive everything it needs in order to do its job, when 
asked. There are all kinds of safeguards you can attach to these 
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functions to prevent them from being called if the data isn’t 
correct. As opposed to being a burden, its quite freeing! In order 
to get it right, however, you have to change your thinking, which 
takes time and effort.

Speaking of effort, let’s get back to it. We’ll pick up this 
conversation again later.

A Real Example: A Shopping Cart
Let’s compare and contrast a functional style vs. an OO style, 
and I’ll do that by creating a ShoppingCart in Elixir and also in 
JavaScript.

Let’s start with JavaScript:

class Cart{
    constructor(){
        this.items = [];
    }
    addItem(item){
        //make sure it's a proper item
        //and then...
        this.items.push(item);
    }
}
const cart = new Cart();
cart.addItem({sku: "SOCKS", price: 12.00})
cart.addItem({sku: "MORESOCKS", price: 18.00})

Lovely. A very, very simple cart but it captures the idea: we have 
a class, an instance and we change the state of our instance by 
adding items to it.

Elixir is a bit different. As a first pass you might be tempted to do 
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something like this:

defmodule Cart do
  items = []
  def add_item(item) do
    %Cart{items: item}
  end
end

Which wouldn’t work. Functional languages don’t have the notion 
of state, so holding onto an items array would cause an error. 
We need to pass everything to the Cart that it needs to operate, 
including the items:

defmodule Cart do
  items = []
  def add_item(item) do
    %Cart{items: item}
  end
end

This works and, once again, underscores the notion of rebinding. 
Let’s tweak this to look more like functional programming:

defmodule Cart do
  def add_item(items, item) do
    items ++ item
  end
end

items = []
Cart.add_item(items, %{sku: "SOCKS", price: 
12.00}) |> IO.inspect
IO.inspect items
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# %{sku: "SOCKS", price: 12.00}
# []

Much cleaner. Still a bit… wonky however. We’re passing around 
arrays and maps without knowing what’s going on. Let’s clean this 
up a bit.

When you’re forced to do without state and objects, you begin to 
think in terms of data and things that happen to that data. In our 
example we’re using OO thinking by trying to represent a Cart 
as an object, which isn’t very functional of us. Instead we should 
think about it in terms of data moving through a process.

The Cart is our data and our process is, more accurately, described 
as Shopping:

defmodule Cart do
  defstruct items: [], total: 0, count: 0
end

defmodule Shopping do
  #use pattern matching to guarantee data we need 
  #the _ ignores the data, we just want the 
pattern
  def add_item(%Cart{} = cart, %{sku: _, price: 
price} = item) do
    %{cart | items: cart.items ++ [item], total: 
cart.total + price, count: cart.count + 1}
  end
  #get from the DB?
  def get_cart, do: %Cart{}
  #save to DB?
  def save_cart(cart), do: cart
end
# add an item to the cart
Shopping.get_cart 
  |> Shopping.add_item(%{sku: "SOCKS", price: 
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12.22})
  |> Shopping.save_cart
  |> IO.inspect

I threw a bit more Elixir at you in this go, hope you don’t mind. 
Of particular note is how I’m able to use pattern matching to 
guarantee the data this function needs, which is a Cart and a map 
with a sku and a price.

From end to end, I’m able to retrieve a Cart from somewhere 
(assume it’s a database for now), add an items to it and then put 
it back. It’s clear what this process is by reading the code and the 
only change of state is that of our database, which is acceptable in 
functional programming realms. Barely.

Side Effects and Purity
There are two terms that you hear often in discussions about 
functional programming: purity and side effects. Both of these 
terms stem from the idea of immutability.

The whole notion of interacting with a system outside the scope 
of the function you’re in is called a “side effect” - something that 
happens as a result of your function being invoked. Working with 
a database, for instance, is referred to as a “necessary side effect” 
because you’re changing the state of something outside the scope 
of your function.

The more you do this, the less “pure” your code is. Purity is not a 
term dedicated to functional programming - it refers to the level 
of interaction any code has with the outside world. You can write 
“pure” code in OO programming just as you can with functional, 
it just happens to have a little more focus in the functional world.

Functional programmers like purity. It’s easier to test a function 
that doesn’t change behavior based on some external setting or 
function call. It’s also easier to debug. The downside is that you 
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end up with more functions that are (typically) a lot smaller than 
what you might write in OO land.

There’s a way to work with those, too, as we’re about to see.

Currying
Functions, functions, functions. They’re everywhere! Organizing 
a program full of them can feel overwhelming, especially when 
you’re just starting out with functional programming.

Let’s take a look at one of the very first practices you’ll want to 
take advantage of: currying. Currying is the act of using smaller, 
single arity functions in a chain rather than a larger function with 
multiple/complex arguments. It’s easier to understand using code.

Consider date night with your partner:

const dateNight = (who, what, where) => {
  return `Out with ${who} having fun ${what} at 
${where}`;
};

This function takes 3 arguments (or, in more programmy speak, 
has an arity of 3). If we split these functions into a smaller set of 
chained, single arity functions, we’re currying:

const nightOut = who => what => where => {
  return `Out with ${who} having fun ${what} at 
${where}`;
};

Looks a bit weird doesn’t it? Especially if you’re not used to 
lambdas. But how might we use this function? Like this:
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const funTime = nightOut("Dancing")("wife")("Club 
9");
console.log(funTime);
//Out with wife having fun Dancing at Club 9

Does this look familiar to you? It should, this is the exact thing we 
did when applying values to functions in Lambda Calculus a few 
chapters back.

I know what you’re thinking: calling functions like this is a bit goofy, 
and I would agree. This is where the idea of partial application 
comes in:

const dancing = nightOut("Dancing");
const dancingWithWife = dancing("wife");
const funTime = dancingWithWife("Club 9");
console.log(funTime);
//Out with wife having fun Dancing at Club 9

This is the power of currying. Let’s see something a bit more 
concrete, however.

A Curried SELECT Query

I worked with a very nice, very opinionated developer recently who 
loves her object-oriented programming. I was trying to explain 
how I thought it would be fun to add some more functional 
ideas to the data access code we were writing, and she was rather 
resistant. Finally she said “just show me what you mean”.

So I did. I started out with a curried function set for building a 
basic select query:

const selectQuery = table => (where, params) => 
order => limit => {
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};

At this point I simply needed to evaluate what was sent in to each 
function call:

const selectQuery = table => (where, params) => 
order => limit => {
  const whereClause = where ? ` where ${where}` : 
"";
  const orderClause = order ? ` order by ${order}` 
: "";
  const limitClause = limit ? ` limit ${limit}` : 
"";
  if(params.length > 0) params = [params];
  const sql = `select * from ${table}
              ${whereClause}${orderClause}
              ${limitClause}`; //wrapped this for 
readability
  return {sql: sql, params: params};
};

I’ve written a lot of code for building SQL statements, and this is 
probably the smallest I’ve ever created. Using this is even more 
fun:

const usersQuery = selectQuery("users");
console.log(usersQuery()()());
//{sql: "select * from users", params: []}

You probably wouldn’t want to create a query in that way, however, 
and this is where partial application comes in. You could create 
a module (let’s call it a repository for fun) which built up the 
following:

const usersQuery = selectQuery("users");
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const allUsersQuery = usersQuery()()();
const usersByEmail = email => usersQuery("email = 
$1", email)()();
console.log(usersByEmail("test@test.com"));
//{sql: "select * from users where email = $1", 
params: ["test@test.com"]}

I think this is rather interesting, and a very nice way to reuse 
functionality. Let’s round this out by plugging in pg-promise 
and having it actually do something. I’ll be using the Chinook test 
database for this:

const pgp = require('pg-promise')();
const db = pgp("postgres://localhost/chinook");
//our selectQuery as before
const selectQuery = table => (where, params=[]) => 
order => limit => exec => {
  const whereClause = where ? ` where ${where}` : 
"";
  const orderClause = order ? ` order by ${order}` 
: "";
  const limitClause = limit ? ` limit ${limit}` : 
"";
  if(params.length > 0) params = [params];
  const sql = `select * from  
  ${table}${whereClause} 
  ${orderClause}${limitClause}`;
  const query =  {sql: sql, params: params};
  //should we execute?
  if(exec){
    db.many(sql, params).then(res => exec(res)).
catch(err => console.log(err))
  }
  //if not, just return the query
  else return query;
};

https://github.com/vitaly-t/pg-promise
https://chinookdatabase.codeplex.com/
https://chinookdatabase.codeplex.com/
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const albumQuery = selectQuery("album");
const albumSearch = title => albumQuery("title 
LIKE $1", `%${title}%`)()();
const rockAlbums = albumSearch("Rock");
//fire it up!
rockAlbums(res => {
  console.log(res);
})

If you’re playing along and run this code, you should see all the 
albums in the Chinook database with the term “Rock” in the title.

When I showed this code to my friend, her response was 
wonderful:

…oh my god, that’s equal measures ingenious and horrifying :D Being 
able to reuse selectQuery, albumQuery, etc almost seems like a twisted 
take on models at an arbitrary scope…

Twisted indeed. Personally I quite like this approach!

A Very Brief Discussion About Func-

tors and Monads
There’s a great line from Douglas Crockford about monads:

In addition to it being useful, it is also cursed and the curse of the 
monad is that once you get the epiphany, once you understand - “oh 
that’s what it is” - you lose the ability to explain it to anybody.

From “Monads & Gonads”, December 2012

https://www.youtube.com/watch?v=dkZFtimgAcM
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Very, very true. That’s why I want to keep this discussion as 
brief as possible and invite you to do your own investigation. 
You should have a little bit of an itch in your brain right now, 
wondering just how am I supposed to orchestrate things beyond 
simply currying my way to insanity?

This is where structures like functors and monads (among others) 
come in.

When you’re slinging functions around as we have, you might 
want to have a higher level of abstraction for working with them. 
Something that might wrap those functions and handle certain 
situations for you the way you want.

One thing in particular that you might want to do is to 
interrogate/iterate over some values, such as an array or a struct 
like a user. You could write a loop or do some type of recursion, or 
you could orchestrate the effort using a set of functions.

A popular way of doing this is to create a function which allows 
you to map values from a given object:

class Monkey{
  constructor(val){
    this.__value = val;
  }
  map(fn){
    return fn(val);
  }
}

This is pretty simplistic, but hopefully you get the idea. This 
simple construct has a pretty lofty name: it’s a functor. It’s only 
purpose in life is to run map over things that are mappable.

Functors have big brothers that will implement some logic on top 
of that mapping, namely returning some alternate values based 
on the data contained in your mappable object. For instance you 
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might want to access a name field on your user object, but don’t 
want bad things to happen if there is no name field.

This is where monads come in, and where I start gracefully backing 
my way to the door. They’re easy to understand in concept, and 
when you first encounter them it can be a little anticlimactic. I 
don’t know why this is. Monads really aren’t terribly scary, but it’s 
like some beautiful gateway to programming hell: if you understand 
it you’re doomed. I’ve found Crockford’s rule above to be spot on.

Let’s see if you agree with me.

Assume that we’re allergic to if statements. This is one lovely 
oddity that happens when you start working with functional 
languages. There are so many interesting constructs and ways 
of doing things (like pattern matching) that you find yourself 
avoiding complex conditional trees.

Our selectQuery is pretty good and I feel happy about it, but we 
wouldn’t be allowed into Functional Club with this code:

const selectQuery = table => (where, params=[]) => 
order => limit => exec => {
  const whereClause = where ? ` where ${where}` : 
"";
  const orderClause = order ? ` order by ${order}` 
: "";
  const limitClause = limit ? ` limit ${limit}` : 
"";
  if(params.length > 0) params = [params];
  const sql = `select * from  
  ${table}${whereClause} 
  ${orderClause} 
  ${limitClause}`;
  const query =  {sql: sql, params: params};
  //...
};
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Monads exist to handle just this case! Let’s create the simplest 
one: the Maybe monad:

class Maybe{
  constructor(val){
    this.__value = val;
  }
  isNothing(){
    return (this.__value === null || this.__value 
=== undefined);
  };
  map(fn){
    return this.isNothing() ? Maybe.of(null) : 
Maybe.of(fn(this.__value));
  };
  val(){
    return this.isNothing() ? "" : this.__value;
  };
}
Maybe.of = (val) => new Maybe(val);

That’s not so scary is it! See what I mean? Ah the temptation… 
let’s see if we can confuse ourselves a bit.

This class exists to do one thing: handle conditional values in an 
orchestrated, functional way. When you call map() you say “here’s 
a function, use it if there’s a value”. The trick, however, is that if 
there is a value for your monad then map hands you back another 
Maybe monad with its value set as the result of your mapped 
function call.

This means we can move data through a chained set of functions 
without worrying about null or undefined values. How fun.

We can now use our Maybe monad to evaluate our whereClause:
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const whereClause = Maybe.of(where).map(w => 
`where ${w}`).val();

If where has a value then our lambda will be called and we’ll get 
back another Maybe with its current value set to a where clause. 
We can then call val() if we just want this value directly, which 
we do. If where isn’t set, we’ll get back an empty string.

We can apply this to the other arguments as well:

const whereClause = Maybe.of(where).map(w => 
`where ${w}`).val();
const orderClause = Maybe.of(order).map(o => 
`order by ${order}`).val();
const limitClause = Maybe.of(limit).map(l => 
`limit ${limit}`).val();

We could, at this point, build our SQL statement as before by 
building a string with template literals, but where’s the fun in that! 
Let’s use our Maybe monad one more time:

const sql = Maybe.of(`select * from ${table}`)
                .map(sql => `${sql} 
${whereClause}`)
                .map(sql => `${sql} 
${orderClause}`)
                .map(sql => `${sql} 
${limitClause}`)
                .val();
return {sql: sql, params: params};

Let’s step through this. We start out with an initial value that we 
want to work with, in this case it will be our select * from 
${table} statement. We move this value through a successive 
chain of functions, where it is applied to a function that is passed 
in via map. That value is then passed on to the next in the chain. If 
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you’re thinking that this looks a lot like Elixir’s |> (pipe) operator, 
you’d be correct.

Note: if you’re a functional programming person and you see a 
better way to do this, please do let me know!

Here’s the final code:

const selectQuery = table => (where, params=[]) => 
order => limit => {

  const whereClause = Maybe.of(where).map(w => 
`where ${w}`).val();
  const orderClause = Maybe.of(order).map(o => 
`order by ${o}`).val();
  const limitClause = Maybe.of(limit).map(l => 
`limit ${l}`).val();

  const sql = Maybe.of(`select * from ${table}`)
                  .map(sql => `${sql} 
${whereClause}`)
                  .map(sql => `${sql} 
${orderClause}`)
                  .map(sql => `${sql} 
${limitClause}`)
                  .val();
  return {sql: sql, params: params};
};
const albumQuery = selectQuery("albums");
const albumSearch = title => albumQuery("title 
LIKE $1", `%${title}%`)();
const rockAlbums = albumSearch("Rock");
console.log(rockAlbums());
//{ 
//  sql: 'select * from albums where title LIKE 
$1  ',
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//  params: '%Rock%' 
// }

Wahoo!



Databases

There is an established way to design a transactional 
database: following the rules of normalization. 

This is the process of essentially turning a single, large 
spreadsheet into a set of related tables.

Transactional systems can back our applications, but analytical 
systems power decision making. Data warehouses and data 
marts store the data and OLAP systems provide the analysis 
infrastructure.

Distributed database systems use the notion of horizontal scaling 
(adding more machines) vs vertical scaling (increasing machine 
size and power). Distributed systems are much different than 
traditional “big machine” databases in that they have to balance 
tradeoffs with data consistency, availability and network problems.

Social media is driving the need to store gigantic, petabyte-sized 
data stores. This movement is called Big Data and it’s often 
difficult to grasp the sheer size of it all.

NORMALIZATION

A relational database consists mainly of a bunch of tables. These 
tables contain rows of data, organized by columns. There has to be 
a method to this madness, and it’s called normalization.

Database normalization is all about controlling the size of the 
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data as well as preserving its validity. Back in the 70s and 80s you 
simply did not have disk space, but companies did have a ton of 
data that would fill it up. Database people found that they could 
reduce the size of their database and avoid data corruption if they 
simply followed a few rules.

Before we get to these rules, let me just add upfront that it’s truly 
not that complicated once you grasp the main ideas. As with so 
many things computer science related, the jargon can be rather 
intense and off-putting, making simple concepts sound hard. We’ll 
slowly work our way up to it.

Finally: rules are meant to be broken. In fact a DBA will break 
normalization quite often in the name of performance. I’ll discuss 
this at the end.

First Normal Form (1NF): Atomic Values
We’ve decided to buy a food truck and make tacos and burritos for 
a living. We have our ingredients and drive up to our favorite street 
corner, opening our doors for business.

When the orders come in we put them into a spreadsheet – 
knowing we’ll need to deal with it later on:

Let’s move this spreadsheet into the database, altering it as we go.

First normal form (1NF) says that values in a record need to be 
atomic and not composed of embedded arrays or some such. Our 
items are not atomic – they are bunched together. Let’s fix that.
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Lovely. Our new orders table is 1NF because we have atomic 
records. You’ll notice that things are repeated in there, which we’ll 
fix in a bit. Our next task is to isolate the data.

Second Normal Form (2NF): Columns 

Depend On a Single Primary Key
Now that we’re in 1NF, we can move on to 2NF because part of 



316

Databases

being in 2NF is complying with 1NF. Our task to comply with 2NF 
means that we need to identify columns that uniquely define the 
data in our table.

An order is a customer buying something. In our case the 
email field uniquely identifies a customer, and the order_
id field uniquely identifies what they’ve ordered. You put that 
together and you have a sale – which could uniquely identify each 
row in our table.

The problem we have is that name does not depend on the order_
id and items and price have nothing to do with email – this 
means we’re not in 2NF. To get to 2NF we need to split things into 
two tables:
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Much better, but not quite there. Our customers table looks good 
but our orders table is a bit of a mess.

Third Normal Form (3NF): Non-keys 

Describe The Key And Nothing Else
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3NF says that every non-primary field in our table must describe 
the primary key field, and no field should exist in our table that 
does not describe the primary key field.

Our orders table has repeated values for the key (which is a no-
no) and the price of each item has nothing to do with the order 
itself. To correct this we need to split the tables out again:

We now have 4 tables to support our notion of an order:

»» customers holds all customer data

»» orders holds meta data related to a sale (who, when, where, 
etc)

»» order_items holds the items bought
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»» products holds the items to be bought

You’ll notice, too, that I replaced email with an integer value, 
rather than using the email address. I’ll explain why in just a 
second.

In The Real World: The Normalization 

Process
Normalizing a database requires some practice. As programmers, 
hopefully you understand how to model classes and objects. It’s 
almost the same process that we just went through: what attributes 
belong to which concept?

It’s at this point that I get to tell you (with a sinister giggle) 
that the rules of normalization are more of a guideline, not 
necessarily law. A well-normalized database may be theoretically 
sound, but it will also be kind of hard to work with.

We managed to move a fairly simple spreadsheet with 2 rows 
and 5 columns into a 4 table structure with 3 joins and multiple 
columns! We only captured a very small fraction of the information 
available to us and our Taco Truck.

It’s very easy to build a massively complex database with intricate 
lookups, foreign keys, and constraints to support what appear to 
be simple concepts. This complexity presents two problems to us, 
right away:

»» Writing queries to read and write data is cumbersome and 
often error-prone

»» The more joins you have, the slower the query is

The bigger the system gets, the more DBAs tend to cut corners and 
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denormalize. In our structure here it would be very common to see 
a total field as well as item_count and embedded customer 
information.

To show you what I mean – have a look at the structure for the 
StackOverflow posts table:

Notice the view_count, owner_display_name, and _count 
fields? Also the last_editor_ field?

The count fields are calculated and don’t belong in a table, 
theoretically speaking. The owner_display_name and last_
editor_ fields should be foreign keys that link to an authors or 
users table of some kind – and they do with last_editor_id 
and owner_id. Querying this massive table using the required 
joins, however, would be way too slow for what they need.

So they denormalized it. Many businesses do – it just makes things 
faster and simpler.
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More Real World: Is This Schema Cor-

rect?
Let’s take a look at the final schema we came up with:

While it is theoretically correct, there is a problem with being 
historically correct. For instance, if you come to my Taco Truck and 
buy some Carne Asada, I’ll have a record of it stored happily in my 
orders table.

When I run my sales queries at the end of the month, your sale 
will be in there, adding $12.00 to the total. In July of this year I 
have $6800 in total sales! Wahoo!

Sales have gone well, and being a good capitalist I decide I’m going 
to charge $15.00 for Carne Asada from now on. I’m really proud 
of myself and so I run July’s sales reports one more time so I can 
print them out – I want to see that money rolling in!

Hmmm. The numbers are off for some reason. It used to say $6800 
for July, but now it says $7300! What happened?
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We’ve made a rather critical mistake with our design, here. One 
that you see constantly. The deal is that order_items is what’s 
known as a “slowly-changing historical table”. The data in this 
table is not transactional, it’s a matter of record.

So what do you do if you don’t want to change the past? We’ll 
discuss that in the next section.

OLAP And OLTP
99% of the databases you and I work in are considered “OLTP”: 
Online Transaction Processing. This type of system is based 
on performance – many reads, writes and deletes. For most 
applications this is appropriate.

At some point, however, you’re going to want to analyze your data, 
which is where “OLAP” comes in: Online Analytical Processing. 
These systems are low-transaction systems that change little, if 
at all, over time apart from nightly/weekly loads. These systems 
power data warehouses and support data mining.

The structure of each system varies quite a lot. OLTP systems 
are relational in nature and are structured using the rules of 
normalization discussed in the last section.

OLAP systems are heavily denormalized and are structured with 
dimensional analysis in mind. Building these systems can take 
hours and usually happens on a nightly basis, depending on the 
need.

Let’s start where OLTP ends and OLAP begins…

Extraction, Transformation, and 
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Loading (ETL)
My accountant, who’s also my best friend, has the same thing to 
say to me every year when preparing my taxes: “trash in, trash 
out”. That’s his warning to me as I prepare my account statements 
to bring to him.

This is a form of ETL that people do every year (especially in 
the US): pull all their financial data from their banks, savings, 
investments etc. and compile it in a single place – maybe Excel. 
They go through it at that point, making sure it all adds up. Each 
bank statement reconciles and there are no errors.

You do the same with analytical systems. The first step is to extract 
the information you want from your OLTP system (and/or other 
sources) and comb through it for any errors. Maybe you don’t want 
null sales totals or anything tagged test.

You then transform as required. Reconciling customer information 
with your CRM system so you can add history data, account 
numbers, location information, etc.

Finally you load the data into your system, which is usually 
another database that has a special layout. The system I’m most 
familiar with (and spent years supporting) is Microsoft’s SQL 
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Server Analytical Services (SSAS) so I would usually extract the 
data from one SQL Server database to another.

They also had a built-in transformer that worked with VBScript, of 
all things! I used it sometimes but more often then not it would 
fail. We later moved to a system called Cognos that was a gigantic 
pile of XML pain.

Today, you can perform quite complicated ETL tasks efficiently 
and simply by using a set of simple scripts. These can be as 
simple as shell scripts or, more commonly, quite complex using a 
programming language like Python or Ruby. Python’s speed and 
popularity make it a very common choice for ETL.

Data Marts and Warehouses
You’ll often hear these terms used interchangeably, but they’re 
two very different things. A data warehouse is like a filing cabinet 
in your office or at home where you keep all of your financial 
information: statements, tax documents, receipts, etc. Hopefully 
you keep this organized so it’s easy to sift through and put in a 
form that your accountant can understand – such as an Excel 
spreadsheet.

There are other things we can do with this data; maybe we want to 
know how much we spent on groceries so we can budget properly 
next year. We might want to calculate how much our life savings 
could be if we had any … stuff like that. For now, however, we 
need to get some data to our accountant because it’s tax season 
here in the US, so we load the data into Excel with a targeted use 
case: Accounting.

This is a data mart. A place (typically focused/targeted) that 
can answer questions. We could use the Data Warehouse for 
this (sending the accountant our shoe box full of receipts and 
statements) but that would take her a really long time and she 
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wouldn’t be happy.

Data Mart Schemas

The Excel spreadsheet is an apt way to think about how data is 
stored in a data mart: flattened. You might have a few joins in 
there, but the fewer the better because processing the data mart, 
which is typically millions and millions of records, will slow down 
with more joins.

What does this look like, however? The one you’ll see most often 
is the star schema:

In the center is a table called “the fact table” which represents a 
single fact you want to report on. For my accountant this would be 
a singular transaction of some kind: deposit, debit, adjustment, etc.

A snowflake schema is the same, but the dimension tables 
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themselves have more dimensions.

Dimensions

The fact table has keys which link off to dimensional look up 
tables, which you can use to roll up the data for specific queries. 
They’re called dimensions because they present a different way of 
rolling up the data. For sales (or anything relating to people) these 
are typically:

»» Categories of some kind

»» Time (week, month, quarter, year)

»» Geography (city, state, country)

»» Demographic (gender, age, race)

Selecting dimensions is much harder than it seems. They need to 
be fundamentally different from each other, or you’ll be rolling up 
on data that has crossover meaning.

You see this sometimes with schemas that confuse demographic 
data with geographic data – typically with the region that a person 
is from. I had a hour-long discussion with a client once about the 
meaning of “Southerner” in their data.

It might not seem like a big deal, but making sure the data can be 
cross-checked is absolutely critical.

With a data mart it’s possible (and common) to query on multiple 
dimensions at once. If we had left “Southerner” as a bit of 
demographic information, we would have had conflicting questions 
and answers:

»» Show all sales for both men and women located in the 
Southern United States
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»» Show all sales for both men and women who are “Southerners”

I have friends in Hawaii who call themselves “Southerners”. I 
know of Hawaiians who live in Louisiana. What are we learning 
with these questions? Analytics is difficult. The point is: pick your 
dimensions with care and make sure you involve the people who are 
using the reports you’ll generate.

Bad Dimensions

The “Southerner” problem (as it became known) is rather 
intangible and it takes some experience with data to be able to spot 
reporting issues like that.

Others are far easier to spot – such as “double-labeling”, which 
happens all the time and is rather infuriating.

As a programmer I hope you have a blog where you share your 
ideas. If you do, it’s likely you have a way of tagging your posts 
with small, contextual keywords (tags).

Let’s do a counting query to find out how many comments your 
blog has for the tag opinion vs the tag humor (if you have such 
things… if not let’s pretend). It’s a simple enough query because, 
as it turns out, you only have 3 posts with 5 comments apiece:

»» “Data Analysis is Silly” tagged opinion; 5 comments

»» “Hadoop Honeybadger” tagged opinion and humor; 5 comments

»» “A DBA Walks Into a Bar…” tagged humor; 5 comments

So you run these queries:

select count(1) as comment_count from posts
inner join comments on post_id = comments.id
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inner join posts_tags on posts_tags.post_id = 
posts.id
inner join tags on posts_tags.tag_id = tags.id
where tags.tag = 'humor'

--comment_count
---
--10

select count(1) from posts
inner join comments on post_id = comments.id
inner join posts_tags on posts_tags.post_id = 
posts.id
inner join tags on posts_tags.tag_id = tags.id
where tags.tag = 'opinion'

--comment_count
---
--10

Simple enough. But then you remember reading The Imposter’s 
Handbook which mentioned cross-checking your rollup queries for 
accuracy, so you do:

select count(1) from comments;

--comment_count
---
--15

Uh oh. Ten humor posts + 10 opinion posts does not equal 15!

Now you might be thinking “of course it doesn’t” and that cross-
checking like this is not accurate! My answer to that is “tell it to 
the product specialist who wants a sales rollup on various product 
tags”.
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Right now, across the world, sales reports are in this “semi error” 
state. You cannot do rollup queries that involve many to many 
categorizations and expect to keep your job. Even if you add 
warnings! The numbers will suggest a reality that’s not there.

By the way: cross-checking like this is all part of ETL. Bad data 
should never make it into your data warehouse/data mart.

Analyzing a Data Mart
OK, you’ve gone through your data and have decided it’s clean of 
weirdnesses (good job!) and imported it into your data mart. How 
do we analyze it? The simplest way is with a Pivot Table and/or a 
Pivot Chart. It’s likely you’ve seen these in action – here’s some 
sample data in Excel:

The idea with a pivot table is that you can move dimensions 
around, rolling your facts up in various interesting ways.

The axes of the graph is a perfect example of why a dimension 
is called a dimension: the x dimension is often time and the y 
dimension is often the sum of sales.
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What if you wanted to visualize sales by category over time? 
You just need to add another dimension to the graph – and thank 
goodness most people in the world can understand things in three 
dimensions:

Your boss likes this report a lot! It’s interesting to give your 
data a “surface” as we’re doing here because, in a way, you can 
feel what’s going on. Now your boss wants to see this data with 
some demographic information – for instance the buying patterns 
between men and women.

That requires a fourth dimension. How in the world would you 
do that! Well, without getting into a physics discussion – you can 
treat time as a fourth dimension – which can work really well. 
Unfortunately for me, this book only works in two dimensions 
(with the illusion of a third), so I can’t show you a moving time-
graph … but close your eyes and see if you can imagine a three 
dimensional graph slowly changing over time…

The neat thing is that time is one of your dimensions so you can 
lift that to the fourth axis and watch sales by category and gender 
change slowly.

If your boss asks for more axes on this report you need to ask for a 
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raise.

Using an OLAP Cube
Pivot tables work well over data structured in a flat way. If you 
have more than a few thousand rows, however, things can get 
mighty slow.

This is where a structure called an OLAP Cube comes in. You tell 
it about your fact table, the dimensions you’re using and their 
hierarchy, and then begin processing.

An OLAP cube is simply a bunch of pre-calculated data. It’s 
called a “cube” because the data is described typically in 
three dimensions, and as I mention above people can’t really 
conceive more than four dimensions anyway. Time is usually one 
dimension, some type of categorization is another, and customer 
demographic is usually the third. Any more than that and things 
just get weird.
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When you view data along a dimension, you’re viewing a slice of 
the cube and you usually do this with a pivot table of some kind. 
Excel, for example, will hook up to an OLAP cube.

Pre-calculating data like this makes OLAP cubes very fast at 
preparing ad-hoc reports over millions of rows of historical 
data, but that comes at the cost of preprocessing the data. For 
this reason data marts that act as the source of an OLAP cube 
should be structured in a very specific way … and this will sound 
counterintuitive.

Fact Tables and Indexes

Your fact table should not have a primary key or indexes of any 
kind, for that matter. Inserting data into a table with an index 
means the database needs to update the index whenever data is 
inserted, which takes time.
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Ideally you’ve already vetted and cleaned your data during ETL 
and you trust it – so no keys or indexes. A fact table can grow to 
billions of records – can you imagine the index sizes on that!

Favor a Star Schema

Joins are slow, so denormalize your dimensional look up tables for 
speed of processing. Building an OLAP cube with millions of facts 
can take hours depending on the number of dimensions you’re 
rolling up on.

Date rollups are the easiest thing to contain. For instance your 
boss might think she wants a weekly sales report – but that’s 
adding 52 additional slices to the OLAP structure – and every 
other dimension will need to be pre-calculated based on those 52 
weeks times however many years.

This will move a three hour processing run to an overnight run 
easily. So push back, if possible, or consider building an additional 
cube.

Distributed Database Systems
It’s 2008 (or thereabout) and you’re realizing that processors 
aren’t really getting any faster. Buying more RAM used to solve 
all kinds of problems but lately you’re finding that 12G is really 
all you need; the processor has become the bottleneck for your 
database.

In 2010 you had two processors. In 2012 you have four – all for 
the same price. Today if you pay enough money you can have 32 … 
THIRTY TWO CPU cores on that lovely machine in the sky.

Can your database take advantage of each of those cores? THAT is 
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the question for this chapter.

Multiple CPUs means that many things can be processed at once. 
This means the software has to be able to do things in parallel 
without freaking out. Parallel processing is not a simple topic – 
especially concerning data.

Imagine 3 things happening in parallel, each on a different core:

»» user 3002 changed their password

»» user 3002 updated their profile picture

»» user 3002 canceled their account

What happens first? Is there a priority here … and if so what is it 
based on? What happens if core #1 goes offline for 30 milliseconds 
because of network trouble?

Very Smart People have focused specifically on these problems over 
the last 10 or so years and come up with some interesting ways of 
doing things. Parallel processing is where things are going because 
that’s where the hardware is taking us.

A Shift In Thinking
When computer science people tried to figure out data storage 
back in the 70s and 80s (aka: databases), they did so with two 
primary constraints in mind:

»» Storage capacity: hard drives were not cheap so they had to 
focus on ways of storing data that would be extremely efficient 
with hard drive space. This led to column names like “UUN1” 
and hard-core adherence to normalization.

»» Memory and processing speed: computers were simply 
slower, so storage needed to be optimized for read efficiency as 
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well as overall size.

This is what most developers (including myself) “grew up” with. 
You used a relational engine to store data and you created your 
tables, keys, etc. in a very particular way.

NoSQL systems have been around since the 60s, but it was only 
in the late 90s that the development community really started to 
pay attention. Then, right around 2010, big software (Amazon, 
Facebook, Google, etc) began to see the advantages of using 
NoSQL systems.

There was one advantage, however, that stood out above the rest: 
distribution. Simply put: it’s easier (technically and economically) 
to build distributed databases with a NoSQL system than it is to 
run a few, gigantic servers with oceans of RAM and disk space. 
Smaller servers are cheaper, and you spread your risk, mitigating 
data loss and disaster recovery.

You can scale horizontally with relational systems such as 
PostgreSQL and SQL Server – the problem, however, is that these 
systems need to remain ACID Compliant, which is a problem in 
distributed systems. They don’t like to work in a parallelized way.

ACID-compliance means that you have certain guarantees when 
writing data in a transaction. In summary form, each transaction 
will be:

»» Atomic. This means that a single transaction happens, or it 
doesn’t. There is no concept of a “partial” transaction

»» Consistent. The entire database will be aware of a change in 
the data whenever a transaction is completed. In other words: 
the state of the database will change completely, not partially.

»» Isolated. One transaction will not affect another if they 
happen at the same time. This has the basic appearance of 
transactions being queued in a single process.
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»» Durable. When a transaction concludes it concludes. Nothing 
can change the data back unless another transaction changes 
the data back to the way it was. In essence: there is no undo.

Distributed systems are much different from this, and rely on a 
different rule set entirely.

CAP Theorem
In 1998 Eric Brewer theorized that distributed processing of any 
kind can only provide two of the following three guarantees at any 
given time:

»» Consistency. The same meaning as with ACID above; the 
state of the database will change with each transaction.

»» Availability. The distributed system will respond in some way 
to a request.

»» Partition tolerance. A distributed system relies on a network 
of some sort to function. If part of that network goes offline 
(thus “partitioning” the system), the system will continue to 
operate.

So far, this has proven to be true. Sort of. In 2012 Brewer wrote 
a followup which suggested “picking two of three” can be 
misleading:

…the “2 of 3” view is misleading on several fronts. First, because 
partitions are rare, there is little reason to forfeit C or A when the 
system is not partitioned. Second, the choice between C and A can 
occur many times within the same system at very fine granularity; 
not only can subsystems make different choices, but the choice can 
change according to the operation or even the specific data or user 
involved. Finally, all three properties are more continuous than binary. 
Availability is obviously continuous from 0 to 100 percent, but there 

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
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are also many levels of consistency, and even partitions have nuances, 
including disagreement within the system about whether a partition 
exists.

Modern distributed database systems are addressing exactly this. 
RethinkDB is a prime example (full disclosure: it’s one of my 
favorite distributed databases and I love it. Further disclosure: 
during the writing of this book the company behind RethinkDB 
closed its doors. The project, however, is open source and will 
continue on).

You can choose the level of consistency you want on a per table 
or per query basis. Meaning that you choose whether you want an 
ack (acknowledgment of write to the entire system) or you can just 
trust the system to do it when it gets around to it.

In addition, you can architect your database on a table by table 
basis to enhance which of the three you want.

This can be really confusing, so let’s dive into each of these ideas 
(as well as the jargon for each) using RethinkDB as an example 
system (because it’s what I know).

Enhancing A and P with Eventual C

You’ve heard of eventual consistency, it’s a buzzword that makes 
many ACID-loving, relational DB people freak out. I was one of 
them.

The idea is a simple one: a write operation (think of it as an 
insert into query) is handed to the system and you receive an ack 
immediately, meaning that the system has received it and will 
write it to disk when it can.

At this point (before the write hits the disk), the database is not 
consistent. You can visualize this by thinking of a database with 
three nodes. One node receives the write request, which means the 
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other two nodes are not consistent.

This inconsistency is risky. If the power goes out for some reason, 
the write will be lost, which could be a bad thing depending on the 
data.

The benefit, however, rests squarely on the benefits of distributed 
systems in the first place: parallel processing. The system is 
available to handle more operations, so many things can happen at 
the same time, making the system extremely fast.

If the node handling the write goes offline (due to a netsplit, or 
network partition) it doesn’t matter (assuming it still has power) 
because the write is queued, and will remain queued, until the rest 
of the system is brought back online and consistency is achieved.

These systems are called “AP systems” (generally) and are built 
to handle gigantic loads with guaranteed uptime. Facebook’s 
Cassandra and Riak from Basho are prime examples of these 
systems.

An Alternative to ACID: BASE
Systems that focus on availability and partition tolerance comply 
with BASE:

»» Basically Available

»» Soft state

»» Eventually consistent

If you’ve grown up with ACID systems, as I have, this idea might 
sound nightmarish. ACID is all about data paranoia: protect it at 
all costs. Make sure it’s written to disk in isolation.

BASE, on the other hand, is the opposite of paranoid – which kind 
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of makes sense when you consider the idea of strength in numbers: 
the more machines, the wider the risk is spread.

ACID systems, on the other hand, are typically “big machine” 
systems. You scale these systems up (bigger hardware) as opposed 
to out (more hardware).

The problem for ACID, however, is there is only so big you can get. 
BASE systems can scale massively simply by adding more nodes. 
I’m not saying this is easy by any stretch, running these systems is 
very complicated – but it’s doable and is being done in very large 
companies. We’ll discuss this more in the chapter on Big Data.

Assessing and Mitigating The AP Risk

You’re in a meeting where the CTO has just announced that 
your fictional company, Red:4 Aerospace, is moving it’s orbiter 
telemetry data over to a distributed system. She’s heard about CAP 
and needs a risk analysis – and she’s looking at you.

What do we tell her in our analysis?

The first thing is that we’ll gain a ton of processing power, which 
is good. Customers might have to wait a few extra seconds 
(depending on load), but if things get too slow we can just add a 
few more nodes!

This has the dual advantage of mitigating a netsplit. If we’re 
strategic about our nodes and data centers we should be able to 
survive just about any outage.

But… what about the data? There is the possibility of data loss, 
always, when you make the AP tradeoff. Losing data can mean 
losing business (or worse) and to people (like me) who live and 
breathe the idea of Good Data, this is a hard subject to muse on 
clearly.
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This is where we begin staring out the window as we remember 
various Hacker News threads on the unreliability of MongoDB 
which, in many developers’ minds, means all distributed NoSQL 
systems. We remember the many blog posts we’ve read that 
ultimately resolve to “we lost data because we did NoSQL 
wrong”…

Giving Into Paranoia By Leaning On C

You’ve turned in your report on AP systems and the CTO now 
wants to know what other options are. Most (if not all) of the 
distributed database systems out there support partition tolerance 
well – it’s just a matter of choosing availability or data consistency.

Do you want your system to stay up? Or the data to be correct? 
RethinkDB and MongoDB lean towards the latter – they are 
CP systems. By default, RethinkDB will only acknowledge a 
transaction when the data is persisted to disk.

Both MongoDB and RethinkDB are configurable so that you can 
tweak consistency settings the way you want and need. You can 
make some tables more AP if you want as the data allows.

The more you get into the nuances of CAP and how modern 
NoSQL databases handle it, the more confusing things get. 
Rapidly. As with every topic in this book I could fill chapters and 
chapters with detail. Instead I’ll leave the CAP discussion here and 
suggest you read more about how RethinkDB andMongoDB are 
put together.

It’s time to turn our attention to the mechanisms for tweaking 
availability and consistency.

Applying A and C Where Needed
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I’ve been focused on NoSQL systems like Cassandra, MongoDB 
and RethinkDB but relational systems can be clustered into a 
distributed system as well. Namely my favorite database engine: 
PostgreSQL. This is how Instagram does it and they’ve written 
extensively about maintaining a PostgreSQL distributed cluster.

The rest of this section is about distributed systems in general, 
unless otherwise specified.

Your CTO is quite happy that the distributed system chosen by the 
company can handle both AP and CP, and she wants you to come 
up with strategies for data coming from the orbital probe that’s 
due to arrive in orbit around Jupiter 8 months from now.

Let’s shape our distributed system using sharding and replication.

Increasing A With Sharding

We will have telemetry data coming in at a very high rate, and 
we need to process this data continually to be sure our orbital 
calculations are correct and that our probe is where it’s supposed 
to be.

A fast database can hold the majority of current data in RAM. By 
current data I mean the stuff that we care about. With a demo 
database, this might come to a few megabytes.

The data generated by most consumer-focused websites remains in 
the < 1Gb realm, which means that sharding/replication will have 
little effect.

Another good friend of mine, Rob Sullivan is a PostgreSQL DBA 
who fields some very interesting questions from developers he 
runs into at conferences and cafes. Recently he was asked how he 
would suggest sharding a database system that just hit 5Gb total 
data.
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His answer (paraphrased):

… they were trying to do all of this on the cheapest Heroku database 
possible, and having issues because they didn’t want to pay for the 
appropriate tier… talking themselves into a complete rearchitecture 
because of a price list…

There is, and will always be, confusion about when and mostly if 
you should shard your database.

Knowing When To Shard

The outcome: when you run out of RAM and it’s cheaper to add an 
additional machine vs. scaling up to a bigger VM or server.

Let’s take a closer look at this.

Here’s a price breakdown for Digital Ocean as of summer, 2016:

The price of each machine goes up according to the RAM. Double 
the RAM, double the price. So here’s the question: would bumping 
to the top instance they have ($640/month) be the same as 4 of 
the $160/month?

In short: no. A single machine is simply easier to maintain, 

http://digitalocean.com/
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especially when it comes to databases. You’re much better off just 
upgrading until you can’t – let’s see why.

Sharding
The top of the line DigitalOcean VM has 64G of RAM, most of 
which you can probably use for your database cache. You also have 
20 CPU cores at your disposal: this is a fast machine.

Unfortunately the telemetry data is projected to have a current 
data size of about 250Gb – this is data we’ll need to actively write 
and query extremely quickly.

We don’t have access to a machine with this much RAM at our 
provider, so we’ll need to distribute the load across multiple 
machines. In other words: shard.

There are two ways we can do this with modern databases:

»» Let the machine decide how. Modern databases can use the 
primary keys to divide the data into equal chunks. In our case, 
we might decide to go with 6 total shards – so our database 
system will divide the primary keys into groups of 6 based on 
some algorithm

»» We decide how. Our telemetry data might lend itself to a 
natural segregation in the same way a CRM system might 
divide customers by region or country – our telemetry data 
could be divided by solar distance, attitude, approach vector, 
etc. If the majority of our calculations only need a subset of 
this data, sharding it logically might make more sense.

The less we have to mess with a sharding situation, the better – 
so I would suggest letting the machine decide unless you’re utterly 
positive your sharding strategy won’t change.

Once you’ve decided the strategy, it’s a matter of implementing 
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it. Some systems make this very easy for you (RethinkDB, for 
instance) and others require a bit of work (PostgreSQL requires an 
extension and some configuration, MongoDB is a bit more manual 
as well).

If everything works well, you should be able to up A – your 
throughput and processing capacity – dramatically, at the price of 
C, consistency.

Other data, however, needs some additional guarantees in a 
distributed system.

Replication
We’re receiving and processing telemetry data constantly, and 
every now and then it might cause us to alter the current mission 
plan just a little.

Given that we’re using a distributed system, we need to be sure 
that the mission plan the probe is following is up to the minute 
and guaranteed to be as accurate as possible – even if there is a 
massive power outage at our data center.

So we replicate the data across the nodes in our cluster.

We have data centers in the US, Europe, Asia and the Middle East 
– all of which can communicate with the probe throughout the 
daily rotation of the Earth. This data doesn’t change all that often 
– perhaps a few hundred times per day – so we can implement 
replication at the database level.

Whenever data changes in our replicated tables, we can guarantee 
that:

»» The data will, at some point, propagate if a netsplit occurs. 
In other words: if we write to a node in the US and our US 
datacenter goes down, the write will happen eventually when 
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the US datacenter comes back online.

»» The system will compensate and rebalance for the loss of a 
node, ensuring the data will be as consistent (and available) as 
possible.

Big Data
Most applications generate low to moderate amounts of data, 
depending on what needs to be tracked. For instance: with Tekpub 
(my former company), I sold video tutorials for a 5 year period. 
The total size of my database (a SQL dump file) was just over 4Mb.

Developers often over estimate how much data their application 
will generate. Karl Seguin has a great quote on this:

I do feel that some developers have lost touch with how little space 
data can take. The Complete Works of William Shakespeare takes 
roughly 5.5MB of storage.

Millions vs. Billions vs. Trillions

A megabyte (1 million bytes) seems so small, doesn’t it? A 
gigabyte (a billion bytes) seems kind of skimpy for RAM and we all 
want a few terabytes on our hard drives. What do these numbers 
really mean outside of computers? Consider this:

»» A million seconds is almost 12 days

»» A billion seconds is just over 31 years

»» A trillion seconds is 317 centuries Many people simply do not 
grasp just how much bigger a terabyte is vs. a gigabyte. Let’s 
do this again with inches:

http://openmymind.net/
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»» A million inches is almost 16 miles

»» A billion inches is almost 16,000 miles, or a little over half way 
around the earth

»» A trillion inches is 16 million miles, or 631 trips around 
the planet When considering the data generated by your 
application, it’s important to keep these scales in the back of 
your mind.

A Truly Large Data Store: Ancestry.com

In 2006, Ancestry.com added every census record for the United 
States, from 1790 to 1930.

That’s a lot of data. Ancestry.com tracks many people, as you can 
imagine. How big was their archive back then?

The project added 540 million names, increasing the company’s 
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genealogical database to 600 terabytes of data.

Storing This Data In Your Closet

If you had an extra $32,000 lying around after your seed round 
of funding, you could buy 15 x 40Tb drives and store all of this 
information in your closet today. In 2006 this amount of data was 
quite impressive and would have cost a fortune. Today … not so 
much. Don’t get me wrong: $32,000 is a whole lot of money but 
it’s pocket change for big companies needing to store tons of data.

In 2013 Information Week wrote an article about Ancestry.com 
and how it stores its data. This, friends, is a massive growth in 
data:

A little over a year ago [2012], Ancestry was managing about 4 
petabytes of data, including more than 40,000 record collections 
with birth, census, death, immigration, and military documents, as 
well as photos, DNA test results, and other info. Today the collection 
has quintupled to more than 200,000 records, and Ancestry’s data 
stockpile has soared from 4 petabytes to 10 petabytes.

A petabyte is 1000 terabytes – or 1000 trillion bytes of data. If we 
translate that into seconds it would be almost 32 million years.

Computer Weekly wrote a fascinating article on visualizing the 
petabyte, with some amazing quotes from industry experts:

… Michael Chui, principal at McKinsey says that the US Library of 
Congress “had collected 235 terabytes of data by April 2011 and a 
petabyte is more than four times that.”

Wes Biggs, chief technology officer at Adfonic, ventures the following 
more grounded measures… One petabyte is enough to store the DNA 

http://www.informationweek.com/big-data/big-data-analytics/how-ancestrycom-manages-generations-of-big-data/d/d-id/1112975
http://www.computerweekly.com/feature/What-does-a-petabyte-look-like
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of the entire population of the US – and then clone them, twice.

Data analysts at Deloitte Analytics also put on their thinking caps 
to come up with the following… Estimates of the number of cells in 
a human body vary, but most put the number at approaching 100 
trillion, so if one bit is equivalent to a cell, then you’d get enough cells 
in a petabyte for 90 people – the rugby teams of the Six Nations.

A petabyte is huge. You might be wondering why I’m throwing 
these statistics at you? Because you should be able to answer this 
simple question.

What Is Big Data?
Social media is driving the idea of Big Data:

Big data is a term for data sets that are so large or complex that 
traditional data processing applications are inadequate. Challenges 
include analysis, capture, data curation, search, sharing, storage, 
transfer, visualization, querying, updating and information privacy. 
The term often refers simply to the use of predictive analytics, user 
behavior analytics, or certain other advanced data analytics methods 
that extract value from data, and seldom to a particular size of data 
set.

It’s a buzzword, sure, but there is meaning behind it. Companies 
like Google, Facebook and Twitter are generating gigantic amounts 
of data on a daily basis. Back in 2008 Google was processing over 
20 petabytes of data per day:

Google currently processes over 20 petabytes of data per day 
through an average of 100,000 MapReduce jobs spread across 
its massive computing clusters. The average MapReduce job ran 
across approximately 400 machines in September 2007, crunching 

http://www.niallkennedy.com/blog/2008/01/google-mapreduce-stats.html
http://www.niallkennedy.com/blog/2008/01/google-mapreduce-stats.html
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approximately 11,000 machine years in a single month.

While researching this chapter I stumbled on an interesting post 
from FollowTheData.com, which outlined how much data was 
processed by certain organizations on a daily basis back in 2014:

»» The US National Security Administration (NSA) collects 29 
petabytes per day

»» Google collects 100 petabytes per day

»» Facebook collects 600 petabytes per day

»» Twitter collects 100 petabytes per day

»» For data storage, the same article states:

»» Google stores 15,000 petabytes of data, or 15 exabytes

»» The NSA stores 10,000 petabytes

»» Facebook stores 300 petabytes

These numbers are rough estimates, of course. No one knows 
about Google’s storage capabilities outside of Google, but Randall 
Munroe (of xkcd fame) decided to try to deduce how much data 
Google could store for one of his What If? articles using metrics like 
data center size, money spent, and power usage:

Google almost certainly has more data storage capacity than any other 
organization on Earth… Google is very secretive about its operations, 
so it’s hard to say for sure. There are only a handful of organizations 
who might plausibly have more storage capacity or a larger server 
infrastructure.

A fascinating read. Please take a second and have a look – but be 
warned! You will likely get lost in all the What If? posts.

https://followthedata.wordpress.com/2014/06/24/data-size-estimates/
https://followthedata.wordpress.com/2014/06/24/data-size-estimates/
https://what-if.xkcd.com/63/
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Processing Petabytes of Information

Simply put: relational systems are just not up to the task, for the most 
part. The reason for this is a simple one: processing this data 
needs to be done in parallel, with multiple machines churning over 
the vast amounts of data. This is the most reliable way to scale a 
system like Google’s that generates gigantic quantities of data 
every day: just add another data center.

How do you process this kind of information in parallel, however? 
This is where systems like Hadoop come in:

Hadoop is an open-source software framework for storing data and 
running applications on clusters of commodity hardware. It provides 
massive storage for any kind of data, enormous processing power and 
the ability to handle virtually limitless concurrent tasks or jobs.

Hadoop was born from efforts at Yahoo!, and then turned into 
an open source project that any organization can download and 
install.

Hadoop partitions your data using its dedicated file system, HDFS, 
which is based on Java. When you query data you use Map/Reduce.

In The Real World
I worked at a business analytics company for about 4 years, 
working with companies who wanted us to sift through their 
warranty claims information, looking for patterns. This involved 
natural language processing (NLP), where we split claim 
information into sentence structures and then ran various 
algorithms over it.

It was fun, but 90% or more of my work was trying to figure out 
which data were good. Emails, phone calls, sifting through and 
correcting millions upon millions of records … it’s a lot of work.

http://www.sas.com/en_my/insights/big-data/hadoop.html
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Even then, I wouldn’t call that Big Data. That was just basic 
analysis over a large set of data. As Sean Parker’s character said in 
The Social Network:

A million dollars isn’t cool, you know what’s cool? … A billion 
dollars.

These days a billion records of anything doesn’t even mean much. 
Terabytes and … yeah you’re getting there. You know what’s cool? 
A petabyte is cool.
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I am, strictly speaking, not a practitioner of Test-
driven Design, or TDD. I know what it is, and I know 

that people like to argue about what they think it is and 
what they think it is not.

Just show the essence of the idea. I think we can all agree on that, 
can’t we? For this chapter I approached a number of friends and 
asked them about what they considered the essence of TDD to be, 
and how they think of using it. By the way – each of them hedged 
their opinions with a variation of “this isn’t strictly TDD… but…”.

TDD requires discipline and you’re not alone if you sort of do it. 
As long as you’re testing your code!

You can find the code used in parts of this section up at my github repo. In 
addition, you can buy 17 video walkthroughs of the code you see in this 
chapter and others from here.

Some Opinion About Testing In General

Before we begin, let’s have a think about testing your code in 
general, aside from TDD. No matter what, test your code. There 
really is no excuse to not test what you create, to make sure it’s 
correct.

I will say this, directly: if you’re not testing the code that people are 
paying you money to write you deserve to be fired. I won’t justify that 

http://https://github.com/imposters-handbook/sample-code/tree/master/algorithms
https://goo.gl/2XZCHc
http://https://goo.gl/2XZCHc
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remark - if you don’t believe me you should move on. Better yet: 
close this book and rethink your career. The fact that we should 
test is a given. It’s how we test that is the subject of this chapter.

In that spirit, let’s engage with Test-driven Design (TDD) and we’ll 
focus on the fun parts. Hopefully you’ll see the essence of what it 
is and how it can help, without getting hung up in the details.

The Nuts and Bolts of TDD
Unless you’ve been living under a rather large rock over the last 10 
years, you’ve heard of TDD. Maybe in good ways, possibly in bad 
ones. At its core it’s a simple practice:

»» You think about what you need to create

»» You write a simple test to get yourself started

»» You run that test and watch it fail

»» You write some code to make the test pass

»» You write another test for the next step, and repeat the process

As you go along, you’re constantly refactoring what you’ve written 
– and this is the somewhat goofy part: you write the barest 
minimum to make a test pass.

As Close To a Real Example As I Can Get

A few years back I recorded a video with my friend Brad Wilson 
and the idea was to capture him doing “real” TDD. No to-do list, 
no fake blog demo example … real stuff. Brad is the creator of 
XUnit (along with Jim Newkirk) and is an every day practitioner of 
TDD. I couldn’t imagine a better person for that video.
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The video was for my former company, Tekpub, and it was entitled 
“Full Throttle: TDD With Brad Wilson”. Brad didn’t know what I 
was going to ask him to do – so we sat together, I recorded his 
desktop, and then asked him to create a subscription billing system 
for me.

What Brad did next changed the way I thought about TDD. 
Unfortunately the video is no longer available (it belongs to 
Pluralsight who has retired it) – but I will recount the highlights 
for you here.

Just Start
Brad used Visual Studio 2012 and C# 4.5, creating a library project 
(BillingSystem) and a test project (BillingSystem.Tests) 
in a matter of seconds. He added XUnit to his test project and then 
paused to think about a few things:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Xunit;

namespace BillingSystem.Tests
{
  public class BillingDoohickeyTests
  {
    //Monthly billing
    //Grace period for missed payments
    //Not all customers are subscribers
    //Idle customers are unsubscribed
  }
}
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Two things about this code struck me. The first is Brad’s use of 
comments (lines 11 through 14) to get the concepts in his head 
out onto the screen and, more importantly, he’s not getting in his 
own way thinking about names and structure.

Brad had no idea what to call his test suite just yet, so he called 
it BillingDoohickeyTests in part for fun, but also to remind 
himself to rename it once things started rolling.

What comes next? What classes should we create right off the bat? 
This plagues many developers who can’t even get past this point.

Patience, Discipline

Here’s the thing with TDD that causes anxiety almost 
immediately: it takes rigor and it feels pretty silly, if I’m honest. 
So far nothing we’ve done is overly goofy (apart from the naming 
thing) – but in a second you’ll see what I mean.

You can do a little thinking upfront, but TDD tries to discourage 
over-engineering by pushing you to let your tests tell you what to 
write. That’s where we’re going to start.

The Customer

We’re building this system so we can charge customers, so why 
not start there? This is exactly what Brad does:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Xunit;
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namespace BillingSystem.Tests2
{
  public class BillingDoohickeyTests
  {
    //Monthly billing
    //Grace period for missed payments
    //Not all customers are subscribers
    //Idle customers are unsubscribed
  }

  public class Customer{}
}

He just put the class to test right there, next to his test code. Why 
not? TDD is a rigorous process, but it doesn’t need to be slow.

OK, so we have a Customer, now we need to charge the customer 
on a monthly basis. At this point: stop thinking. Let’s put this idea 
in motion with a test:

using Moq;
using Xunit;
namespace BillingSystem.Tests3
{
  public interface ICustomerRepository { }
  public interface ICreditCardCharger { }
  public class BillingDoohickeyTests3
  {
    [Fact]
    public void Monkey ()
    {
      var repo = new Mock<ICustomerRepository> ();
      var charger = new Mock<ICreditCardCharger> 
();
      var thing = 
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            new BillingDoohickey (
              repo.Object, 
              charger.Object
            );
      thing.ProcessMonth (2016, 8);
    }
  }
  public class BillingDoohickey
  {
    public BillingDoohickey (
      ICustomerRepository repo, 
      ICreditCardCharger charger){
    }
    public int ProcessMonth (int year, int month) 
{return 0;}
  }
  public class Customer{}
}

A lot just happened here. Let’s step through it.

You’ll notice that Brad isn’t concerning himself, again, with names. 
We have Monkey and thing, which might be making you cringe – 
but for Brad, he’s removing obstacles to his design process.

Which is what TDD is supposed to be: a design process.

Next he’s using mocks as you can see on lines 12 and 13, provided 
by the Moq project (fake classes for testing) upfront so he doesn’t 
need to think about implementation just yet – he’s leaving that for 
later.

The Happy Path
At this point we have a little machinery to play with, but we still 
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don’t know what we’re doing completely. When I write tests, the 
very first thing I do is to create what some people call the happy 
path: one or more tests that pass when everything works as we 
expect it to work.

In other words, if we’re building a registration system then our 
happy path would be something like User_is_registered_
with_a_valid_login_and_password. This test should always 
pass.

Once our happy path is set, we go about trying to break it. We’ll do 
that later on. Right now let’s create a “happy path” for ourselves to 
get us off the ground, renaming Monkey to focus ourselves:

using Moq;
using Xunit;
namespace BillingSystem.Tests4 {
  public interface ICustomerRepository { }
  public interface ICreditCardCharger { }
  public class MonthlyChargeTests {

    [Fact]
    public void Customers_With_Subscriptions_Due_
Are_Charged () {
      var repo = new Mock<ICustomerRepository> ();
      var charger = new Mock<ICreditCardCharger> 
();
      var thing = 
            new BillingDoohickey (
              repo.Object, 
              charger.Object
            );
    }
  }
  public class BillingDoohickey{
    public BillingDoohickey (
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      ICustomerRepository repo, 
      ICreditCardCharger charger){
    }
    public int ProcessMonth (int year, int month) 
{
      return 0;
    }
  }
  public class Customer{}
}

In this code I’ve renamed a few things because I now have an idea 
what I’m doing. The test suite is called MonthlyChargeTests 
and my test name makes it clear what it’s going to test for. This 
name is far too broad, but it will change later on.

The simple renaming, however, has forced me to consider a few 
more bits of functionality:

»» What is a Subscription?

»» What does it mean for a Subscription to be Due?

»» A Customer, apparently, needs to have a Subscriptions 
property

I stop right here – thinking about YAGNI (You Aint Gonna Need 
It). It’s tempting to plow ahead and add a Subscription class 
and a Subscriptions property to my Customer… but do I need 
to just yet? It does seem obvious, but this is the rigor part.

Let’s focus on the test, add an assertion, and move on from there:

using Moq;
using Xunit;
namespace BillingSystem.Tests5 {
  public interface ICustomerRepository { }
  public interface ICreditCardCharger { }
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  public class MonthlyChargeTests {

    [Fact]
    public void Customers_With_Subscriptions_Due_
Are_Charged () {
      var repo = new Mock<ICustomerRepository> ();
      var charger = new Mock<ICreditCardCharger> 
();
      var thing = 
            new BillingDoohickey (
              repo.Object, 
              charger.Object
            );
      var processed = thing.ProcessMonth(2016,8);
      Assert.True(processed > 0);
    }
  }
  public class BillingDoohickey {
    public BillingDoohickey (
      ICustomerRepository repo, 
      ICreditCardCharger charger){
    }
    public int ProcessMonth (int year, int month){
      return 0;
    }
  }
  public class Customer{}
}

This is where we venture into silliness. Our first goal is to make 
sure this code can compile – so I’ve added the interfaces and 
classes that we need. I also added a ProcessMonth method to 
BillingDoohickey and, for now, I’m returning 0 because I don’t 
know what else to return.

If we run this test, it will fail. We’ll also probably feel a bit badly 
about ourselves because we might not have any customers with 
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subscriptions due … so what then? I’ll get to that in a minute – for 
now we can compile our code and run this test: watching it fail.

That’s a critical aspect here – our initial test needs to fail because 
we don’t want to accidentally write a test that passes! Which does 
happen.

Now, let’s get our test to pass:

public class BillingDoohickey
{
  public BillingDoohickey (
    ICustomerRepository repo, 
    ICreditCardCharger charger){
  }
  public int ProcessMonth(int year, int month){
    return 1; // just return 1
  }
}

Ugh. Our tests pass and, as dumb as it seems: this is TDD. We will 
fix this code and, in fact, the dumber it feels the better it is because 
it forces you to write more tests just to get this kind of thing out of 
your code!

For now, our happy path is set. Let’s blow it up.

The Sad Path
The sad path is all about trying to blow up the happy path. It’s 
“what happens when I do this!” The obvious first thing is to write 
a test that is in complete opposition to our happy path:

using Moq;
using Xunit;
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//..
public class MonthlyChargeTests
{

  ICustomerRepository repo;
  ICreditCardCharger charger;
  BillingDoohickey thing;

  public MonthlyChargeTests ()
  {
    repo = new Mock<ICustomerRepository>().Object;
    charger = new Mock<ICreditCardCharger>().
Object;
    thing = new BillingDoohickey (repo, charger);
  }

  [Fact]
  public void Customers_With_Subscriptions_Due_
Are_Charged ()
  {
    var processed = thing.ProcessMonth (2016, 8);
    Assert.True (processed > 0);
  }

  [Fact] //this test fails
  public void Customers_With_No_Subscriptions_Due_
Are_Not_Charged ()
  {
    var processed = thing.ProcessMonth (2016, 8);
    Assert.True (processed == 0);
  }

}
//...

I moved some declarations around in my test because I want to 
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keep things DRY (Don’t Repeat Yourself) – a messy test suite is 
one you’ll want to stay away from – so I moved everything up top 
and into the constructor.

Next, I created the exact opposite test, asserting that customers 
without subscriptions would not be charged – which fails because 
I’ve hard-coded the result into the BillingDoohickey.

Now I need to think about a few things. Specifically: what does it 
mean to have no subscriptions? Who cares! For now let’s get this 
test to pass.

I’ll start by setting the mock for ICustomerRepository available 
for orchestration using the repoMock variable and then I’ll add 
a method called Customers to the ICustomerRepository 
interface because my test told me I needed to:

using Moq;
using Xunit;

namespace BillingSystem.Tests
{
  public interface ICustomerRepository {
    Customer [] Customers();
  }
  public interface ICreditCardCharger { }
  public class MonthlyChargeTests
  {

    ICustomerRepository repo;
    ICreditCardCharger charger;
    BillingDoohickey thing;
    Mock<ICustomerRepository> repoMock;

    public MonthlyChargeTests ()
    {
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      repoMock = new Mock<ICustomerRepository> ();
      repo = repoMock.Object;
      charger = new Mock<ICreditCardCharger> 
().Object;
      thing = new BillingDoohickey (repo, 
charger);
    }
//...

Now that I’ve done this, I can refactor the BillingDoohickey.
ProcessMonth method to return a count of the records in the 
repo. This is a prime example of “just doing enough to get the 
tests to pass”:

public class BillingDoohickey
{
  ICustomerRepository _repo;
  public BillingDoohickey (
    ICustomerRepository repo, 
    ICreditCardCharger charger)
  {
    _repo = repo;
  }
  public int ProcessMonth (int year, int month)
  {
    return _repo.Customers().Length;
  }
}
//...

This kind of thing is really fun when pair coding. I remember 
pairing with a friend once and laughing so hard at just how 
creative she was at writing the dumbest code possible to get my 
tests to pass:

You keep writing tests like that, I’ll keep writing code like this.
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It’s kind of fun to split your personality when doing this kind of 
thing. See if you can outsmart yourself with a more interesting 
test – something to break the happy path for once and for all! Then 
stave off the attack with some goofy way around it, like we just did 
here, returning the count of users.

It’s tempting to scrap this test and try to write something more 
concise, which you’re welcome to do. I typically just write another 
test specifically so I can get this crappy code out!

How about this:

[Fact]
public void A_Customer_With_Two_Subscriptions_Due_
Is_Charged_Twice ()
{
  var customer = new Customer ();
  customer.Subscriptions.Add (new Subscription 
());
  customer.Subscriptions.Add (new Subscription 
());

  repoMock.Setup (r => r.Customers())
      .Returns (new Customer [] { customer });

  var processed = thing.ProcessMonth (2016, 8);
  Assert.True (processed == 2);
}
//...

What do you think about this? You can play my pair who’s writing 
code to get the tests to pass … think you can make me sad?

Here’s a way to do it:

public class BillingDoohickey
{
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  ICustomerRepository _repo;
  public BillingDoohickey (ICustomerRepository 
repo, ICreditCardCharger charger)
  {
    _repo = repo;
  }
  public int ProcessMonth (int year, int month)
  {
    var customer = _repo.Customers().
FirstOrDefault();
    if (customer == null) {
      return 0;
    } else {
      return customer.Subscriptions.Count ();
    }

  }
}
public class Customer
{
  public IList<Subscription> Subscriptions { get; 
set;}

  public Customer ()
  {
    this.Subscriptions = new List<Subscription>();
  }
}
public class Subscription { }
//...

Ha! With that test I was able to push the code so that two new 
concepts could be added: a Subscription and a property on 
Customer called Subscriptions. You were still able to write 
silly code to get the tests to pass – so you win too!
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Notice the ongoing failure, pass, refactor … failure, pass, refactor 
that we’re doing here. That’s exactly what TDD is all about and 
despite the way many people make it seem – it can be quite fun. 
Especially if you have a pair to code with you – real or imaginary.

A final thing to notice: I did one step at a time. I didn’t write out 
a set of tests upfront, which would defeat the idea of challenging 
myself as I go with YAGNI.

In The Real World

Like I said above: I get lazy sometimes. OK a lot of times. I’ll get 
into this in more detail in the section on Behavior-driven Design 
(BDD - coming up next) but I tend to use tests as more of a check 
list. Things I expect to work, etc.

I often get carried away and I just keep coding – which I know is 
bad. I pay for this choice often when I’m deleting code that took a 
while to get to work, but that I ultimately don’t need.

So, I take a deep breath, maybe I’ll go for a walk or get some tea. 
When I come back I clean up my tests and refocus myself. This is 
TDD to me – more of a battle with myself than anything.

BDD
Behavior-driven Development (BDD) is basically the same process 
as TDD, but you have a specific focus: behavior of the application. 
It’s a subtle shift, but an important one.
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Getting Started With BDD

In the last section we began to build out a BillingSystem using 
TDD:

namespace BillingSystem.Tests {
  public class MonthlyChargeTests{
    //...
    [Fact]
    public void Customers_With_Subscriptions_Due_
Are_Charged(){

      repo.Setup(r => r.Customers)
          .Returns(new Customers[]{new 
Customer()});

      var processed = thing.ProcessMonth(2016,8);
      Assert.True(processed > 0);
    }
    //...
  }
}

This works, but it’s a bit mechanical. In other words: Widget X will 
return Y when I pass in Z. This defines what we expect to happen 
as developers, not what we expect as humans.

Let’s shift this to focus on a story instead, with some scenarios. 
We’ll start with what our application will do when a payment is 
received for a monthly subscription:

//..
namespace BillingSystem.Specs {

  [Trait("Monthly Payment Is Due", "Payment Is 
Received")]
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  public class PaymentReceived{
    //... the constructor prepares the test data
    [Fact]
    public void An_Invoice_Is_Created(){
        //...
    }
    [Fact]
    public void Subscription_Status_Is_Updated(){
        //...
    }
    [Fact]
    public void Next_Billing_Is_Set_1_Month_From_
Now(){
        //...
    }
    [Fact]
    public void A_Notification_Is_Sent_To_
Subscriber(){
        //...
    }
    //...
  }
  [Trait("Monthly Billing", "Payment Fails")]
  public class SubscriptionPaymentIsDue{
    //... the constructor prepares the test data
    [Fact]
    public void An_Invoice_Is_Not_Created(){
        //...
    }
    [Fact]
    public void Next_Billing_Is_1_Day_From_Now(){
        //...
    }
    [Fact]
    public void A_Notification_Is_Sent_To_
Subscriber(){
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        //...
    }
    //...
  }
}

This code is doing the same basic thing as TDD: testing our code. 
This time, however, we’re doing it in the form of “how does our 
application respond when this thing happens”. In other words: 
behavior.

Philospophy

This approach is different from strict unit testing, which tends 
to be more clinical. In other words, you might put a certain class 
under test, vary the input data to see where it fails and then 
refactor until it succeeds. This is fine, but has some disadvantages, 
which are:

»» The tests are bound to the design of your class by 
definition. That is the point of TDD. If you change your design, 
you have to change your tests and your code. This can be quite 
frustrating.

»» The focus is on engineering, not application experience. 
When you’re focused on code, the code wins. When you’re 
focused on behavior, however, you’re focused on the user’s 
experience and the business wins.

»» Testing proliferates. The tendency with TDD and unit testing 
is to have as much code coverage as possible. When you use 
BDD, you typically write few tests which are more targeted to 
application experience.

With BDD you tend to write your tests detailing what the 
application will do under certain circumstances. Given this, BDD 
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fans will call their tests “specifications”, as they tend to read as 
if dictated directly by the client. In the example above, I’m using 
XUnit’s Trait attribute to decorate my scenarios so they’re a little 
more readable in the test runner.

I’ve also made sure that my test names rely completely on the test 
class itself (called the scenario). When you run this test, you see 
this (or something like it):

[Monthly Billing]: Payment Received
  - An_Invoice_Is_Created
  - Subscription_Status_Is_Updated
  - Next_Billing_Is_Set_1_Month_From_Now
  - A_Notification_Is_Sent_To_Subscriber

[Monthly Billing]: Payment Fails
  - An_Invoice_Is_Not_Created
  - Next_Billing_Is_1_Day_From_Now
  - A_Notification_Is_Sent_To_Subscriber

This is the XUnit runner output, which you can jigger in Visual 
Studio if you want. If you’re using a framework in another 
language (like Mocha for Node or RSpec for Ruby) you can have a 
more readable output.

Features, Scenarios, Expectations
I try to focus on the notion of Feature, Scenario, Expectations. I know 
this might seem like a syntax dance to you, but it’s incredibly easy 
to lapse back into unit testing mode – not that there’s a problem 
with that! Unit tests are indeed needed in some cases (testing 
utility code, parsers, etc).

Let’s revisit out example code:
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//..
namespace BillingSystem.Specs {
  [Trait("Monthly Billing", "Payment Is 
Received")]
  public class PaymentReceived{
    //... the constructor prepares the test data
    [Fact]
    public void An_Invoice_Is_Created(){
        //...

In this code you can see the features directly by examining the 
Trait attribute on the test class. The first element is the feature 
(“Monthly Billing”), the second is the scenario (“Payment Is 
Received”).  Your testing library might have a different way for 
specifying these things.

So What?

You might be wondering, at this point, why all of this even 
matters? BDD does have a number of advantages:

»» Readability. It sounds idealistic, but being able to print out 
a test run and read, in common language, what’s going on is 
quite powerful.

»» Ubiquity. I hate that word, but it’s applicable here: you know 
what these tests describe and your client/boss will know as 
well. In this, you’re speaking the same language.

»» Focus. If you’re focused on how your application behaves, 
you’re aligning yourself with the business goals. This is 
important for programmers! You can watch your application 
evolve into something exciting and understand why it’s doing 
what it’s doing. You might even have some questions about 
this, which means you can contribute your genius to the 
application’s design.
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There’s obviously some jargon to muddy up what is, otherwise, an 
elegant development practice. Let’s talk about that now.

Feature, Context, Spec, and Scenario

BDD tests are typically called specifications or “specs”. In the 
theoretical world you could sit with your client, create a list of 
specifications for various aspects of your application, and then 
translate that directly into your test suite.

In the real world I’ve found that my clients have never cared about 
my tests. Maybe it’s just my clients – not sure – but even when I 
worked at Microsoft and tried to show the progress I was making 
using my test suite I was laughed out of the room.

Clients like to see results, not test runs. It is good, however, to use 
the same language in your tests as you do with them in email or on 
the phone. Trying to align your thinking is really important.

To that end, you could have this conversation and you could, using 
BDD, translate it directly into some tests:

So let’s recap the conversation: given a successful monthly billing – the 
billing system should generate an invoice, set the next billing date to 
exactly one month from now, set the user’s subscription to active and 
then send an email to the user. Correct?

Say this out loud to yourself, as if in conversation. Feel free to use 
your own words.

Do you hear any problems? Your client probably will. Here’s a 
reply I received once, when I said almost exactly that sentence to a 
startup client back in 1999:

Rob - yes for the most part this is correct but accounting handles the 
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invoices so I think just notifying them will work. I don’t think we 
should be creating our own invoices. As far as email goes, I’d want to 
loop in our marketing team as they own client communications…

Do you see what just happened there? Not only did I save myself 
some work, but I also opened up a really good conversation about 
the role of our application within the new company.

The feature we were discussing is the monthly billing run. The 
scenarios we created were payment received and payment failure; 
these are also called contexts. We describe the behavior of the 
application in response to a scenario with specifications:

Monthly Billing Run //feature
  - Payment is successful //scenario, or context
  - an invoice is created //specification

Is this jargon important? Yes, and no. It is important in the sense 
that you should be thinking in these ways when doing BDD. It’s 
also important to know that just because you call a test class 
MonthlyBillingFeature and a method on that test class 
SuccessfulPaymentScenario does not mean you’re doing 
BDD. BDD is a process of discovery for both you and your client.

That said, you can call a feature a pancake, a scenario a lovely 
butterfly and each specification larry. The naming doesn’t 
matter – as long as your team understands what it is you’re doing 
and why.

Given, When, Then
Cucumber is a popular Ruby test tool that helps you focus on 
BDD. It popularized a certain syntax, called Gherkin:

Feature: monthly billing run

http://cucumber.io/
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    Scenario: payment received
        Given a charge of 20 USD
        And today is the 1st of the month
        When the charge is applied to Subscription 
x
        Then that subscription is considered 
active
        And an invoice is created
        And the customer gets an email

Gherkin is a specialized syntax you can use to get your head into 
the Given, When, Then syntax in a formal way. These rules might 
sound a bit goofy but when you just start getting into BDD it can 
help get your mind in the right place.

It’s quite effective. It takes a bit of time to break things down in 
this way. Think about an application you’re writing right now … 
how would you detail the behavior of it? Give it a go!

In The Real World

You might be wondering what this really looks like once a project 
has been up and running for a few months. Is it possible to scale 
this idea? To keep it readable and focused?

This is a project I did five years ago, using .NET, Visual Studio and 
XUnit - no additional tooling:
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The feature under test is the first item in the list 
(Authentication, for instance) and the scenario is the second. 
Underneath each feature/scenario is a set of specifications. This 
approach worked really well for me.

If you want to check out the code, I put it up at Github. The code 
is a few years old now but it should still work.

If you’re feeling a little vague on the idea still, I don’t blame you. 
It took me a while to get my tests (ahem, sorry: specs) to flow with 
behavior vs simple unit tests. The best thing I can offer you is to 
look at the difference between the billing system code at the start 
of this chapter compared with the code from the last chapter on 
TDD. This is important: both are valid and both are lovely. Some 
people favor TDD, others BDD. Experiment!

https://github.com/robconery/monkey-fist/tree/master/Specs
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Why is a part of this book dedicated to Unix? The 
simple answer to that is that there are many, 

many, many developers who stick to the GUI. They 
prefer apps and tools to commands. They click “File” 
and “Edit”, hunting for “Copy” and “Paste”.

You know these people. You were one of these people. This isn’t a 
judgement of any kind; I stick to the GUI myself far more than 
I’d care to admit. There’s a better way, a faster more efficient way 
to work with a computer, and you’ll be a better programmer all 
around if you learn some basic shell skills.

Unix and Unix-like systems (Linux, BSD, Solaris, RedHat, etc) 
have been around forever. You simply can’t expect to grow much 
in your career if you don’t have a basic competency with Unix and 
its commands. If you don’t believe me, skip right over this chapter. 
It’ll be here when you come back, after you’ve realized just how 
true this is.

This is an exciting thing! Crawling under the hood of your 
computer can increase your efficiency dramatically. Shell scripts, 
Makefiles, server setup routines, quick little commands to update 
your system, configuring your web/database server remotely over 
SSH … these are skills you must know.

So let’s wander through the shell. I won’t go into Unix history as 
I’m just not qualified to do so. I’ll also sidestep the basics of the 
Unix commands – that’ll be up to you.
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Instead, let’s get right to the thing that will help you the most in 
your job: basic shell scripting skills.

You can find the code used in parts of this section up at my github repo. In 
addition, you can buy 17 video walkthroughs of the code you see in this 
chapter and others from here.

Shell Scripts
Shell scripts are little programs that your shell (typically Bash) 
will execute for you. When you write a shell script, you’re writing 
little macros that can make it feel like you’re programming your 
machine.

You can use shell scripts on Windows with Powershell - an 
amazing shell with a good programming language. I won’t be 
talking about Powershell in this section – but if you’re a windows 
user, know that you can do anything you see here with a few 
simple commands saved to a script file.

We’re going to create shell scripts for Unix systems using Bash. It’s 
been around for a very long time and it’s easy to understand once 
you get passed some of the more … arcane commands.

If you’re completely new to all of this, we’ll go over the basics in 
just a second. If you understand basic Unix “stuff” then you can 
probably skip ahead.

What Is a Shell?

A computer needs a way to receive data, and we’re going to do that 
through the command line using a thing called a shell. The first 
computer ever conceived used punch cards to receive data, when I 
was in high school I used a combination of a keyboard as well as a 

http://https://github.com/imposters-handbook/sample-code/tree/master/algorithms
https://goo.gl/2XZCHc
http://https://goo.gl/2XZCHc
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cassette tape player to boot my computer!

Today we have visual interfaces that look quite juicy and convey 
information in a friendly way. We use mice to issue commands 
(most of the time) and, occasionally, our fingers or a stylus.

During the 1960s through 1980s, computer users entered their 
commands as text from a keyboard. This practice has continued 
today and is what you’re about to do, using the command line 
interface.

All of these things are shells. A shell is simply a generalized way in 
which you give commands to a computer and receive the output. 
A visual shell uses a graphical interface, or a GUI, and is what I’m 
using right now to type this sentence on my Mac, using a visual 
editor.

A text-based shell has no visuals except for things you can do with 
ASCII symbols. To work with a text-based shell (like Bash, for 
instance), you use a command line interface, or CLI.

There are a number of shells that you can work with, so far we’ve 
discussed two: Powershell and Bash. You can install other ones, if 
you like, including:

»» Z shell (or zsh). I like this one a lot and it’s what I use every 
day together with Oh-My-Zsh from Robby Russell

»» Fish. They win for the best tag line: “Finally, a command line 
shell for the 90s”

»» Tcsh (or “tc shell”). This is a common one you see on many 
Unix machines

Why The Name "shell"?

At this point you might be wondering why these things are called 

https://en.wikipedia.org/wiki/Z_shell
https://github.com/robbyrussell/oh-my-zsh
https://fishshell.com/
https://en.wikipedia.org/wiki/Tcsh
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“shells”. It has to do with the way Unix is constructed. There is a 
kernel that does all the processing, which is protected by a number 
of “protection rings”. Each ring provides certain services, with the 
most sensitive being closer to the kernel and the least being on the 
very edge, or “shell” of the system. I won’t go into Unix design at 
this point (mostly because I’m not qualified to); but I find that an 
interesting way to think about Unix.

If you look around you’ll find quite a number of shells that look 
interesting. Bash works well for most things, but if you’re looking 
for something a bit more friendly then I might recommend having 
a look at Z Shell. I’ve been using it for years and love it. One main 
reason is that it has helpful completions, spelling corrections, and 
you can program the prompt to be colorful and pretty.

The biggest reason, however, is the Oh-My-Zsh project, mentioned 
above. You get a sane way to organize scripts, aliases and other 
things. Here’s their project description:

A delightful community-driven (with 1,000+ contributors) 
framework for managing your zsh configuration. Includes 200+ 
optional plugins (rails, git, OSX, hub, capistrano, brew, ant, php, 
python, etc), over 140 themes to spice up your morning, and an auto-
update tool so that makes it easy to keep up with the latest updates 
from the community. http://ohmyz.sh/

It’s been very useful for me.

Keeping Shell Stuff Organized

This is kind of a big deal. As you learn to work with the shell more 
and more, you find good organization becomes really important. 
Oh-My-Zsh can help with most things, but not everything.

For example: settings. If you ever work with Vim, Git, Atom, 
AWS, etc – you know they have various startup settings in an rc 



381

The Imposter’s Handbook

file somewhere. These files (typically ending in “rc”) need to live 
somewhere. This is where strong organizational skills will help a 
lot.

Why RC?

The more you work with command line tools, the more you’ll 
come across “rc files”, which we briefly discuss above. You don’t 
have to name startup scripts with an “rc” ending, but if you do, 
people will know what it’s supposed to do by convention.

Like so many things in Unix land, the origin of the term “rc” is 
a bit cloudy. Google it if you like, but the actual meaning of it 
doesn’t matter. Just know that .thingrc will be the startup script 
for the thingcommand/binary/whatever. Some people like to 
think it means “runtime configuration” – that sounds like a good 
explanation to me.

Dot Files

Most Unix-adept developers treat their scripts and settings with 
the same respect as any other code: organizing it carefully and 
versioning it with git. For example, one of my very favorite people 
is Gary Bernhardt and he keeps his dot files on Github.

You’ll hear the term “dot files” a lot – and you’ll see them a lot. It’s 
a convention to begin a file name with a period (or “dot”) to hide it 
from the finder and from the standard listing command, ls. These 
files are shell scripts that are read in by various programs and they 
contain settings of all kinds.

One that a lot of people obsess on (including yours truly) is .vimrc. 
In this file you will find settings for Vim. It’s a shell script that’s 
executed every time Vim starts.

https://github.com/garybernhardt/dotfiles
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Think about developers you follow on Twitter and see if they 
have a dot files repository on Github. I already mentioned Gary 
Bernhardt - here’s another one of my favorite people: Ryan Bates. 
Have a look at how they organize these files and what’s in there. 
You could lose hours on this!

In case you haven’t figured it yet, “rc files” are simply shell scripts 
that are executed by a program when it starts. They’re simply text 
files that are, typically, well-commented and allow you to change 
how a program behaves.

OK, so now we understand how programs use shell scripts to 
configure themselves. How can you use them to help with what 
you do every day?

Why Script a Shell?

Think about the project you’re working on right now and the tasks 
you need to perform on a routine basis. Here are some that I do 
when building web sites with Node, Ruby, or Elixir:

»» Navigate to a project

»» Open up the project in an editor of some kind

»» Work with a source control system, something like Git perhaps

»» Work with a database, something like PostgreSQL, MongoDB, 
etc

»» Write a blog post, perhaps

»» Lint/concatenate/minify/compile your code files (CSS, 
JavaScript, whatever)

Sure there are plenty of tools that can do these tasks graphically 
for you. Code editors have dialogs for opening certain directories, 

https://github.com/ryanb/dotfiles
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database GUI tools can help you write queries, and there are 
plenty of tools out there for graphically working with Git. These 
tools look nice, but they’re horribly slow when compared to their 
command line (CLI) counterparts.

Every task you and I do on a daily basis can be done faster with 
a CLI tool. You can type much faster than you can visualize/click. 
We could argue that point, I suppose. I have some good friends 
who work in Visual Studio (Microsoft’s .NET IDE) and with the 
purchase of a few plugins they can write code rather quickly and 
have gained a decent level of efficiency.

It still doesn’t come close to what you can do using shell scripts.

Let’s say your boss comes in and asks you to make sure you have 
a database backup setup on a nightly basis that zips and loads the 
file to your Amazon S3 bucket. How would you do this with your 
favorite database GUI tools? This is a 20-line shell script.

You need to lint, concatenate and minify your JS files in a very 
particular way, using the rules your development lead has set for 
the team. In addition you need to create a warning when the build 
size exceeds 100K. This is a 15-line Makefile.

You have a new marketing manager who has decreed that your 
company site needs to load faster – your current YSlow Grade is 
a D. It’s decided that the 1200 JPEG files your site serves need to 
be optimized and reduced in size to no more than 600 pixels wide. 
This can be done in a 30-line shell script.

I know what you’re thinking: I can do all of this from the shell using 
Ruby/Python/JavaScript – why do I care about your shell scripts? It’s a 
good question, and a fair point. My response to that would be … 
how many packages and supporting files are you going to need? 
How long will it take, as they say, to “shave that Yak”?

This is the great thing about shell scripts: once you know them, 
you know them. It’s one of those skills that you can use to do … 
just about anything.
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A Simple Shell Script
Your company website has quite a few images; some of them 
rather large. Much larger than they should be. A new marketing 
director was just hired and found out the site is ridiculously slow 
to load, and has decided that these images are to blame. In short: 
you have an image problem.

Your boss has tasked you with auditing the images and 
then resizing them. What fun! Isn’t this why you became a 
programmer? The very first thing she’s asked for is a list of all the 
images in our site’s directory. That will be our first task.

In the downloads for this section you’ll find a directory called 
“images”. You can use that directory to work on.

A Simple First Step

Let’s crack open our terminal. On a Mac, this is (most likely) going 
to be Terminal.app, which you can find in /Applications/Utility. Or 
you can get your keyboard skills on by typing CMD-Space to bring 
up Spotlight, then type “Terminal”.

It will open in your home directory, or $HOME in Unix land. To 
navigate around you can use cd to change directories – just use 
the name of the directory you want to go to. If you want to go back 
one, you can use cd ..; if you want go all the way back to $HOME 
you can just type cd followed by <Enter>.

Let’s assume you downloaded the image files to your Desktop. For 
simplicity, let’s create a directory in our $HOME called “imposter”, 
and then another inside that one called “demos”. In your terminal, 
type:

mkdir -p imposter/demos
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This command will create a directory set in your $HOME. The -p 
flag tells mkdir to create the entire structure if it’s not already 
there.

Nice work, now let’s move our demo files in there, and then 
change into that directory:

mv ~/Desktop/task-images ~/imposter/demos
cd imposter/demos/task-images

The command mv will move files and directories around on your 
machine and cd will change directory, which I’m sure you were 
able to reason out.

Is all this typing getting you down? Bash and many other shells 
support command completion using TAB. Try it! It really helps 
when navigating around your machine.

Now that we’re here, let’s list out the images. You can list files 
with the ls command, but you can also restrict it with what’s 
known as a glob. You can think of this as a series of wildcards:

ls **/*.jpg **/*.png

This line right here says “list out the jpg and png files, any name, 
any directory”. Your output should look something like this:
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If this isn’t what you’re seeing, make sure you’re in the correct 
directory. Also, be sure you entered the glob correctly as well.

OK, we’re almost done. What we need to do now is to create a list 
that we can show our boss. To do that, we’ll redirect the output of 
the command into a text file:

ls **/*.jpg **/*.png > images.txt

And we’re done! If you want to see this file, you can use the 
command open images.txt, and you’ll see them in your default text 
editor.

That wasn’t so bad, was it? That one line saved us quite a bit of 
work, don’t you think? How would you have done this using visual 
tools?

I just threw a lot at you, but I’m sure it wasn’t that difficult. There 
are two things I want to highlight, however.

Environmental Variables
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I was using the term $HOME a lot. This is a special place on a Unix 
machine –  it’s where you get to do whatever you want. Visually 
speaking, you can think of $HOME as the place the Finder opens up 
to when you first open it. It’s usually a place like /Users/rob (in 
my case). You don’t ever work on the root of the machine – that’s 
only for special users which we’ll discuss later.

Take a look at your $HOME. You can do this using the command 
echo $HOME. The echo command simply outputs a value to the 
screen, in this case it will be whatever the $HOME variable is set 
to. That’s right – $HOME is a variable, and a special one at that. It’s 
called an “environmental variable” and there are many them. You 
can tell you’re working with a variable in Unix because they have a 
$ prepended to them (this is actually parameter expansion, which 
I’ll get into below). Other variables include $PATH and $USER.

We’ll be working with variables of our own making later on.

STDOUT and STDIN

The next thing I mentioned (but kind of glossed over) was that I 
redirected the output to a text file. I did this using the > operator. 
This is a crucial thing to understand when working with the shell: 
there is a standard input and standard output. The standard input 
is the keyboard, the standard output is the terminal.

In the same way you can refer to $HOME, you can refer to standard 
output as STDOUT and standard input as STDIN. This might seem 
a bit academic at this point, but if you think about working with 
a computer, in general, you give it information and it gives you 
something back. It does this with STDOUT and STDIN.

You wouldn’t want to have to specify where you want the output 
sent every time you executed a command, would you? This is 
where STDOUT comes in. If you did want the output of a program 
to go somewhere, it’s easy to specify. Which is what we did using 
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>.

Creating An Executable Script

When you’re working in a shell you’re working in a REPL (Read, 
Eval, Print Loop). If you don’t know what that is – it’s a way of 
working directly with a language. If you have Node installed on 
your machine you can type in “node” and you’ll be in the Node 
REPL. From here you can enter all kinds of JavaScript code.

If you have Ruby installed on your machine you can enter “irb” in 
the terminal and you’ll be in the Ruby REPL. The Unix command 
line is the same thing. Bash (or Z shell or whatever shell you’re 
using) will expand and then execute the commands you give it, 
executing them directly. We’ll get into command expansion more 
later on; for now let’s keep rolling.

Create a new file called “resizer.sh” and open it up in Vim. If you’re 
not a Vim fan, use whatever editor you like – but I would challenge 
you to just give it a try, at least for this walkthrough.

You’ll want to be sure you’re in the same directory as before – the 
one with the “images” subdirectory. Then, open up Vim, passing it 
the file name you want:

vim resizer.sh

This will create a buffer in Vim, not an actual file. That won’t be 
created until we save the file.

The first thing we need to enter is a shebang, which is a great word 
don’t you think? It’s also called a hashbang by some. To do this in 
Vim, enter “i” to go into “insert mode” (so you can type some text) 
and then enter this at the top:
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When you’re done typing, hit the escape key (<ESC>). This will 
return you to “normal mode”.

Line #1 above is our shebang, it tells the shell what interpreter 
we want to use to run this script in the form of an absolute path. 
In this case, the interpreter is the shell itself, which uses the “sh” 
program to read in commands from the keyboard, a file, or STDIN.

The next thing we’ll do is assign our image files to a variable. To 
make sure we’ve done this right, I’ll output the result to the screen 
in the same way I might use console.log in JavaScript or puts with 
Ruby.

Your cursor should still be on line 1. If it is, enter “o” to create a 
new line and enter insert mode. You should be on line #2, where 
you can enter the following:
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As with last time, make sure you hit <ESC> to go back to normal 
mode. The next thing we need to do is save the file, and you can do 
that by entering “:w”, which means “write this buffer to disk”.

Let’s run it to be sure everything works, and then we’ll get to the 
explanation. Enter CTRL-Z to suspend the Vim session, flipping 
back over to the terminal. If you can’t get this to work for some 
reason, just open up a second terminal window and navigate to the 
same directory you’ve been working in – make sure you’re in the 
shell, not Vim. Our goal is to have the shell execute what we’ve 
just written.

Enter “sh resizer.sh” into the terminal and you should see an 
amazing splash of text:
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It worked! Or did it? We used the sh command, which feeds a file 
to the shell, the contents of which are expanded and executed. 
That’s kind of like executing it, but not really. It’s a bit like using 
eval in Ruby or JavaScript to run a string of code, rather than 
executing it directly.

To properly execute a shell script, you just invoke it. Try entering 
“./resizer.sh” directly. This command simply gives the exact 
location of the shell script file, with the leading “./” indicating 
“this directory”. Doing this should lead to some problems:

By default, you can’t execute a file directly in the shell unless you 
specifically say it’s OK to do so. This is a security feature of Unix, 
as you might imagine.
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To grant execution permissions you need to tell the operating 
system, and you do that by using the chmod command (change file 
mode). By the way, if you ever want to know more about any of 
the commands you see here, you can use man in the terminal itself. 
This shows the “manual” for each command. Try it now – enter 
man chmod and it will tell you all about it.

For our needs, I need to chmod +x our resizer, which means “add 
execute privileges to this file:

One thing to get used to with Unix: commands will typically not 
return any kind of result if they are successful. Silence, in this case, 
means all went well. Now we should be able to execute our script:

Nice work! Now let’s dive into the code some. To get back over 
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to Vim, enter fg in the terminal to bring up the suspended app 
(fg means “foreground”). If you get a warning about the file being 
modified, just enter l to load it anyway. You should see this now:

We understand the first line, which is our shebang, but the 
second line looks a tad cryptic. Here, we’re setting a variable 
called IMAGES to the result of our image listing … but what’s that 
syntax?

Command and Parameter Expansion

When you surround a command with a $(..) it’s called a subshell. 
As you can probably reason, I need to set the IMAGES variable to 
the result of the list command, which means I need to invoke it in 
place. I can do that by wrapping it in a subshell. This subshell will 
be expanded, and the results returned to the IMAGES variable.

We’ll do more with subshells in a later section; for now you can 
think of it as invoking a command in place and using its results 
directly.

The next line uses the echo command to output the value of the 
IMAGES variable to the screen. To use a variable (which should 
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always be upper cased), you have to expand it as well using $. This 
is called parameter expansion and might seem a little weird until you 
have a play with it.

Open up a new terminal window and type in THING=1. This will 
set the variable THING to the value 1. Now let’s use echo one 
more time to have a look at this value. Try entering echo THING.

What happened? The echo command doesn’t know if you’re 
giving a literal value or a variable –  it’s up to you to expand the 
value before echo gets ahold of it. You do this in the same way you 
expand a subshell: using $.

There are different ways to run subshells and expansions, and we’ll 
get into that in a later section.

For Loops

We have our list of images and, at some point, we’ll need to 
operate on those images individually. This means we’ll need some 
kind of loop – a for loop specifically.

We can do this with our shell. You should be in normal mode with 
Vim; if you’re not, just hit <ESC> until you are. You can move 
around the screen using the h, j, k and l keys. Give it a try, see 
what happens.

It helps me to think of the “j” as an anchor, pulling down and the 
“k” as a rock climber, clinging to the face of a vertical wall. Once 
you’re on line #3, enter dd, which will delete the line.

Now, enter i to get back to insert mode. We need to type some 
more code:
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This is our for loop. We declare a variable inline (IMG) and then 
create a do block, ending it with done. Inside this block we’ll 
report the value of the IMG variable. Hit <ESC> when you’re 
done entering this code, then type :w to save it. Now CTRL-Z to 
suspend and flip back to the terminal.

Execute again, invoking the file directly (or hit the up arrow until 
you see it):

Nice! OK, let’s keep rolling and pick up some speed.
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If Statements

We don’t want to blow away our original files, so we’ll create a 
destination directory, where all the modified files will be placed. 
We need to check if this directory exists before we do anything. If 
it does, we’ll delete it, otherwise we’ll just create it.

Use fg again to get back into Vim and then navigate to line #2, 
where the IMAGES variable is declared. Now enter o to open a new 
line below it. Enter the following:

The first thing is the most important: use variables for everything. 
It’s bad form to hard code values in a shell script! Here, I’m simply 
specifying where the output directory is going to be.

On line #5 I’m testing to see if this directory exists. Notice the 
spacing here? It’s important! Make sure there’s a single space 
between the brackets and the conditional statement. Also: 
notice the semicolon? That’s optional – it signifies a code line 
termination. If I put them on a new line the semicolon isn’t 
needed. I use it here because my eyes are used to reading if 
statements in this way.

Next: notice that I wrapped $DIST in quotes? This is a subtle 
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point and not one I expect you to remember entirely. If you write 
many scripts, however, you’ll have a very interesting problem to 
overcome: how do I control this expansion thing?

Quoting

We’re using the command line, which is text-based, so Bash will 
take you literally when you type in anything. We need a way to 
work with text in this environment.

For instance, let’s say I create a file with a silly file name:

touch super-*.txt
ls super-*.*
ls: super-*.*: No such file or directory

Now this file name and, indeed, this entire example is ridiculous 
… sort of. I’ve seen some amazingly weird file names! Anyway: 
this command set will cause an error. We’re confusing our 
shell because it can’t tell the difference between our literal text 
super-* and our wildcard placeholder .*. How do we get around 
this problem?

To “unconfuse” the shell we can use quoting:

ls 'super-*'.*
super-*.txt

I’m using a single quote here, which is referred to as “strong 
quoting”, which means absolutely nothing within the string will 
have any special meaning to Bash. For our needs this is actually a 
bit too much (or I should say too literal). We want to have some 
expansion in there!

For instance, we might want to set the $DIST directory to be 
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something like $HOME/fixed or something. We want $HOME (and 
other variables) to be expanded in this context.

We can do this by using “weak quoting”, or double-quotes, which 
will allow us to access variables using $ (we can do other things 
too, like use a \( \sim \) for our home directory and \ to escape 
things).

It’s good practice to use quoting when referencing variables 
as we’re doing here. If any of our directories or files contain 
characters that will confuse our shell, their expansion will be 
ignored.

OK, we’re almost done – let’s rock this out!

Using ImageMagick

To run the actual image conversion I’ll use ImageMagick, a popular 
open source image manipulation tool. You can install it on your 
Mac using Homebrew (“brew install imagemagick”) or with 
MacPorts.

Once ImageMagick is installed, I simply need to use the resize 
command with some dimensions and an output.

We only need to resize our screenshots, so I’ll reset the $DIST 
variable to only include them (I’ll change this later). Finally, I just 
call convert within our loop, and off we go:
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If we execute this script as before, we’ll have a lovely new set of 
resized images waiting for us in the ./dist/screenshots directory. 
Not bad for 15 lines of code!

But we can do better.

Using Functions

Being the good coder that you are, you’re probably wondering why 
I hardcoded everything for the “screenshots” directory? Good for 
you!

What we have here is a very workable shell script, but it could be 
better. Just like any code that you write, think about modularity 
and reuse. In our case we have a lovely bit of functionality that I’ll 
probably want to use later. The good news is that I can do this by 
turning it into a function:
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On line #2 I just declare the function, which looks a bit like 
JavaScript doesn’t it? On line #16 I close it off with a brace and 
then I can call it directly on line #18.

This is neat, but it’s not modular! For that I’ll need to send in 
some arguments. You work with arguments positionally in a shell 
script, using parameter expansion like we did before with variables.

In this case I’ll change “screenshots” to reference the first 
parameter passed to our function ($1):
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Nice! To pass a value into the function you just tack it on to the 
function call, which you can see on line #18. I’ve replaced the hard 
coded value with $1, and we’re good to go.

Execution vs. Loading

Right now our script executes every time we call it, which is fine, 
but we might want this command available to us from anywhere. 
We can do this if we just tweak a few things.

First, let’s get rid of line #18. This will prevent our function from 
executing each time. Then, instead of invoking our script file, we 
can just source it:

source resizer.sh

When you source a file, as we’ve done here, you load its contents 
into the current shell. This has the same effect as execution, 
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essentially, but it does a little bit more.

For us, we can now call our resize_jpegs function from 
anywhere:

Uh oh. Looks like I was wrong about that. What happened?

Remember above when I said that executing a shell script is sort of 
like loading it directly into the shell? That sort of just came back to 
bite me.

When you execute a shell script, as we did above, it’s given 
it’s own process. Our $IMAGES variable executes properly in a 
subshell and returns a list of files, as it should. We can then loop 
over that and all is well.

When we source a script file, we load it into the current terminal 
session and the code we write in our shell script acts just as if we 
typed it in there ourselves. What this means is that the expansion 
we’re using to load the IMAGES variable is viewed as string value. 
If you read the error output above, you’ll see that ImageMagick is 
trying to convert a file identified by a huge string value!

We don’t want that. The good news is that we can fix this easily by 
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just looping over the glob directly:

Confusing, isn’t it? You’ll run into these problems, and the only 
way to solve them is to think about which process is executing 
them: your current shell or a spawned shell?

Have at it. Playing with shell scripts can be fun, and if you get 
stuck or need to try something new, there are plentiful resources 
online.

Make
Make is a build utility that works with a file called a “Makefile” and 
basic shell scripts. It can be used to orchestrate the output of any 
project that requires a build phase. It’s part of Linux and it’s easy 
to use.

It’s important to understand that the utility, make, is not a 
compiler as many people believe. It’s a build tool just like MSBuild 
or Ant.
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Make is an extraordinarily simple tool which, combined with 
the power of the shell, can greatly reduce the complexity of your 
application’s build needs. Even if you’re a Gulp/Grunt/Whatever 
fan, you should understand the power of make, as well as its 
shortcomings.

The Basics

Make will turn one (or more) files into another file. That’s the 
whole purpose of the tool. If you run make and your source hasn’t 
changed, make won’t build your output.

Make runs on shell commands, orchestrated using the concept of 
“targets”. Let’s have a look.

First, create a directory where we can work and then create a 
Makefile:

mkdir make_demo && cd make_demo
touch Makefile

Like many build utilities, a single file with a particular name drives 
the process. With Grunt, it’s a Gruntfile; with Rake it’s a Rakefile. 
Ever wonder where that convention came from? Yep: it’s Make.

Anatomy of a Makefile

All of our build commands will go into the Makefile. Let’s create 
the basic skeleton:

all:

clean:
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install:

What you see here are targets: the things that Make will try to 
build for you. By convention they are named based on the file they 
are building – in some cases, like ours here, they are directives and 
don’t build anything.

Every Makefile should have these directives:

»» all: builds everything

»» clean: cleans up all the existing build artifacts; usually 
deleting the files built

It’s typical, as well, to have these directives as well:

»» install: installs whatever built files are generated

»» .PHONY: lists out the directives that don’t create a file

Have you ever downloaded software from source onto a Linux 
box and had to run make && make install? This is why. The 
downloaded source (usually C or C++) is compiled and then 
installed wherever binaries go in the system, which can be /opt or 
somewhere else such as /usr/local or /usr/bin.

With our example we won’t be installing anything so we don’t 
need the install target. In its place we’ll add another directive that 
tells Make which of the targets don’t create a file. For this we’ll use 
.PHONY, for “phony” targets:

all:

clean:

.PHONY: all clean
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Understanding Targets

Make builds output files from input files. It was originally designed 
for C programs, which utilize both code and header files which 
are built into object files. These object files are then compiled to 
binary. This is a multi-step build that requires some orchestration. 
That’s what Make is all about.

Sometimes, however, you’ll want a build step that might transform 
some input – it might not create a file. Letting Make know about 
these special (phony) targets will increase performance greatly. 
We’ll get more into this in the next chapter.

The Simplest Operation

This is a silly demo, but it’s critical you see the way things work 
before we dive into some useful stuff in the next chapter. Let’s 
create a file in the root of our project directory that we want to 
transform and distribute. We’ll leave the file empty for now – let’s 
also create a Makefile while we’re at it:

echo "//some code" > app.js && touch Makefile

The simplest first step would be to copy our app.js code file to a /
dist directory. So let’s do it:

all:
  mkdir -p dist
  cp app.js dist/app.js

clean:
  rm -rf dist
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.PHONY: all clean

The indents in a Makefile must use tabs. If you don’t use tabs 
you’ll get an error about an invalid separator. If you copy/paste the 
code here, be sure you indent with a tab that doesn’t get translated 
to spaces.

OK, save the Makefile and run make:

Yes! Make outputs each command as it’s executed – so here it’s 
reporting that it ran mkdir and cp successfully. This can be good 
… it can also be annoying.

Let’s fix the chatter and provide a clean target while we’re at it:

all:
  @ mkdir -p dist
  @ cp app.js dist/app.js

clean:
  @ rm -rf dist

.PHONY: all clean

By prepending an @ sigil to a command line in our Makefile, we’re 
silencing the output. Also - our clean target will delete the entire 
build directory. We can test that by running make clean.
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Try it out!

Orchestrating The Build

Our code files are a bit messy - just stored right in the project root. 
So let’s clean things up with some organization:

mkdir src mv app.js src

Great. Let’s assume (for now) that all of our project code goes into 
the /src directory.

Our current Makefile is not really doing any build orchestrations 
of any kind – it’s just copying a single JavaScript file to the /dist 
directory. Let’s change that by adding a build timestamp to the 
output, so we know when the last build was run.

Let’s clean things up a bit so we have a build target that produces a 
file and another that produces the destination:

all: dist app.js

dist:
  @ mkdir -p dist

app.js:
  @ cp src/app.js dist/app.js

clean:
  @ rm -rf dist

.PHONY: all clean
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A whole lot just went on there – and with it we get to learn some 
more jargon.

First, I created two new targets called app.js and dist. Targets 
in a Makefile are just the labels; what comes after the target is the 
recipe. So, for the dist target, mkdir -p dist is the recipe.

The all target has prerequisites that appear on the first line, but it 
has no recipe. Prerequisites are targets that must be built before 
creating the current target. So, for all to work, dist and app.js 
need to have run first.

If you put a target, recipe and prerequisites together, you have a 
rule. Which is precisely what a Makefile is: a set of rules for building 
your software.

This is the power of Make. Orchestrating what happens when, and 
in what order. You could say that this is all that Make does, which 
isn’t surprising if you understand the Linux philosophy of “do one 
thing well”.

Using Variables

We’re dealing with shell scripts here, and just like any 
programming effort, repeating ourselves is typically frowned upon. 
Let’s take the hard-coded stuff out first so we can change as we 
need to.

By convention, variables should be declared at the top of your 
Makefile:

JS_FILES=src/app.js
DIST=dist

all: dist app.js
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dist:
  @ mkdir -p $(DIST)

app.js:
  @ cp $(JS_FILES) $(DIST)/app.js

clean:
  @ rm -rf $(DIST)

.PHONY: all clean

Now that’s starting to look like a proper Makefile! Variables in any 
shell script should typically be upper-cased.

Notice how I have to use $(DIST) to reference the variable? Do 
you remember what that is? It’s a command-replacement subshell. 
Make runs all the commands in a subshell, outside of its own 
process.

At first glance it might not look like we’ve done much here – but if 
we change our source files, which we will, it’s a simple change to 
the JS_FILES variable.

OK, one last thing. We’re still repeating ourselves in a couple of 
places – specifically with the target and the destination file names 
of app.js. If we’re leaning on convention, we shouldn’t have to 
specify things twice.

To get around this, we can use the $@ shorthand – which means 
“this target name”:

JS_FILES=src/app.js
DIST=dist

all: dist app.js

dist:
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  @ mkdir -p $@

app.js:
  @ cp $(JS_FILES) $(DIST)/app.js

clean:
  @ rm -rf $(DIST)

.PHONY: all clean

We’re getting there. Now, let’s create our timestamp. For this I’ll 
use a variable straight away, and put it right at the top:

JS_FILES=src/app.js
DIST=dist
TODAY=$(shell date +%Y-%B-%d)
TIMESTAMP="//Created at $(TODAY) \n\n"
#...

Here I’m using the shell command, which, if you recall from 
previous sections, executes shell commands for you. We need 
to get the literal value of the date and the date’s formatting 
instruction, and store it in the TODAY variable.

We then create our timestamp. Using variables is a great way 
to keep your code clean and understandable, and that’s critical in 
Makefiles as the syntax can quickly become overwhelming.

The next task is to read the source file and timestamp it:

#...
app.js:
  @ echo $(TIMESTAMP) > $(DIST)/$@
  @ cat $(JS_FILES) >> $(DIST)/$@
#...

This is a bit roundabout, but it works. As I keep mentioning, 
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there’s almost always a better way when it comes to shell scripting 
– and we should most definitely extend that idea to Makefiles. This 
is nice and clear to me, however, and hopefully it makes sense to 
you as well.

I’m redirecting the output of echo (which is the TIMESTAMP 
variable) into dist/app.js, which is our output file. On the next 
line I’m appending STDOUT using >> to the same file – this time 
with the contents of the JavaScript files in our src directory.

Here’s another go at this:

JS_FILES=src/app.js
DIST=dist
TODAY=$(shell date +%Y-%B-%d)
TIMESTAMP="//Created at $(TODAY) \n\n"

all: dist app.js

dist:
  @ mkdir -p $@

app.js:
  @ echo $(TIMESTAMP) > $(DIST)/$@
  @ cat $(JS_FILES) >> $(DIST)/$@

clean:
  @ rm -rf $(DIST)

.PHONY: all clean

This is a solid Makefile, but it’s not quite there yet. Notice that I 
have a dist target and a DIST variable? This is redundant! You 
can use variables as target names, so let’s do that and arrive at our 
final Makefile:
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JS_FILES=src/app.js
DIST=dist
TODAY=$(shell date +%Y-%B-%d)
TIMESTAMP="//Created at $(TODAY) \n\n"

all: $(DIST) app.js

$(DIST):
  @ mkdir -p $@

app.js:
  @ echo $(TIMESTAMP) > $(DIST)/$@
  @ cat $(JS_FILES) >> $(DIST)/$@

clean:
  @ rm -rf $(DIST)

.PHONY: all clean

Let’s give it a run using make clean && make. You should see a 
dist/app.js file with this in it:

//Created at 2016-October-19

//some code

Nice work! Once again, this is a bit of goofy demo, but your brain 
should be racing a little bit right now… thinking about all the ways 
you might put Make to use with your project.

In the next section we’ll do even more work with JavaScript files, 
kicking Grunt right out of our project.
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Using Make To Build Your Web App
Every language/platform seems to have its own build and 
automation toolset. Microsoft has MSBuild, Java has Ant, Maven, 
Gradle, and perhaps a few others. JavaScript has Grunt, Gulp, Jake 
and a few more. Ruby has Rake. Why is this?

The short answer is that Make can be a little opaque and, 
predictably, language users like to build things using their own 
language and believe it will impart some type of benefit over the 
decades-old Makefile.

This subject, like others in this book, is a tad volatile and I 
want to recognize that right up front. An easy way to start an 
argument between two developers is to bring up the subject of 
build automation! A good friend of mine, Rob Ashton, thought 
it would be fun to submit a pull request to the MSBuild Github 
Repo, suggesting that it be replaced with Make. If you’ve ever had 
to wrestle with MSBuild before (which I have, numerous times), 
then this might make you laugh. I thought it was funny, but there 
are many who did not.

No matter which build tool you use and love, knowing Make will 
give you a perspective that you need. It’s built right into Unix-
based systems and you can use it to automate just about anything. 
Whenever you crack open that Gruntfile, Gulpfile, or Rakefile, 
ask yourself whether the layers of complication you’re adding to 
your project by using these tools are really warranted. The answer, 
typically, is no.

The problem, typically, is that most people don’t know how Make 
works. Let’s change that now, using a fairly typical use case: 
compiling assets for a web project.

The Web Project

https://github.com/Microsoft/msbuild/pull/1
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I have a typical web application that uses SASS and a bit of 
JavaScript:

As you can see, it’s a simple app. I have a set of JavaScript files 
and a single SASS file that I need to build and then output to a 
directory somewhere.

This is my goal for this task: concatenate, compress and build my SASS 
files and then concatenate and uglify my JavaScript files.

Working With SASS

Some people dig SASS, others LESS. Other people (like myself) 
tend to knuckle under and just write CSS directly. Hopefully what 
you’re about to do will translate to how you develop things.

Also: when working with SASS and LESS it’s common to import 
all of your files into a main.scss file, which you then build with the 
interpreter. That’s what I’ll be doing today.

Step 1: The Node Modules We Need
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I need to install a few Node modules to help me out:

»» node-sass: the module I need to compile and build my SASS 
file

»» uglifyjs: removes whitespace, concatenates and then 
minifies my JavaScript files

That’s it. To install these we use NPM:

npm install uglifyjs node-sass --save-dev

Step 2: Our Makefile Skeleton

The next step is to create the Makefile in the project root and then 
give it a default structure:

touch Makefile

Open the Makefile and then add the default structure – the targets 
we know we’re going to be working with:

all:

clean:

.PHONY: all

Hey we’re getting good at this!
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Step 3: Define The Variables

We don’t want any hard coded values in our rules, so let’s define as 
much as we can at the top:

SASS=node_modules/.bin/node-sass
SASS_FILES=assets/sass/main.scss
JS_FILES=assets/js/*.js
UGLIFY=node_modules/.bin/uglifyjs
DIST_CSS=public/css
DIST_JS=public/js

all:

clean:

.PHONY: all

I’m defining the binaries, the source files, and the destinations.

Binaries

I’ve installed the node-sass and uglifyjs binaries locally as 
development dependencies. This will increase the time it takes to 
run npm install, but it also guarantees that the binaries will be 
present. It’s really annoying to have to install global dependencies 
(my opinion).

In case this is all new to you or if you’ve never used Node: you can 
install packages from NPM and have them run locally or globally. 
You’ve probably seen a node_modules directory at some point in 
your career – this is the local package installation location. If I was 
to install node-sass locally I could run it by using node ./node_
modules/.bin/node-sass. Or I could make life easy on myself 
and install it globally in the global NPM cache, which would allow 
me to run the binary anywhere on my machine.
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Step 4: Define The Targets

Given that I want to smash all the JavaScript files into a single app.
js file, I can create that target. Same with app.css. The destination 
for these files will be the public directory, which should exist 
already in my project. However we can’t guarantee that so let’s 
make sure that we have a dist target as well:

SASS=node_modules/.bin/node-sass
SASS_FILES=assets/sass/main.scss
JS_FILES=assets/js/*.js assets/js/**/*.js
UGLIFY=node_modules/.bin/uglifyjs
DIST_CSS=public/css
DIST_JS=public/js

all: dist app.css app.js

dist:
  mkdir $(DIST_CSS) $(DIST_JS)

app.css:

app.js:

clean:
  @rm -rf $(DIST_CSS) $(DIST_JS)

.PHONY: all

Simple enough. Creating the directories we need with the dist rule, 
removing them with clean. Now all we need to do is to fill in the 
commands to create the files.

File Strategy

Loading up your source files like this is really simple when using a 
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glob pattern, but you might have different needs. For instance: you 
might have an app.js file in assets/js that you want loaded first, and 
then all the other files loaded after that.

You can do this easily by specifying assets/app.js as the first 
file in the list, and then the glob assets/js/**/*.js after that.

There are other strategies which I’ll discuss down below.

Step 5: Building The Files

The first step is simple: we only need to compile the main.scss 
file using node-sass, which comes with a binary in the node_
modules/.bin directory.

This is what the command would look like normally:

node_modules/.bin/node-sass --output-style 
compressed assets/sass/main.scss > public/css/

We just need to replace this command with our variables and we’re 
good to go:

app.css:
  @ $(SASS) --output-style compressed $(SASS_
FILES) > $(DIST_CSS)/$@

Bam. That couldn’t be easier!

Discovering The Proper Commands

OK, I lied: it could be easier. You’ll find that most of your time is 
spent wrangling the commands together – reading the docs, trying 
to understand how to use the binaries properly.
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When I first put this file together for a project I was working on, I 
had to read through the source code of some of the binary files to 
understand all the options and how they worked. I then ran those 
commands from the command line to make sure things happened 
the way I wanted.

The JavaScript files are a bit of a different story. I need to 
concatenate them together, and then uglify/compress them. 
Concatenating is simple – we can use cat directly to pull the code 
from each file – which we can then pipe directly to uglifyjs:

app.js:
  @ cat $(JS_FILES) | $(UGLIFY) > $(DIST_JS)/$@

We haven’t discussed the | notation you see here. That’s called the 
pipe operator and is a Unix operator that redirects the output of one 
command to the input of the following command. In the same way 
I redirected STDOUT to a text file using > in a previous section, the 
| operator redirects STDOUT and STDIN for two given functions.

In this example, I’m using cat to concatenate all the JavaScript 
files specified by my JS_FILES variable. I’m then piping that text 
into the uglifyjs binary, and then redirecting the output of the 
ugilifyjs call to my destination.

I wish I could tell you it was harder than this … but it’s not. This is 
the power of Make. Run make and take a look at the built output in 
the public directories. If you’ve already run it, be sure to run make 
clean && make before you run make again to avoid errors.

Easy Not Easy

If this seems a bit cryptic or if your reaction to this code is 
something like “yeah great for you – you know shell scripts!” you 
might be interested to know that I’m a complete n00b to this stuff. 
I learned it better over the last year, but creating Makefiles like this 
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was absolutely something that was beyond me just 8 months ago.

It just takes a little time, some Googling, and some practice and 
you will get it too.

Ordering Of Files

Ideally your JavaScript files are not dependent on load order, but 
in the Real World this is typically not the case. There are a number 
of ways to get around the problem and they involve knowledge of 
some basic commands.

Personally, if I need files loaded in a particular order (as with my 
SQL files – tables need to be built before views and so on) – I just 
name them in a particular way:

01-init.sql
02-tables.sql
03-views.sql
04-funtions.sql

This works fine for SQL files, but it might not work for your 
JavaScript build. If you need files loaded in a particular order you 
can pipe the result to sed and then transform it from there.

You can also separate the build steps, so you build a directory first, 
then another, outputting interim files to assets/tmp directory, 
which you then concatenate later on.

Summary

In this section, we’ve touched on some very fundamental ways 
we can use Make to automate and simplify our lives. But we have 
only scratched the surface. Make has a long, long legacy, and is the 
spiritual great-granddaddy of newer tools like Grunt, Gulp, and 
other automation tools we take for granted. I can’t overstate the 
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value that even a basic fluency with this tool will bring to your 
understanding of how source files are assembled into working 
software.

CRON
Linux has a wonderfully annoying feature referred to simply as 
“cron”. It’s a simple text file with an ASCII table that will execute a 
command on schedule.

Cron jobs are incredibly useful. They can help with various 
maintenance tasks such as log file cleanup or database backup.

For instance, we might want to backup a database on a nightly 
basis. We can do this with a simple dump command that our 
database tool gives us on a nightly basis, managed by cron. The 
dump command can be executed directly in the cron job, or (a 
better approach) in a shell script.

The Basics

Let’s backup a PostgreSQL database using cron. If you’re not using 
PostgreSQL that’s OK – it’s likely that whatever platform you’re 
using supports some type of binary tool that will do a backup. 
Translate as required.

The first thing to do is to open up our cron configuration file using 
crontab -e where the -e option means “edit”. This will open 
(can you guess?) a simple text file with some prompts to help you 
out.

To this file we can add our command:
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0 0 * * *  pg_dumpall -f ~/backups/db.sql

This is a little cryptic, but not too difficult to understand once 
you’re told what the 0’s and *’s mean. The entry specifies the time 
in a positional way, from left to right. You can read it as:

»» minute (0 to 59)

»» hour of the day (0 to 23)

»» day of the month (1 to 31)

»» month (1 to 12)

»» day of week (0 to 6 with 0 being Sunday)

Then finally comes the command you want to execute, in our case 
pg_dumpall -f \( \sim \)/backups/db.sql. Again: I can 
execute a command directly, as I’m doing here, or I can execute a 
more in-depth shell script, which I strongly recommend. It’s very 
likely your backup command will grow, or you’ll want to do other 
things with it – so do yourself a favor and use an executable shell 
script from within cron.

I used 0 0 * * * as the schedule, which reads “the first minute 
of the first hour of every day of the month, every month, every day 
of the week” (the stars are wildcard characters).

Execution Troubles

Cron configuration files are created for each user and, 
subsequently, will run as that user when executed. If your cron 
task doesn’t run, it’s likely due to a permissions problem. For 
instance, my user account might not have permission to access 
PostgreSQL, so this backup command will fail.

Be sure your account (or whatever account you’re setting up to run 
Cron) can execute the command you’re scheduling first.
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A Real World Scenario

My last company, Tekpub.com, ran on PostgreSQL and I needed to 
have a backup of the database go off on a nightly basis. I started 
out as we have here, but soon realized that backing up a database 
requires a little more automation.

Every DBA has their favorite backup script and will readily share it 
online. The one I’m about to show you is one that I adapted long, 
long ago from my friend Rob Sullivan. It’s a straightforward script, 
which I’ll explain below:

BACKUP_DIRECTORY="/home/rob/backups"

# Date stamp (formated YYYYMMDD)
# just used in file name
CURRENT_DATE=$(date "+%Y%m%d")

# !!! Important pg_dump command does not export 
users/groups tables
# still need to maintain a pg_dumpall for full 
disaster recovery !!!

# this checks to see if the first command line 
argument is null
if [ -z "$1" ]
then
# No database specified, do a full backup using 
pg_dumpall
pg_dumpall | gzip - > $BACKUP_DIRECTORY/
everything_$CURRENT_DATE.bak

else
# Database named (command line argument) use pg_
dump for targed backup
pg_dump -d $1 -Fc -f $BACKUP_
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DIRECTORY/$1_$CURRENT_DATE.bak

fi

To use this script, you invoke it directly: \( \sim \)/scripts/
backup.sh. When it runs it will check to see if you specified a 
database. If you did not, the entire database will be backed up; if 
you did then only the select database will be backed up.

Here’s a cron entry for backing up my “bigmachine” database. A 
quick quiz for you: do you think will this work?

0 0 * * * ~/scripts/backup.sh bigmachine

The answer is: maybe. There are some things I need to do before 
this cron job will run. They are:

»» Make sure the backup.sh file is executable

»» Make sure the job I want to execute (in this case pg_dumpall 
and pg_dump) is something my account has privileges for

»» Make sure that the file reference is accurate for the account 
executing the cron job

This cron job will run as if I’m logged in and executing the 
command directly, so yes it will work as long as I have permissions 
to run backups on my database, which I do. It is a better idea, 
however, to use an absolute path when invoking a script as this 
will break if it’s ever run by another user.

So, to keep in good form, we should update the command thus:

Execution As Another User
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You might run into a scenario where you want a cron job to run as 
a different user. In that case, you can elevate your privileges using 
sudo and edit their crontab as needed.

One word of caution, however: please don’t ever setup a cron 
job for the root user! It might be tempting, especially if you’re 
having problems getting the job to run. This can have unintended 
consequences – it’s like trying to swat an annoying fly with a 
machine gun.

The root user can do anything to a Unix machine, and that one 
small problem in your script where you accidentally deleted all files 
on the server could be avoided by taking a little extra time to figure 
out why your script won’t execute properly.

Going Further

As I mention, database backup scripts are all over the web and 
you can find one easily that you can plug into cron. If you run into 
trouble, it’s almost certain to be a permissions issue. Go over the 
three steps above (executable script, you can perform the tasks, the 
file location is correct) and you’ll likely solve any problem.

Have a look around, explore! Maybe you don’t want to store 
backups locally and, instead, want to push them to your S3 bucket 
where they’ll be safe and warm in the loving arms of the AWS 
cloud. You can do this with a shell script!

Maybe you want to send an email confirming that the backup went 
off successfully: again, doable with cron and a shell script. I used 
to have a script that would do just that: backup my MongoDB 
database every night, send it to S3, run a sales query and pass the 
results to me so I could read them in the morning.

Shell scripts are tons of fun.
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This book began as a series of tasks in Wunderlist: 
things I need to know someday. I didn’t intend to 

write a book. I thought maybe I would write some blog 
posts, perhaps do a video or two on a few of the topics I 
found.

The problem I had then (and still have now) is this: I didn’t know 
what I didn’t know. It’s getting worse, too. The more I learn – the 
more I feel like an imposter.

There is comfort in not-knowing something. More than that: there 
is magic. Even more than that I think there is also a bit of dumb 
courage. You just don’t know if it will hurt – so you try it out.

I’m reminded of being 15 and jumping off the roof of my house 
with an umbrella. Along with wondering if the umbrella would 
slow me down, I also wondered how badly it would hurt. Turns out 
the umbrella did nothing and jumping off the roof of my mom’s 
house did, in fact, hurt. I didn’t break anything or seriously injure 
myself, which is a good thing … but I only tried the umbrella jump 
once. The next time I did it without the umbrella …

I picked the cover of this book because that’s what it felt like 
when I learned to program on my own: jumping off of something 
rather high, hoping the landing wouldn’t break me somehow. I had 
a job and a budding career as a geologist – but it was boring. A 
good friend of mine was a trainer – the very first one certified by 
Microsoft to teach Active Server Pages. So he taught me (thanks 
Dave!) and I jumped.
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I’ve hit the ground hard a few times, but the joy of jumping into 
new things is my drug. Which is kind of a problem because new 
things don’t stay new for very long, and soon you start to feel the 
magic of it all start to fade.

It’s the curse of learning: remove the mystery, remove the magic. 
Move on to the next mystery. Pretty soon you wonder what the 
point is.

However.

The process of writing this book has been transformative. I’m 
going to push the whole jumping metaphor a little more – and I’m 
also going to reflect on the cover image a bit more too. You may 
not have noticed, but on the back of the “jumper” on the cover 
where a parachute should be is … this book. If you look closer, you 
can see the same cover. I felt it kind of appropriate as recursion 
seems to … recur throughout this book.
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More than that, though, is the idea of a parachute. This book has 
become my parachute, in a sense – the things I’ve learned over the 
last year are allowing me to jump off higher rooftops – but this 
time I have a bit of knowledge to soften the fall.

Climb higher, jump farther. The mystery/magic/dumb courage 
seems to be increasing as I learn these things.

One Final Thought

I’ve gone deeper into these topics than I ever thought I would. I 
feel like I have a solid grasp on complexity theory, Big-O, graphing 
algorithms and Bernoulli’s Weak Law of Large Numbers and 
… just writing this sentence is giving me a rush! This shit is 
BREATHTAKING!

Sorry. I promised myself I wouldn’t swear in this book – but if any 
of the paragraphs written deserve some caps and a four-letter word 
… well it’s that one.

There. Is. So. Much. Magic.
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Go find it. Don’t stop here. It’s so easy to fall into snark and 
uncertainty; to feel like you just don’t know what other people are 
talking about. It can really be isolating and lead one to look upon 
others with scorn for trying new things. As I write this sentence, 
Facebook just pushed a new package manager for JavaScript. As 
expected, quite a few people ridiculed it and laughed without even 
trying it!

Let’s not be those people. We’re the explorers who keep trying (and 
hopefully failing). We push the edges to find out what’s possible. 
Enjoy this!

I urge you to explore and dig deeper, ask more questions, take a 
friend out and bore them to tears with all you know! Draw a 
picture of Traveling Salesman for your kids and ask how they 
would solve it. Make a Markov Chain out of popcorn for the 
holidays!

With that: I leave you. Thank you for going on this journey with 
me. Now let’s go make a difference.
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