O'REILLY”®

Why EIm?

Matthew Griffith

Learn from experts.
Find the answers you need.

WHAT'S THE FUTURE? k§

Sign up for a 10-day free trial to get unlimited access to all of the content on Safari,
including Learning Paths, interactive tutorials, and curated playlists that draw
from thousands of ebooks and training videos on a wide range of topics,
including data, design, DevOps, management, business—and much more.

Start your free trial at:
oreilly.com/safari

OREILLY*®

Safari
I

9800

02

Why Elm?

Matthew Griffith

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

Why Elm?
by Matthew Griffith

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Dawn Schanafelt and Meg Foley Interior Designer: David Futato
Production Editor: Shiny Kalapurakkel Cover Designer: Karen Montgomery
Copyeditor: Rachel Head lllustrator: Rebecca Demarest
Proofreader: Amanda Kersey

March 2017: First Edition

Revision History for the First Edition
2017-03-09: First Release

The O’Reilly logo is a registered trademark of O'Reilly Media, Inc. Why Elm?, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi-
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi-
bility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-98000-2
[LSI]

http://oreilly.com/safari

Table of Contents

. ReadingElm........cooiiiiiii i

Piping Functions
Writing Types

Beautiful Error Messages and Refactoring

Performance and Reusable Code via Data Immutability
Immutability in JavaScript

Language-wide Optimization of External Effects
Where Are JavaScript Promises?

Elm Types Versus TypeScript

. TheEIm Architecture.........covvvriiniiiiiniininennnnss

Interop with JavaScript
Adopting Elm Incrementally
Elm Versus React

Elm Versus Vue.js

CEmMTooling...ovovenii e

elm-package

The Elm Debugger
elm-reactor
elm-format
elm-test

25
27
27
28
29

31
31
33
34
34
35

6. ATourofthe Ecosystem...........c.ccovvvviiviiiinnennnnnns 37
elm-css 38
elm-style-animation 40

7. So,WhyEIm?2. . ..ottt it cin s 43

iv | Table of Contents

CHAPTER 1
Why Elm?

Elm is a functional language that compiles to JavaScript and is
specifically for designing the frontend of your web app. One of the
main design goals of Elm is to incorporate some of the advances
from the last 40 years of programming design (many of which have
not made the full transition from academia to common use), and to
not require you to learn a bunch of jargon to benefit from those
advances. The practical result is that Elm code is fast, hard to break,
easily testable, and profoundly maintainable. Above all, Elm is a
functional programming language for the practical frontend devel-
oper.

This report is meant for developers who are largely familiar with
JavaScript and other dynamically typed, imperative languages, but
who aren’t quite as familiar with static types or purely functional
programming languages. If you're an established web developer, you
might feel a bit overwhelmed by trying to keep track of the recent
explosion of frontend technologies—so what makes Elm fundamen-
tally different?

Here’s quick overview of some of Elm’s best features; we'll cover
these topics in more detail later in this report.

Elm eliminates many of the most common pain points of frontend
development. That’s because many of the common issues that front-
end developers have to deal with just don’t exist in Elm. There is no
null and no confounding errors such as undefined is not a
function, but that’s just the beginning. Elm really shines when we
talk about the higher-level benefits it can provide to you.

In Elm it’s extremely common to have no runtime exceptions in
practice. While you technically can have a runtime error in some
limited cases, it’s actually fairly difficult to accomplish. Instead of
runtime exceptions, in Elm you have compile-time errors that check
your work. Take a moment to think about this. You can rephrase it
as, Elm ensures that errors will happen at compile time, in front of a
developer, instead of runtime, in front of a user. This is fantastic! Is
there any case where youd ever want a user to receive an error
instead of a developer?

Elm’s compiler is your friend and provides very specific, human-
friendly compile errors as you develop. These errors generally explain
why code won't work instead of just what broke. They also tend to
include hints such as links to recommended design documentation
and highly accurate spelling suggestions based on what the compiler
knows about your code. Features such as this go a long way toward
making the Elm development experience smooth and productive.

Packages in Elm have enforced semantic versioning, meaning the ver-
sion number of an Elm package will tell you whether the package
API has been broken or extended, or whether this is simply a patch
release fixing an internal detail. Patch changes will never break the
API. This is enforced automatically on all packages, so you don’t
need to worry about whether third-party developers are following
semantic versioning best practices. The confidence that this builds
goes both ways. As a package author, it means you won't break your
API by accident.

The reason Elm can provide all these benefits is because of how it
handles types, though Elm types are likely very different from what
youre used to. They don't require a bunch of extra work. In fact,
type annotation is entirely optional because Elm can infer all the
types of your program. This makes Elm types lightweight and easy
to work with.

Even though type annotation is optional, Elm types are always there
to provide you the benefits we've been talking about. These benefits
aren’t something you have to activate or work hard to get right;
theyre built into the language. Elm’s type system is mandatory
(which is how it guarantees no runtime exceptions, superb main-
tainability of your code, and enforced semantic versioning) but,
again, is lightweight and surprisingly conducive to productivity.
Even though Elm’s type annotations are optional, you may find them

2 | Chapter1:Why Em?

incredibly useful as enforced documentation and as a powerful
design tool.

Of course, having a fantastic type system doesn’t mean you don’t
have to test your code. What it does mean is that you will write fewer
tests, and those tests will be more meaningful and easier to write.
There are many situations where you don't need to worry about test-
ing in Elm because of the type system. For the areas where we do
need testing, Elm code is inherently easy to test because each func-
tion can be realistically tested in isolation of all others. This a some-
what subtle concept which we’ll cover later, but the gist is that Elm
code is made to be easily testable.

Keep in mind that not all typed languages can give you these same
benefits. Java makes you write a lot of boilerplate for your types, but
will still throw runtime exceptions. TypeScript can provide incre-
mental benefit to your JavaScript, but only so far as you're willing to
put in the work and invoke the right options; even when you do,
there is no guarantee that runtime errors, enforced semantic ver-
sioning, or developer-friendly error messages won’t come up. It’s not
just types that deliver these benefits, but also Elm’s design focus of
leveraging types into high-level benefits for the developer.

All these practical properties make Elm code profoundly maintaina-
ble. Not just maintainable by a devoloper looking at your code five
years from now, but maintainable in a way that immediately and
directly affects your developer experience. Youre guaranteed that
adding code to a large Elm codebase won't break existing code. If
there is something wrong, the compiler will likely tell you. The
strength of Elm’s compiler leads to developers having no fear when
refactoring. Old, unnecessary code can be removed with confidence.
Projects can grow as they need to, and development on those
projects generally doesn’t slow down significantly as they get bigger.
Maintainability is Elm’s killer feature.

Elm’s emphasis on maintainability means that even after a few
months, returning to a codebase to add a feature is generally trivial. It
also means you don’t have to worry that beginners will silently break
existing codebases. Eliminating so many of the common pain points
of frontend development allows you to focus on more valuable
problems such as design and business logic. (On a more subjective
note, for me and many others, Elm’s maintainability and developer-
friendliness has made frontend programming a blast.)

WhyElm? | 3

Another nifty aspect of Elm is that you can adopt it incrementally;
there’s no need to rewrite your entire application in Elm to try it out.
Elm compiles to JavaScript and generally renders some HTML, so
integrating some Elm code into an existing project is as simple as
including a JavaScript file and telling it which HTML node to render
to. Existing JavaScript code can easily talk to Elm code through Elm
ports.

To get started with Elm, you don’t need to know many of the things
I'm going to be talking about. I highly recommend starting by writ-
ing some Elm code! You can do that by trying out the Elm online
editor, or just go ahead and install the Elm platform to start devel-
oping for real. I also recommend joining the Elm Slack channel;
there are many friendly developers who love helping those who are
just getting started. You should also check out the Elm architecture,
which is the official guide to Elm written by Evan Czaplicki, Elm’s
creator.

Elm is designed to make sure you benefit from the strong design of
the language without requiring you to know the theoretical under-
pinnings that make it strong. This report is a brief introduction to
the language that focuses mostly on the benefits you can expect
from Elm and what makes them possible. I'll also compare Elm to
other popular technologies to give you some perspective. Let’s jump
right in.

4 | Chapter1:WhyElm?

http://elm-lang.org/try
http://elm-lang.org/try
https://guide.elm-lang.org/install.html
https://elmlang.herokuapp.com/
https://guide.elm-lang.org/

CHAPTER 2

Reading Elm

Its a little hard to talk too much about Elm without showing some
code. This report isn't meant to be a comprehensive guide, but
merely to give you a feel for what the language looks like and how it
works. So, let’s see what some Elm code looks like! (I will warn you
that if youre not familiar with this sort of programming, the code
presented in this chapter may feel a little weird. I encourage you to
squint your eyes and persevere.)

Here’s a basic function called mathPlease that takes two numbers, x
and y, and does some math with them:

mathPlease x y = (x +y) * 5

Elm is an expression-oriented language. There’s no return state-
ment because each expression will naturally result in a value. This
may become a bit clearer when we do something familiar like write
an if expression. Heres a function called aboveTen that takes a
number, x, and returns True if it’s above 10:

aboveTen x =
if x > 10 then
True
else
False

Also note that this function can only result in one type of thing. In
this case it results in a Bool, which can be either True or False. We
couldn’t have one branch that returns a String, while another

branch returns True. In order to capture more complex results, wed
have to define a new type, which we'll get to shortly.

Because Elm is based on expressions, we don’'t have the list of
instructions that is the hallmark of imperative languages. If we need
some workspace to make a more complicated function, Elm has a
let...1in construct, which you may find familiar:

absolutelyMoreMath x =
let
y =3
z 30

in
(x +y) *z
Function application in Elm looks very different than in JavaScript
or Python. Here’s how we can call the function aboveTen with the
argument 5:

aboveTen 5

Parentheses are not used for calling functions, but are instead used
to group things together. Here’s the same function using parentheses
to group the first expression:

aboveTen (20 / 2)

This becomes a bit clearer when we have a function that takes multi-
ple arguments. We don’t need commas to delineate our arguments.
Calling a function with two arguments just requires them to have
whitespace between them. Here’s a basic function, mathPlease,
being called with two arguments:

mathPlease 5 7

Again, for more involved expressions, we can use parentheses to
group our arguments. Here we call that same function, but this time
we use parentheses to capture the expression for the first argument:

mathPlease (20 * 2) 5

Piping Functions

A common pattern in Elm is to create pipelines with the pipe opera-
tor, |>, which allows you to chain functions together. This feature is
borrowed from F# and allows large, multistep data operations to be
presented in an intuitive and readable manner. Here’s a basic exam-

ple:

6 | Chapter2:Reading Elm

import String

formatString myString =
myString
|> String.reverse
|> String.append "Hello
|> String.reverse

This is equivalent to the following JavaScript:

function formatString(myString){
var reversed = myString.reverse();
var with_hello = "Hello " + reversed;
return with_hello.reverse();

}

Elm pipelines are analogous to method chaining in JavaScript,
where you can call methods from an object in a chain, as long as the
function returns a copy of the object. You might have encountered
method chaining in jQuery, or in the Underscore library. Here’s an
example from jQuery:
S$('#my-div')
.height(100)

.css('background', 'blue')
.fadeIn(200);

Enabling method chaining in JavaScript requires some forethought
and setup, as every chainable method needs to return a reference to
the object instead of some other result. In contrast, pipelines in Elm
can be used to chain a series of any functions together as long as the
result of one function matches what’s expected by the next one in
line. This means pipelines are used consistently as a pattern of the
Elm language instead of only in places where library creators have
worked to enable them.

Writing Types

Elm lets you define new types. Coming from JavaScript or Python,
that might sound a bit foreign, but writing your own types is a cen-
tral part of Elm code. Types are how you describe what values some-
thing can have. Once the compiler knows what types of values it can
expect, it can check your work.

Writing Types | 7

Record Types

In Elm we have records, which are just sets of key/value pairs that
feel a lot like JavaScript or Python objects. Using a record type, we
can describe exactly what keys a record has and specify the type of
value for each field. Here’s what it looks like:

type alias Person =

{ name : String

, age : Int

}
Now, whenever we refer to something as a Person, we know that it is
a record with two fields (name and age) where the values are a
String and an Int, respectively. Now that we've described a type, we
can annotate our functions with a type signature that describes the
arguments that the function takes and what the function results in.
This type signature is entirely optional (you might have noticed that
we didn’t write one for our previous functions), but such signatures
are useful for keeping track of your code!

Here’s a function that takes a Person and an Int representing the
number of cats the Person has, and returns a String. The first line
of code is the type signature:

greet : Person -> Int -> String
greet person numberOfCats =
"Hello " ++ person.name ++
", you have " ++ toString numberOfCats ++

n

cats.”

This type signature can be read as “greet is a function that takes a
Person and an Int and results in a String” Arrows separate each
argument, with the last type mentioned being the result of the func-
tion.

Notice that we don’t have to do any defensive checking in this func-
tion. We don’t have to verify that person.name is not null, or even
verify that person has a field called name; this is all checked by the
compiler. Because we don’t need this standard boilerplate, our func-
tions tend to be more concise and meaningful compared to Java-
Script.

Even though type signatures are not mandatory, they are a powerful
tool. You can think of them as enforced documentation that never
gets out of sync with your code. By looking at type signatures, you
can know whether two functions can be chained together, because

8 | Chapter2:Reading Elm

one accepts the output of another, and you can get a better under-
standing of the overall organization of the code. When writing a
library, experienced Elm programmers sometimes start by sketching
it out just as types and type signatures to get a high-level view of what
the library API and organization might look like without having to
write any actual code. In a way, by sketching out the types and type
signatures first, you're creating a specification for your code that will
be enforced. This is a powerful design technique that is either
impossible or not quite as effective in most of the JavaScript world.

That being said, not only are the type signatures optional, but the
compiler can actually write them for you. Compiling a project with
the - -warn flag will cause the compiler to tell you what any missing
type signatures should be.

Union Types

Another handy feature in Elm is union types. There are many names
and variations for this concept—tagged unions, algebraic data types
(ADTs), or some flavors of enum—but essentially union types let
you declare a new type and specify exactly what values it can have.
For example:

type HokeyPokey = LeftFootIn | LeftFootOut | ShakeItAllAbout

Here we have a type called HokeyPokey that can only have one of
three values: LeftFootIn, LeftFootOut, or ShakeItAllAbout. Theres
no secret null. There are no accidental misspellings either, as the
compiler will let you know if something like that pops up. We know
exactly what values a HokeyPokey can have. This feature of union
types means they work really well with case expressions. These two
constructs are common in Elm because they are so clear and power-

ful.

Here’s an example of a function that takes a HokeyPokey and uses a
case expression to cover each situation:

dance : HokeyPokey -> String
dance hokey =
case hokey of
LeftFootIn ->
"OK, got it, left foot in."

LeftFootOut ->
"Wait, I thought I just put my left foot in?"

Writing Types | 9

ShakeItAllAbout ->
"What are we trying to accomplish here?"

This approach is much better than the JavaScript switch statement
because both we and the compiler know exactly what values need to
be handled. This means the compiler can enforce exhaustiveness
checking, so if you forget a possible value in your case expression,
the compiler will give you an error indicating that you’re not cover-
ing all your cases. For example, this code:

dance : HokeyPokey -> String
dance hokey =
case hokey of
LeftFootIn ->
"OK, got it, left foot in"

LeftFootOut ->
"Wait, I thought I just put my left foot in?"

results in the following error:

This 'case' does not have branches for all possibilities.

37|> case hokey of

38> LeftFootIn ->

39> "OK, got it, left foot in"

40>

41> LeftFootOut ->

42|> "Wait, I thought I just put my left foot in?"

You need to account for the following values:
Main.ShakeItAllAbout
Add a branch to cover this pattern!

If you are seeing this error for the first time, check out
these hints:

<https://github.com/elm-lang/Elm-compiler/\
blob/0.18.0/hints/missing-patterns.md>

The recommendations about wildcard patterns and "Debug.crash"
are important!

Detected errors in 1 module.

Union types don't have to be single values; they can also “contain”
other values. Were then able to unpack these values in our case
statement.

10 | Chapter2:Reading Elm

For example, here’s a union type that can be either Hello with a
String attached to it or the value DontSayHiToThemTheyreWeird:

type Greeting
= Hello String
| DontSayHiToThemTheyreWeird

greet : Greeting -> String
greet action =
case action of
Hello name ->
"Hello " ++ name ++

DontSayHiToThemTheyreWeird ->
"Uhh, nevermind."

This is actually how Elm handles the idea of null. There is no null
in Elm as it exists in JavaScript. Instead, it is replaced by the Maybe
type, which can either be your value, or Nothing. For instance:

tellMeIfIHaveANumber : Maybe Int -> String
tellMeIfIHaveANumber maybeNumber =
case maybeNumber of
Nothing ->
"Nope, no number"

Just number ->
"Yup! The number {is

++ toString number

This is a powerful idea: we can capture the entirety of the concept of
null without having it periodically crash our application because we
forgot to check for it for the millionth time. Furthermore, we use
this construct intentionally in our model only when we need the
concept of nullability. This gives us a greater sense of the shape of
our data model and a better intuition about how our application
works.

That does it for the brief intro to Elm’s syntax! You should be good
to go for reading basic Elm. Let's move on to discussing some of the
advantages that you can expect from Elm’s type system. In the next
chapter, we'll discuss some of the high-level concepts that the Elm
language is based on and what practical benefit they bring you.

Writing Types | 11

CHAPTER 3

Why Types?

Now that you know a bit about reading Elm, let’s learn more about
types. If youre coming from a background in JavaScript or Python,
talking directly about types might feel a little foreign, but types in
Elm provide developers with specific benefits:

No runtime exceptions in practice.
Specific, developer-friendly error messages at compile time.

Easy refactoring. Elm’s types ensure that you won't break any-
thing when you need to make a big change. This means it’s easy
to keep codebases cruft-free and well designed.

Enforced semantic versioning of Elm packages. There should
be no reason that a patch change can break an API. Elm auto-
matically enforces the version number of a package, so you
know this is always true.

Extremely reusable code. One of the ultimate goals of software
is code reuse, but too often it's something that’s hard to achieve.
Because of Elm’s types, Elm functions are inherently easy to
reuse, much more so than functions in JavaScript, Python, or
TypeScript. This, and the fact that Elm’s functions are so easy to
test, is directly due to Elm’s use of immutable data, which we'll
cover in a little bit.

Language-wide optimization of external effects. You want to
send an HTTP request? Youre rendering HTML into the DOM?
In either situation, Elm will make sure all external actions are

13

done efficiently, with minimal effort needed from a developer to
optimize them.

We'll cover these benefits in more detail in the following sections.

Beautiful Error Messages and Refactoring

Let’s start by taking a look at some of Elm’s high-quality error mes-
sages. These are available because the compiler has enough type
information to explain to you what went wrong. We'll start with
something basic by trying the classic JavaScript mishap of adding a
number and a string. Here’s an Elm function called classicMishap
that tries to do that:

classicMishap = 5 + "my string”
The Elm compiler will give the following error for this code:

The right side of (+) is causing a type mismatch.

3] 5+ "my string"

AAAAAAAAAAAN

(+) is expecting the right side to be a:
number

But the right side 1is:
String

Hint: To append strings in Elm, you need to use the (++)
operator, not (+).
<http://package.elm-lang.org/packages/elm-lang/core/\
latest/Basics#++>

Hint: With operators like (+) I always check the left side
first. If it seems fine, I assume it is correct and check
the right side. So the problem may be in how the left and
right arguments interact.

First, in instances (online), it’s nice that we have color, documenta-
tion, and hints! Beyond that, though, you might be thinking that this
seems pretty basic. There are errors analogous to this in Python and
JavaScript, so it might not seem impressive. But there is one big dif-
ference between this error and the ones you get in Python and Java-
Script: this one was caught by the compiler instead of at runtime.
This is important for a few reasons, but the one I want to talk about

14 | Chapter3: Why Types?

is that we didn’t have to execute our program with just the right data
and the right series of operations to get this error message to trigger.
In Python and JavaScript, it can be tough to get all errors for every
function or method to trigger. I know I've often worried that I didn’t
cover all my bases in my Python and JavaScript code and that a
rarely invoked, dusty corner of my codebase was going to break my
app. In Elm, the compiler checks your work no matter where it is.
What a relief!

That being said, the preceding error also demonstrates another
important aspect of Elm’s types: there is no implicit type conversion
in Elm. Said another way, Elm doesn't try to guess what you’re trying
to do.

Elm’s type system allows us to go farther than just, “I was expecting
this type and got that one” Let’s look at another common error, the

dreaded typo:
charlie = { name = "Charles", age = 27 }

greetCharles = "Hello " ++ charlie.nmae
"Hello " ++ charlie.nmae

This code will produce the following compiler error:

== TYPE MISMATCH=c=c=cssocouacacacaacncuacuacuamomananaaannans
‘charlie’ does not have a field named ‘nmae’.

5| greetCharles = "Hello " ++ charlie.nmae
AAAAAAAANAAAN

The type of ‘charlie’ {is:
{ age : number, name : String }
Which does not contain a field named ‘nmae’.

Hint: The record fields do not match up. Maybe you made one of
these typos?

name <-> nmae

Elm can make spelling suggestions like this because it knows what
fields the record should have. Detailed error messages lead to a pro-
ductive developer experience, allowing you to focus on more valua-
ble pursuits than tracking down subtle typos.

Beautiful Error Messages and Refactoring | 15

The power of static typing isn’t just about small types like String
and Int. One of the more profound benefits of Elm’s types is having
certainty around your large data structures. It's one thing to say, “I
know this value is always a String” or, “This value will always be an
Int” Those sorts of statements are useful but may leave you think-
ing, “Well, that would be nice, but I've been getting by just fine
without that sort of checking” The value of static typing is entirely
more profound when youre working with a complex record with
many fields that contain Strings, Ints, lists of other records, and
every variation of your data; and you can say, “I know exactly what
forms my data can take and I know my code handles every single
one of them”

This leads us to the topic of refactoring in Elm. If you make a
change to a data structure or function, the compiler will tell you
what code is affected. This means you avoid situations where a tiny
change leads to code breaking in a faraway land. Adding code won’t
break existing code (as we'll discuss in a moment, this is because
Elm is based on immutable data). You can delete code with confi-
dence because you know the compiler will tell you if that code is
being relied on somewhere else. This means you can aggressively
clean up old code and not let your codebase fall stagnant due to fear
of breakage.

From a high-level point of view, the process of making large, sys-
temic changes to Elm code is surprisingly simple. You make the
change you want, follow and address the compiler errors, and then,
once your project compiles, it's likely that youre done. For those
cases where you aren’t, an easily writable test suite will likely to
bring you the rest of the way.

Performance and Reusable Code via Data
Immutability

One of the key features related to Elm’s type system is data immuta-
bility. Immutable data means that once a value has been created, it
can’t be modified.

Elm is based entirely on immutable data, and this has some pro-
found benefits that aren’t obvious at first glance. In fact, your first
thought might be, “How could a language based on immutable data
ever work? You must be nuts!” It turns out to be super useful

16 | Chapter3: Why Types?

though, so let’s talk about what data immutability buys you, starting
with performance.

Data immutability allows for a number of opportunities for optimi-
zation that don’t exist otherwise. It’s one of the reasons Elm has such
fast HTML rendering! Because all data is immutable in Elm, we can
compare deeply nested data structures via reference instead of hav-
ing to compare each and every value manually. This can drastically
improve performance and is especially relevant in Elm’s virtual
DOM implementation, which has to perform a comparison to know
what, if any, part of the existing DOM needs to be updated.

internal representation of your HTML. Were simply
talking about Elm making changes to what’s displayed
on the page.

m If you're unfamiliar with the DOM, it’s just a browser’s

Data immutability is implemented in Elm through the use of a per-
sistent data structure. When updates are made to your data model,
the new data is attached at a specific place in the data structure,
marking it as the most recent version of the data but also preserving
previous states. This persistent model is highly efficient because
even though consecutive versions of your model are being stored,
common data is being shared between these versions. Thus, when a
piece of your model doesn’t change, no additional operations are
performed on it.

Maintaining an efficient history of your data allows for some power-
ful debugging opportunities. Elm’s debugger allows you to navigate
and replay the history of states your app has been through; we'll
cover that in a later section.

Beyond performance, immutability serves as a powerful means for
maintaining a separation of concerns in your code. Again, this prob-
ably isn’t immediately obvious, but it means that Elm can guarantee
that functions don't interfere with each other’s internal details,
which is the key to why Elm code is so reusable and easy to write
tests for.

Specifically, by basing a language on immutable data, we're saying
that a function does not have permission to change the internal
details of another function. To put this another way, in Elm we have
the guarantee that a function will always return the same result if you

Performance and Reusable Code via Data Immutability | 17

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_data_structure

give it the same arguments. When you have a global guarantee that
all functions only operate on the arguments they are given, it means
that you can test each function in isolation.

This building-block characteristic of Elm functions will also help
you know when you can reuse a function. You no longer have to
worry about the entire state of your program when trying to use a
function; you only have to pay attention to the arguments going in
and the data coming out. This drastically simplifies thinking about
your code and also leads to a natural way of organizing code.
Because we know functions only operate on their arguments, we can
organize functions by grouping the ones that operate on the same
type of data.

In order to have the same-arguments/same-result property of func-
tions that makes Elm code so reusable and easy to test, we can't
allow just any function to “talk to the outside” by sending an HTTP
request, modifying the DOM, or opening a web socket. If we did,
then a function could be basing its result on something other than
the arguments!

Of course, “talking to the outside” is ultimately what we care about
in software. Code that performs these kinds of external tasks is gen-
erally referred to as code that has side effects. Instead of allowing
every function to have side effects, each effect is managed in exactly
one place in Elm, called an effect manager. Elm isn’t limiting your
functionality by doing this; it's enforcing a separation of concerns at
the language level. This creates opportunities for language-wide
optimization that the entire Elm ecosystem can benefit from.

Immutability in JavaScript

There are a number of libraries (such as Immutable.js and
seamless-immutable) that can be used to provide immutable data
structures for JavaScript. They’re definitely worth checking out and
can provide some strong gains in performance and modularity. This
is another example of how, if you're sufficiently knowledgeable and
willing to put in the additional work, you can bring some of the ben-
efits of Elm to your JavaScript projects, though you’ll have to remain
vigilant that all new code is written with these techniques. You'll also
have no guarantee that the packages youre using are similarly
knowledgeable and vigilant.

18 | Chapter3: Why Types?

https://facebook.github.io/immutable-js/
https://github.com/rtfeldman/seamless-immutable

In Elm you benefit from data immutability without any additional
work or advanced knowledge. This means beginners often write
performant, modular code without needing to know that these ben-
efits are coming from the idea of immutability. In fact, you can be
sure that all Elm code is going to receive these benefits, whether it’s a
third-party package or code written by your top developer, because
these features are integrated directly into the language.

Language-wide Optimization of External
Effects

In Elm we do things like perform an HTTP request or open a web
socket by describing what we want to happen and letting the Elm
runtime actually do the dirty work. What is happening is that we're
separating describing what we want done from actually performing
that action. Elm’s types are how Elm enforces that separation. By
keeping these two things separate we open up opportunities for con-
sistent optimization, and we have a strong assurance that the effect
we want is executed correctly every time. This is the essence of Elm’s
managed effects.

This isn’t that foreign of an idea. A virtual DOM (like the one used
in Elm or even the one implemented by React) is similar. The
essence of a virtual DOM is that we describe what the HTML should
be at any given point and the virtual DOM is in charge of efficiently
batching updates to the page being displayed. We're putting all the
code for giving updates to the DOM in one place and saying, “If you
want to update the DOM, talk to the code thats managing that”
This solves the problem of separate parts of a large codebase each
trying to update the DOM independently and giving heart attacks to
developers in the process. This approach not only made for perfor-
mance gains because DOM updates could be batched, but also laid
the foundation for handling larger codebases.

Elm uses this idea of separating describing what we want done and
executing it as the standard pattern for handling all effects, generally
to great benefit. Because each effect has a single codebase that’s in
charge of managing that effect (generally referred to as an effect
manager—who could have guessed?), we can optimize that one
piece of code and have the entire Elm ecosystem enjoy the benefits.

Language-wide Optimization of External Effects | 19

What do these optimizations look like? The specifics can vary, but
generally involve batching work. For example, if multiple GraphQL
queries are made to a single resource, Elm’s GraphQL effect manager
can batch them into one query. The web sockets effect manager
takes care of keeping a web socket open. If a connection goes down
in the middle of sending data, the data is queued and will be sent as
soon as the connection comes back online. Since this behavior is
handled automatically by the effect manager, Elm code dealing with
web sockets tends to focus specifically on what data to send and
what to do with the data that’s received. That tends to be the impor-
tant part, right?

Should we care if an HTTP request is synchronous or asynchro-
nous? In Elm, we don't need to; we just describe what we want (such
as a GET request to a URL that should return JSON with a certain
structure), and the Http package takes care of executing it for us.
This is great, though you might be wondering what happens when
an effect fails, such as when an HTTP response is something other
than a 2XX code. Wouldn't this generate a runtime error?

Operations that can fail (which are generally only associated with
effect manager code) will pass back any error messages to you as
data so that you can gracefully handle the error in the context of
your app. In fact, for every effect that can fail, you're required by the
language to account for what the app should do if that effect fails,
even if it’s to do nothing. Coming from a language where anything
can fail in any number of confounding ways, this may sound like a
lot of work, but because Elm has isolated the tasks that can fail into
one place, the amount of code we need to write to ensure that every
possible outcome is covered is minimal.

To be a little more concrete, in Elm there’s no special syntax to han-
dle an error. Specifically when dealing with an effect that is failable,
we get back a Result type, which can be either the value Ok with the
data that we requested or the value Err with a string describing what
went wrong. We can use a case expression to account for each situa-
tion:
handleResponse response =
case response of

0Ok yayData ->
-- Now we handle our new data.

Err errorString ->

20 | Chapter3: Why Types?

- We had an error instead.
- Better handle it gracefully.
- Pirouettes?

Where Are JavaScript Promises?

If you're working with JavaScript, it’s likely you’ve encountered Java-
Script promises as a way to structure multistep asynchronous opera-
tions.

In Elm, we already have a separation between describing what we
want done and execution. So it probably isn't that surprising that
describing a series of things we want done, executing them, and bail-
ing out early if one of them fails isn’t that difficult. In fact, this is the
job of the Task module.

The advantage of Elm tasks over JavaScript promises is based on
Elm’s type checking. Long chains of asynchronous operations that
depend on one another can be tough to code and test, so it’s a relief
to have Elm’s assurances that every type of data is being handled cor-
rectly, that we've covered every case that can fail, and that our (pos-
sibly long-running) series of operations isn't going to create a
delayed runtime error. We know that all our external errors are
accounted for gracefully.

Effect managers in Elm not only allow us to keep the guarantees that
make our code modular and easily testable, but also to interact with
the real world and make cool stuff. Even beyond this, they allow for
consistent optimization across the language and for handling the
boilerplate details necessary for an effect so that the code in our app
is more focused on the meaningful parts.

EIm Types Versus TypeScript

TypeScript is Microsofts typed superset of JavaScript that compiles
to standard Javascript. It has types, so how is this different from
Elm?

TypeScript is based on the idea of adding incremental value to your
JavaScript by adding the option of type checking. This means you
can get a guarantee that a function can only be called with the right
arguments. This is definitely an improvement over standard Java-
Script, but we still miss out on some of the strongest benefits that we
get in Elm.

Where Are JavaScript Promises? | 21

Elm’s errors are much cleaner and more informative than Type-
Script’s. Here’s an example taken from the TypeScript website:
function greeter(person: string) {

return "Hello, " + person;

}
var user = [0, 1, 2];

document.body.innerHTML = greeter(user);
which results in the following compiler error:

greeter.ts(7,26): Supplied parameters do not match any signature
of call target

An analogous error message in Elm would be:

== TYPE MISMATCH =---------mmmmmmmmmmmmmmmmmme o e - src/Code.Elm
The argument to function ‘greeter’ is causing a mismatch.

86| greeter [0, 1, 2]

AAAAAAAAAAN

Function ‘greeter’ is expecting the argument to be:
String

But it {is:
List number

Detected errors in 1 module.

The differences between these error messages may seem unimpor-
tant, but take a look at how much more specific the Elm error mes-
sage is. This specificity is important when we progress beyond tiny
example functions. If the argument required by a function is some-
thing like a complex object, TypeScript will still just report that
something is wrong. Elm, by contrast, will tell you specifically what
is wrong and sometimes give you hints about how to fix it.

In addition to the differences in error messages, we can't have the
same level of confidence in TypeScript’s types as we can in Elm.
TypeScript’s any type lets you opt out of type checking. This might
appear to be a good idea because it seems like less work, but this is a
shortcut that lets in all sorts of subtle errors that Elm will always
protect you against. Even beyond the any type in TypeScript, com-
mon JavaScript pitfalls also still exist: two prime examples are the

22 | Chapter3: Why Types?

https://www.typescriptlang.org/docs/tutorial.html

fact that TypeScript allows any value to also be null and that Type-
Script doesn’t provide an error for case statements that don’t cover
all situations. Both of these things can be caught by the TypeScript
compiler if you enable the right options, which is fine on a certain
level —except now we've lost the “no runtime errors” guarantee of
Elm and replaced it with, “If you have some compiler options
turned on and do all the necessary work, some code will be better,
but who knows about that library youre using. It was probably cre-
ated by good developers, right?”

In Elm we enjoy a strong baseline of confidence in other people’s
code. Protecting so many of the error-prone areas with types and
the compiler means that all Elm code enjoys effectively no runtime
exceptions, enforced semantic versioning practices, and ease of
maintenance—not just code written by developers who have the
right knowledge, and enough time and awareness to always do
things correctly. (The best developers I know don’t even trust them-
selves to always do things correctly!)

Another difference is that TypeScript, like JavaScript, is based on
mutable data, while Elm is based completely on immutable data.
Because of this, all the benefits of data immutability that we just dis-
cussed, including performance optimization, strong modularity, and
enforced separation of concerns, are much harder to attain in Type-
Script. While you can implement immutable techniques in Type-
Script, its not a language that’s really meant to work well with
immutability. The property of same-arguments/same-result can
never be assured in TypeScript, making tests harder to write and
reuse harder to achieve.

TypeScript can improve your JavaScript. You'll still have a number
of JavaScript “gotchas” to deal with, but you will have some tools to
lessen their impact, even if they are behind a compiler option. Elm’s
mentality, however, is that best practices should be turned on by
default or even be mandatory. In short, while TypeScript can bring
incremental benefits to your JavaScript, Elm doesn’t have a large
number of the issues in the first place. Elm goes beyond using a type
system to check that some of your arguments are correct, and offers
high-level benefits like no runtime errors in practice, enforced
semantic versioning of packages, and fantastic error messages.

Now it’s time to take a tour of the Elm architecture.

Elm Types Versus TypeScript | 23

CHAPTER 4
The Elm Architecture

Elm programs have a standard architecture which consists of a data
model, a view function that renders that model into HTML, and an
update function that handles all updates to the model. You might
find this familiar, as it'’s a variation of the Model-View-Controller
pattern.

The first step in writing an Elm app is to register these components
with the Elm runtime. A basic Elm application looks like this:

main =
Html.beginnerProgram
{ view = view
, model = 0
, update = update
}

type Msg
= Increment
| Decrement

update : Msg -> Model -> Model
update msg model =
case msg of
Increment ->
model + 1

Decrement ->
model - 1

view : Model -> Html Msg
view model = div [onClick Increment] [text (toString model)]

25

Notice that it doesn’t matter in which order everything is declared in
our code (in our main definition, we reference our view function
and our update function even though they are defined later in the
file). This is because our file isn't executed from top to bottom, but is
instead a collection of types and functions. Execution is handled
separately by the Elm runtime using the functions that we provide it.

All the data used in an Elm application is described in the data
model. Commonly this is captured as an Elm record, but any type
can be used as the model. In this example, our model is just a num
ber. We didn’t need to tell the compiler this because it inferred that
fact when we used addition and specified the initial value as 0.

Our update function takes a Msg and our Model and results in an
updated Model. Msg is a normal union type like we discussed in
Chapter 2. These Msgs are handed to the update function when the
specified event fires. This means our update function generally takes
the form of a comprehensive case expression. In human terms, this
means the update function serves as a table of contents for every-
thing that can be done to our model. The update function is also the
only place where changes to the model can be made. This drastically
simplifies navigating the code and tracking down where something
happens.

Elm’s view function makes use of a virtual DOM. Similar to in
React, in Elm you describe your view as functions, which the Elm
runtime will render as HTML. When your model changes, the vir-
tual DOM performs a diff operation to see what needs to be upda-
ted, and then makes the necessary changes to the DOM as efficiently
as possible.

Upon closer inspection, we can see that our view can also send Msgs
to our update function. In our view we have onClick Increment,
which should feel intuitive. When we put this in our code, the Elm
runtime takes care of calling our update function with the value
Increment when a click event occurs.

Standardizing the language on a strong architecture means that
beginners and experts alike have a solid starting point for well-
organized code. It also simplifies navigating other developers” Elm
code, because you know to look for a model, a view, and an update
function.

26 | Chapter4:The Elm Architecture

Interop with JavaScript

The main method that JavaScript can use to communicate with Elm
is via ports. Data coming in from JavaScript land first needs to be
translated into Elm types. For most common types this can be done
automatically. For something more nuanced like Elm’s union types,
where we don’t have a direct analog in JSON, you’ll have to write a
small bit of code called a JSON decoder, which creates the type you
need from the data that’s provided. There are also tools that can
automatically generate Elm decoder code directly from JSON . They
can’t generate code for every situation, but they can get you most of
the way there and point you to what still needs attention.

This process is fairly straightforward (and beyond of the scope of
this report) and is how most communication with Elm works. When
outside data comes in, it’s checked at the gate. If the data isn’t well
formed, then Elm doesn’t throw a runtime error (that would be
silly), but instead captures an error message describing what went
wrong and provides it to you in a manner where you can have your
application gracefully deal with it.

Adopting EIm Incrementally

There’s no need to adopt Elm for the entirety of your project in one
go. You can adopt Elm incrementally by giving it control of a single
HTML node of your app. That way you know that this one piece of
HTML is completely managed by Elm, and the rest of your page can
be run by other technologies as you see fit. This is obviously useful
when dealing with a large codebase that’s already in production.

Here’s some basic HTML that shows how to embed Elm code that
has been compiled to my-elm.js and attach it to an HTML node:

<body>
<div id="elm"></div>
</body>
<script src="my-elm.js"></script>
<script>

var node = document.getElementById('elm');
var app = Elm.Main.embed(node);
</script>
Some people have even done work that shows how to write React
components in Elm, so more sophisticated incremental integration
of Elm is possible.

Interop with JavaScript | 27

https://github.com/eeue56/json-to-elm
https://github.com/evancz/react-Elm-components
https://github.com/evancz/react-Elm-components

Elm Versus React

React is a JavaScript library made for the view part of the frontend,
which means taking your data model and rendering it as HTML.

Both React and Elm utilize the idea of a virtual DOM, which decou-
ples declaring what HTML you want and actually rendering the
changes as HTML. This is done so that all changes to the DOM can
be done in one batch and rendered efficiently by the browser. This
decoupling is great for another reason: it allows for a much more
declarative style of programming. Instead of creating a tangle of
functions that can each modify the DOM independently, we can
describe what the HTML should look like for a given model and let
a function calculate what changes need to be made.

Many of the differences between React and Elm can be traced back
to the languages themselves. In Elm, we still have the guarantee of
no runtime exceptions in practice. Were also able to catch virtually
all trivial—and a large number of meaningful—errors at compile
time without needing to run our program in a certain way with a
certain state to see if it errors. React does have some type-checking
abilities, but this is all done at runtime and requires the code with
the bug to be executed before React logs an error. It’s also not nearly
as comprehensive as Elm’s checking.

React is designed to support using immutable data to store state,
though it can’t make you use it in your entire project. Because of
this, there are a number of subtle bugs that can occur in your React
code as a result of hidden mutable state. An example of this (as
given by the React documentation) is that a component may not
render if you mutate certain props. This is behavior that would be
hard to mimic in Elm. If there was an issue like this in Elm code, itd
likely show up as a compiler error. The React documentation recom-
mends focusing on maintaining immutable state to avoid these
issues. This is in contrast to Elm having data immutability built in,
which means you can enjoy the performance benefits without hav-
ing to worry about subtle pitfalls of switching between mutable and
immutable data.

React incorporates some of the same ideas that power Elm, but can
only fully implement a portion of them due to the limitations of
JavaScript. It’s forced to implement the rest as recommendations and
incremental (meaning not language-wide) tools. You can get some of

28 | Chapter4:The Elm Architecture

https://facebook.github.io/react/
http://bit.ly/2miY6gh
http://bit.ly/2miY6gh

the reliability of Elm with React, but only if you know all the subtle
traps to avoid and have the time to ensure that you've avoided them.

Many best practices in Elm are simply built into the language. In
React (and most projects written in JavaScript), best practices and
warning signs are communicated through the documentation. The
question is, would you prefer be continuously scouring the docu-
mentation for these hidden surprises, warnings, and performance
tips, or do you want the lion’s share of this work to be taken care of
by the compiler?

Elm Versus Vue.js

Theres a trend toward libraries being more stripped down and
closer to the technologies that theyre trying to use (HTML, CSS,
and Vanilla JS). This is the general approach of Vue.js, which makes
the framework feel incredibly familiar. The idea is that Vue.js allows
you to write simple JavaScript with the hope that when something
does break, there wont be mountains of abstract indirection to
throw you off course.

Vue.js doesn't change anything fundamental about JavaScript. It
can’t provide you with the high-level benefits that are built into Elm.
If youre worried about code breaking and being hard to debug,
maybe the answer isn’t to write simpler JavaScript but to use a lan-
guage that has effectively eliminated runtime errors in the first place
and provides amazing, specific compile-time errors that tell you
exactly why something might break.

It's tempting to think that Vue.js will be easier to learn than Elm.
While Elm may seem foreign to established frontend developers,
much of the learning curve comes from habits that are ingrained
from having done things differently for many years and having to
reevaluate our coding intuitions. Let’s be real—given a week, Id be
surprised if a competent web developer couldn’t become productive
in Vue.js or Elm. The learning curve for each is generally low, and
both have excellent documentation.

Once you get past the initial learning curve, however, Vue.js and
Elm aren't equal. In my opinion, beginners who code in Elm end up
with maintainable, performant, runtime error-free code from the
start because these things are built into the language. The same can't
be said for Vue.js code.

ElmVersusVuejs | 29

https://vuejs.org/

Now that we've looked at the standard Elm architecture, let’s take a
look at the tools that are available to us when we program in Elm.

30 | Chapter4:The Elm Architecture

CHAPTER 5
Elm Tooling

The Elm platform consists of several executables that all help with
Elm development. elm-make is the compiler, which can compile Elm
either to a JavaScript file or to an HTML file with that JavaScript
embedded. elm-repl, Elm’s REPL, is very useful, especially when
you're learning Elm.

This chapter provides a rundown of the other major Elm tools.

elm-package

Elm has its own package manager, elm-package, which is backed by
GitHub.

Elm is able to calculate and enforce semantic versioning for all pack-
ages published through elm-package, which is fairly extraordinary.
A version number that uses semantic versioning takes the form
three numbers separated by periods. Each number indicates what
sort of change has occurred compared to previous versions. Here’s
what the three numbers mean, from left to right:

Major
A piece of the existing API has been changed or removed.

Minor
Something has been added, but nothing existing has changed.

31

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

Patch
Something has been changed which does not affect the API,
such as documentation or an internal implementation detail.

It's worth restating this: Elm enforces semantic versioning for all Elm
packages. If you see an Elm package move from 2.0.4 to 2.0.5, for
example, you are guaranteed that the API has not changed.

This is only possible because of static typing and is a direct result of
being able to know the type signatures for every function that is
exposed in the API of your package.

This also means that you can ask elm-package what your version
number will be, and it'll tell you both what your new version num-
ber is and specifically what changes are driving this new version
number. Here’s an example that was created by deleting a function
called repeat from a package and then running elm-package diff:

Comparing mdgriffith/elm-example 1.0.0 to local changes...
This is a MAJOR change.

Removed:
reverse : String -> String

It tells us immediately that a function called reverse which takes a
String and results in a String has been removed. How cool is that?

This adds confidence in Elm packages both on the user side and on
the package creator/maintainer side. From the user side, it makes
the process of updating your dependencies straightforward and
understandable. From the package creator/maintainer side, knowing
when you've broken your API is an enormous benefit. It means
you'll never accidentally break your API. This is another example of
the way in which the guarantees that Elm can provide about your
code not only improve the quality of the software youre writing, but
also raise the level of confidence you can have in other developers’
code and packages.

Beyond enforced semantic versioning, packages published through
elm-package are also required to have documentation comments on
all functions and types that are exposed as part of the API. HTML
documentation is then automatically generated from the source
code and published on the Elm packages website.

32 | Chapter5:ElmTooling

http://package.elm-lang.org

The Elm Debugger

Recreating bugs in a browser can be challenging. This was recently
addressed in Elm’s 0.18 release, which focused on creating a debug-
ger that could provide insight into what is going on in your applica-
tion and as well as including tools that let you replay and examine
bugs.

In an Elm program, the model is updated every time the update
function receives a Msg. When we turn on the debugger with the
debug flag (- -debug), we get an interactive menu that shows us each
data update as it’s performed. We can then visually navigate what's
going on and rewind to a specific state and inspect our code.

This Msg history is also exportable/importable, so it can be replayed.
This is a powerful tool for cross-browser testing.

There are also advantages to shipping the Elm debugger as a stan-
dard language tool. It means that everyone can standardize on a
centralized toolset, and it provides clear guidance to beginners on
how they can get better insight into their Elm programs.

Compared to the Redux Debugger

Redux is a common library for managing a data model in JavaScript
apps. Like Elm, it has a debugger in its developer tools, which allows
you to navigate and rewind to a specific point in the history of
updates in your model. There are also some additional packages that
allow you to export/import your update history from Redux.

The main difference between the Redux developer tools and the Elm
debugger is that Elm is able to verify that an exported update history
can be replayed with the code that is running. Elm accomplishes this
using the same mechanism that’s used to enforce semantic version-
ing. Specifically, we know that if the types that are required by an
update history have changed, then the history won’t be replayable.
Because Redux doesn’t have access to the type information that Elm
has, it can’t verify that a set of replay data is compatible with the run-
ning code.

This is an important but subtle point. If you aren’t sure that a replay
can be used with your current code, then you’ll likely end up debug-
ging your debugging tool, or debugging bizarre side effects of
incompatible code, instead of actually solving the bug you captured.

The Elm Debugger | 33

elm-reactor

elm-reactor is a small local server that automatically compiles and
serves any .elm files in the local directory. This makes development
pretty quick and is a good way to get started developing! Because
this feature is used purely for development, it has the Elm debug
mode enabled by default.

elm-format

elm-format, as you might imagine, is an automatic code formatter
for Elm, similar to gofmt for the Go language. At the time of writing
elm-format isn't part of the official Elm platform, though it’s likely
to be included at some point in the future. You can download it
from the elm-format GitHub page.

elm-format will automatically reformat your Elm code into Elm’s
best practices for code style. Most developers set it to run whenever
an Elm file is saved. Using elm-format means not having to worry
about minor style issues, so you can focus just on coding. This cuts
out quite a bit of busy work!

Having code that’s always in a consistent style helps development
significantly, especially when you have to navigate someone else’s
code. This effect is compounded the more people use this tool, and
fortunately it is used extensively throughout the Elm ecosystem.

It may not be immediately obvious, but having a strong code for-
matter also improves your development workflow by giving you
quick, informal feedback on your syntax. elm-format will only
reformat valid Elm code, so if you save a file and it doesn’t correct
your slightly off indentation, you can infer something is wrong with
your syntax. Many times this nudge is all you need to catch a miss-
ing parenthesis or a misplaced letter.

You might be a little wary of using a code formatter if youre not
used to working with one, especially if you've worked with a bad
code formatter in the past. Nobody wants to fight with a tool to get
their code to look right. However, this rarely happens with elm-
format. A lot of thought went into the style decisions that drive elm-
format, and it’s frequently mentioned as one of the most useful tools
in the Elm ecosystem.

34 | Chapter5:ElmTooling

https://github.com/avh4/elm-format

Similarly, you may be a little surprised, and maybe initially frustra-
ted, to learn that you can’t configure the tool, for example, by setting
your own indentation level. This is by design and key to what elm-
format is trying to achieve. If elm-format was configurable, then
the idea of a globally consistent, best-practices style would be lost.

elm-test

elm-test is another tool that isn’t part of the official Elm platform
but has become a de facto community standard.

Just because Elm is based on static types and has a wonderful com-
piler doesn't mean we don't have to write tests for our code. It just
means that our tests don’t have to cover the cases that the compiler
covers for us. We know that all functions will be called with the cor-
rect type, and that there are no hidden nulls or functions that are
being called incorrectly. We just need to test for values that aren't
caught by the type checker.

We have some things going for us in Elm that help with testing. We
know that a function that is given the same arguments will always
give the same result. This means we don’t have to set up a huge envi-
ronment to run a test; we can test any function in isolation and
know that it will work the same no matter where it occurs in our
code.

What does a test suite in Elm look like? Here’s an example showing a
simple test for the String.reverse function:

testReverse =
test "reverses a known string"

A0 ->
"ABCDEFG"

|> String.reverse
|> Expect.equal "GFEDCBA"
)

The only thing in this example that we haven’t seen before is the
\ -> syntax, which is how you define an anonymous function in
Elm. The main thing here is that test is a function that takes a
string and a function that returns a test result. We mentioned the
pipe operator (|>) before, and here we can see it in action. It chains
together a series of functions that can be read from top to bottom.

elmtest | 35

elm-test supports fuzz testing, which is a powerful technique.
Essentially, we describe the types of values that our function takes
and let elm-test generate a large number of random arguments to
this function. By doing this, we increase our testing coverage enor-
mously. This is useful for catching nonobvious corner cases hiding
in your code. Here’s a simple fuzz tester that tests String.reverse,
this time with randomly generated input:

stringFuzzTest =
fuzz string "Test with 100 randomly generated strings!"
(\randomlyGeneratedString ->
randomlyGeneratedString
|> String.reverse
|> String.reverse
|> Expect.equal randomlyGeneratedString

)

Tests in Elm are generally easy to write, not only because of the
excellent elm-test library, but also because of the guarantees the
language provides around functions. Even though we just men-
tioned it, it bears repeating: the same-arguments/same-result prop-
erty of Elm makes testing easy and robust, especially in large
codebases.

Now that we've covered some of the tools at your disposal when
working with Elm, let’s look at a few specific Elm packages that are
commonly used.

36 | Chapter5:ElmTooling

CHAPTER 6
A Tour of the Ecosystem

Elm is still a young language. It doesn't yet offer the vast number of
packages that are in the JavaScript NPM ecosystem, though the
packages that do exist are generally high quality and have all the
same guarantees that the Elm language offers. While the number of
available packages is growing fast, it's unlikely that there is an out-
of-the-box solution for absolutely everything. That being said, you
can always interop with existing JavaScript libraries or even write an
Elm package yourself.

The primary hubs of the ElIm community are the elm-discuss Goo-
gle Group, the Elm subreddit, and the elm-lang Slack channel,
which is generally full of people who are happy to assist newcomers
and answer questions. The Elm community has been incredibly pos-
itive and helpful in my journey to writing better frontend code; it’s
one of the reasons I keep coming back to Elm (in addition to what
the language can do technically).

Let’s take a look at a couple of Elm packages and discuss how they
approach their areas of frontend development compared to solu-
tions outside of the Elm ecosystem.

37

https://groups.google.com/forum/#!forum/elm-discuss
https://groups.google.com/forum/#!forum/elm-discuss
https://www.reddit.com/r/elm/
http://elmlang.herokuapp.com/

elm-css

CSS presents a number of challenges, including debugging subtle
style errors and the unenviable task of maintaining CSS for large
projects. Fortunately, we have a tool in Elm that makes handling
CSS much less error prone: elm-css.

elm-css is a CSS preprocessor akin to Less or Sass. The main advan-
tage of describing CSS in Elm is that we bring type checking to CSS,
which makes it nearly impossible to write invalid CSS. In practice
this means receiving well-written Elm error messages at compile
time for our CSS instead of having to track down typos and silently
invalid properties (were you aware that the RGB color channels can't
be floats, and will fail to render if they are?). Properties can’t be writ-
ten incorrectly because the compiler won't allow it. You can't provide
an incorrect value.

Of course, we can’t catch absolutely everything with our type sys-
tem. For values that can’t be type-checked (such as validating that a
hexcode for color is valid), elm-css will log a build-time validation
error.

Here’s an example of what a stylesheet in elm-css looks like. You
have the option of rendering this as an actual stylesheet or rendering
a specific style inline in your view function:

module MyCss exposing (..)

import Css exposing (..)
import Css.Elements exposing (body, 1i)
import Css.Namespace exposing (namespace)

type CssClasses
= NavBar

type CssIds
= Page

css =
(stylesheet << namespace "my-css")
[body
[overflowX auto

38 | Chapter6:ATour of the Ecosystem

https://github.com/rtfeldman/elm-css
http://lesscss.org/
http://sass-lang.com/

, minWidth (px 1280)
1

, class Page
[backgroundColor (rgb 200 128 64)
, color (hex "CCFFFF")
, width (pct 100)
, height (pct 100)
, boxSizing borderBox
, padding (px 8)
, margin zero
1
, id NavBar
[margin zero
, padding zero
, children
[11
[(display inlineBlock) |> important
, color primaryAccentColor

1

primaryAccentColor =
hex "ccffaa"

elm-css represents CSS classes and IDs as union types instead of
strings, which means the compiler will let you know if you misspell
one and even make suggestions about what you might have meant.
If you try to use a class or ID that hasn’t been written yet, the com-
piler will also complain. This feature of elm-css is a powerful tool
for stylesheet maintenance because it means that if you delete a class
and its style definition from the stylesheet, the compiler will give
you an error if that class is still in use.

Taking inspiration from CSS modules, elm-css has namespacing,
which allows you to scope your styles as you see fit. Similarly, nested
media queries akin to those in Sass and Less are also available, as is
support for mixins.

All in all, elm-css is about bringing the robustness that Elm enjoys
to modern CSS. Because elm-css covers the most common, trivial
mistakes and protects against some of the subtler aspects of CSS
with compile-time and build-time errors, we can focus on more
important issues such as design and user experience.

elm-css | 39

elm-style-animation

Depending on the design goals of your app, clean animation can be
a crucial component or necessary polish to keep things feeling
modern. It’s easy enough to use CSS animations and transitions in
Elm, but they have several limitations that make them unsuitable for
more complex interactions. First, they can’t be interrupted smoothly.
You also can’t attach a callback to be called when an animation hits a
certain keyframe or finishes. And you have no way of utilizing
springs to model your movement. (In case youre new to animation,
springs can be used instead of easings to make it much easier to cre-
ate natural-looking animations.)

elm-style-animation is an Elm library that lets us take animation
in Elm beyond what we can accomplish with CSS animations. It
does this by handling the animation math manually and rendering it
as inline CSS. Here’s what a reasonably complex animation looks
like in Elm:

myAnimation =
Animation.interrupt
[to [opacity 1
, left (px 200)
1

, send DoneFadingIn
, Lloop
[to [rotate (degrees 360)]
-- Reset to 0 degrees (happens instantaneously).
, set [rotate (degrees 0)]
]
1

This example starts with Animation.interrupt, which means that
this animation will interrupt any ongoing animation if necessary.
This is done smoothly, maintaining momentum values behind the
scenes so that each property changes direction and velocity in a nice
physics-based movement. Then the code sends a DoneFadingIn
message to the main update function once the first step has been
completed. The animation then begins to rotate forever, or at least
until another animation interrupts it.

Here’s what the same animation would look like in Velocity.js:

40 | Chapter6: ATour of the Ecosystem

https://github.com/mdgriffith/elm-style-animation

// We start with an element selected from the DOM.
Selement
.velocity({ opacity: [1, "spring"]
, left: ["200px", "spring"]
1o
complete: function(elements)
{ console.log(elements); }

.velocity(%)rotateX: "+=360deg" },
{ loop:true, easing:"linear" });

If you squint you can see the similarities between these two code
examples. There’s an obvious sequence of events. Both examples
have the capability to notify other code; the Elm code sends a mes-
sage while the JavaScript code calls a callback function.
Implementation-wise, theyre both synced to the browser animation
frame, ensuring as close to 60 frames per second as possible. So,
what are the differences?

Velocity.js was originally written as a performant, drop-in replace-
ment for jQuery’s .animate(), and it benefits from jQuery’s ability
to get something working quickly. However, both Velocity.js and
jQuery predate the recent explosion of frontend frameworks, and it’s
not entirely clear how Velocity.js would integrate with any given
JavaScript framework, especially one with a virtual DOM. In some
cases there are specific modules that bring Velocity.js to a frame-
work, like velocity-react, which encapsulates the Velocity API as
a React component. In fact, most JavaScript frameworks have their
own custom way of describing and implementing animations. There
are many options, each with its own intricacies and pitfalls.

In contrast, our Elm animation can be used in any Elm application
without any special modifications. That will likely continue to be
true as Elm evolves, and this reusability is directly because of Elm’s

types.

This is how software should be. Every animation library for the
browser that’s not based on CSS animations does two things: allows
you to describe an animation and renders that animation as inline
CSS properties. How many truly different ways of doing this do we
need, and why should we have to continuously adapt this concept to
new frameworks? In an ideal world there would be one library that
could be used anywhere. Elm’s types enable strongly reusable code,
which makes that much more of a possibility than in JavaScript.

elm-style-animation | 41

Of course, an Elm animation also has all the guarantees of the Elm
language. The compiler won’t let us write an invalid animation. If we
run into an issue, the compiler will gently point us in the right direc-
tion. This trickles down to each component of the animation: it’s
impossible to write a length unit (such as pixels) when an angle unit
is required, or to provide a bare number when a number with a unit
is needed. The type system guarantees that our DoneFadingIn mes-
sage is a message that our update function knows about and has
covered.

Hopefully learning about these two packages gives you some sense
of the kinds of goodies the EIm community has to offer. The number
of Elm packages is growing by the day, covering many areas of
development. Who knows, maybe you’ll get inspired and contribute
one yourself!

42 | Chapter 6: ATour of the Ecosystem

http://package.elm-lang.org/

CHAPTER 7
S0, Why Elm?

You may think I sound like a broken record, but here are the explicit
benefits Elm can provide you:

« No runtime exceptions in practice
o Beautiful compile-time errors
« Enforced semantic versioning for Elm packages

« A refactoring experience that makes you feel invincible because
it’s so easy and robust

« Language-wide optimization of external effects, which results in
strong performance and best practices built into the language

« A litany of well-designed devoloper tools

Elm provides these benefits as a part of the language and the ecosys-
tem. Most of them are built into every Elm project, so you don’t
need to turn them on or track down some specific technique in the
documentation. You can get some, but not all, of these benefits in a
JavaScript project if you know the right concepts and are willing to
work hard. But Elm takes care of these things for you. Because these
features are built into the language, the entire Elm ecosystem benefits
from them. This means you can have high confidence in third-party
Elm code.

The learning curve for Elm is short even though parts of the lan-
guage may feel foreign. Beginners and experienced web developers
alike should have no trouble getting started. This is especially the

83

case if you engage with the community on the Elm Slack channel or
the Elm subreddit.

If you want to give Elm a test drive, you can adopt it incrementally
alongside existing technologies. You don’t need to make a large
commitment to try it out in a real-life scenario. Give it a go to see
what the experience is like. Most companies that adopt Elm try it
with a low-stakes example first.

The ecosystem and community are growing. The first Elm confer-
ence happened in 2016 in St. Louis, with a second, separate one
coming up in Paris in June 2017. High-quality Elm packages are
being published with surprising frequency, with more projects on
the horizon.

Elm is being used by companies to solve real problems. As of this
writing, NoRedInk has 95k lines of Elm code in production and still
hasn’t encountered a single runtime exception. That’s a bit mind-
boggling. Other companies, such as Pivotal Tracker, Futurice, and
Gizra, all tell similar stories of no runtime exceptions, a simple
learning curve, and improved developer productivity.

Elm could be your super power. By freeing you from having to deal
with many of the frontend issues that waste time and money, Elm
lets you focus on the important and inherently more valuable prob-
lems of user experience, design, and business logic. Elm made me
fall in love with frontend development again after many frustrating
experiences. I highly recommend giving it a try.

44 | Chapter7:So, Why Elm?

https://elmlang.herokuapp.com/
https://www.reddit.com/r/elm/
https://twitter.com/rtfeldman/status/836311109120319488
https://www.pivotaltracker.com/blog/Elm-pivotal-tracker/
http://futurice.com/blog/elm-in-the-real-world
http://www.gizra.com/content/thinking-choosing-elm/

About the Author

Matthew Griffith is a developer-in-residence at Cornell Tech with a
passion for clean code that doesn’t break. He’s worked in cheminfor-
matics and web development.

	Copyright
	Table of Contents
	Chapter 1. Why Elm?
	Chapter 2. Reading Elm
	Piping Functions
	Writing Types
	Record Types
	Union Types

	Chapter 3. Why Types?
	Beautiful Error Messages and Refactoring
	Performance and Reusable Code via Data Immutability
	Immutability in JavaScript
	Language-wide Optimization of External Effects
	Where Are JavaScript Promises?
	Elm Types Versus TypeScript

	Chapter 4. The Elm Architecture
	Interop with JavaScript
	Adopting Elm Incrementally
	Elm Versus React
	Elm Versus Vue.js

	Chapter 5. Elm Tooling
	elm-package
	The Elm Debugger
	Compared to the Redux Debugger

	elm-reactor
	elm-format
	elm-test

	Chapter 6. A Tour of the Ecosystem
	elm-css
	elm-style-animation

	Chapter 7. So, Why Elm?
	About the Author

