
t h e f i n e s t i n g e e k e n t e r ta i n m e n t

 No Starch Press

Founded in 1994, No Starch Press is one of the few remaining independent technical
book publishers. We publish the finest in geek entertainment—unique books on
technology, with a focus on open source, security, hacking, programming, alternative
operating systems, and LEGO. Our titles have personality, our authors are passionate,
and our books tackle topics that people care about.

Visit WWW.NOSTARCH.COM for a complete catalog.

				

www.nostarch.com

No Starch Press 2016 Hacking bundle Sampler. Copyright © 2016 No Starch Press, Inc., All rights reserved. the car hacker’s handbook © craig smith. ios application

security © david thiel. rootkits and bootkits © Alex Matrosov, Eugene Rodionov, and Sergey Bratus. electronics for kids © Øyvind Nydal Dahl. arduino project

handbook © mark geddes. No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. No part of this work may be reproduced

or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system,

without the prior written permission of No Starch Press, Inc.

More from No Starch Press!

the car hacker’s handbook .. 1
c ra i g sm i th ● 9 78 -1 - 593 2 7-703 -1 ● 3/ 16 ● 304 pag e s ● $49 . 9 5

ios application security . 27
dav i d t h i e l ● 9 78 -1 - 593 2 7-60 1 -0 ● 2 / 1 6 ● 2 96 pag e s ● $49 . 9 5

rootkits and bootkits .. 49
a l e x matrosov e t a l . ● 9 78 -1 - 593 2 7-7 16 -1 ● 1 1 / 16 ● 304 pag e s ● $49 . 9 5

electronics for kids .. 67
Øyv ind Nyda l Dah l ● 9 78 -1 - 593 2 7-7 2 5 - 3 ● 7/ 16 ● 3 20 pag e s ● $ 24 . 9 5

arduino project handbook .. 93
mark g edd e s ● 9 78 -1 - 593 2 7-690 -4 ● 6/ 16 ● 2 80 pag e s ● $ 24 . 9 5

Featuring Excerpts from

11

5
R e v e r s e E n g i n e e r i n g

t h e C A N B u s

In order to reverse engineer the CAN bus,
we first have to be able to read the CAN

packets and identify which packets control
what. That said, we don’t need to be able to

access the official diagnostic CAN packets because
they’re primarily a read-only window. Instead, we’re
interested in accessing all the other packets that flood the CAN bus. The
rest of the nondiagnostic packets are the ones that the car actually uses to
perform actions. It can take a long time to grasp the information contained
in these packets, but that knowledge can be critical to understanding the
car’s behavior.

Locating the CAN Bus
Of course, before we can reverse the CAN bus, we need to locate the CAN.
If you have access to the OBD-II connector, your vehicle’s connector pin-
out map should show you where the CAN is. (See Chapter 2 for common

The Car Hacker’s Handbook, © 2016 by Craig Smith

locations of the OBD connectors and their pinouts.) If you don’t have access
to the OBD-II connector or you’re looking for hidden CAN signals, try one
of these methods:

•	 Look for paired and twisted wires. CAN wires are typically two wires
twisted together.

•	 Use a multimeter to check for a 2.5V baseline voltage. (This can be dif-
ficult to identify because the bus is often noisy.)

•	 Use a multimeter to check for ohm resistance. The CAN bus uses a 120-
ohm terminator on each end of the bus, so there should be 60 ohms
between the two twisted-pair wires you suspect are CAN.

•	 Use a two-channel oscilloscope and subtract the difference between the
two suspected CAN wires. You should get a constant signal because the
differential signals should cancel each other out. (Differential signaling
is discussed in “The CAN Bus” on page 122.)

N O TE 	 If the car is turned off, the CAN bus is usually silent, but something as simple as
inserting the car key or pulling up on the door handle will usually wake the vehicle
and generate signals.

Once you’ve identified a CAN network, the next step is to start monitor-
ing the traffic.

Reversing CAN Bus Communications with
can-utils and Wireshark

First, you need to determine the type of communication running on the
bus. You’ll often want to identify a certain signal or the way a certain com-
ponent talks—for example, how the car unlocks or how the drivetrain
works. In order to do so, locate the bus those target components use, and
then reverse engineer the packets traveling on that bus to identify their
purpose.

To monitor the activity on your CAN, you need a device that can moni-
tor and generate CAN packets, such as the ones discussed in Appendix A.
There are a ton of these devices on the market. The cheap OBD-II devices
that sell for under $20 technically work, but their sniffers are slow and will
miss a lot of packets. It’s always best to have a device that’s as open as pos-
sible because it’ll work with the majority of software tools—open source
hardware and software is ideal. However, a proprietary device specifically
designed to sniff CAN should still work. We’ll look at using candump, from
the can-utils suite, and Wireshark to capture and filter the packets.

Generic packet analysis won’t work for CAN because CAN packets are
unique to each vehicle’s make and model. Also, because there’s so much
noise on CAN, it’s too cumbersome to sort through every packet as it flows
by in sequence.

The Car Hacker’s Handbook, © 2016 by Craig Smith

Using Wireshark
Wireshark (https://www.wireshark.org/) is a common network monitoring
tool. If your background is in networking, your first instinct may be to use
Wireshark to look at CAN packets. This technically works, but we will soon
see why Wireshark is not the best tool for the job.

If you want to use Wireshark to capture CAN packets, you can do so
together with SocketCAN. Wireshark can listen on both canX and vcanX
devices, but not on slcanX because serial-link devices are not true netlink
devices and they need a translation daemon in order for them to work. If
you need to use a slcanX device with Wireshark, try changing the name
from slcanX to canX. (I discuss CAN interfaces in detail Chapter 2.)

If renaming the interface doesn’t work or you simply need to move
CAN packets from an interface that Wireshark can’t read to one it can, you
can bridge the two interfaces. You’ll need to use candump from the can-utils
package in bridge mode to send packets from slcan0 to vcan0.

$ candump -b vcan0 slcan0

Notice in Figure 5-1 that the data section isn’t decoded and is just show-
ing raw hex bytes. This is because Wireshark’s decoder handles only the basic
CAN header and doesn’t know how to deal with ISO-TP or UDS packets. The
highlighted packet is a UDS request for VIN. (I’ve sorted the packets in the
screen by identifier, rather than by time, to make it easier to read.)

Figure 5-1: Wireshark on the CAN bus

The Car Hacker’s Handbook, © 2016 by Craig Smith

Using candump
As with Wireshark, candump doesn’t decode the data for you; that job is left
up to you, as the reverse engineer. Listing 5-1 uses slcan0 as the sniffer
device.

$ candump slcan0
 slcan0 388 [2] 01 10
 slcan0 110 [8] 00 00 00 00 00 00 00 00
 slcan0 120 [8] F2 89 63 20 03 20 03 20
 slcan0 320 [8] 20 04 00 00 00 00 00 00
 slcan0 128 [3] A1 00 02
 slcan0 7DF [3] 02 09 02
 slcan0 7E8 [8] 10 14 49 02 01 31 47 31
 slcan0 110 [8] 00 00 00 00 00 00 00 00
 slcan0 120 [8] F2 89 63 20 03 20 03 20
 slcan0 410 [8] 20 00 00 00 00 00 00 00
 slcan0 128 [3] A2 00 01
 slcan0 380 [8] 02 02 00 00 E0 00 7E 0E
 slcan0 388 [2] 01 10
 slcan0 128 [3] A3 00 00
 slcan0 110 [8] 00 00 00 00 00 00 00 00
 slcan0 120 [8] F2 89 63 20 03 20 03 20
 slcan0 520 [8] 00 00 04 00 00 00 00 00
 slcan0 128 [3] A0 00 03
 slcan0 380 [8] 02 02 00 00 E0 00 7F 0D
 slcan0 388 [2] 01 10
 slcan0 110 [8] 00 00 00 00 00 00 00 00
 slcan0 120 [8] F2 89 63 20 03 20 03 20
 slcan0 128 [3] A1 00 02
 slcan0 110 [8] 00 00 00 00 00 00 00 00
 slcan0 120 [8] F2 89 63 20 03 20 03 20
 slcan0 128 [3] A2 00 01
 slcan0 380 [8] 02 02 00 00 E0 00 7C 00

Listing 5-1: candump of traffic streaming through a CAN bus

The columns are broken down to show the sniffer device , the arbi-
tration ID , the size of the CAN packet , and the CAN data itself . Now
you have some captured packets, but they aren’t the easiest to read. We’ll use
filters to help identify the packets we want to analyze in more detail.

Grouping Streamed Data from the CAN Bus
Devices on a CAN network are noisy, often pulsing at set intervals or when
triggered by an event, such as a door unlocking. This noise can make it futile
to stream data from a CAN network without a filter. Good CAN sniffer soft-
ware will group changes to packets in a data stream based on their arbitra-
tion ID, highlighting only the portions of data that have changed since the
last time the packet was seen. Grouping packets in this way makes it easier to
spot changes that result directly from vehicle manipulation, allowing you to
actively monitor the tool’s sniffing section and watch for color changes that

The Car Hacker’s Handbook, © 2016 by Craig Smith

correlate to physical changes. For example, if each time you unlock a door
you see the same byte change in the data stream, you know that you’ve prob-
ably identified at least the byte that controls the door-unlocking functions.

Grouping Packets with cansniffer

The cansniffer command line tool groups the packets by arbitration ID and
highlights the bytes that have changed since the last time the sniffer looked
at that ID. For example, Figure 5-2 shows the result of running cansniffer
on the device slcan0.

Figure 5-2: cansniffer example output

You can add the -c flag to colorize any changing bytes.

$ cansniffer -c slcan0

The cansniffer tool can also remove repeating CAN traffic that isn’t
changing, thereby reducing the number of packets you need to watch.

Filtering the Packets Display

One advantage of cansniffer is that you can send it keyboard input to filter
results as they’re displayed in the terminal. (Note that you won’t see the
commands you enter while cansniffer is outputting results.) For example, to
see only IDs 301 and 308 as cansniffer collects packets, enter this:

-000000
+301
+308

Entering -000000 turns off all packets, and entering +301 and +308 filters
out all except IDs 301 and 308.

The -000000 command uses a bitmask, which does a bit-level compari-
son against the arbitration ID. Any binary value of 1 used in a mask is a bit
that has to be true, while a binary value of 0 is a wildcard that can match

The Car Hacker’s Handbook, © 2016 by Craig Smith

anything. A bitmask of all 0s tells cansniffer to match any arbitration ID.
The minus sign (-) in front of the bitmask removes all matching bits, which
is every packet.

You can also use a filter and a bitmask with cansniffer to grab a range of
IDs. For example, the following command adds the IDs from 500 through
5FF to the display, where 500 is the ID applied to the bitmask of 700 to
define the range we’re interested in.

+500700

To display all IDs of 5XX, you’d use the following binary representation:

ID Binary Representation
500 101 0000 0000
700 111 0000 0000

 101 XXXX XXXX
 5 X X

You could specify F00 instead of 700, but because the arbitration ID is
made up of only 3 bits, a 7 is all that’s required.

Using 7FF as a mask is the same as not specifying a bitmask for an ID.
For example

+3017FF

is the same as

+301

This mask uses binary math and performs an AND operation on the two
numbers, 0x301 and 0x7FF:

ID Binary Representation
301 011 0000 0001
7FF 111 1111 1111
 011 0000 0001
 3 0 1

For those not familiar with AND operations, each binary bit is compared,
and if both are a 1 then the output is a 1. For instance, 1 AND 1 = 1, while 1
AND 0 = 0.

If you prefer to have a GUI interface, Kayak, which we discussed in
“Kayak” on page 126, is a CAN bus–monitoring application that also
uses socketcand and will colorize its display of capture packets. Kayak
won’t remove repeating packets the way cansniffer does, but it offers a few
unique capabilities that you can’t easily get on the command line, such

The Car Hacker’s Handbook, © 2016 by Craig Smith

as documenting the identified packets in XML (.kcd files), which can be
used by Kayak to display virtual instrument clusters and map data (see
Figure 5-3).

Figure 5-3: Kayak GUI interface

Using Record and Playback
Once you’ve used cansniffer or a similar tool to identify certain packets to
focus on, the next step is to record and play back packets so you can analyze
them. We’ll look at two different tools to do this: can-utils and Kayak. They
have similar functionality, and your choice of tool will depend on what you’re
working on and your interface preferences.

The can-utils suite records CAN packets using a simple ASCII format,
which you can view with a simple text editor, and most of its tools support
this format for both recording and playback. For example, you can record
with candump, redirect standard output or use the command line options to
record to a file, and then use canplayer to play back recordings.

Figure 5-4 shows a view of the layout of Kayak’s equivalent to cansniffer.

The Car Hacker’s Handbook, © 2016 by Craig Smith

�

�

�

Figure 5-4: Kayak recording to a logfile

To record CAN packets with Kayak, first click the Play button in the
Log files tab u. Then drag one or more buses from the Projects pane to the
Busses field of the LogOutput Window tab v. Press the Record and Stop
buttons at the bottom of the LogOutput window w to start or stop record-
ing. Once your packet capture is complete, the logging should show in the
Log Directory drop-down menu (see Figure 5-5).

If you open a Kayak logfile, you’ll see something like the code snip-
pet in Listing 5-2. The values in this example won’t directly correlate to
those in Figure 5-4 because the GUI groups by ID, as in cansniffer, but the
log is sequential, as in candump.

PLATFORM NO_PLATFORM
DESCRIPTION "No description"
DEVICE_ALIAS OBD Port slcan0
(1094.141850) slcan0 128#a20001
(1094.141863) slcan0 380#02020000e0007e0e
(1094.141865) slcan0 388#0110
(1094.144851) slcan0 110#0000000000000000
(1094.144857) slcan0 120#f289632003200320

Listing 5-2: Contents of Kayak’s logfile

The Car Hacker’s Handbook, © 2016 by Craig Smith

Figure 5-5: Right pane of Log files tab
settings

Other than some metadata (PLATFORM, DESCRIPTION, and DEVICE_ALIAS),
the log is pretty much the same as the one captured by the can-utils pack-
age:  is the timestamp,  is your bus, and  is your arbitration ID and
data separated by a # symbol. To play back the capture, right-click the Log
Description in the right panel, and open the recording (see Figure 5-5).

Listing 5-3 shows the logfile created by candump using the -l command
line option:

(1442245115.027238) slcan0 166#D0320018
(1442245115.028348) slcan0 158#0000000000000019
(1442245115.028370) slcan0 161#000005500108001C
(1442245115.028377) slcan0 191#010010A141000B

Listing 5-3: candump logfile

Notice in Listing 5-3 that the candump logfiles are almost identical to those
displayed by Kayak in Figure 5-4. (For more details on different can-utils pro-
grams, see “The CAN Utilities Suite” on page 129.)

The Car Hacker’s Handbook, © 2016 by Craig Smith

Creative Packet Analysis
Now that we’ve captured packets, it’s time to determine what each packet
does so we can use it to unlock things or exploit the CAN bus. Let’s start
with a simple action that’ll most likely toggle only a single bit—the code to
unlock the doors—and see whether we can find the packet that controls
that behavior.

Using Kayak to Find the Door-Unlock Control

There’s a ton of noise on the CAN bus, so finding a single-bit change can be
very difficult, even with a good sniffer. But here’s a universal way to identify
the function of a single CAN packet:

1.	 Press Record.

2.	 Perform the physical action, such as unlocking a door.

3.	 Stop Record.

4.	 Press Playback.

5.	 See whether the action was repeated. For example, did the door
unlock?

If pressing Playback didn’t unlock the door, a couple of things may
have gone wrong. First, you may have missed the action in the recording,
so try recording and performing the action again. If you still can’t seem
to record and replay the action, the message is probably hardwired to the
physical lock button, as is often the case with the driver’s-side door lock. Try
unlocking the passenger door instead while recording. If that still doesn’t
work, the message for the unlock action is either on a CAN bus other than
the one you’re monitoring—you’ll need to find the correct one—or the
playback may have caused a collision, resulting in the packet being stomped
on. Try to replay the recording a few times to make sure the playback is
working.

Once you have a recording that performs the desired action, use the
method shown in Figure 5-6 to filter out the noise and locate the exact
packet and bits that are used to unlock the door via the CAN bus.

Now, keep halving the size of the packet capture until you’re down
to only one packet, at which point you should be able figure out which
bit or bits are used to unlock the door. The quickest way to do this is to
open your sniffer and filter on the arbitration ID you singled out. Unlock
the door, and the bit or byte that changed should highlight. Now, try to
unlock the car’s back doors, and see how the bytes change. You should
be able to tell exactly which bit must be changed in order to unlock
each door.

The Car Hacker’s Handbook, © 2016 by Craig Smith

Delete half of the
recording

Play first half

Did
the doors
unlock?

Play second half

Are
you down

to one
packet?

Success

Did
the doors
unlock?

Not in recording

YES

NO

YES

YESNO

NO

Figure 5-6: Sample unlock reversing flow

Using can-utils to Find the Door-Unlock Control

To identify packets via can-utils, you’d use candump to record and canplayer
to play back the logfile, as noted earlier. Then, you’d use a text editor to
whittle down the file before playback. Once you’re down to one packet, you
can then determine which byte or bits control the targeted operation with
the help of cansend. For instance, by removing different halves of a logfile,
you can identify the one ID that triggers the door to unlock:

slcan0 300 [8] 00 00 84 00 00 0F 00 00

The Car Hacker’s Handbook, © 2016 by Craig Smith

Now, you could edit each byte and play back the line, or you could use
cansniffer with a filter of +300 to single out just the 300 arbitration ID and
monitor which byte changes when you unlock the door. For example, if the
byte that controls the door unlock is the sixth byte—0x0F in the preceding
example—we know that when the sixth byte is 0x00, the doors unlock, and
when it’s 0x0F, the doors lock.

N O TE 	 This is a hypothetical example that assumes we’ve performed all the steps listed earlier
in this chapter to identify this particular byte. The specifics will vary for each vehicle.

We can verify our findings with cansend:

$ cansend slcan0 300#00008400000F0000

If, after sending this, all the doors lock, we’ve successfully identified
which packets control the door unlock.

Now, what happens when you change the 0x0F? To find out, unlock the
car and this time send a 0x01:

$ cansend slcan0 300#0000840000010000

Observe that only the driver’s-side door locks and the rest stay open.
If you repeat this process with a 0x02, only the front passenger’s-side door
locks. When you repeat again with a 0x03, both the driver’s-side door and
the front passenger’s-side door lock. But why did 0x03 control two doors
and not a different third door? The answer may make more sense when you
look at the binary representation:

0x00 = 00000000
0x01 = 00000001
0x02 = 00000010
0x03 = 00000011

The first bit represents the driver’s-side door, and the second represents
the front passenger’s-side door. When the bit is a 1, the door locks, and when
it’s a 0, it unlocks. When you send an 0x0F, you’re setting all bits that could
affect the door lock to a binary 1, thereby locking all doors:

0x0F = 00001111

What about the remaining four bits? The best way to find out what
they do is to simply set them to 1 and monitor the vehicle for changes. We
already know that at least some of the 0x300 signal relates to doors, so it’s
fairly safe to assume the other four bits will, too. If not, they might control
different door-like behavior, such as unlatching the trunk.

N O TE 	 If you don’t get a response when you toggle a bit, it may not be used at all and may
simply be reserved.

The Car Hacker’s Handbook, © 2016 by Craig Smith

Getting the Tachometer Reading
Obtaining information on the tachometer (the vehicle’s speed) can be
achieved in the same way as unlocking the doors. The diagnostic codes
report the speed of a vehicle, but they can’t be used to set how the speed
displays (and what fun is that?), so we need to find out what the vehicle is
using to control the readings on the instrument cluster (IC).

To save space, the RPM values won’t display as a hex equivalent of the
reading; instead, the value is shifted such that 1000 RPM may look like
0xFA0. This value is often referred to as “shifted” because in the code,
the developers use bit shifting to perform the equivalent of multiplying or
dividing. For the UDS protocol, this value is actually as follows:

()first byte second byte× +256
4

To make matters worse, you can’t monitor CAN traffic and query
the diagnostic RPM to look for changing values at the same time. This
is because vehicles often compress the RPM value using a proprietary
method. Although the diagnostic values are set, they aren’t the actual
packets and values that the vehicle is using, so we need to find the real
value by reversing the raw CAN packets. (Be sure to put the car in park
before you do this, and even lift the vehicle off the ground or put it on
rollers first to avoid it starting suddenly and crushing you.)

Follow the same steps that you used to find the door unlock control:

1.	 Press Record.

2.	 Press the gas pedal.

3.	 Stop Record.

4.	 Press Playback.

5.	 See whether the tachometer gauge has moved.

You’ll probably find that a lot of engine lights flash and go crazy dur-
ing this test because this packet is doing a lot more than just unlocking the
car door. Ignore all the blinking warning lights, and follow the flowchart
shown in Figure 5-6 to find the arbitration ID that causes the tachometer
to change. You’ll have a much higher chance of collisions this time than
when trying to find the bit to unlock the doors because there’s a lot more
going on. Consequently, you may have to play and record more traffic than
before. (Remember the value conversions mentioned earlier, and keep in
mind that more than one byte in this arbitration ID will probably control
the reported speed.)

Putting Kayak to Work
To make things a bit easier, we’ll use Kayak’s GUI instead of can-utils to
find the arbitration IDs that control the tachometer. Again, make sure that
the car is immobilized in an open area, with the emergency brake on, and
maybe even up on blocks or rollers. Start recording and give the engine

The Car Hacker’s Handbook, © 2016 by Craig Smith

a good rev. Then, stop recording and play back the data. The RPM gauge
should move; if it doesn’t, you may be on the wrong bus and will need to
locate the correct bus, as described earlier in this chapter.

Once you have the reaction you expect from the vehicle, repeat the
halving process used to find the door unlock, with some additional Kayak
options.

Kayak’s playback interface lets you set the playback to loop infinitely
and, more importantly, set the “in” and “out” packets (see Figure 5-7).
The slider represents the number of packets captured. Use the slider
to pick which packet you start and stop with during playback. You can
quickly jump to the middle or other sections of the recording using the
slider, which makes playing back half of a section very easy.

Figure 5-7: Kayak playback interface

As for testing, you won’t be able to send only a single packet as you did
when you tried to unlock the car because the vehicle is constantly reporting
its current speed. To override this noise, you need to talk even faster than
the normal communication to avoid colliding all the time. For instance,
if you play your packets right after the real packet plays, then the last seen
update will be the modified one. Reducing noise on the bus results in fewer
collisions and cleaner demos. If you can send your fake packet immediately
after the real packet, you often get better results than you would by simply
flooding the bus.

To send packets continuously with can-utils, you can use a while loop
with cansend or cangen. (When using Kayak’s Send Frame dialog to transmit
packets, make sure to check the Interval box.)

The Car Hacker’s Handbook, © 2016 by Craig Smith

Creating Background Noise with the
Instrument Cluster Simulator

The instrument cluster simulator (ICSim) is one of the most useful tools
to come out of Open Garages, a group that fosters open collaboration
between mechanics, performance tuners, and security researchers (see
Appendix A). ICSim is a software utility designed to produce a few key CAN
signals in order to provide a lot of seemingly “normal” background CAN
noise—essentially, it’s designed to let you practice CAN bus reversing with-
out having to tinker around with your car. (ICSim is Linux only because it
relies on the virtual CAN devices.) The methods you’ll learn playing with
ICSim will directly translate to your target vehicles. ICSim was designed as a
safe way to familiarize yourself with CAN reversing so that the transition to
an actual vehicle is as seamless as possible.

Setting Up the ICSim
Grab the source code for the ICSim from https://github.com/zombieCraig/
ICSim and follow the README file supplied with the download to compile
the software. Before you run ICSim, you should find a sample script in the
README called setup_vcan.sh that you can run to set up a vcan0 interface
for the ICSim to use.

ICSim comes with two components, icsim and controls, which talk to
each other over a CAN bus. To use ICSim, first load the instrument cluster
to the vcan device like this:

$./icsim vcan0

In response, you should see the ICSim instrument cluster with turn sig-
nals, a speedometer, and a picture of a car, which will be used to show the
car doors locking and unlocking (see Figure 5-8).

Figure 5-8: ICSim instrument cluster

The Car Hacker’s Handbook, © 2016 by Craig Smith

The icsim application listens only for CAN signals, so when the ICSim
first loads, you shouldn’t see any activity. In order to control the simulator,
load the CANBus Control Panel like this:

$./controls vcan0

The CANBus Control Panel shown in Figure 5-9 should appear.

Figure 5-9: ICSim control interface

The screen looks like a game controller; in fact, you can plug in a USB
game controller, and it should be supported by ICSim. (As of this writing,
you can use sixad tools to connect a PS3 controller over Bluetooth as well.)
You can use the controller to operate the ICSim in a method similar to driv-
ing a car using a gaming console, or you can control it by pressing the cor-
responding keys on your keyboard (see Figure 5-9).

N O TE 	 Once the control panel is loaded, you should see the speedometer idle just above 0 mph.
If the needle is jiggling a bit, you know it’s working. The control application writes only
to the CAN bus and has no other way to communicate with the icsim. The only way to
control the virtual car is through the CAN.

The main controls on the CANBus Control Panel are as follows:

Accelerate (up arrow)  Press this to make the speedometer go faster.
The longer you hold the key down, the faster the virtual vehicle goes.

Turn (left/right arrows)  Hold down a turn direction to blink the
turn signals.

The Car Hacker’s Handbook, © 2016 by Craig Smith

Lock (left shift), Unlock (right shift)  This one requires you to press
two buttons at once. Hold down the left shift and press a button (A, B,
X, or Y) to lock a corresponding door. Hold down the right shift and
press one of the buttons to unlock a door. If you hold down left shift
and then press right shift, it will unlock all the doors. If you hold down
right shift and press left shift, you’ll lock all the doors.

Make sure you can fit both the ICSim and the CANBus Control Panel
on the same screen so that you can see how they influence each other. Then,
select the control panel so that it’s ready to receive input. Play around with
the controls to make sure that the ICSim is responding properly. If you don’t
see a response to your controls, ensure that the ICSim control window is
selected and active.

Reading CAN Bus Traffic on the ICSim
When you’re sure everything is working, fire up your sniffer of choice and
take a look at the CAN bus traffic, as shown in Figure 5-10. Try to identify
which packets control the vehicle, and create scripts to control ICSim with-
out using the control panel.

Most of the changing data you see in Figure 5-10 is caused by a replay
file of a real CAN bus. You’ll have to sort through the messages to deter-
mine the proper packets. All methods of replay and packet sending will
work with ICSim, so you can validate your findings.

Figure 5-10: Screen layout for using ICSim

The Car Hacker’s Handbook, © 2016 by Craig Smith

Changing the Difficulty of ICSim
One of the great things about ICSim is that you can challenge yourself by
making it harder to find the target CAN traffic. ICSim supports four diffi-
culty levels—0 through 3, with level 1 as the default. Level 0 is a super simple
CAN packet that does the intended operation without any background
noise, while level 3 randomizes all the bytes in the packet as well. To have
the simulator choose different IDs and target byte positions, use ICSim’s
randomize option:

$./icsim -r vcan0
Using CAN interface vcan0
Seed: 1419525427

This option prints a randomized seed value to the console screen.
Pass this value into the CANBus Control Panel along with your choice

of difficulty level:

$./controls -s 1419525427 -l 3 vcan0

You can replay or share a specific seed value as well. If you find one you
like or if you want to race your friends to see who can decipher the packets
first, launch ICSim with a set seed value like this:

$./icsim -s 1419525427 vcan0

Next, launch the CANBus Control Panel using the same seed value
to sync up the randomized control panel to the ICSim. If the seed values
aren’t the same, they won’t be able to communicate.

It may take you a while to locate the proper packets the first time using
ICSim, but after a few passes, you should be able to quickly identify which
packets are your targets.

Try to complete the following challenges in ICSim:

1.	 Create “hazard lights.” Make both turn signals blink at the same time.

2.	 Create a command that locks only the back two doors.

3.	 Set the speedometer as close as possible to 220 mph.

Reversing the CAN Bus with OpenXC
Depending on your vehicle, one solution to reverse engineering the CAN
bus is OpenXC, an open hardware and software standard that translates
proprietary CAN protocols into an easy-to-read format. The OpenXC ini-
tiative was spearheaded by the Ford Motor Company—and as I write this,
OpenXC is supported only by Ford—but it could work with any auto manu-
facturer that supports it. (Visit http://openxcplatform.com/ for information on
how to acquire a pre-made dongle.)

The Car Hacker’s Handbook, © 2016 by Craig Smith

Ideally, open standards for CAN data such as OpenXC will remove the
need for many applications to reverse engineer CAN traffic. If the rest of
the automotive industry were to agree on a standard that defines how their
vehicles work, it would greatly improve a car owner’s ability to tinker and
build on new innovative tools.

Translating CAN Bus Messages
If a vehicle supports OpenXC, you can plug a vehicle interface (VI) in to
the CAN bus, and the VI should translate the proprietary CAN messages
and send them to your PC so you can read the supported packets without
having to reverse them. In theory, OpenXC should allow access to any CAN
packet via a standard API. This access could be read-only or allow you to
transmit packets. If more auto manufacturers eventually support OpenXC,
it could provide third-party tools with more raw access to a vehicle than
they would have with standard UDS diagnostic commands.

N O TE 	 OpenXC supports Python and Android and includes tools such as openxc-dump to
display CAN activity.

The fields from OpenXC’s default API are as follows:

•	 accelerator_pedal_position

•	 brake_pedal_status

•	 button_event (typically steering wheel buttons)

•	 door_status

•	 engine_speed

•	 fuel_consumed_since_last_restart

•	 fuel_level

•	 headlamp_status

•	 high_beam_status

•	 ignition_status

•	 latitude

•	 longitude

•	 odometer

•	 parking_brake_status

•	 steering_wheel_angle

•	 torque_at_transmission

•	 transmission_gear_position

•	 vehicle_speed

•	 windshield_wiper_status

Different vehicles may support different signals than the ones listed
here or no signals at all.

The Car Hacker’s Handbook, © 2016 by Craig Smith

OpenXC also supports JSON trace output for recording vehicle journey.
JSON provides a common data format that’s easy for most other modern
languages to consume, as shown in Listing 5-4.

{"metadata": {
 "version": "v3.0",
 "vehicle_interface_id": "7ABF",
 "vehicle": {
 "make": "Ford",
 "model": "Mustang",
 "trim": "V6 Premium",
 "year": 2013
 },
 "description": "highway drive to work",
 "driver_name": "TJ Giuli",
 "vehicle_id": "17N1039247929"
}

Listing 5-4: Simple JSON file output

Notice how the metadata definitions in JSON make it fairly easy for
both humans and a programming language to read and interpret. The
above JSON listing is a definition file, so an API request would be even
smaller. For example, when requesting the field steering_wheel_angle, the
translated CAN packets would look like this:

{"timestamp": 1385133351.285525, "name": "steering_wheel_angle", "value": 45}

You can interface with the OpenXC with OBD like this:

$ openxc-diag –message-id 0x7df –mode 0x3

Writing to the CAN Bus
If you want to write back to the bus, you might be able to use something
like the following line, which writes the steering wheel angle back to the
vehicle, but you’ll find that the device will resend only a few messages to
the CAN bus.

$ openxc-control write –name steering_wheel_angle –value 42.0

Technically, OpenXC supports raw CAN writes, too, like this:

$ openxc-control write –bus 1 –id 42 –data 0x1234

This brings us back from translated JSON to raw CAN hacking, as
described earlier in this chapter. However, if you want to write an app or
embedded graphical interface to only read and react to your vehicle and
you own a new Ford, then this may be the quickest route to those goals.

The Car Hacker’s Handbook, © 2016 by Craig Smith

Hacking OpenXC
If you’ve done the work to reverse the CAN signals, you can even make your
own VI OpenXC firmware. Compiling your own firmware means you don’t
have any limitations, so you can read and write whatever you want and even
create “unsupported” signals. For example, you could create a signal for
remote_engine_start and add it to your own firmware in order to provide a
simple interface to start your car. Hooray, open source!

Consider a signal that represents engine_speed. Listing 5-5 will set a basic
configuration to output the engine_speed signal. We’ll send RPM data with a
2-byte-long message ID 0x110 starting at the second byte.

{ "name" : "Test Bench",
 "buses": {
 "hs": {
 "controller": 1,
 "speed": 500000
 }
 },
 "messages": {
 "0x110": {
 "name": "Acceleration",
 "bus", "hs",
 "signals": {
 "engine_speed_signal": {
 "generic_name": "engine_speed",
 "bit_position": 8,
 "bit_size": 16
 }
 }
 }
 }
}

Listing 5-5: Simple OpenXC config file to define engine_speed

The OpenXC config files that you want to modify are stored in JSON.
First, we define the bus by creating a JSON file with a text editor. In the
example, we create a JSON config for a signal on the high-speed bus run-
ning at 500Kbps.

Once you have the JSON config defined, use the following code to com-
pile it into a CPP file that can be compiled into the firmware:

$ openxc-generate-firmware-code –message-set ./test-bench.json > signals.cpp

Then, recompile the VI firmware with these commands:

$ fab reference build

The Car Hacker’s Handbook, © 2016 by Craig Smith

If all goes well, you should have a .bin file that can be uploaded to your
OpenXC-compatible device. The default bus is set up in raw read/write
mode that sets the firmware to a cautionary read-only mode by default,
unless signals or a whole bus is set up to support writing. To set those up,
when defining the bus, you can add raw_can_mode or raw_writable and set
them to true.

By making your own config files for OpenXC, you can bypass the
restrictions set up in prereleased firmware and support other vehicles
besides Ford. Ideally, other manufacturers will begin to support OpenXC,
but adoption has been slow, and the bus restrictions are so strict you’ll prob-
ably want to use custom firmware anyhow.

Fuzzing the CAN Bus
Fuzzing the CAN bus can be a good way to find undocumented diagnostic
methods or functions. Fuzzing takes a random, shotgun-like approach to
reversing. When fuzzing, you send random-ish data to an input and look
for unexpected behavior, which in the case of a vehicle could be physical
changes, such as IC messages, or component crashes, such as shutdowns or
reboots.

The good news is that it’s easy to make a CAN fuzzer. The bad news is
that it’s rarely useful. Useful packets are often part of a collection of packets
used to cause a particular change, such as a diagnostic service that is active
only after a successful security token has been passed to it, so it’s difficult
to tell which packet to focus on when fuzzing. Also, some CAN packets are
visible only from within a moving vehicle, which would be very dangerous.
Nevertheless, don’t rule out fuzzing as a potential method of attack because
you can sometimes use it to locate undocumented services or crashes to a
target component you want to spoof.

Some sniffers support fuzzing directly—a feature usually found in the
transmission section and represented by the tool’s ability to transmit pack-
ets with incrementing bytes in the data section. For example, in the case of
SocketCAN, you can use cangen to generate random CAN traffic. Several
other open source CAN sniffing solutions allow for easy scripting or pro-
gramming with languages such as Python.

A good starting point for fuzzing is to look at the UDS commands,
specifically the “undocumented” manufacturer commands. When fuzz-
ing undocumented UDS modes, we typically look for any type of response
from an unknown mode. For instance, when targeting the UDS diagnostics
of the ECU, you might send random data to ID 0x7DF and get an error
packet from an unexpected mode. If you use brute-forcing tools such
as CaringCaribou, however, there are often cleaner ways of accomplish-
ing the same thing, such as monitoring or reversing the diagnostic tools
themselves.

The Car Hacker’s Handbook, © 2016 by Craig Smith

Troubleshooting When Things Go Wrong
The CAN bus and its components are fault-tolerant, which limits the damage
you can do when reversing the CAN bus. However, if you’re fuzzing the CAN
bus or replaying a large amount of CAN data back on a live CAN bus net-
work, things can go wrong. Here are a few common problems and solutions.

Flashing IC Lights
It’s common for the IC lights to flash when sending packets to the CAN
bus, and you can usually reset them by restarting the vehicle. If restart-
ing the vehicle still doesn’t fix the lights, try disconnecting and recon-
necting the battery. If that still doesn’t fix the problem, make sure that
your battery is properly charged since a low battery can also make the
IC lights flash.

Car Not Turning On
If your car shuts off and won’t turn back on, it’s usually because you’ve
drained the battery by working with the CAN bus while the car is not
fully running. This can drain a battery much faster than you might
think. To restart it, jump the vehicle with a spare battery.

If you’ve tried jumping the vehicle and it still won’t turn on, you
may need to pull a fuse and plug it back in to restart the car. Locate the
engine fuses in the car’s manual and begin by pulling the ones you most
suspect are the culprits. The fuse probably isn’t blown, so just pull it out
and put it back in to force the problem device to restart. The fuses you
choose to pull will depend on your type of vehicle, but if your engine isn’t
starting, you will want to locate major components to disconnect and
check. Look for main fuses around major electronics. The fuses that con-
trol the headlamps probably are not the culprits. Use a process of elimi-
nation to determine the device that is causing the issue.

Car Not Turning Off
You might find that you’re unable to shut the car down. This is a bad,
but fortunately rare, situation. First, check that you aren’t flooding the
CAN bus with traffic; if you are, stop and disconnect from the CAN bus.
If you’re already disconnected from the CAN bus and your car still won’t
turn off, you’ll need to start pulling fuses until it does.

Vehicle Responding Recklessly
This will only occur if you’re injecting packets in a moving vehicle, which
is a terrible idea and should never be done! If you must audit a vehicle
while it’s wheels are moving, raise it off the ground or on rollers.

Bricking
Reverse engineering the CAN bus should never result in bricking—
that is, breaking the vehicle so completely that it can do nothing. To
brick a vehicle, you would need to mess around with the firmware,
which would put the vehicle or component out of warranty and is
done at your own risk.

The Car Hacker’s Handbook, © 2016 by Craig Smith

Summary
In this chapter, you learned how to identify CAN wires from the jumble
of wires under the dash, and how to use tools like cansniffer and Kayak to
sniff traffic and identify what the different packets were doing. You also
learned how to group CAN traffic to make changes easier to identify than
they would be when using more traditional packet-sniffing tools, such as
Wireshark.

You should now be able to look at CAN traffic and identify changing
packets. Once you identify these packets, you can write programs to trans-
mit them, create files for Kayak to define them, or create translators for
OpenXC to make it easy to use dongles to interact with your vehicle. You
now have all the tools you need to identify and control the components of
your vehicle that run on CAN.

The Car Hacker’s Handbook, © 2016 by Craig Smith

2727

4
B U I L D I N G Y O U R T E S T P L A T F O R M

In this chapter, I’ll outline the tools you need to
review your code and test your iOS applications, and
I’ll show you how to build a robust and useful test plat-
form. That test platform will include a properly set up
Xcode instance, an interactive network proxy, reverse
engineering tools, and tools to bypass iOS platform
security checks.

I’ll also cover the settings you need to change in Xcode projects to
make bugs easier to identify and fix. You’ll then learn to leverage Xcode’s
static analyzer and compiler options to produce well-protected binaries and
perform more in-depth bug detection.

Taking Off the Training Wheels
A number of behaviors in a default OS X install prevent you from really
digging in to the system internals. To get your OS to stop hiding the things
you need, enter the following commands at a Terminal prompt:

$ defaults write com.apple.Finder AppleShowAllFiles TRUE

$ defaults write com.apple.Finder ShowPathbar -bool true

$ defaults write com.apple.Finder _FXShowPosixPathInTitle -bool true

iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

$ defaults write NSGlobalDomain AppleShowAllExtensions -bool true

$ chflags nohidden ~/Library/

These settings let you see all the files in the Finder, even ones that are
hidden from view because they have a dot in front of their name. In addi-
tion, these changes will display more path information and file extensions,
and most importantly, they allow you to see your user-specific Library, which
is where the iOS Simulator will store all of its data.

The chflags command removes a level of obfuscation that Apple has
put on directories that it considers too complicated for you, such as /tmp or
/usr. I’m using the command here to show the contents of the iOS Simulator
directories without having to use the command line every time.

One other thing: consider adding $SIMPATH to the Finder’s sidebar
for easy access. It’s convenient to use $SIMPATH to examine the iOS Simula-
tor’s filesystem, but you can’t get to it in the Finder by default. To make this
change, browse to the following directory in the Terminal:

$ cd ~/Library/Application\ Support

$ open .

Then, in the Finder window that opens, drag the iPhone Simulator
directory to the sidebar. Once you’re riding without training wheels, it’s
time to choose your testing device.

Suggested Testing Devices
My favorite test device is the Wi-Fi only iPad because it’s inexpensive and
easy to jailbreak, which allows for testing iPad, iPhone, and iPod Touch
applications. Its lack of cellular-based networking isn’t much of a hindrance,
given that you’ll want to intercept network traffic most of the time anyway.

But this configuration does have some minor limitations. Most signif-
icantly, the iPad doesn’t have GPS or SMS, and it obviously doesn’t make
phone calls. So it’s not a bad idea to have an actual iPhone of some kind
available.

I prefer to have at least two iPads handy for iOS testing: one jailbro-
ken and one stock. The stock device allows for testing in a legitimate, real-
istic end-user environment, and it has all platform security mechanisms
still intact. It can also register properly for push notifications, which has
proven problematic for jailbroken devices in the past. The jailbroken device
allows you to more closely inspect the filesystem layout and more detailed
workings of iOS; it also facilitates black-box testing that wouldn’t be feasible
using a stock device alone.

42 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Testing with a Device vs. Using a Simulator
Unlike some other mobile operating systems, iOS development uses a simula-
tor rather than an emulator. This means there’s no full emulation of the iOS
device because that would require a virtualized ARM environment. Instead,
the simulators that Apple distributes with Xcode are compiled for the x64
architecture, and they run natively on your development machine, which
makes the process significantly faster and easier. (Try to boot the Android
emulator inside a virtual machine, and you’ll appreciate this feature.)

On the flip side, some things simply don’t work the same way in the iOS
Simulator as they do on the device. The differences are as follows:

Case-sensitivity Unless you’ve intentionally changed this behavior,
OS X systems operate with case-insensitive HFS+ filesystems, while iOS
uses the case-sensitive variant. This should rarely be relevant to security
but can cause interoperability issues when modifying programs.

Libraries In some cases, iOS Simulator binaries link to OS X frame-
works that may behave differently than those on iOS. This can result in
slightly different behavior.

Memory and performance Since applications run natively in the
iOS Simulator, they’ll be taking full advantage of your development
machine’s resources. When gauging the impact of things such as
PBKDF2 rounds (see Chapter 13), you’ll want to compensate for this
or test on a real device.

Camera As of now, the iOS Simulator does not use your development
machine’s camera. This is rarely a huge issue, but some applications
do contain functionality such as “Take a picture of my check stub or
receipt,” where the handling of this photo data can be crucial.

SMS and cellular You can’t test interaction with phone calls or SMS
integration with the iOS Simulator, though you can technically simulate
some aspects, such as toggling the “in-call” status bar.

Unlike in older versions of iOS, modern versions of the iOS Simulator
do in fact simulate the Keychain API, meaning you can manage your own
certificate and store and manipulate credentials. You can find the files
behind this functionality in $SIMPATH/Library/Keychains.

Network and Proxy Setup
Most of the time, the first step in testing any iOS application is to run it
through a proxy so you can examine and potentially modify traffic going
from the device to its remote endpoint. Most iOS security testers I know use
BurpSuite1 for this purpose.

1. http://www.portswigger.net

Building Your Test Platform 43iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Bypassing TLS Validation
There’s one major catch to running an app under test through a proxy:
iOS resolutely refuses to continue TLS/SSL connections when it cannot
authenticate the server’s certificate, as well it should. This is, of course, the
correct behavior, but your proxy-based testing will screech to a halt rather
quickly if iOS can’t authenticate your proxy’s certificate.

For BurpSuite specifically, you can obtain a CA certificate simply by
configuring your device or iOS Simulator to use Burp as a proxy and then
browsing to http://burp/cert/ in Mobile Safari. This should work either on a
real device or in the iOS Simulator. You can also install CA certificates onto
a physical device by either emailing them to yourself or navigating to them
on a web server.

For the iOS Simulator, a more general approach that works with almost
any web proxy is to add the fingerprint of your proxy software’s CA certifi-
cate directly into the iOS Simulator trust store. The trust store is a SQLite
database, making it slightly more cumbersome to edit than typical certifi-
cate bundles. I recommend writing a script to automate this task. If you
want to see an example to get you started, Gotham Digital Science has
already created a Python script that does the job. You’ll find the script
here: https://github.com/GDSSecurity/Add-Trusted-Certificate-to-iOS-Simulator/ .

To use this script, you need to obtain the CA certificate you want to
install into the trust store. First configure Firefox2 to use your local proxy
(127.0.0.1, port 8080 for Burp). Then attempt to visit any SSL site; you
should get a familiar certificate warning. Navigate to Add Exception →
View → Details and click the PortSwigger CA entry, as shown in Figure 4-1.

Click Export and follow the prompts. Once you’ve saved the CA certifi-
cate, open Terminal.app and run the Python script to add the certificate to
the store as follows:

$ python ./add_ca_to_iossim.py ~/Downloads/PortSwiggerCA.pem

Unfortunately, at the time of writing, there isn’t a native way to config-
ure the iOS Simulator to go through an HTTP proxy without also routing
the rest of your system through the proxy. Therefore, you’ll need to config-
ure the proxy in your host system’s Preferences, as shown in Figure 4-2.

If you’re using the machine for both testing and other work activities,
you might consider specifically configuring other applications to go through
a separate proxy, using something like FoxyProxy3 for your browser.

2. I generally consider Chrome a more secure daily browser, but the self-contained nature of
Firefox does let you tweak proxy settings more conveniently.

3. http://getfoxyproxy.org

44 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Figure 4-1: Selecting the PortSwigger CA for export

Figure 4-2: Configuring the host system to connect via Burp
Building Your Test Platform 45iOS Application Security: The Definitive Guide for Hackers and Developers

© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Bypassing SSL with stunnel
One method of bypassing SSL endpoint verification is to set up a termina-
tion point locally and then direct your application to use that instead. You
can often accomplish this without recompiling the application, simply by
modifying a plist file containing the endpoint URL.

This setup is particularly useful if you want to observe traffic easily
in plaintext (for example, with Wireshark), but the Internet-accessible
endpoint is available only over HTTPS. First, download and install stun-
nel,4 which will act as a broker between the HTTPS endpoint and your
local machine. If installed via Homebrew, stunnel’s configuration file will
be in /usr/local/etc/stunnel/stunnel.conf-sample. Move or copy this file to
/usr/local/etc/stunnel/stunnel.conf and edit it to reflect the following:

; SSL client mode

client = yes

; service-level configuration

[https]

accept = 127.0.0.1:80

connect = 10.10.1.50:443

TIMEOUTclose = 0

This simply sets up stunnel in client mode, instructing it to accept con-
nections on your loopback interface on port 80, while forwarding them to
the remote endpoint over SSL. After editing this file, set up Burp so that it
uses your loopback listener as a proxy, making sure to select the Support
invisible proxying option, as shown in Figure 4-3. Figure 4-4 shows the result-
ing setup.

Figure 4-3: Setting up invisible proxying through the local stunnel endpoint

4. http://www.stunnel.org/

46 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Figure 4-4: Final Burp/stunnel setup

Certificate Management on a Device
To install a certificate on a physical iOS device, simply email the certificate
to an account associated with the device or put it on a public web server and
navigate to it using Mobile Safari. You can then import it into the device’s
trust store, as shown in Figure 4-5. You can also configure your device to go
through a network proxy (that is, Burp) hosted on another machine. Simply
install the CA certificate (as described earlier) of the proxy onto the device
and configure your proxy to listen on a network-accessible IP address, as in
Figure 4-6.

Figure 4-5: The certificate import prompt

Figure 4-6: Configuring Burp to use a nonlocalhost IP address

Building Your Test Platform 47iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Proxy Setup on a Device
Once you’ve configured your certificate authorities and set up the proxy,
go to Settings → Network → Wi-Fi and click the arrow to the right of your
currently selected wireless network. You can enter the proxy address and
port from this screen (see Figure 4-7).

Figure 4-7: Configuring the device to use a
test proxy on an internal network

Note that when configuring a device to use a proxy, only connections
initiated by NSURLConnection or NSURLSession will obey the proxy settings; other
connections such as NSStream and CFStream (which I’ll discuss further in Chap-
ter 7) will not. And of course, since this is an HTTP proxy, it works only for
HTTP traffic. If you have an application using CFStream, you can edit the
codebase with the following code snippet to route stream traffic through the
same proxy as the host OS:

CFDictionaryRef systemProxySettings = CFNetworkCopySystemProxySettings();

CFReadStreamSetProperty(readStream, kCFStreamPropertyHTTPProxy, systemProxySettings

);

CFWriteStreamSetProperty(writeStream, kCFStreamPropertyHTTPProxy,

systemProxySettings);

48 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

If you’re using NSStream, you can accomplish the same by casting the
NSInputStream and NSOutputStream to their Core Foundation counterparts,
like so:

CFDictionaryRef systemProxySettings = CFNetworkCopySystemProxySettings();

CFReadStreamSetProperty((CFReadStreamRef)readStream, kCFStreamPropertyHTTPProxy, (

CFTypeRef)systemProxySettings);

CFWriteStreamSetProperty((CFWriteStreamRef)writeStream, kCFStreamPropertyHTTPProxy,

(CFTypeRef)systemProxySettings);

If you’re doing black-box testing and have an app that refuses to honor
system proxy settings for HTTP requests, you can attempt to direct traffic
through a proxy by adding a line to /etc/hosts on the device to point name
lookups to your proxy address, as shown in Listing 4-1.

10.50.22.11 myproxy api.testtarget.com

Listing 4-1: Adding a hosts file entry

You can also configure the device to use a DNS server controlled by you,
which doesn’t require jailbreaking your test device. One way to do this is to
use Tim Newsham’s dnsRedir,5 a Python script that will provide a spoofed
answer for DNS queries of a particular domain, while passing on queries for
all other domains to another DNS server (by default, 8.8.8.8, but you can
change this with the -d flag). The script can be used as follows:

$ dnsRedir.py 'A:www.evil.com.=1.2.3.4'

This should answer queries for www.evil.com with the IP address 1.2.3.4,
where that IP address should usually be the IP address of the test machine
you’re proxying data through.

For non-HTTP traffic, things are a little more involved. You’ll need to
use a TCP proxy to intercept traffic. The aforementioned Tim Newsham has
written a program that can make this simpler—the aptly named tcpprox.6 If
you use the hosts file method in Listing 4-1 to point the device to your proxy
machine, you can then have tcpprox dynamically create SSL certificates and
proxy the connection to the remote endpoint. To do this, you’ll need to
create a certificate authority certificate and install it on the device, as shown
in Listing 4-2.

5. https://github.com/iSECPartners/dnsRedir/

6. https://github.com/iSECPartners/tcpprox/

Building Your Test Platform 49iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

$./prox.py -h

Usage: prox.py [opts] addr port

Options:

-h, --help show this help message and exit

-6 Use IPv6

-b BINDADDR Address to bind to

-L LOCPORT Local port to listen on

-s Use SSL for incoming and outgoing connections

--ssl-in Use SSL for incoming connections

--ssl-out Use SSL for outgoing connections

-3 Use SSLv3 protocol

-T Use TLSv1 protocol

-C CERT Cert for SSL

-A AUTOCNAME CName for Auto-generated SSL cert

-1 Handle a single connection

-l LOGFILE Filename to log to

$./ca.py -c

$./pkcs12.sh ca

(install CA cert on the device)

$./prox.py -s -L 8888 -A ssl.testtarget.com ssl.testtarget.com 8888

Listing 4-2: Creating a certificate and using tcpprox to intercept traffic

The ca.py script creates the signed certificate, and the pkcs12.sh script
produces the certificate to install on the device, the same as shown in Fig-
ure 4-5. After running these and installing the certificate, your application
should connect to the remote endpoint using the proxy, even for SSL con-
nections. Once you’ve performed some testing, you can read the results with
the proxcat.py script included with tcpprox, as follows:

$./proxcat.py -x log.txt

Once your application is connected through a proxy, you can start
setting up your Xcode environment.

Xcode and Build Setup
Xcode contains a twisty maze of project configuration options—hardly
anyone understands what each one does. This section takes a closer look
at these options, discusses why you would or wouldn’t want them, and
shows you how to get Xcode to help you find bugs before they become real
problems.

50 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Make Life Difficult
First things first: treat warnings as errors. Most of the warnings generated by
clang, Xcode’s compiler frontend, are worth paying attention to. Not only
do they often help reduce code complexity and ensure correct syntax, they
also catch a number of errors that might be hard to spot, such as signedness
issues or format string flaws. For example, consider the following:

- (void) validate:(NSArray*) someTribbles withValue:(NSInteger) desired {

if (desired > [someTribbles count]) {

[self allocateTribblesWithNumberOfTribbles:desired];

}

}

The count method of NSArray returns an unsigned integer, (NSUInteger).
If you were expecting the number of desired tribbles from user input, a
submitted value might be –1, presumably indicating that the user would
prefer to have an anti-tribble. Because desired is an integer being compared
to an unsigned integer, the compiler will treat both as unsigned integers.
Therefore, this method would unexpectedly allocate an absurd number
of tribbles because –1 is an extremely large number when converted to an
unsigned integer. I’ll discuss this type of integer overflow issue further in
Chapter 11.

You can have clang flag this type of of bug by enabling most warn-
ings and treating them as errors, in which case your build would fail with
a message indicating "Comparison of integers of different signs: 'int'

and 'NSUInteger' (aka 'unsigned int')".

NOTE In general, you should enable all warnings in your project build configuration and
promote warnings to errors so that you are forced to deal with bugs as early as possible
in the development cycle.

You can enable these options in your project and target build settings.
To do so, first, under Warning Policies, set Treat Warnings as Errors to Yes
(Figure 4-8). Then, under the Warnings sections, turn on all the desired
options.

Note that not every build warning that clang supports has an exposed
toggle in the Xcode UI. To develop in “hard mode,” you can add the -Wextra

or -Weverything flag, as in Figure 4-9. Not all warnings will be useful, but it’s
best to try to understand exactly what an option intends to highlight before
disabling it.

-Weverything, used in Figure 4-9, is probably overkill unless you’re curious
about clang internals; -Wextra is normally sufficient. To save you a bit of time,
Table 4-1 discusses two warnings that are almost sure to get in your way (or
that are just plain bizarre).

Building Your Test Platform 51iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Figure 4-8: Treating all warnings as errors

Figure 4-9: This setting enables all warnings, including options for which there is no
exposed UI.

52 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Table 4-1: Obnoxious Warnings to Disable in Xcode

Compiler warning Justification for disabling

Implicit synthesized properties Since property synthesis is now auto-
matic, this isn’t really an error unless
your development guidelines require
explicit synthesis.

Unused parameters/functions/variables etc. These can be supremely irritating
when writing code, since your code is
obviously not completely implemented
yet. Consider enabling these only for
nondebug builds.

Enabling Full ASLR
In iOS 4.3, Apple introduced address space layout randomization (ASLR). ASLR
ensures that the in-memory structure of the program and its data (libraries,
the main executable, stack and heap, and memory-mapped files) are loaded
into less predictable locations in the virtual address space. This makes code
execution exploits more difficult because many rely on referencing the
virtual addresses of specific library calls, as well as referencing data on the
stack or heap.

For this to be fully effective, however, the application must be built as
a position-independent executable (PIE), which instructs the compiler to build
machine code that can function regardless of its location in memory. With-
out this option, the location of the base executable and the stack will remain
the same, even across reboots,7 making an attacker’s job much easier.

To ensure that full ASLR with PIE is enabled, check that Deployment
Target in your Target’s settings is set to at least iOS version 4.3. In your
project’s Build Settings, ensure that Generate Position-Dependent Code
is set to No and that the bizarrely named Don’t Create Position Independent
Executable is also set to No. So don’t create position-independent executa-
bles. Got it?

For black-box testing or to ensure that your app is built with ASLR cor-
rectly, you can use otool on the binary, as follows:

$ unzip MyApp.ipa

$ cd Payload/MyApp.app

$ otool -vh MyApp

MyApp (architecture armv7):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7 0x00 EXECUTE 21 2672 NOUNDEFS DYLDLINK

TWOLEVEL PIE

7. http://www.trailofbits.com/resources/ios4_security_evaluation_paper.pdf

Building Your Test Platform 53iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

MyApp (architecture armv7s):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7S 0x00 EXECUTE 21 2672 NOUNDEFS DYLDLINK

TWOLEVEL PIE

At the end of each MH_MAGIC line, if you have your settings correct, you
should see the PIE flag, highlighted in bold. (Note that this must be done
on a binary compiled for an iOS device and will not work when used on iOS
Simulator binaries.)

Clang and Static Analysis
In computer security, static analysis generally refers to using tools to analyze
a codebase and identify security flaws. This could involve identifying dan-
gerous APIs, or it might include analyzing data flow through the program
to identify the potentially unsafe handling of program inputs. As part of the
build tool chain, clang is a good spot to embed static analysis language.

Beginning with Xcode 3.2, clang’s static analyzer8 has been integrated
with Xcode, providing users with a UI to trace logic, coding flaws, and
general API misuse. While clang’s static analyzer is handy, several of its
important features are disabled by default in Xcode. Notably, the checks
for classic dangerous C library functions, such as strcpy and strcat, are oddly
absent. Enable these in your Project or Target settings, as in Figure 4-10.

Figure 4-10: Enabling all clang static analysis checks in Xcode

8. http://clang-analyzer.llvm.org/
54 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers

© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Address Sanitizer and Dynamic Analysis
Recent versions of Xcode include a version of clang/llvm that features the
Address Sanitizer (ASan). ASan is a dynamic analysis tool similar to Valgrind,
but ASan runs faster and has improved coverage.9 ASan tests for stack and
heap overflows and use-after-free bugs, among other things, to help you
track down crucial security flaws. It does have a performance impact (pro-
gram execution is estimated to be roughly two times slower), so don’t enable
it on your release builds, but it should be perfectly usable during testing,
quality assurance, or fuzzing runs.

To enable ASan, add -fsanitize=address to your compiler flags for debug
builds (see Figure 4-11). On any unsafe crashes, ASan should write extra
debug information to the console to help you determine the nature and
severity of the issues. In conjunction with fuzzing,10 ASan can be a great help
in pinning down serious issues that may be security-sensitive and in giving an
idea of their exploitability.

Figure 4-11: Setting the ASan compiler flags

Monitoring Programs with Instruments
Regardless of whether you’re analyzing someone else’s application or trying
to improve your own, the DTrace-powered Instruments tool is extremely
helpful for observing an app’s activity on a fine-grained level. This tool is
useful for monitoring network socket usage, finding memory allocation
issues, and watching filesystem interactions. Instruments can be an excellent
tool for discovering what objects an application stores on local storage in
order to find places where sensitive information might leak; I use it in that
way frequently.

Activating Instruments
To use Instruments on an application from within Xcode, hold down the
Run button and select the Build for Profiling option (see Figure 4-12).
After building, you will be presented with a list of preconfigured templates
tailored for monitoring certain resources, such as disk reads and writes,
memory allocations, CPU usage, and so on.

9. http://clang.llvm.org/docs/AddressSanitizer.html

10. http://blog.chromium.org/2012/04/fuzzing-for-security.html
Building Your Test Platform 55iOS Application Security: The Definitive Guide for Hackers and Developers

© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Figure 4-12: Selecting the Build for Profiling option

The File Activity template (shown in Figure 4-13) will help you monitor
your application’s disk I/O operations. After selecting the template, the iOS
Simulator should automatically launch your application and begin recording
its activity.

Figure 4-13: Selecting the File Activity profiling template

There are a few preset views in Instruments for monitoring file activity.
A good place to start is Directory I/O, which will capture all file creation
or deletion events. Test your application the way you normally would and
watch the output here. Each event is listed with its Objective-C caller, the C
function call underlying it, the file’s full path, and its new path if the event is
a rename operation.

You’ll likely notice several types of cache files being written here (see
Figure 4-14), as well as cookies or documents your application has been
asked to open. If you suspend your application, you should see the applica-
tion screenshot written to disk, which I’ll discuss in Chapter 10.

For a more detailed view, you can select the Reads/Writes view, as shown
in Figure 4-15. This will show any read or write operations on files or sockets,
along with statistics on the amount of data read or written.

56 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Figure 4-14: Directory I/O view showing files created or deleted

Figure 4-15: Profiling results showing detailed file reads and writes

Building Your Test Platform 57iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Watching Filesystem Activity with Watchdog
Instruments should catch most iOS Simulator activity, but some file writes
or network calls may actually be performed by other system services, thereby
escaping the tool’s notice. It’s a good idea to manually inspect the iOS Simu-
lator’s directory tree to get a better feel for the structure of iOS and its appli-
cations and to catch application activity that you might otherwise miss.

One easy way to automate this is to use the Python watchdog module.11

Watchdog will use either the kqueue or FSEvents API to monitor directory
trees for file activity and can either log events or take specific actions when
these events occur. To install watchdog, use the following:

$ pip install watchdog

You can write your own scripts to use watchdog’s functionality, but
you’ll find a nice command line tool already included with watchdog called
watchmedo. If you open a Terminal window and navigate to the Simulator
directory, you should be able to use watchmedo to monitor all file changes
under the iOS Simulator’s directory tree, as follows:

$ cd ~/Library/Application\ Support/iPhone\ Simulator/6.1

$ watchmedo log --recursive .

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Library/Preferences>)

on_created(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

FileCreatedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots/com.yourcompany.UICatalog/UIApplicationAutomaticSnapshotDefault-

Portrait.png>)

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots>)

on_created(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirCreatedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots/com.yourcompany.UICatalog>)

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Library/SpringBoard>)

11. https://pypi.python.org/pypi/watchdog/

58 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

Entries that start with on on_modified indicate a file was changed, and
entries that start with on_created indicate a new file. There are several other
change indicators you might see from watchmedo, and you can read about
them in the Watchdog documentation.

Closing Thoughts
You should now have your build and test environment configured for run-
ning, modifying, and examining iOS apps. In Chapter 5, we’ll take a closer
look at how to debug and inspect applications dynamically, as well as how to
change their behavior at runtime.

Building Your Test Platform 59iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel

4949

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

6

Bootkit Background and History

This chapter will introduce you to bootkits by looking at the history, evolution,

and recent re-emergence of bootkit infection methods. A bootkit is a malicious

program that infects the early stages of the system startup process before the

operating system is fully loaded. They first emerged in the old days of MS-DOS

(the non-graphical operating system that preceded Windows), when the default

behavior of the PC BIOS was to attempt to boot from whatever disk was in the

floppy drive. Infecting floppies was the simplest strategy for attackers to gain

control: all it took was for the user to leave an infected floppy in the drive when

powering up or rebooting the PC—which, back then, happened often. As more

systems were implemented with BIOSes that allowed PC owners to change the

boot order and bypass the floppy drive, the utility of infected floppies decreased.

With Windows taking control of the boot process over from MS-DOS, and

allowing ample opportunity for the attacker to infect drivers, executables, DLLs,

and other system resources post-boot without messing with the trickier Windows

boot process, bootkits became a rare and exotic option among more practical

threats, to be replaced by rootkits as the primary malware threat.

This situation changed when Microsoft introduced the Kernel-Mode Code

Signing Policy on 64-bit operating systems, starting with Windows Vista.

Suddenly, easy loading of arbitrary code into the kernel no longer worked for the

attackers. Anticipating that, attackers returned to the older methods of

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

compromising a PC before its operating system could load—bringing bootkits

back into prominence.

Bootkits have made an impressive comeback after their prominence waxed

and waned (and then rebounded) with the changes in the boot process of a

typical PC. The modern bootkit is making use of variations on really old

approaches to stealth and persistence—the ability for malware to remain active

on the targeted system for as long as possible and without the system user's

knowledge. In this chapter, we’ll look at the resurgence of boot-infecting

malware, trace the history of their spectacular comeback, and then briefly review

the history of early viruses and original methods of bootkit infection.

A New Boot Process, a New Beginning for Bootkits

The introduction of Microsoft’s Kernel-Mode Code Signing Policy in Windows

Vista and later 64-bit Windows turned the tables on the attackers by

incorporating a new strategy for the distribution of system drivers. No longer

able to inject their code into the kernel once the OS was fully loaded, attackers

turned to the old BSI tricks. These tricks evolved—or, rather, co-evolved

alongside boot process defenses--into new types of attacks on operating system

boot loaders; a co-evolution that shows no signs of slowing down any time soon.

In this section we’ll look at how the Kernel-mode Code Signing Policy

determined the direction of new bootkits, and then examine the timeline of the

co-evolution of bootkits and bootkit Proofs-of-Concepts. In the following

chapters, we’ll go on to describe the details of bootkit attacks.

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

Bypassing Kernel-mode Code Signing Policy

The development of modern bootkits was heavily influenced by the necessity of

bypassing integrity checks in modern computer systems. All known tricks for

bypassing the digital signature checks introduced with Microsoft’s Kernel-mode

Code Signing Policy can be divided into three groups, as illustrated in Figure 6-

1. The first group works entirely within user mode and is based on the system-

provided methods for legitimately disabling the signing policy. The second

group targets the process of booting the operating system in order to manipulate

kernel-mode memory: this currently appears to be the most popular approach to

bootkit development. The third group of methods is based on exploiting

vulnerabilities in system firmware. In particular, there are only two ways for an

unsigned driver to be loaded into the kernel: either by using an exploitable

vulnerability in the system kernel or third-party driver, or by compromising the

boot process and thus the entire system via a bootkit infection. In practice,

malware typically makes use of the latter technique as it creates a more

permanent way for penetrating into the system: once a vulnerability in a driver is

patched it cannot be no longer exploited by malware while flaws in the boot

processes last longer. But as more computers ship with Secure Boot protection

enabled and supported by the OS, we expect to see the landscape changing once

again, in the near future.

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

Figure 6-1: Kernel-Mode Code Signing Policy bypassing techniques

Thus, modern bootkits have taken the form of infectors that target and

compromise the OS booting process.

Co-evolution of Bootkit Research and Malware

The harbinger of the first modern bootkits is generally considered to be the

eEye's Proof of Concept (PoC) BootRoot1, presented at the BlackHat conference

in 2005. The BootRootKit code was an NDIS (Network Driver Interface

Specification) backdoor by Derek Soeder and Ryan Permeh. It demonstrated for

the first time how it was possible to use the original concepts behind boot virus

infection as a model for modern operating system attacks. However, while the

eEye presentation was an important step toward the development of bootkit

malware, it was two years before any new malicious samples with bootkit

functionality were detected in the wild.

1 eEye BootRoot, BlackHat 2005 // http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-soeder.pdf

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

The first modern bootkit detected in the wild was Mebroot2, in 2007. The

detection of Mebroot coincided with the presentation of another Proof-of-

Concept, Vbootkit3, at the BlackHat conference that same year. This Proof-of-

Concept code demonstrated possible attacks on Microsoft's Windows Vista

kernel by modifying the boot sector. The authors of Vbootkit released its code as

an open-source project.

Mebroot was one of the most sophisticated malicious threat seen at this time.

It offered a real challenge to antivirus companies because this malware used new

stealth techniques for surviving after reboot. At the same time, and also at

BlackHat, another Proof of Concept was released - the Stoned bootkit4, named

so in homage to the much earlier but very successful Stoned boot sector virus

(BSV, an alternative acronym to BSI).

We must emphasize that these Proof-of-Concept bootkits are not the reason

for the coinciding releases of malicious bootkits such as Mebroot. Rather,

emergence of these Proofs-of-Concept enabled timely detection of such

malware, by showing the industry what to look for. Malware developers had

already been searching for new and stealthy ways to push the moment a system

could be actively infected to earlier into the boot process, before security

software was able to detect the presence of the infection. Had the researchers

hesitated to publish their results, malware authors would have succeeded in pre-

empting the system’s ability to detect the new bootkit malware.

2 Stoned Bootkit, BlackHat 2009 // http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-
Kleissner-StonedBootkit-PAPER.pdf
3 Vbootkit, BlackHat 2007 // https://www.blackhat.com/presentations/bh-europe-07/Kumar/Whitepaper/bh-eu-07-
Kumar-WP-apr19.pdf
4 The Rise of MBR Rootkits //
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/your_computer_is_now_stoned
.pdf

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

Figure 6-2: Bootkit resurrection timeline

With bootkits, as in other fields of computer security, we see the co-evolution of

Proofs-of-Concept that enable us to understand and detect the threats presented

by real malware samples found in the wild. The former category is developed by

security researchers to demonstrate that the threats are real and should be looked

for; the latter consists of unequivocally malicious threats developed by

cybercriminals. Table 6.1 and Figure 6-2 show the evolution of such Proofs-of-

Concepts and real malware threats side-by-side, from 2005 to 2014.

Proof of Concept Bootkits Evolution Bootkit Threats Evolution

eEye Bootroot – 2005

The first MBR–based bootkit for MS Windows

operating systems.

Mebroot – 2007

The first MBR-based bootkit for MS Windows

operating systems in the wild.

Vbootkit – 2007

The first bootkit to abuse Microsoft Windows

Vista.

Mebratix – 2008

The other malware family based on MBR

infection.

Vbootkit5 x64 – 2009

The first bootkit to bypass the digital signature

checks on MS Windows 7.

Mebroot v2 – 2009

The evolved version of Mebroot malware.

5 VBootkit 2.0 – Attacking Windows 7 via Boot Sectors, HiTB 2009 //
http://conference.hitb.org/hitbsecconf2009dubai/materials/D2T2%20-%20Vipin%20and%20Nitin%20Kumar%20-
%20vbootkit%202.0.pdf

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

Stoned Bootkit – 2009

Another example of MBR-based bootkit infection.

Olmarik (TDL4) - 2010/11

The first 64-bit bootkit in the wild.

Stoned Bootkit x64 – 2011

MBR-based bootkit supporting the infection of 64-

bit operating systems.

Olmasco (TDL4 modification) - 2011

The first VBR-based bootkit infection.

DeepBoot6 – 2011

Used interesting tricks to switch from real-mode to

protected mode.

Rovnix – 2011

The evolution of VBR based infection with

polymorphic code.

Evil Core7 - 2011

Concept bootkit that used SMP (symmetric

multiprocessing) for booting into protected-mode

Mebromi – 2011

The first exploration of the concept of BIOSkits

seen In the Wild.

VGA Bootkit8 – 2012

VGA based bootkit concept.

 Gapz9 – 2012

The next evolution of VBR infection

DreamBoot10 – 2013

The first public concept of UEFI bootkit.

OldBoot11 - 2014

The first bootkit for the Android operating

system in the wild.

Table 1-1: The chronological evolution of PoC bootkits versus real world

bootkit threats

Bootkits on this timeline are classified by the stage of the initial boot

process they subvert, as well as by the data structure they abuse for this

subversion. The first such subdivision starts with the Master Boot Record

(MBR), the first sector of the bootable hard drive. The MBR consists of the boot

6 DeepBoot, Ekoparty 2011 // http://www.ekoparty.org//archive/2011/ekoparty2011_Economou-
Luksenberg_Deep_Boot.pdf
7 Evil Core Bootkit, NinjaCon 2011 // http://downloads.ninjacon.net/downloads/proceedings/2011/Ettlinger_Viehboeck-
Evil_Core_Bootkit.pdf
8 VGA Persistent Rootkit, Ekoparty 2012 //
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=vga_persistent_rootki
t
9 Mind the Gapz: The most complex bootkit ever analyzed?// http://www.welivesecurity.com/wp-
content/uploads/2013/05/gapz-bootkit-whitepaper.pdf
10 UEFI and Dreamboot, HiTB 2013 // http://www.quarkslab.com/dl/13-04-hitb-uefi-dreamboot.pdf
11 Oldboot: the first bootkit on Android // http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

code and a partition table that describes the hard drive’s partitioning scheme. At

the very beginning of the bootup process the BIOS code reads the MBR and

transfers execution flow to the code located there--if it finds the MBR correctly

formatted. The main purpose of the MBR code is to locate an active partition on

the disk and read its very first sector – the Volume Boot Record (VBR). The

VBR contains file system-specific boot code, which is needed to load the OS

boot loader’s components. In fact, in Windows systems there are 15 consecutive

sectors following the VBR that contain bootstrap code for the New Technology

File System (NTFS) partition. These 15 sectors are refered to as Initial Program

Loader (IPL). The IPL parses the NTFS file system and locates the OS boot

loader components (for instance, BOOTMGR, the Windows Boot Manager).

Figure 6-3: Bootkit classification by type of boot sector infection

Modern bootkits can be classified into two groups according to the type of

boot sector infection employed: MBR and VBR bootkits (as shown in Figure 6-

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

3). The more sophisticated and stealthier bootkits we see are based on VBR

infection techniques.

The control flow of the bootstrap code from the MBR to the full Windows

system initialization is shown in Figure 6-4.

Figure 6-4: Booting scheme of compromised operating system

Microsoft Windows operating system versions before Windows 8.x do not

check the integrity of firmware, such as BIOS or UEFI, that are responsible for

booting the operating system in its early stages. Before the Windows 8 operating

system became available, the firmware that booted the system was by default

assumed to be trustworthy—obviously, an unwarranted assumption considering

the complexity the boot process has reached. Windows 8 onwards incoporated

Secure Boot technology, intended to work in cooperation with modern BIOS

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

software, in order to prevent or mitigate bootkit infections—but as any complex

security technology, it has its vulnerbilities. In chapters 11 and 12 of this book

we will discuss ways to bypass Secure Boot by using BIOS vulnerabilities.

The History of Bootkits and its Lessons

The history of bootkits goes back a long way, to the early IBM-PC days and

even earlier. Ironically, the first IBM-PC-compatible boot sector viruses from

1987 use the same concepts and approaches as modern threats: infecting boot

loaders so that malicious code is launched even before the operating system is

booted.

In fact, attacks on the PC boot sector were already known from even before

the days of MS-DOS. Indeed, early versions of Windows essentially ran under

MS-DOS rather than running as the core operating system, and were often

referred to as an operating environment rather than as an operating system.

While it's unlikely that any of those prehistoric viruses are still 'in the wild' today

in any meaningful sense, they have a part to play in our understanding of the

development of approaches to taking over a system by compromising and

hijacking the boot process.

Bootkit Pre-History

Boot Sector Infectors (BSIs) were certainly among the earliest bootkit

contenders, and the first to be seen on microcomputers, but they weren't the very

earliest forms of malware.

The honor of being the first virus is usually bestowed upon Creeper (1971-

72), a self-replicating program running under the TENEX networked operating

system on VAX PDP-10s at BBN Technologies. The first “antivirus” was a

program called Reaper, dedicated to the removal of Creeper infections.

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

It could be argued that as these were experimental/Proof-of-Concept

programs, the term ‘malware’ (MAL-icious soft-WARE) isn't really appropriate,

but in fact many of the earliest viruses now unequivocally regarded as malware

did no deliberate harm and were written by way of experimentation and out of

curiosity, so we tend not to discriminate. Bear in mind that software doesn't

really need to be consciously malicious to be illegal: software that deliberately

accesses and/or modifies a system that isn’t the property of its author without

permission from the system’s owner contravenes modern anti-malware

legislation in many countries and jurisdictions.

Legally, this could include programs like Reaper and other software intended

to counteract earlier malicious software—it's not uncommon for unequivocally

malicious software to disinfect other malware, though the motivation in such

cases has usually more to do with eliminating competition than concern for the

wellbeing of the target system.

After Creeper came PERVADE (1975), a subroutine in the ANIMAL game,

running on a UNIVAC 1100//42 mainframe that copied ANIMAL to any

directory the current user had access to.

PC Floppy Flotsam & the Original PC Boot Process

Before going into the history and evolution of bootkits, we’ll look at how boot

sector infectors work. In these days of optical disks and USB thumb drives it

may be difficult to comprehend that early operating systems could be contained

on such low capacity media as floppies, so we’ll summarize the architecture of

floppy disks in order to understand the boot process better, and to see how it was

manipulated by original bootkits.

Every formatted diskette had a boot sector, located in its first physical sector.

Unlike hard drives, diskettes were not partitioned. On a hard drive, the boot

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

sector is located in first logical sector. The Master Boot Record (MBR) in that

first logical sector contains the partition table, specifying the hard disk type and

how it is partitioned.

At bootup, the BIOS program looked for a bootable diskette to start from in

drive A and ran whatever code it found in the appropriate sector. In the case of

an unbootable diskette (that is, one not capable of loading the operating system),

the boot sector code would simply display a ”Not a bootable disk” message. It

was all too easy to leave a diskette in the drive, and if it happened to be infected

with a BSI, the diskette would infect the system even if the disk wasn't bootable,

which goes some way to accounting for the early success of the boot sector

infector (BSI).

'Pure' BSIs were hardware-specific and not OS-specific: if an infected floppy

found itself in the drive at bootup it attempted to infect IBM-compatible PCs

irrespective of what operating system was being run. This made its effect upon

the targeted system somewhat unpredictable. However, malware droppers using

BIOS and DOS services to install malware into the MBR were (and are) unable

to do so in a Windows NT or NT-derived system (Windows 2000 and onward)

unless it was set up to multiboot a less secure OS. An MBR infector that

succeeded in installing on an NT or NT-derived system could locate itself in

memory, but once the OS had loaded, the direct disk services provided by the

BIOS were no longer available, due to NT's use of protected mode drivers, so

secondary infection of diskettes was stymied.

There were other potential problems, too. If the virus didn't preserve the

original boot record it could prevent the system from booting at all. BSIs that

infected the DOS Boot Record (DBR) rather than the MBR (as did Form,

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

another highly successful BSI) could prevent booting from a new technology file

system (NTFS) partition, too.

The rate of BSI infection first began to decline when it became possible to

change the boot order in setup so that the system would boot from the hard disk

and ignore any floppy that happened to have been left in the drive. It was with

the increasing take-up of modern Windows versions and the virtual

disappearance of the floppy drive that the old-school BSI was finally killed off.

Apple Disorder

The first microcomputer affected by viral software seems to have been the Apple

II. At that time, Apple II (sometimes written Apple][) diskettes normally

contained the disk operating system. Around 1981, according to Robert Slade12

in his first book on viruses and malware, there were versions of a viral DOS

circulating after discussions about 'evolution' and 'natural selection' in pirated

games at Texas A&M. In general, though, the credit for the first Apple II virus is

given to Rich Skrenta's Elk Cloner (1982-3), as noted in Viruses Revealed13 and

in a more research-oriented book by Peter Szor 14.

Though Elk Cloner preceded PC boot sector viruses by several years, it’s

usually described as a boot sector infector as its method of infection was very

similar. Elk Cloner modified the loaded OS by hooking itself, and stayed

resident in RAM in order to infect other floppies, intercepting disk accesses and

12 Robert Slade’s Guide to Computer Viruses, Robert Slade, Springer. http://www.amazon.com/Robert-Slades-Guide-
Computer-Viruses/dp/0387946632
13 Viruses Revealed; David Harley, Robert Slade and Urs Gattiker, Osborne http://www.amazon.com/Viruses-Revealed-
David-Harley/dp/B007PMOWTQ
14 The Art of Computer Virus Research and Defense, Peter Szor, Addison Wesley
http://books.google.co.uk/books/about/The_Art_of_Computer_Virus_Research_and_D.html?id=XE-
ddYF6uhYC&redir_esc=y

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

overwriting their system boot sectors with its own code. At every 50th bootup it

displayed a message (sometimes generously described as a poem):

ELK CLONER:

 THE PROGRAM WITH A PERSONALITY

IT WILL GET ON ALL YOUR DISKS

IT WILL INFILTRATE YOUR CHIPS

YES, IT'S CLONER!

IT WILL STICK TO YOU LIKE GLUE

IT WILL MODIFY RAM TOO

SEND IN THE CLONER!

As David Harley wrote in an article15 for Infosecurity Magazine, after

Skrenta was interviewed for The Register in 201216: "I guess it’s as well that

Skrenta subsequently went into the IT industry rather than embarking on a career

in literature. As verse goes, that’s really shaggy doggerel." Still, no verse that

Harley wrote when he was in his teens has stood the test of time, either.

The later (1989) Load Runner malware, affecting Apple IIGS and ProDOS,

is rarely mentioned nowadays, but it does have an interesting extra wrinkle.

Apple users frequently needed to reboot to change operating systems, or

sometimes to boot a 'special' disk. Load Runner's specialty was trapping the reset

command triggered by the key combination CONTROL+COMMAND+RESET

15 http://www.infosecurity-magazine.com/blog/2012/12/17/send-in-the-clones/735.aspx
16 http://www.theregister.co.uk/2012/12/14/first_virus_elk_cloner_creator_interviewed/

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

and taking it as a cue to write itself to the current diskette, so that it would

survive a reset. This may not be the earliest example of malware persistence, but

it's certainly a precursor to more sophisticated attempts to maintain its presence.

PC © Brain Damage

We have to look ahead to 1986 for the first PC virus, usually considered to be

Brain . Brain was a fairly bulky BSI, occupying the first two sectors of a diskette

with its own code and marking the sectors as 'bad' so that the space wouldn't be

overwritten. This meant that the boot code was moved from the first sector to the

third. The version usually taken to be the 'original' did not infect hard disks, only

360k diskettes.

However, Brain had features that prefigured some of the characterizing

features of modern bootkits. Firstly, the use of a hidden storage area in which to

keep its own code, though on an infinitely more basic level than TDSS and its

contemporaries and successors. Secondly, the use of 'bad' sectors to protect that

code from legitimate housekeeping by the operating system. Thirdly, the use of a

stealth technique: if the virus was active when an infected sector was accessed, it

hooked the disk interrupt handler to ensure that the original, legitimate boot

sector stored in sector three was displayed.

Characteristically, a boot sector virus would allocate a memory block for the

use of its own code and hook the execution of the code flow there in order to

infect new files or system areas (in the case of a BSI). Occasionally, multi-stage

malware would use a combination of these methods; these were known as

Multipartites.

Multipartites

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

Multipartite is a term used to describe malware that capable of infecting both

boot sectors and files, though it isn't strictly correct to restrict the use of the term

to 'file and boot' viruses. For example, there were instances of macro viruses that

dropped file viruses, while there are also examples of malware that can spread

both non-parasitically in worm fashion and also as file infectors. While the

malware we see nowadays tends to a degree of sophistication, complexity, and

modularity that would have been almost unimaginable in the 1980s and 1990s,

the term has fallen largely into disuse in discussion of modern threats.

Conclusion

This chapter has been devoted to the history and evolution of boot compromises,

with the intention of giving the reader a solid understanding of the basic

concepts on which to build as we look at the detail of bootkit technology. In the

next chapter we will be going deeper into Kernel-Mode Code Signing Policy and

exploring the ways of bypassing this technology via bootkit infection, with

particular reference to TDSS. The evolution of TDL3 and TDL4 neatly

exemplifies the shift from user mode to kernel mode system compromise as a

means of keeping the malware unnoticed but active for longer on a compromised

system.

Rootkits and Bookits, © 2016 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus

67

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

2
Making Things Move with
Electricity and Magnets

ig magnets attract small metal objects;
small magnets stick to large metal
objects. For example, refrigerator doors

are usually big pieces of metal, so it’s easy cover
them with tiny, decorative magnets. You’ve probably
seen magnets in cartoons, too: characters like to use
giant horseshoe-shaped magnets to cause mischief.
You can find magnets in nature or create them with
electricity. A magnet created with electricity is called
an electromagnet.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

You can use an electromagnet to make things move, and
you don’t even have to be a superhero to do it! In fact, many
things you see every day—like motors, loudspeakers, and the
automatic doors in shops—work because electromagnets make
something in them move.

An electromagnet is very easy to make, and in this chap-
ter, you’ll build an electromagnet that you can turn on and off
with a switch. Then, you’ll use an electromagnet to build your
very own motor!

How Magnets Work
Magnets have two poles, the north pole (N) and south pole (S),
and they’re surrounded by a magnetic field.

N S

If you place two magnets side by side, the north pole of one
magnet attracts the other magnet’s south pole and repels that
magnet’s north pole. Try pushing two magnets together. If you
don’t force them, they should naturally attach to each other
at their opposite poles. Now, try to force two of the same poles
toward each other. That’s harder, isn’t it? Opposite poles are
attracted to each other, and identical poles repel each other.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

N S N S

N S S N

Unlike poles attract

Like poles repel

Note   Thin, flexible refrigerator magnets don’t have two
distinct poles. Instead they have many poles of opposite polar-
ity next to each other, so it’s harder to feel the magnets attract
and repel.

But magnets don’t attract all materials. For example, plas-
tic is unaffected by magnets. Try testing some metal objects
around you!

Try It Out:
Find Some Magnetic Objects!

Take any magnet and place it over objects made out of
different materials, such as:

XX Aluminum foil
XX A stainless steel spoon
XX A soda can
XX An iron nail
XX A piece of metal jewelry
XX A few different coins

Which objects does the magnet attract or stick to?
You should find that the magnet attracts some metals,
but not all metals. What happens with aluminum foil?

It turns out that some metals can turn into magnets if you
apply a little electricity. That’s where electromagnets come in.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Meet the Electromagnet
When current flows through a wire, something strange
happens: the current creates a magnetic field around the wire.

current

+

−

magnetic field
wire

The magnetic field of one wire, however, is very weak.
To make a stronger magnetic field, you need to run current
through lots of wires placed next to each other. But you still
need only a single wire: you can just wind that wire into many
loops to make a coil, and then send a current through it. The
magnetic fields from each loop in the coil overlap and com-
bine to create a stronger magnetic field. If you wind your wire
around a piece of iron—like a nail, a bolt, or a screw—you’ll
get an even stronger magnetic field.

All you have to do to create an electromagnet is connect a
battery to the ends of the coiled wire, making a closed circuit.
When current flows through the wire, the piece of iron it’s
wrapped around starts to behave like a magnet, with the south
pole at one end and the north pole at the other end. Which pole
is which depends on the direction of the current, as well as the
direction of the coil windings. When you disconnect the battery,
the current stops and the magnetic field disappears.

Building an electromagnet will help you start to under-
stand how you can use electricity to make things like a
loudspeaker in the real world, so let’s make one! With enough
current, enough wire, and the right circuit, you could build a
supermagnet straight out of your favorite cartoon, but for now,
we’ll start with a small one.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

NS

+ −

9V

a simple electromagnet

Project #3: Create Your Own
Electromagnet
You know the theory behind how to build your own electro-
magnet. But reading the theory isn’t the same as making
something in real life, so it’s time to have some fun!

You’re going to build your own electromagnet with wire
and a bolt. All you need to do is to wrap the wire around the
bolt several times and connect the battery to the wire. To
make it easy to turn the electromagnet on and off, you’ll also
add a switch to the circuit so that you can control whether or
not current flows through the wires.

NS

+
−9
V

electromagnet

switch

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Shopping List

XX A 1.5 V alkaline (C) battery (Jameco #2112428,
Bitsbox.co.uk #BAT040), like the big round ones used
in older flashlights. Don’t use a rechargeable battery or
plug-in power supply.

XX Insulated solid-core wire (Jameco #36792, Bitsbox.co.uk
#W106BK), about 7 feet. Standard hook-up wire works fine.

XX Tape to fasten everything. You can use masking tape,
electrical tape, or whatever you have.

XX Washers or paper clips, or other small metal objects
that your electromagnet can lift.

XX A bolt to wind the wire around. Choose a big one to make
room for many turns with the wire. The bolt I used was
0.3 inches thick and 4 inches long.

XX A switch (Jameco #581685, Bitsbox.co.uk #SW018) to
turn the electromagnet on and off.

C batteryinsulated wire

switch

electrical tape

bolt

washers

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Tools

XX A wire cutter (Jameco #35482, Bitsbox.co.uk #TL008) to
cut or remove the insulation from wire.

XX A standard magnet

Step 1: Check Your Bolt
Your bolt is going to be the core of your electromagnet,
making it stronger. But not all materials will work as an
electromagnet’s core! Most metal bolts should work, but if
you’re unlucky and find one that is made of nonmagnetic
material, your electromagnet won’t be very effective.

To check whether a bolt is okay to use in this project, just
hold it close to any standard magnet. If the magnet attracts
the bolt, then the bolt is a good one.

wire cutter

magnet

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Step 2: Remove Insulation from One End of
the Coil Wire
To connect the coil wire to the battery and the switch, you
need to expose the metal of the wire at both ends. You’ll use a
wire cutter to strip away about 0.5 inches of insulation from
the beginning of your wire. After you’ve wound the coil, you’ll
do the same with the end of your wire. Stripping wires can be
a bit difficult if you’ve never done it before, so ask a parent or
teacher for help to get started.

First, gently grasp the end of the wire with the cutters.

Apply just enough pressure with the wire cutter to cut the
plastic around the wire, but not the wire itself. When you’ve
cut through the insulation, your wire should look something
like this:

Then, place the wire cutter in the cut you made. Squeeze
the wire cutter enough to grip the loose plastic with the blades.
Use the wire cutter to gently pull off the plastic without cut-
ting into the metal of the wire.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Now, you should have a wire with some exposed metal at
the end, like this:

If stripping wires seems tricky in the beginning, don’t
worry: it becomes much easier with practice.

Step 3: Wind the Wire
Take the wire and wrap it around your bolt 50 to 100 times.
Leave about 3 inches of each end of the wire hanging loose.
Make sure you don’t use all the wire; you’ll need a piece of
wire about 4 inches long in a later step.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Wrap the wire as tight as possible and tape the end to
make sure the turns stay in place. We call this wound wire the
coil of the electromagnet.

Repeat Step 2 to strip the insulation off the other end of
your coil.

Step 4: Connect the Negative Battery Terminal to
the Coil
Connect one end of the coil—
it doesn’t matter which—to
the negative terminal of the
battery. Fasten it to the battery
with tape.

Warning   Be sure
you’re using the recommended
1.5 V battery! Anything more
powerful could send too
much current through your
coil, which could make both
the battery and the coil hot
enough to burn you.

Step 5: Connect the Switch
In Chapter 1, I showed
you how to build your own
switch and described how
you can use one to turn
something on and off. Now,
you’re going to connect a
prebuilt switch to your
electromagnet to turn it on
and off. A switch often has
three pins that you can con-
nect to.

1 2 3

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

On the switch in this project’s Shopping List, pin 2 is
the common pin, which is connected to either pin 1 or pin 3,
depending on the position of the button. If the button is
pushed toward pin 1, then pins 2 and 1 are connected. If
it’s pushed toward pin 3, then pins 2 and 3 are connected.

Some switches have only two pins. In that case, the two
pins are connected when the button is in one position, and not
connected in the other—just like the switch you built in “Proj-
ect #2: Intruder Alarm” on page 72.

Fasten the other end of the coil wire to pin 1 of the switch
and make sure the button of the switch is pushed toward
pin 3. Then, cut a brand-new piece of wire from your spool,
about 4 inches long, and strip some insulation from both ends
to expose the metal. Connect one end of the new wire to the
positive battery terminal and one end to the middle pin of
the switch. Use tape to make sure the wires are properly con-
nected and stay in place.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Step 6: Test Your Super Electromagnet
That’s it for building the circuit! Now, let’s test it. If you’ve
connected everything correctly, your electromagnet should be
off now.

First, find a good piece of metal to attract with your
electromagnet. A small metal paper clip should do the
trick, though I used a little pile of steel washers. Magnets
won’t attract all metals—for example, aluminum foil is not
magnetic—so hold a regular magnet next to the metal you
want to attract first to make sure it’s magnetic.

Then, flip your switch and place your electromagnet close
to your paper clip or whatever other metal object you’re using.
If you’ve found the on position, the bolt should pull the metal
object toward it.

If nothing happens, press your switch into the other posi-
tion; the bolt should start to pull the metal object now.

The electromagnet consumes a lot of power, so if you keep
the switch flipped on for too long, your battery will drain
quickly. You might also notice that the battery and the coil

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

become hot. Try to limit the time your electromagnet is on to
only a few seconds, and always disconnect the battery before
you leave your circuit.

Step 7: What If the Electromagnet Isn’t Working?
Make sure you used insulated wire to make the loops around
the bolt. The wire must have some kind of insulating layer
on the outside of the metal; otherwise, it won’t work. The rea-
son for this is that without the insulating layer, the electrons
won’t follow the wire loops around the bolt. Instead, they’ll
go through the bolt if the bolt is conductive or through to the
neighboring wire if the loops of wire are touching. In either
case, the electrons will function as if you had one thick wire.

Another possible problem is that your battery is dead.
Try switching to a different battery that you’re sure is
working.

If you’re sure you’re using insulated wire and that
the battery has power, check that the connections on the
switch and battery are connected, as I described in Steps 4
and 5. If you’re unsure, it might be a good idea to redo the
connections.

Meet the Motor
A wire with flowing current creates a magnetic field, as I
described in “Meet the Electromagnet” on page 72. When
powered, the coil from Project #3 will have a magnetic field
with south and north poles, just like any other magnet. Like
poles repel each other and opposite poles attract each other.
So, if you put a magnetized coil of wire over a regular magnet
with the same poles close to each other, the coil will try to
twist itself around.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

+
−9
V

N

S

N

S

Like poles repel.

magnet

Coil will try to twist
because like poles
repel each other.

coil

If you placed the wire coil on some kind of stand so that
it could rotate freely over the magnet, it would flip back and
forth without making a full spin. This is because when the coil
has made a half spin, the opposite poles face and attract each
other, which will force the coil in the opposite direction.

How can you make the coil continue to spin in one direc-
tion? You just need to find a way to disconnect the battery
halfway around and turn the battery back on when the coil
is back in its starting position. Then, here’s what happens.
The coil starts moving when it’s powered and pushes the wire
coil halfway through one round. Because you disconnect the
battery halfway through, the existing motion keeps the coil
moving forward. When it comes back to its original position,
the battery gets reconnected and gives the coil another push
forward, and it continues the same way.

Electric motors are based on this basic principle of mag-
netic poles attracting and repelling each other.

Project #4: Create a Motor
In this chapter, you’ve built your own electromagnet, and
you’ve learned how motors work. Now, it’s time to combine
these two concepts. In this project, you’ll build your very own
motor from scratch!

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

You’ll use a magnet together with a coil of wire. The coil
will spin, and this spinning coil is called the rotor of the motor.
You’re going to build the motor so that the rotor coil has cur-
rent through it for only half of the spin. The magnet should
push the electromagnet for half of the spin, and the rotor coil
should continue around the second half of its spin with the
energy it gets from the first push.

spinning
rotor

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Shopping List

XX A 1.5 V alkaline (C) battery (Jameco #2112428,
Bitsbox.co.uk #BAT040), like the big round ones used
in older flashlights.

XX Insulated solid-core wire (Jameco #36792, Bitsbox.co.uk
#W106BK), about 13 feet. The stiff insulated wire will be
used both for the coil and to support the coil.

XX Tape to fasten everything. You can use masking tape,
electrical tape, or whatever you have.

XX A paper or plastic cup to hold everything in place.
XX Two disc magnets (Jameco #2181319, Bitsbox.co.uk

#HW145), the stronger the better.

Warning 	 Always keep small supermagnets like
these away from babies and young children. These magnets
are very dangerous if swallowed.

C battery

insulated wire

magnets
electrical
tape

cup

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Tools

XX A wire cutter (Jameco #35482, Bitsbox.co.uk #TL008) to
cut or remove the insulation from wire.

Step 1: Create the Rotor
First, we’ll create a new coil of wire; this coil will be the rotor,
or spinning part, of your motor. To create the rotor, first take
your spool of wire and strip the insulation from about 1.5 inches
of the free end. Then, wind the wire around the battery.

wire cutter

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

If you buy the wire I recommend in this project’s Shopping
List, try making around 30 windings; if you use thinner wire,
wind it more. The point is to make the coil as magnetic as pos-
sible, without making it too heavy. More windings make the
rotor more magnetic, but also heavier.

Carefully slide your coiled wire off the battery. Gather the
windings into a loop and wrap the ends of the wire around your
loop a few times on each side so that the coils stay together. Cut
your loop from the spool of wire, leaving the other end about
1.5 inches long. Then, remove the insulation from this end,
too, so that the metal inside is exposed. If you’re using wires
with plastic insulation, you can use a wire cutter, as described
in “Step 2: Remove Insulation from One End of the Coil Wire”
on page 76.

Step 2: Build the Motor’s Structure
Set your coil aside for now and take out your paper cup. Punch
a hole in one side of the cup about 0.4 inches from the top and
another one about 0.4 inches from the bottom. Pull a piece of
the stiff wire around 8 inches long through these two holes.
Then, do the same on the other side of the cup. Turn the cup
upside down, remove the insulation from the ends of both
wires, and tape the wires to the cup to ensure they stay in
place.

rotor

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

The ends that are now on the bottom will connect to the
battery, and the top ends are going to make up the connec-
tion to the rotor and support it. Bend the top ends of the two
wires into two U-shapes that can hold the rotor. Make sure
the bottom part of each U has exposed metal so that it will
touch the exposed wires of the rotor. This U-structure will
be the battery’s connection to the rotor.

Step 3: Place the Magnets
Place one magnet on top of the cup. Then place one magnet
inside the cup so that the two magnets stick to each other
through the cup. Place your rotor into the U-structure and
adjust the position of the magnets to make sure they are at
the center, just under the coil.

magnet

rotor connector

battery
connector

battery
connector

rotor
connector

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Step 4: Reinsulate Part of the Coil
If you connected the battery now, the motor wouldn’t work.
With your coil rotor attached, you’d see movement, but the
rotor would just be pushed back and forth in opposite direc-
tions because it’s always connected to the battery. You need a
way to disconnect the coil from the battery halfway through
so that it’s first pushed away from the magnet and then
released until it has spun the rest of the way around. Then,
it can reconnect with the magnet and get pushed again, and
so on. You can make this happen by insulating the wire on
one side with a permanent marker. Do this on only one arm
of the rotor.

wire insulated with permanent marker

no insulation

Lay your coil flat on the table and use a permanent
marker to draw along the wire on one side to make it noncon-
ductive. Draw your line so that the rotor disconnects from the
battery when the loop lies horizontally above the magnet.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Step 5: Rev Up Your Motor
Let’s get that motor running! Connect the battery by taping
the two wires to the positive and negative terminals.

Now, place the rotor into the U-structure. The motor
should start spinning. You might need to give it a little push.
It won’t run any cars, but if it works, then you definitely just
made something move with electricity. Congratulations!

wire connected to the
positive battery terminal

The motor is
running!

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Step 6: What If the Motor Doesn’t Work?
Can you see any movement? If you’re very lucky, it’ll work
right away, but you’ll most likely need to make some adjust-
ments. Here are some places to start:

1.	 Make sure your coil is placed so that it starts with the
exposed wire—that is, not the part you covered with the
marker—touching the exposed wire of the U-shaped struc-
ture. That way, when you connect the battery, the coil
becomes magnetic.

2.	 Figure out which way the battery should be connected.
You might find that the rotor spins better in one direction
than the other, so try to connect the battery the other way
around to see what’s best for your motor.

3.	 If your coil is a bit too heavy, the magnetism won’t be
enough to push the coil all the way around the loop. Try
unwinding a few loops to make the coil lighter.

4.	 You might need to adjust the position of the magnets
under your rotor. They should be as centered as possible.

If your motor still doesn’t run, your rotor may just need
a little push to get started. Try tapping it lightly with your
finger to see whether that unleashes a speed demon.

Electronics for Kids, © 2016 by Øyvind Nydal Dahl

What’s Next?
In this chapter, you’ve learned that magnets can be created by
winding a wire around a bolt and connecting it to a battery,
and you’ve tested this by building your own electromagnet. At
the end, you learned how electric motors work, and you even
built one for yourself. You really got things moving!

Now, take that knowledge and explore electricity a little
further. Try adding even more magnets under the rotor of
your motor. Then, wind a rotor coil that is twice as big or even
bigger. You can create a much larger structure for the motor.
How fast can you make your motor go?

So far, you’ve only used electricity, but you can actually
generate it, too. In the next chapter, you’ll learn a couple of
different ways to generate electricity, and you’ll be playing
around a bit more with magnets.

93

Project 3:
Bar Graph
In this project, you’ll
combine what you’ve
learned in the previous
LED projects to create
an LED bar graph that
you can control with a
potentiometer.

Arduino Project Handbook, © 2016 by Mark Geddes

Parts Required
•	 Arduino board

•	 Breadboard

•	 Wires

•	 9 LEDs

•	 50k-ohm potentiometer

•	 9 220-ohm resistors

Arduino Project Handbook, © 2016 by Mark Geddes

How It Works
A bar graph is a series of LEDs in a line, similar to what you might
see on an audio display. It’s made up of a row of LEDs with an analog
input, like a potentiometer or microphone. In this project, you use the
analog signal from the potentiometer to control which LEDs are lit.
When you turn the potentiometer one way, the LEDs light up one at
a time in sequence, as shown in Figure 3-1(a), until they are all on,
shown in Figure 3-1(b). When you turn it the other way, they turn off
in sequence, as shown in Figure 3-1(c).

A

B

C

Figure 3-1:

The LEDs light up and

turn off in sequence

as you turn the

potentiometer.

Arduino Project Handbook, © 2016 by Mark Geddes

The Build
1.	 Insert the LEDs into the breadboard with their shorter, negative

legs in the GND rail. Connect this rail to Arduino GND using a
jumper wire.

2.	 Insert a 220-ohm resistor for each LED into the breadboard, with
one resistor leg connected to the positive LED leg. Connect the
other legs of the resistors to digital pins 2–10 in sequence, as
shown in Figure 3-2. It’s important that the resistors bridge the
break in the breadboard as shown.

THE NEGATIVE LEGS OF THE LEDS ARE CONNECTED

TO GND ON THE ARDUINO. THE POSITIVE LEGS ARE

CONNECTED TO PINS 2−10.

THE CENTER PIN

OF THE POTEN-

TIOMETER IS

CONNECTED TO

ARDUINO A0.

LEDs arduino

Positive legs Pins 2–10 via resistor

Negative legs GND

Figure 3-2:

Circuit diagram for

the bar graph

Arduino Project Handbook, © 2016 by Mark Geddes

3.	 Place the potentiometer in the breadboard and connect the
center pin to Arduino A0. Connect the right outer pin to +5v and
the left potentiometer pin to GND.

Potentiometer arduino

Left pin GND

Center pin A0

Right pin +5v

4.	 Upload the code in “The Sketch” below.

The Sketch
The sketch first reads the input from the potentiometer. It maps the
input value to the output range, in this case nine LEDs. Then it sets
up a for loop over the outputs. If the output number of the LED in
the series is lower than the mapped input range, those LEDs turn on;
if not, they turn off. See? Simple! If you turn the potentiometer to the
right, the LEDs light up in sequence. Turn it to the left, and they turn
off in sequence.

const int analogPin = A0; // Pin connected to the potentiometer
const int ledCount = 9; // Number of LEDs
int ledPins[] = {2,3,4,5,6,7,8,9,10}; // Pins connected to the LEDs

void setup() {
 for (int thisLed = 0; thisLed < ledCount; thisLed++) {
 pinMode(ledPins[thisLed], OUTPUT); // Set the LED pins as output
 }
}

// Start a loop
void loop() {
 int sensorReading = analogRead(analogPin); // Analog input
 int ledLevel = map(sensorReading, 0, 1023, 0, ledCount);
 for (int thisLed = 0; thisLed < ledCount; thisLed++) {
 if (thisLed < ledLevel) { // Turn on LEDs in sequence
 digitalWrite(ledPins[thisLed], HIGH);
 }
 else { // Turn off LEDs in sequence
 digitalWrite(ledPins[thisLed], LOW);
 }
 }
}

Note

As mentioned in

Project 2, it doesn’t actually

matter which way the

outer potentiometer pins

are connected, but I’ve

given instructions here to

reflect the images.

Arduino Project Handbook, © 2016 by Mark Geddes

Project 4: Disco
Strobe Light
In this project, you'll apply
the skills you learned in
Project 3 to make a strobe
light device with adjust­
able speed settings.

Arduino Project Handbook, © 2016 by Mark Geddes

Parts Required
•	 Arduino board

•	 Breadboard

•	 Wires

•	 2 Blue LEDs

•	 2 Red LEDs

•	 50k-ohm potentiometer

•	 4 220-ohm resistors

Arduino Project Handbook, © 2016 by Mark Geddes

How It Works
Turning the potentiometer up or down changes the speed of the flash-
ing lights, creating a strobe effect. You can use red and blue LEDs for
a flashing police light effect (see Figure 4-1). Connect the LEDs of the
same color to the same Arduino pin so they’ll always light together.
If you build a casing to house your LEDs, you’ll have your own mobile
strobe unit. You can add up to 10 LEDs and change the sketch code
to include your output pins and the new number of LEDs.

The Build
1.	 Place your LEDs into the breadboard with the short, negative

legs in the GND rail, and then connect this rail to Arduino GND.

2.	 Insert the resistors into the board, connecting them to the longer,
positive legs of the LEDs. Use jumper wires to connect the two
red LEDs together and the two blue LEDs together via the resis-
tors, as shown in Figure 4-2; this allows the LEDs of the same
color to be controlled by a single pin.

Figure 4-1:

Red and blue LEDs mimic a

police car siren.

Note

Remember to add power

to the breadboard.

Arduino Project Handbook, © 2016 by Mark Geddes

3.	 Connect the red LEDs to Arduino pin 11 and the blue LEDs to
Arduino pin 12.

LEDs arduino

Negative legs GND

Positive leg (red) Pin 11

Positive leg (blue) Pin 12

4.	 Place the potentiometer in the breadboard and connect the
center pin to Arduino A0, the left pin to GND, and the right pin
to +5v.

Potentiometer arduino

Left pin GND

Center pin A0

Right pin +5v

5.	 Confirm that your setup matches that of Figure 4-3, and then
upload the code in “The Sketch” on page 103.

Figure 4-2:

Connecting LEDs

with jumper wires

Arduino Project Handbook, © 2016 by Mark Geddes

BOTH BLUE LEDS CONNECT TO

ARDUINO PIN 12 THROUGH THE

220-OHM RESISTOR.

BOTH RED LEDS CONNECT TO

ARDUINO PIN 11 THROUGH THE

220-OHM RESISTOR.

TURN THE POTENTIOMETER

TO CHANGE THE SPEED OF

THE FLASHING LIGHTS.

The Sketch
The sketch works by setting the analog signal from the potentiometer
to the Arduino as an input and the pins connected to the LEDs as out-
puts. The Arduino reads the analog input from the potentiometer and
uses this value as the delay value—the amount of time that passes
before the LEDs change state (either on or off). This means that the
LEDs are on and off for the duration of the potentiometer value, so
changing this value alters the speed of the flashing. The sketch
cycles through the LEDs to produce a strobe effect.

Figure 4-3:

Circuit diagram for the

disco strobe light

Arduino Project Handbook, © 2016 by Mark Geddes

const int analogInPin = A0; // Analog input pin connected to the
 // potentiometer
int sensorValue = 0; // Value read from the potentiometer
int timer = 0; // Delay value

// Set digital pins 12 and 11 as outputs
void setup() {
 pinMode(12, OUTPUT);
 pinMode(11, OUTPUT);
}

// Start a loop to turn LEDs on and off with a delay in between
void loop() {
 sensorValue = analogRead(analogInPin); // Read value from the
 // potentiometer
 timer = map(sensorValue, 0, 1023, 10, 500); // Delay 10ms to 500ms
 digitalWrite(12, HIGH); // LED turns on
 delay(timer); // Delay depending on potentiometer value
 digitalWrite(12, LOW); // LED turns off
 delay(timer);
 digitalWrite(12, HIGH);
 delay(timer);
 digitalWrite(12, LOW);
 digitalWrite(11, HIGH);
 delay(timer);
 digitalWrite(11, LOW);
 delay(timer);
 digitalWrite(11, HIGH);
 delay(timer);
 digitalWrite(11, LOW);
}

Arduino Project Handbook, © 2016 by Mark Geddes

Project 5:
Plant Monitor
In this project I’ll
introduce a new type
of analog sensor that
detects moisture levels.
You’ll set up a light and
sound alarm system to
tell you when your plant
needs watering.

Arduino Project Handbook, © 2016 by Mark Geddes

Parts Required
•	 Arduino board

•	 Wires

•	 HL-69 moisture sensor

•	 LED

•	 Piezo buzzer

Arduino Project Handbook, © 2016 by Mark Geddes

How It Works
You’ll use an HL-69 moisture sensor, readily available online for a few
dollars or from some of the retailers listed in Chapter XX. The prongs
of the sensor detect the moisture level in the surrounding soil by pass-
ing current through the soil and measuring the resistance. Damp soil
conducts electricity easily, so it provides lower resistance, while dry
soil conducts poorly and has a higher resistance.

The sensor consists of two parts, as shown in Figure 5-1: the
actual prong sensor (a) and the controller (b). The two pins on the
sensor need to connect to the two separate pins on the controller
(connecting wires are usually supplied). The other side of the con
troller has four pins, three of which connect to the Arduino.

A

B

The four pins are, from left to right, AO (analog out), DO (digital
out), GND, and VCC. You can read the values from the controller
through the IDE when it’s connected to your computer. This project

Figure 5-5:

The HL-69 moisture sensor

prong (a) and controller (b)

Arduino Project Handbook, © 2016 by Mark Geddes

doesn’t use a breadboard, so the connections are all made directly to
the Arduino.

Lower readings indicate that more moisture is being detected, and
higher readings indicate dryness. If your reading is above 900, your
plant is seriously thirsty.

The Build
1.	 Connect the sensor’s two pins to the + and – pins on the

controller using the provided connecting wires, as shown in
Figure 5-2.

POSITIVE NEGATIVEFigure 5-2:

Connecting the sensor

to the controller

Arduino Project Handbook, © 2016 by Mark Geddes

2.	 Connect the three prongs from the controller to +5v, GND, and
Arduino A0 directly on the Arduino, as shown in the following
table. The DO pin is not used.

Sensor Controller arduino

VCC +5v

GND GND

A0 A0

DO Not used

3.	 Connect an LED directly to the Arduino with the shorter, nega-
tive leg in GND and the longer, positive leg in Arduino pin 13, as
shown in Figure 5-3.

LED arduino

Positive leg Pin 13

Negative leg GND

4.	 Connect the piezo buzzer’s black wire to GND and its red wire to
Arduino pin 11.

Piezo Buzzer arduino

Red Pin 11

Black GND

5.	 Check that your setup matches that of Figure 5-4, and then
upload the code in “The Sketch” on page 111.

Figure 5-3:

Connecting the LED to the

Arduino

Arduino Project Handbook, © 2016 by Mark Geddes

WHEN THE VALUE FROM THE SENSOR

RISES ABOVE YOUR CALIBRATED VALUE,

THE LED WILL LIGHT AND THE BUZZER

WILL SOUND.

PLACE THE SENSOR IN THE SOIL OF

THE PLANT YOU WANT TO MONITOR.

AS THE SOIL DRIES OUT, THE ARDUINO

READS THE VALUE FROM THE SENSOR

AND SENDS IT TO THE IDE.

6.	 Connect the Arduino to your computer using the USB cable.
Open the Serial Monitor in your IDE to see the values from the
sensor—this will also help you to calibrate your plant monitor.
The IDE will display the value of the sensor’s reading. My value
was 1000 with the sensor dry and not inserted in the soil, so I
know this is the highest, and driest, value. To calibrate this value,
turn the potentiometer on the controller clockwise to increase the
resistance and counterclockwise to decrease it (see Figure 5-5).

Figure 5-4:

Circuit diagram for

the plant monitor

Arduino Project Handbook, © 2016 by Mark Geddes

POTENTIOMETER

7.	 When the sensor is inserted into moist soil, the value will drop to
about 400. As the soil dries out, the sensor value rises; when it
reaches 900, the LED will light and the buzzer will sound.

The Sketch
The sketch first defines pin A0 so that it reads the moisture sensor
value. It then defines pin 11 as output for the buzzer, and pin 13 as
output for the LED. Use the Serial.Println function to send the
reading from the sensor to the IDE, in order to see the value on the
screen.

Change the value in the line

if(analogRead(0) > 900){

depending on the reading from the sensor when it is dry (here it’s
900). When the soil is moist, this value will be below 900, so the LED
and buzzer will remain off. When the value rises above 900, it means
the soil is drying out, and the buzzer and LED will alert you to water
your plant.

const int moistureAO = 0;
int AO = 0; // Pin connected to A0 on the controller
int tmp = 0; // Value of the analog pin
int buzzPin = 11; // Pin connected to the piezo buzzer
int LED = 13; // Pin connected to the LED

void setup () {
 Serial.begin(9600); // Send Arduino reading to IDE
 Serial.println("Soil moisture sensor");
 pinMode(moistureAO, INPUT);
 pinMode(buzzPin, OUTPUT); // Set pin as output
 pinMode(LED, OUTPUT); // Set pin as output
}

Figure 5-5:

Turn the potentiometer

to calibrate your plant

monitor.

Arduino Project Handbook, © 2016 by Mark Geddes

void loop () {
 tmp = analogRead(moistureAO);
 if (tmp != AO) {
 AO = tmp;
 Serial.print("A = "); // Show the resistance value of the sensor
 // in the IDE
 Serial.println(AO);
 }
 delay (1000);
 if (analogRead(0) > 900) { // If the reading is higher than 900,
 digitalWrite(buzzPin, HIGH); // the buzzer will sound
 digitalWrite(LED, HIGH); // and the LED will light
 delay(1000); // Wait for 1 second
 digitalWrite(buzzPin, LOW);
 digitalWrite(LED, HIGH);
 }
 else {
 digitalWrite(buzzPin, LOW); // If the reading is below 900,
 // the buzzer and LED stay off
 digitalWrite(LED, LOW);
 }
}

Arduino Project Handbook, © 2016 by Mark Geddes

	The Car Hacker's Handbook

	iOS Application Security

	Rootkits and Bootkits

	Electronics for Kids

	Arduino Project Handbook

