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5
R e v e r s e  E n g i n e e r i n g  

t h e  C A N  B u s 

In order to reverse engineer the CAN bus, 
we first have to be able to read the CAN 

packets and identify which packets control 
what. That said, we don’t need to be able to 

access the official diagnostic CAN packets because 
they’re primarily a read-only window. Instead, we’re 
interested in accessing all the other packets that flood the CAN bus. The 
rest of the nondiagnostic packets are the ones that the car actually uses to 
perform actions. It can take a long time to grasp the information contained 
in these packets, but that knowledge can be critical to understanding the 
car’s behavior.

Locating the CAN Bus
Of course, before we can reverse the CAN bus, we need to locate the CAN. 
If you have access to the OBD-II connector, your vehicle’s connector pin-
out map should show you where the CAN is. (See Chapter 2 for common 
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locations of the OBD connectors and their pinouts.) If you don’t have access 
to the OBD-II connector or you’re looking for hidden CAN signals, try one 
of these methods:

•	 Look for paired and twisted wires. CAN wires are typically two wires 
twisted together.

•	 Use a multimeter to check for a 2.5V baseline voltage. (This can be dif-
ficult to identify because the bus is often noisy.) 

•	 Use a multimeter to check for ohm resistance. The CAN bus uses a 120-
ohm terminator on each end of the bus, so there should be 60 ohms 
between the two twisted-pair wires you suspect are CAN.

•	 Use a two-channel oscilloscope and subtract the difference between the 
two suspected CAN wires. You should get a constant signal because the 
differential signals should cancel each other out. (Differential signaling 
is discussed in “The CAN Bus” on page 122.)

N O TE  	 If the car is turned off, the CAN bus is usually silent, but something as simple as 
inserting the car key or pulling up on the door handle will usually wake the vehicle 
and generate signals. 

Once you’ve identified a CAN network, the next step is to start monitor-
ing the traffic.

Reversing CAN Bus Communications with  
can-utils and Wireshark 

First, you need to determine the type of communication running on the 
bus. You’ll often want to identify a certain signal or the way a certain com-
ponent talks—for example, how the car unlocks or how the drivetrain 
works. In order to do so, locate the bus those target components use, and 
then reverse engineer the packets traveling on that bus to identify their 
purpose.

To monitor the activity on your CAN, you need a device that can moni-
tor and generate CAN packets, such as the ones discussed in Appendix A. 
There are a ton of these devices on the market. The cheap OBD-II devices 
that sell for under $20 technically work, but their sniffers are slow and will 
miss a lot of packets. It’s always best to have a device that’s as open as pos-
sible because it’ll work with the majority of software tools—open source 
hardware and software is ideal. However, a proprietary device specifically 
designed to sniff CAN should still work. We’ll look at using candump, from 
the can-utils suite, and Wireshark to capture and filter the packets.

Generic packet analysis won’t work for CAN because CAN packets are 
unique to each vehicle’s make and model. Also, because there’s so much 
noise on CAN, it’s too cumbersome to sort through every packet as it flows 
by in sequence. 
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Using Wireshark
Wireshark (https://www.wireshark.org/) is a common network monitoring 
tool. If your background is in networking, your first instinct may be to use 
Wireshark to look at CAN packets. This technically works, but we will soon 
see why Wireshark is not the best tool for the job.

If you want to use Wireshark to capture CAN packets, you can do so 
together with SocketCAN. Wireshark can listen on both canX and vcanX 
devices, but not on slcanX because serial-link devices are not true netlink 
devices and they need a translation daemon in order for them to work. If 
you need to use a slcanX device with Wireshark, try changing the name 
from slcanX to canX. (I discuss CAN interfaces in detail Chapter 2.)  

If renaming the interface doesn’t work or you simply need to move 
CAN packets from an interface that Wireshark can’t read to one it can, you 
can bridge the two interfaces. You’ll need to use candump from the can-utils 
package in bridge mode to send packets from slcan0 to vcan0.

$ candump -b vcan0 slcan0

Notice in Figure 5-1 that the data section isn’t decoded and is just show-
ing raw hex bytes. This is because Wireshark’s decoder handles only the basic 
CAN header and doesn’t know how to deal with ISO-TP or UDS packets. The 
highlighted packet is a UDS request for VIN. (I’ve sorted the packets in the 
screen by identifier, rather than by time, to make it easier to read.)

Figure 5-1: Wireshark on the CAN bus
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Using candump
As with Wireshark, candump doesn’t decode the data for you; that job is left 
up to you, as the reverse engineer. Listing 5-1 uses slcan0 as the sniffer 
device.

$ candump slcan0
  slcan0  388  [2]  01 10 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   320   [8]   20 04 00 00 00 00 00 00 
  slcan0   128   [3]   A1 00 02 
  slcan0   7DF   [3]   02 09 02 
  slcan0   7E8   [8]   10 14 49 02 01 31 47 31 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   410   [8]   20 00 00 00 00 00 00 00 
  slcan0   128   [3]   A2 00 01 
  slcan0   380   [8]   02 02 00 00 E0 00 7E 0E 
  slcan0   388   [2]   01 10 
  slcan0   128   [3]   A3 00 00 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   520   [8]   00 00 04 00 00 00 00 00 
  slcan0   128   [3]   A0 00 03 
  slcan0   380   [8]   02 02 00 00 E0 00 7F 0D 
  slcan0   388   [2]   01 10 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   128   [3]   A1 00 02 
  slcan0   110   [8]   00 00 00 00 00 00 00 00 
  slcan0   120   [8]   F2 89 63 20 03 20 03 20 
  slcan0   128   [3]   A2 00 01 
  slcan0   380   [8]   02 02 00 00 E0 00 7C 00 

Listing 5-1: candump of traffic streaming through a CAN bus

The columns are broken down to show the sniffer device , the arbi-
tration ID , the size of the CAN packet , and the CAN data itself . Now 
you have some captured packets, but they aren’t the easiest to read. We’ll use 
filters to help identify the packets we want to analyze in more detail. 

Grouping Streamed Data from the CAN Bus
Devices on a CAN network are noisy, often pulsing at set intervals or when 
triggered by an event, such as a door unlocking. This noise can make it futile 
to stream data from a CAN network without a filter. Good CAN sniffer soft-
ware will group changes to packets in a data stream based on their arbitra-
tion ID, highlighting only the portions of data that have changed since the 
last time the packet was seen. Grouping packets in this way makes it easier to 
spot changes that result directly from vehicle manipulation, allowing you to 
actively monitor the tool’s sniffing section and watch for color changes that 
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correlate to physical changes. For example, if each time you unlock a door 
you see the same byte change in the data stream, you know that you’ve prob-
ably identified at least the byte that controls the door-unlocking functions.

Grouping Packets with cansniffer

The cansniffer command line tool groups the packets by arbitration ID and 
highlights the bytes that have changed since the last time the sniffer looked 
at that ID. For example, Figure 5-2 shows the result of running cansniffer 
on the device slcan0. 

Figure 5-2: cansniffer example output

You can add the -c flag to colorize any changing bytes.

$ cansniffer -c slcan0

The cansniffer tool can also remove repeating CAN traffic that isn’t 
changing, thereby reducing the number of packets you need to watch.

Filtering the Packets Display

One advantage of cansniffer is that you can send it keyboard input to filter 
results as they’re displayed in the terminal. (Note that you won’t see the 
commands you enter while cansniffer is outputting results.) For example, to 
see only IDs 301 and 308 as cansniffer collects packets, enter this:

-000000
+301
+308

Entering -000000 turns off all packets, and entering  +301 and +308 filters 
out all except IDs 301 and 308. 

The -000000 command uses a bitmask, which does a bit-level compari-
son against the arbitration ID. Any binary value of 1 used in a mask is a bit 
that has to be true, while a binary value of 0 is a wildcard that can match 
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anything. A bitmask of all 0s tells cansniffer to match any arbitration ID. 
The minus sign (-) in front of the bitmask removes all matching bits, which 
is every packet.

You can also use a filter and a bitmask with cansniffer to grab a range of 
IDs. For example, the following command adds the IDs from 500 through 
5FF to the display, where 500 is the ID applied to the bitmask of 700 to 
define the range we’re interested in. 

+500700

To display all IDs of 5XX, you’d use the following binary representation: 

ID  Binary Representation
500  101 0000 0000
700  111 0000 0000
------------------
     101 XXXX XXXX
      5    X    X

You could specify F00 instead of 700, but because the arbitration ID is 
made up of only 3 bits, a 7 is all that’s required.

Using 7FF as a mask is the same as not specifying a bitmask for an ID. 
For example

+3017FF

is the same as

+301

This mask uses binary math and performs an AND operation on the two 
numbers, 0x301 and 0x7FF:

ID    Binary Representation
301   011  0000  0001
7FF   111  1111  1111
      011  0000  0001
      3    0     1

For those not familiar with AND operations, each binary bit is compared, 
and if both are a 1 then the output is a 1. For instance, 1 AND 1 = 1, while 1 
AND 0 = 0. 

If you prefer to have a GUI interface, Kayak, which we discussed in 
“Kayak” on page 126, is a CAN bus–monitoring application that also 
uses socketcand and will colorize its display of capture packets. Kayak 
won’t remove repeating packets the way cansniffer does, but it offers a few 
unique capabilities that you can’t easily get on the command line, such 
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as documenting the identified packets in XML (.kcd files), which can be 
used by Kayak to display virtual instrument clusters and map data (see 
Figure 5-3).

Figure 5-3: Kayak GUI interface

Using Record and Playback
Once you’ve used cansniffer or a similar tool to identify certain packets to 
focus on, the next step is to record and play back packets so you can analyze 
them. We’ll look at two different tools to do this: can-utils and Kayak. They 
have similar functionality, and your choice of tool will depend on what you’re 
working on and your interface preferences.

The can-utils suite records CAN packets using a simple ASCII format, 
which you can view with a simple text editor, and most of its tools support 
this format for both recording and playback. For example, you can record 
with candump, redirect standard output or use the command line options to 
record to a file, and then use canplayer to play back recordings. 

Figure 5-4 shows a view of the layout of Kayak’s equivalent to cansniffer. 
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Figure 5-4: Kayak recording to a logfile

To record CAN packets with Kayak, first click the Play button in the 
Log files tab u. Then drag one or more buses from the Projects pane to the 
Busses field of the LogOutput Window tab v. Press the Record and Stop 
buttons at the bottom of the LogOutput window w to start or stop record-
ing. Once your packet capture is complete, the logging should show in the 
Log Directory drop-down menu (see Figure 5-5). 

If you open a Kayak logfile, you’ll see something like the code snip-
pet in Listing 5-2. The values in this example won’t directly correlate to 
those in Figure 5-4 because the GUI groups by ID, as in cansniffer, but the 
log is sequential, as in candump.

PLATFORM NO_PLATFORM 
DESCRIPTION "No description" 
DEVICE_ALIAS OBD Port slcan0 
(1094.141850) slcan0 128#a20001 
(1094.141863)   slcan0   380#02020000e0007e0e 
(1094.141865)   slcan0   388#0110 
(1094.144851)   slcan0   110#0000000000000000 
(1094.144857)   slcan0   120#f289632003200320 

Listing 5-2: Contents of Kayak’s logfile
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Figure 5-5: Right pane of Log files tab  
settings

Other than some metadata (PLATFORM, DESCRIPTION, and DEVICE_ALIAS), 
the log is pretty much the same as the one captured by the can-utils pack-
age:  is the timestamp,  is your bus, and  is your arbitration ID and 
data separated by a # symbol. To play back the capture, right-click the Log 
Description in the right panel, and open the recording (see Figure 5-5).

Listing 5-3 shows the logfile created by candump using the -l command 
line option:

(1442245115.027238) slcan0 166#D0320018 
(1442245115.028348) slcan0 158#0000000000000019 
(1442245115.028370) slcan0 161#000005500108001C 
(1442245115.028377) slcan0 191#010010A141000B 

Listing 5-3: candump logfile 

Notice in Listing 5-3 that the candump logfiles are almost identical to those 
displayed by Kayak in Figure 5-4. (For more details on different can-utils pro-
grams, see “The CAN Utilities Suite” on page 129.)
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Creative Packet Analysis 
Now that we’ve captured packets, it’s time to determine what each packet 
does so we can use it to unlock things or exploit the CAN bus. Let’s start 
with a simple action that’ll most likely toggle only a single bit—the code to 
unlock the doors—and see whether we can find the packet that controls 
that behavior. 

Using Kayak to Find the Door-Unlock Control

There’s a ton of noise on the CAN bus, so finding a single-bit change can be 
very difficult, even with a good sniffer. But here’s a universal way to identify 
the function of a single CAN packet:

1.	 Press Record.

2.	 Perform the physical action, such as unlocking a door.

3.	 Stop Record.

4.	 Press Playback.

5.	 See whether the action was repeated. For example, did the door 
unlock?

If pressing Playback didn’t unlock the door, a couple of things may 
have gone wrong. First, you may have missed the action in the recording, 
so try recording and performing the action again. If you still can’t seem 
to record and replay the action, the message is probably hardwired to the 
physical lock button, as is often the case with the driver’s-side door lock. Try 
unlocking the passenger door instead while recording. If that still doesn’t 
work, the message for the unlock action is either on a CAN bus other than 
the one you’re monitoring—you’ll need to find the correct one—or the 
playback may have caused a collision, resulting in the packet being stomped 
on. Try to replay the recording a few times to make sure the playback is 
working.

Once you have a recording that performs the desired action, use the 
method shown in Figure 5-6 to filter out the noise and locate the exact 
packet and bits that are used to unlock the door via the CAN bus.

Now, keep halving the size of the packet capture until you’re down 
to only one packet, at which point you should be able figure out which 
bit or bits are used to unlock the door. The quickest way to do this is to 
open your sniffer and filter on the arbitration ID you singled out. Unlock 
the door, and the bit or byte that changed should highlight. Now, try to 
unlock the car’s back doors, and see how the bytes change. You should 
be able to tell exactly which bit must be changed in order to unlock 
each door.
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Figure 5-6: Sample unlock reversing flow

Using can-utils to Find the Door-Unlock Control

To identify packets via can-utils, you’d use candump to record and canplayer 
to play back the logfile, as noted earlier. Then, you’d use a text editor to 
whittle down the file before playback. Once you’re down to one packet, you 
can then determine which byte or bits control the targeted operation with 
the help of cansend. For instance, by removing different halves of a logfile, 
you can identify the one ID that triggers the door to unlock:

slcan0  300   [8]  00 00 84 00 00 0F 00 00
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Now, you could edit each byte and play back the line, or you could use 
cansniffer with a filter of +300 to single out just the 300 arbitration ID and 
monitor which byte changes when you unlock the door. For example, if the 
byte that controls the door unlock is the sixth byte—0x0F in the preceding 
example—we know that when the sixth byte is 0x00, the doors unlock, and 
when it’s 0x0F, the doors lock. 

N O TE  	 This is a hypothetical example that assumes we’ve performed all the steps listed earlier 
in this chapter to identify this particular byte. The specifics will vary for each vehicle.

We can verify our findings with cansend:

$ cansend slcan0 300#00008400000F0000

If, after sending this, all the doors lock, we’ve successfully identified 
which packets control the door unlock. 

Now, what happens when you change the 0x0F? To find out, unlock the 
car and this time send a 0x01:

$ cansend slcan0 300#0000840000010000

Observe that only the driver’s-side door locks and the rest stay open. 
If you repeat this process with a 0x02, only the front passenger’s-side door 
locks. When you repeat again with a 0x03, both the driver’s-side door and 
the front passenger’s-side door lock. But why did 0x03 control two doors 
and not a different third door? The answer may make more sense when you 
look at the binary representation:

0x00 = 00000000
0x01 = 00000001
0x02 = 00000010
0x03 = 00000011

The first bit represents the driver’s-side door, and the second represents 
the front passenger’s-side door. When the bit is a 1, the door locks, and when 
it’s a 0, it unlocks. When you send an 0x0F, you’re setting all bits that could 
affect the door lock to a binary 1, thereby locking all doors:

0x0F =  00001111

What about the remaining four bits? The best way to find out what 
they do is to simply set them to 1 and monitor the vehicle for changes. We 
already know that at least some of the 0x300 signal relates to doors, so it’s 
fairly safe to assume the other four bits will, too. If not, they might control 
different door-like behavior, such as unlatching the trunk. 

N O TE  	 If you don’t get a response when you toggle a bit, it may not be used at all and may 
simply be reserved.
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Getting the Tachometer Reading
Obtaining information on the tachometer (the vehicle’s speed) can be 
achieved in the same way as unlocking the doors. The diagnostic codes 
report the speed of a vehicle, but they can’t be used to set how the speed 
displays (and what fun is that?), so we need to find out what the vehicle is 
using to control the readings on the instrument cluster (IC).

To save space, the RPM values won’t display as a hex equivalent of the 
reading; instead, the value is shifted such that 1000 RPM may look like 
0xFA0. This value is often referred to as “shifted” because in the code, 
the developers use bit shifting to perform the equivalent of multiplying or 
dividing. For the UDS protocol, this value is actually as follows:

( )first byte  second byte× +256
4

To make matters worse, you can’t monitor CAN traffic and query 
the diagnostic RPM to look for changing values at the same time. This 
is because vehicles often compress the RPM value using a proprietary 
method. Although the diagnostic values are set, they aren’t the actual 
packets and values that the vehicle is using, so we need to find the real 
value by reversing the raw CAN packets. (Be sure to put the car in park 
before you do this, and even lift the vehicle off the ground or put it on 
rollers first to avoid it starting suddenly and crushing you.)

Follow the same steps that you used to find the door unlock control:

1.	 Press Record.

2.	 Press the gas pedal.

3.	 Stop Record.

4.	 Press Playback.

5.	 See whether the tachometer gauge has moved.

You’ll probably find that a lot of engine lights flash and go crazy dur-
ing this test because this packet is doing a lot more than just unlocking the 
car door. Ignore all the blinking warning lights, and follow the flowchart 
shown in Figure 5-6 to find the arbitration ID that causes the tachometer 
to change. You’ll have a much higher chance of collisions this time than 
when trying to find the bit to unlock the doors because there’s a lot more 
going on. Consequently, you may have to play and record more traffic than 
before. (Remember the value conversions mentioned earlier, and keep in 
mind that more than one byte in this arbitration ID will probably control 
the reported speed.)

Putting Kayak to Work
To make things a bit easier, we’ll use Kayak’s GUI instead of can-utils to 
find the arbitration IDs that control the tachometer. Again, make sure that 
the car is immobilized in an open area, with the emergency brake on, and 
maybe even up on blocks or rollers. Start recording and give the engine 
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a good rev. Then, stop recording and play back the data. The RPM gauge 
should move; if it doesn’t, you may be on the wrong bus and will need to 
locate the correct bus, as described earlier in this chapter. 

Once you have the reaction you expect from the vehicle, repeat the 
halving process used to find the door unlock, with some additional Kayak 
options.

Kayak’s playback interface lets you set the playback to loop infinitely 
and, more importantly, set the “in” and “out” packets (see Figure 5-7). 
The slider represents the number of packets captured. Use the slider 
to pick which packet you start and stop with during playback. You can 
quickly jump to the middle or other sections of the recording using the 
slider, which makes playing back half of a section very easy.

Figure 5-7: Kayak playback interface

As for testing, you won’t be able to send only a single packet as you did 
when you tried to unlock the car because the vehicle is constantly reporting 
its current speed. To override this noise, you need to talk even faster than 
the normal communication to avoid colliding all the time. For instance, 
if you play your packets right after the real packet plays, then the last seen 
update will be the modified one. Reducing noise on the bus results in fewer 
collisions and cleaner demos. If you can send your fake packet immediately 
after the real packet, you often get better results than you would by simply 
flooding the bus.

To send packets continuously with can-utils, you can use a while loop 
with cansend or cangen. (When using Kayak’s Send Frame dialog to transmit 
packets, make sure to check the Interval box.)
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Creating Background Noise with the  
Instrument Cluster Simulator

The instrument cluster simulator (ICSim) is one of the most useful tools 
to come out of Open Garages, a group that fosters open collaboration 
between mechanics, performance tuners, and security researchers (see 
Appendix A). ICSim is a software utility designed to produce a few key CAN 
signals in order to provide a lot of seemingly “normal” background CAN 
noise—essentially, it’s designed to let you practice CAN bus reversing with-
out having to tinker around with your car. (ICSim is Linux only because it 
relies on the virtual CAN devices.) The methods you’ll learn playing with 
ICSim will directly translate to your target vehicles. ICSim was designed as a 
safe way to familiarize yourself with CAN reversing so that the transition to 
an actual vehicle is as seamless as possible.

Setting Up the ICSim 
Grab the source code for the ICSim from https://github.com/zombieCraig/
ICSim and follow the README file supplied with the download to compile 
the software. Before you run ICSim, you should find a sample script in the 
README called setup_vcan.sh that you can run to set up a vcan0 interface 
for the ICSim to use. 

ICSim comes with two components, icsim and controls, which talk to 
each other over a CAN bus. To use ICSim, first load the instrument cluster 
to the vcan device like this:

$ ./icsim vcan0

In response, you should see the ICSim instrument cluster with turn sig-
nals, a speedometer, and a picture of a car, which will be used to show the 
car doors locking and unlocking (see Figure 5-8). 

Figure 5-8: ICSim instrument cluster
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The icsim application listens only for CAN signals, so when the ICSim 
first loads, you shouldn’t see any activity. In order to control the simulator, 
load the CANBus Control Panel like this:

$ ./controls vcan0

The CANBus Control Panel shown in Figure 5-9 should appear.

Figure 5-9: ICSim control interface

The screen looks like a game controller; in fact, you can plug in a USB 
game controller, and it should be supported by ICSim. (As of this writing, 
you can use sixad tools to connect a PS3 controller over Bluetooth as well.) 
You can use the controller to operate the ICSim in a method similar to driv-
ing a car using a gaming console, or you can control it by pressing the cor-
responding keys on your keyboard (see Figure 5-9). 

N O TE  	 Once the control panel is loaded, you should see the speedometer idle just above 0 mph. 
If the needle is jiggling a bit, you know it’s working. The control application writes only 
to the CAN bus and has no other way to communicate with the icsim. The only way to 
control the virtual car is through the CAN.

The main controls on the CANBus Control Panel are as follows:

Accelerate (up arrow)  Press this to make the speedometer go faster. 
The longer you hold the key down, the faster the virtual vehicle goes. 

Turn (left/right arrows)  Hold down a turn direction to blink the 
turn signals.
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Lock (left shift), Unlock (right shift)  This one requires you to press 
two buttons at once. Hold down the left shift and press a button (A, B, 
X, or Y) to lock a corresponding door. Hold down the right shift and 
press one of the buttons to unlock a door. If you hold down left shift 
and then press right shift, it will unlock all the doors. If you hold down 
right shift and press left shift, you’ll lock all the doors.

Make sure you can fit both the ICSim and the CANBus Control Panel 
on the same screen so that you can see how they influence each other. Then, 
select the control panel so that it’s ready to receive input. Play around with 
the controls to make sure that the ICSim is responding properly. If you don’t 
see a response to your controls, ensure that the ICSim control window is 
selected and active.

Reading CAN Bus Traffic on the ICSim
When you’re sure everything is working, fire up your sniffer of choice and 
take a look at the CAN bus traffic, as shown in Figure 5-10. Try to identify 
which packets control the vehicle, and create scripts to control ICSim with-
out using the control panel.

Most of the changing data you see in Figure 5-10 is caused by a replay 
file of a real CAN bus. You’ll have to sort through the messages to deter-
mine the proper packets. All methods of replay and packet sending will 
work with ICSim, so you can validate your findings.

Figure 5-10: Screen layout for using ICSim
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Changing the Difficulty of ICSim
One of the great things about ICSim is that you can challenge yourself by 
making it harder to find the target CAN traffic. ICSim supports four diffi-
culty levels—0 through 3, with level 1 as the default. Level 0 is a super simple 
CAN packet that does the intended operation without any background 
noise, while level 3 randomizes all the bytes in the packet as well. To have 
the simulator choose different IDs and target byte positions, use ICSim’s 
randomize option:

$ ./icsim -r vcan0
Using CAN interface vcan0 
Seed: 1419525427 

This option prints a randomized seed value to the console screen. 
Pass this value into the CANBus Control Panel along with your choice 

of difficulty level:

$ ./controls -s 1419525427 -l 3 vcan0

You can replay or share a specific seed value as well. If you find one you 
like or if you want to race your friends to see who can decipher the packets 
first, launch ICSim with a set seed value like this:

$ ./icsim -s  1419525427 vcan0

Next, launch the CANBus Control Panel using the same seed value 
to sync up the randomized control panel to the ICSim. If the seed values 
aren’t the same, they won’t be able to communicate. 

It may take you a while to locate the proper packets the first time using 
ICSim, but after a few passes, you should be able to quickly identify which 
packets are your targets.

Try to complete the following challenges in ICSim:

1.	 Create “hazard lights.” Make both turn signals blink at the same time.

2.	 Create a command that locks only the back two doors.

3.	 Set the speedometer as close as possible to 220 mph.

Reversing the CAN Bus with OpenXC
Depending on your vehicle, one solution to reverse engineering the CAN 
bus is OpenXC, an open hardware and software standard that translates 
proprietary CAN protocols into an easy-to-read format. The OpenXC ini-
tiative was spearheaded by the Ford Motor Company—and as I write this, 
OpenXC is supported only by Ford—but it could work with any auto manu-
facturer that supports it. (Visit http://openxcplatform.com/ for information on 
how to acquire a pre-made dongle.) 
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Ideally, open standards for CAN data such as OpenXC will remove the 
need for many applications to reverse engineer CAN traffic. If the rest of 
the automotive industry were to agree on a standard that defines how their 
vehicles work, it would greatly improve a car owner’s ability to tinker and 
build on new innovative tools.

Translating CAN Bus Messages
If a vehicle supports OpenXC, you can plug a vehicle interface (VI) in to 
the CAN bus, and the VI should translate the proprietary CAN messages 
and send them to your PC so you can read the supported packets without 
having to reverse them. In theory, OpenXC should allow access to any CAN 
packet via a standard API. This access could be read-only or allow you to 
transmit packets. If more auto manufacturers eventually support OpenXC, 
it could provide third-party tools with more raw access to a vehicle than 
they would have with standard UDS diagnostic commands.

N O TE  	 OpenXC supports Python and Android and includes tools such as openxc-dump to 
display CAN activity.

The fields from OpenXC’s default API are as follows:

•	 accelerator_pedal_position

•	 brake_pedal_status

•	 button_event (typically steering wheel buttons)

•	 door_status

•	 engine_speed

•	 fuel_consumed_since_last_restart

•	 fuel_level

•	 headlamp_status

•	 high_beam_status

•	 ignition_status

•	 latitude

•	 longitude

•	 odometer

•	 parking_brake_status

•	 steering_wheel_angle

•	 torque_at_transmission

•	 transmission_gear_position

•	 vehicle_speed

•	 windshield_wiper_status

Different vehicles may support different signals than the ones listed 
here or no signals at all. 
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OpenXC also supports JSON trace output for recording vehicle journey. 
JSON provides a common data format that’s easy for most other modern 
languages to consume, as shown in Listing 5-4.

{"metadata": {
    "version": "v3.0",
    "vehicle_interface_id": "7ABF",
    "vehicle": {
        "make": "Ford",
        "model": "Mustang",
        "trim": "V6 Premium",
        "year": 2013
    },
    "description": "highway drive to work",
    "driver_name": "TJ Giuli",
    "vehicle_id": "17N1039247929"
}

Listing 5-4: Simple JSON file output

Notice how the metadata definitions in JSON make it fairly easy for 
both humans and a programming language to read and interpret. The 
above JSON listing is a definition file, so an API request would be even 
smaller. For example, when requesting the field steering_wheel_angle, the 
translated CAN packets would look like this:

{"timestamp": 1385133351.285525, "name": "steering_wheel_angle", "value": 45}

You can interface with the OpenXC with OBD like this:

$ openxc-diag –message-id 0x7df –mode 0x3

Writing to the CAN Bus
If you want to write back to the bus, you might be able to use something 
like the following line, which writes the steering wheel angle back to the 
vehicle, but you’ll find that the device will resend only a few messages to 
the CAN bus. 

$ openxc-control write –name steering_wheel_angle –value 42.0

Technically, OpenXC supports raw CAN writes, too, like this:

$ openxc-control write –bus 1 –id 42 –data 0x1234

This brings us back from translated JSON to raw CAN hacking, as 
described earlier in this chapter. However, if you want to write an app or 
embedded graphical interface to only read and react to your vehicle and 
you own a new Ford, then this may be the quickest route to those goals. 
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Hacking OpenXC
If you’ve done the work to reverse the CAN signals, you can even make your 
own VI OpenXC firmware. Compiling your own firmware means you don’t 
have any limitations, so you can read and write whatever you want and even 
create “unsupported” signals. For example, you could create a signal for 
remote_engine_start and add it to your own firmware in order to provide a 
simple interface to start your car. Hooray, open source!

Consider a signal that represents engine_speed. Listing 5-5 will set a basic 
configuration to output the engine_speed signal. We’ll send RPM data with a 
2-byte-long message ID 0x110 starting at the second byte. 

{  "name" : "Test Bench",
    "buses": {
       "hs": {
           "controller": 1,
           "speed": 500000
       }
   },
   "messages": {
      "0x110": {
         "name": "Acceleration",
         "bus", "hs",
         "signals": {
             "engine_speed_signal": {
                "generic_name": "engine_speed",
                "bit_position": 8,
                "bit_size": 16
             }
          }
       }
   }
}

Listing 5-5: Simple OpenXC config file to define engine_speed

The OpenXC config files that you want to modify are stored in JSON. 
First, we define the bus by creating a JSON file with a text editor. In the 
example, we create a JSON config for a signal on the high-speed bus run-
ning at 500Kbps.

Once you have the JSON config defined, use the following code to com-
pile it into a CPP file that can be compiled into the firmware:

$ openxc-generate-firmware-code –message-set ./test-bench.json > signals.cpp

Then, recompile the VI firmware with these commands:

$ fab reference build
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If all goes well, you should have a .bin file that can be uploaded to your 
OpenXC-compatible device. The default bus is set up in raw read/write 
mode that sets the firmware to a cautionary read-only mode by default, 
unless signals or a whole bus is set up to support writing. To set those up, 
when defining the bus, you can add raw_can_mode or raw_writable and set 
them to true.

By making your own config files for OpenXC, you can bypass the 
restrictions set up in prereleased firmware and support other vehicles 
besides Ford. Ideally, other manufacturers will begin to support OpenXC, 
but adoption has been slow, and the bus restrictions are so strict you’ll prob-
ably want to use custom firmware anyhow.

Fuzzing the CAN Bus
Fuzzing the CAN bus can be a good way to find undocumented diagnostic 
methods or functions. Fuzzing takes a random, shotgun-like approach to 
reversing. When fuzzing, you send random-ish data to an input and look 
for unexpected behavior, which in the case of a vehicle could be physical 
changes, such as IC messages, or component crashes, such as shutdowns or 
reboots.

The good news is that it’s easy to make a CAN fuzzer. The bad news is 
that it’s rarely useful. Useful packets are often part of a collection of packets 
used to cause a particular change, such as a diagnostic service that is active 
only after a successful security token has been passed to it, so it’s difficult 
to tell which packet to focus on when fuzzing. Also, some CAN packets are 
visible only from within a moving vehicle, which would be very dangerous. 
Nevertheless, don’t rule out fuzzing as a potential method of attack because 
you can sometimes use it to locate undocumented services or crashes to a 
target component you want to spoof.

Some sniffers support fuzzing directly—a feature usually found in the 
transmission section and represented by the tool’s ability to transmit pack-
ets with incrementing bytes in the data section. For example, in the case of 
SocketCAN, you can use cangen to generate random CAN traffic. Several 
other open source CAN sniffing solutions allow for easy scripting or pro-
gramming with languages such as Python. 

A good starting point for fuzzing is to look at the UDS commands, 
specifically the “undocumented” manufacturer commands. When fuzz-
ing undocumented UDS modes, we typically look for any type of response 
from an unknown mode. For instance, when targeting the UDS diagnostics 
of the ECU, you might send random data to ID 0x7DF and get an error 
packet from an unexpected mode. If you use brute-forcing tools such 
as CaringCaribou, however, there are often cleaner ways of accomplish-
ing the same thing, such as monitoring or reversing the diagnostic tools 
themselves. 
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Troubleshooting When Things Go Wrong
The CAN bus and its components are fault-tolerant, which limits the damage 
you can do when reversing the CAN bus. However, if you’re fuzzing the CAN 
bus or replaying a large amount of CAN data back on a live CAN bus net-
work, things can go wrong. Here are a few common problems and solutions. 

Flashing IC Lights 
It’s common for the IC lights to flash when sending packets to the CAN 
bus, and you can usually reset them by restarting the vehicle. If restart-
ing the vehicle still doesn’t fix the lights, try disconnecting and recon-
necting the battery. If that still doesn’t fix the problem, make sure that 
your battery is properly charged since a low battery can also make the 
IC lights flash.

Car Not Turning On 
If your car shuts off and won’t turn back on, it’s usually because you’ve 
drained the battery by working with the CAN bus while the car is not 
fully running. This can drain a battery much faster than you might 
think. To restart it, jump the vehicle with a spare battery.

If you’ve tried jumping the vehicle and it still won’t turn on, you 
may need to pull a fuse and plug it back in to restart the car. Locate the 
engine fuses in the car’s manual and begin by pulling the ones you most 
suspect are the culprits. The fuse probably isn’t blown, so just pull it out 
and put it back in to force the problem device to restart. The fuses you 
choose to pull will depend on your type of vehicle, but if your engine isn’t 
starting, you will want to locate major components to disconnect and 
check. Look for main fuses around major electronics. The fuses that con-
trol the headlamps probably are not the culprits. Use a process of elimi-
nation to determine the device that is causing the issue.

Car Not Turning Off 
You might find that you’re unable to shut the car down. This is a bad, 
but fortunately rare, situation. First, check that you aren’t flooding the 
CAN bus with traffic; if you are, stop and disconnect from the CAN bus. 
If you’re already disconnected from the CAN bus and your car still won’t 
turn off, you’ll need to start pulling fuses until it does.

Vehicle Responding Recklessly 
This will only occur if you’re injecting packets in a moving vehicle, which 
is a terrible idea and should never be done! If you must audit a vehicle 
while it’s wheels are moving, raise it off the ground or on rollers.  

Bricking 
Reverse engineering the CAN bus should never result in bricking—
that is, breaking the vehicle so completely that it can do nothing. To 
brick a vehicle, you would need to mess around with the firmware, 
which would put the vehicle or component out of warranty and is 
done at your own risk.
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Summary
In this chapter, you learned how to identify CAN wires from the jumble 
of wires under the dash, and how to use tools like cansniffer and Kayak to 
sniff traffic and identify what the different packets were doing. You also 
learned how to group CAN traffic to make changes easier to identify than 
they would be when using more traditional packet-sniffing tools, such as 
Wireshark. 

You should now be able to look at CAN traffic and identify changing 
packets. Once you identify these packets, you can write programs to trans-
mit them, create files for Kayak to define them, or create translators for 
OpenXC to make it easy to use dongles to interact with your vehicle. You 
now have all the tools you need to identify and control the components of 
your vehicle that run on CAN.
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4
B U I L D I N G Y O U R T E S T P L A T F O R M

In this chapter, I’ll outline the tools you need to
review your code and test your iOS applications, and
I’ll show you how to build a robust and useful test plat-
form. That test platform will include a properly set up
Xcode instance, an interactive network proxy, reverse
engineering tools, and tools to bypass iOS platform
security checks.

I’ll also cover the settings you need to change in Xcode projects to
make bugs easier to identify and fix. You’ll then learn to leverage Xcode’s
static analyzer and compiler options to produce well-protected binaries and
perform more in-depth bug detection.

Taking Off the Training Wheels
A number of behaviors in a default OS X install prevent you from really
digging in to the system internals. To get your OS to stop hiding the things
you need, enter the following commands at a Terminal prompt:

$ defaults write com.apple.Finder AppleShowAllFiles TRUE

$ defaults write com.apple.Finder ShowPathbar -bool true

$ defaults write com.apple.Finder _FXShowPosixPathInTitle -bool true
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$ defaults write NSGlobalDomain AppleShowAllExtensions -bool true

$ chflags nohidden ~/Library/

These settings let you see all the files in the Finder, even ones that are
hidden from view because they have a dot in front of their name. In addi-
tion, these changes will display more path information and file extensions,
and most importantly, they allow you to see your user-specific Library, which
is where the iOS Simulator will store all of its data.

The chflags command removes a level of obfuscation that Apple has
put on directories that it considers too complicated for you, such as /tmp or
/usr. I’m using the command here to show the contents of the iOS Simulator
directories without having to use the command line every time.

One other thing: consider adding $SIMPATH to the Finder’s sidebar
for easy access. It’s convenient to use $SIMPATH to examine the iOS Simula-
tor’s filesystem, but you can’t get to it in the Finder by default. To make this
change, browse to the following directory in the Terminal:

$ cd ~/Library/Application\ Support

$ open .

Then, in the Finder window that opens, drag the iPhone Simulator
directory to the sidebar. Once you’re riding without training wheels, it’s
time to choose your testing device.

Suggested Testing Devices
My favorite test device is the Wi-Fi only iPad because it’s inexpensive and
easy to jailbreak, which allows for testing iPad, iPhone, and iPod Touch
applications. Its lack of cellular-based networking isn’t much of a hindrance,
given that you’ll want to intercept network traffic most of the time anyway.

But this configuration does have some minor limitations. Most signif-
icantly, the iPad doesn’t have GPS or SMS, and it obviously doesn’t make
phone calls. So it’s not a bad idea to have an actual iPhone of some kind
available.

I prefer to have at least two iPads handy for iOS testing: one jailbro-
ken and one stock. The stock device allows for testing in a legitimate, real-
istic end-user environment, and it has all platform security mechanisms
still intact. It can also register properly for push notifications, which has
proven problematic for jailbroken devices in the past. The jailbroken device
allows you to more closely inspect the filesystem layout and more detailed
workings of iOS; it also facilitates black-box testing that wouldn’t be feasible
using a stock device alone.
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Testing with a Device vs. Using a Simulator
Unlike some other mobile operating systems, iOS development uses a simula-
tor rather than an emulator. This means there’s no full emulation of the iOS
device because that would require a virtualized ARM environment. Instead,
the simulators that Apple distributes with Xcode are compiled for the x64
architecture, and they run natively on your development machine, which
makes the process significantly faster and easier. (Try to boot the Android
emulator inside a virtual machine, and you’ll appreciate this feature.)

On the flip side, some things simply don’t work the same way in the iOS
Simulator as they do on the device. The differences are as follows:

Case-sensitivity Unless you’ve intentionally changed this behavior,
OS X systems operate with case-insensitive HFS+ filesystems, while iOS
uses the case-sensitive variant. This should rarely be relevant to security
but can cause interoperability issues when modifying programs.

Libraries In some cases, iOS Simulator binaries link to OS X frame-
works that may behave differently than those on iOS. This can result in
slightly different behavior.

Memory and performance Since applications run natively in the
iOS Simulator, they’ll be taking full advantage of your development
machine’s resources. When gauging the impact of things such as
PBKDF2 rounds (see Chapter 13), you’ll want to compensate for this
or test on a real device.

Camera As of now, the iOS Simulator does not use your development
machine’s camera. This is rarely a huge issue, but some applications
do contain functionality such as “Take a picture of my check stub or
receipt,” where the handling of this photo data can be crucial.

SMS and cellular You can’t test interaction with phone calls or SMS
integration with the iOS Simulator, though you can technically simulate
some aspects, such as toggling the “in-call” status bar.

Unlike in older versions of iOS, modern versions of the iOS Simulator
do in fact simulate the Keychain API, meaning you can manage your own
certificate and store and manipulate credentials. You can find the files
behind this functionality in $SIMPATH/Library/Keychains.

Network and Proxy Setup
Most of the time, the first step in testing any iOS application is to run it
through a proxy so you can examine and potentially modify traffic going
from the device to its remote endpoint. Most iOS security testers I know use
BurpSuite1 for this purpose.

1. http://www.portswigger.net
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Bypassing TLS Validation
There’s one major catch to running an app under test through a proxy:
iOS resolutely refuses to continue TLS/SSL connections when it cannot
authenticate the server’s certificate, as well it should. This is, of course, the
correct behavior, but your proxy-based testing will screech to a halt rather
quickly if iOS can’t authenticate your proxy’s certificate.

For BurpSuite specifically, you can obtain a CA certificate simply by
configuring your device or iOS Simulator to use Burp as a proxy and then
browsing to http://burp/cert/ in Mobile Safari. This should work either on a
real device or in the iOS Simulator. You can also install CA certificates onto
a physical device by either emailing them to yourself or navigating to them
on a web server.

For the iOS Simulator, a more general approach that works with almost
any web proxy is to add the fingerprint of your proxy software’s CA certifi-
cate directly into the iOS Simulator trust store. The trust store is a SQLite
database, making it slightly more cumbersome to edit than typical certifi-
cate bundles. I recommend writing a script to automate this task. If you
want to see an example to get you started, Gotham Digital Science has
already created a Python script that does the job. You’ll find the script
here: https://github.com/GDSSecurity/Add-Trusted-Certificate-to-iOS-Simulator/ .

To use this script, you need to obtain the CA certificate you want to
install into the trust store. First configure Firefox2 to use your local proxy
(127.0.0.1, port 8080 for Burp). Then attempt to visit any SSL site; you
should get a familiar certificate warning. Navigate to Add Exception →
View → Details and click the PortSwigger CA entry, as shown in Figure 4-1.

Click Export and follow the prompts. Once you’ve saved the CA certifi-
cate, open Terminal.app and run the Python script to add the certificate to
the store as follows:

$ python ./add_ca_to_iossim.py ~/Downloads/PortSwiggerCA.pem

Unfortunately, at the time of writing, there isn’t a native way to config-
ure the iOS Simulator to go through an HTTP proxy without also routing
the rest of your system through the proxy. Therefore, you’ll need to config-
ure the proxy in your host system’s Preferences, as shown in Figure 4-2.

If you’re using the machine for both testing and other work activities,
you might consider specifically configuring other applications to go through
a separate proxy, using something like FoxyProxy3 for your browser.

2. I generally consider Chrome a more secure daily browser, but the self-contained nature of
Firefox does let you tweak proxy settings more conveniently.

3. http://getfoxyproxy.org
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Figure 4-1: Selecting the PortSwigger CA for export

Figure 4-2: Configuring the host system to connect via Burp
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Bypassing SSL with stunnel
One method of bypassing SSL endpoint verification is to set up a termina-
tion point locally and then direct your application to use that instead. You
can often accomplish this without recompiling the application, simply by
modifying a plist file containing the endpoint URL.

This setup is particularly useful if you want to observe traffic easily
in plaintext (for example, with Wireshark), but the Internet-accessible
endpoint is available only over HTTPS. First, download and install stun-
nel,4 which will act as a broker between the HTTPS endpoint and your
local machine. If installed via Homebrew, stunnel’s configuration file will
be in /usr/local/etc/stunnel/stunnel.conf-sample. Move or copy this file to
/usr/local/etc/stunnel/stunnel.conf and edit it to reflect the following:

; SSL client mode

client = yes

; service-level configuration

[https]

accept = 127.0.0.1:80

connect = 10.10.1.50:443

TIMEOUTclose = 0

This simply sets up stunnel in client mode, instructing it to accept con-
nections on your loopback interface on port 80, while forwarding them to
the remote endpoint over SSL. After editing this file, set up Burp so that it
uses your loopback listener as a proxy, making sure to select the Support
invisible proxying option, as shown in Figure 4-3. Figure 4-4 shows the result-
ing setup.

Figure 4-3: Setting up invisible proxying through the local stunnel endpoint

4. http://www.stunnel.org/
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Figure 4-4: Final Burp/stunnel setup

Certificate Management on a Device
To install a certificate on a physical iOS device, simply email the certificate
to an account associated with the device or put it on a public web server and
navigate to it using Mobile Safari. You can then import it into the device’s
trust store, as shown in Figure 4-5. You can also configure your device to go
through a network proxy (that is, Burp) hosted on another machine. Simply
install the CA certificate (as described earlier) of the proxy onto the device
and configure your proxy to listen on a network-accessible IP address, as in
Figure 4-6.

Figure 4-5: The certificate import prompt

Figure 4-6: Configuring Burp to use a nonlocalhost IP address
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Proxy Setup on a Device
Once you’ve configured your certificate authorities and set up the proxy,
go to Settings → Network → Wi-Fi and click the arrow to the right of your
currently selected wireless network. You can enter the proxy address and
port from this screen (see Figure 4-7).

Figure 4-7: Configuring the device to use a
test proxy on an internal network

Note that when configuring a device to use a proxy, only connections
initiated by NSURLConnection or NSURLSession will obey the proxy settings; other
connections such as NSStream and CFStream (which I’ll discuss further in Chap-
ter 7) will not. And of course, since this is an HTTP proxy, it works only for
HTTP traffic. If you have an application using CFStream, you can edit the
codebase with the following code snippet to route stream traffic through the
same proxy as the host OS:

CFDictionaryRef systemProxySettings = CFNetworkCopySystemProxySettings();

CFReadStreamSetProperty(readStream, kCFStreamPropertyHTTPProxy, systemProxySettings

);

CFWriteStreamSetProperty(writeStream, kCFStreamPropertyHTTPProxy,

systemProxySettings);
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If you’re using NSStream, you can accomplish the same by casting the
NSInputStream and NSOutputStream to their Core Foundation counterparts,
like so:

CFDictionaryRef systemProxySettings = CFNetworkCopySystemProxySettings();

CFReadStreamSetProperty((CFReadStreamRef)readStream, kCFStreamPropertyHTTPProxy, (

CFTypeRef)systemProxySettings);

CFWriteStreamSetProperty((CFWriteStreamRef)writeStream, kCFStreamPropertyHTTPProxy,

(CFTypeRef)systemProxySettings);

If you’re doing black-box testing and have an app that refuses to honor
system proxy settings for HTTP requests, you can attempt to direct traffic
through a proxy by adding a line to /etc/hosts on the device to point name
lookups to your proxy address, as shown in Listing 4-1.

10.50.22.11 myproxy api.testtarget.com

Listing 4-1: Adding a hosts file entry

You can also configure the device to use a DNS server controlled by you,
which doesn’t require jailbreaking your test device. One way to do this is to
use Tim Newsham’s dnsRedir,5 a Python script that will provide a spoofed
answer for DNS queries of a particular domain, while passing on queries for
all other domains to another DNS server (by default, 8.8.8.8, but you can
change this with the -d flag). The script can be used as follows:

$ dnsRedir.py 'A:www.evil.com.=1.2.3.4'

This should answer queries for www.evil.com with the IP address 1.2.3.4,
where that IP address should usually be the IP address of the test machine
you’re proxying data through.

For non-HTTP traffic, things are a little more involved. You’ll need to
use a TCP proxy to intercept traffic. The aforementioned Tim Newsham has
written a program that can make this simpler—the aptly named tcpprox.6 If
you use the hosts file method in Listing 4-1 to point the device to your proxy
machine, you can then have tcpprox dynamically create SSL certificates and
proxy the connection to the remote endpoint. To do this, you’ll need to
create a certificate authority certificate and install it on the device, as shown
in Listing 4-2.

5. https://github.com/iSECPartners/dnsRedir/

6. https://github.com/iSECPartners/tcpprox/
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$ ./prox.py -h

Usage: prox.py [opts] addr port

Options:

-h, --help show this help message and exit

-6 Use IPv6

-b BINDADDR Address to bind to

-L LOCPORT Local port to listen on

-s Use SSL for incoming and outgoing connections

--ssl-in Use SSL for incoming connections

--ssl-out Use SSL for outgoing connections

-3 Use SSLv3 protocol

-T Use TLSv1 protocol

-C CERT Cert for SSL

-A AUTOCNAME CName for Auto-generated SSL cert

-1 Handle a single connection

-l LOGFILE Filename to log to

$ ./ca.py -c

$ ./pkcs12.sh ca

(install CA cert on the device)

$ ./prox.py -s -L 8888 -A ssl.testtarget.com ssl.testtarget.com 8888

Listing 4-2: Creating a certificate and using tcpprox to intercept traffic

The ca.py script creates the signed certificate, and the pkcs12.sh script
produces the certificate to install on the device, the same as shown in Fig-
ure 4-5. After running these and installing the certificate, your application
should connect to the remote endpoint using the proxy, even for SSL con-
nections. Once you’ve performed some testing, you can read the results with
the proxcat.py script included with tcpprox, as follows:

$ ./proxcat.py -x log.txt

Once your application is connected through a proxy, you can start
setting up your Xcode environment.

Xcode and Build Setup
Xcode contains a twisty maze of project configuration options—hardly
anyone understands what each one does. This section takes a closer look
at these options, discusses why you would or wouldn’t want them, and
shows you how to get Xcode to help you find bugs before they become real
problems.
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Make Life Difficult
First things first: treat warnings as errors. Most of the warnings generated by
clang, Xcode’s compiler frontend, are worth paying attention to. Not only
do they often help reduce code complexity and ensure correct syntax, they
also catch a number of errors that might be hard to spot, such as signedness
issues or format string flaws. For example, consider the following:

- (void) validate:(NSArray*) someTribbles withValue:(NSInteger) desired {

if (desired > [someTribbles count]) {

[self allocateTribblesWithNumberOfTribbles:desired];

}

}

The count method of NSArray returns an unsigned integer, (NSUInteger).
If you were expecting the number of desired tribbles from user input, a
submitted value might be –1, presumably indicating that the user would
prefer to have an anti-tribble. Because desired is an integer being compared
to an unsigned integer, the compiler will treat both as unsigned integers.
Therefore, this method would unexpectedly allocate an absurd number
of tribbles because –1 is an extremely large number when converted to an
unsigned integer. I’ll discuss this type of integer overflow issue further in
Chapter 11.

You can have clang flag this type of of bug by enabling most warn-
ings and treating them as errors, in which case your build would fail with
a message indicating "Comparison of integers of different signs: 'int'

and 'NSUInteger' (aka 'unsigned int')".

NOTE In general, you should enable all warnings in your project build configuration and
promote warnings to errors so that you are forced to deal with bugs as early as possible
in the development cycle.

You can enable these options in your project and target build settings.
To do so, first, under Warning Policies, set Treat Warnings as Errors to Yes
(Figure 4-8). Then, under the Warnings sections, turn on all the desired
options.

Note that not every build warning that clang supports has an exposed
toggle in the Xcode UI. To develop in “hard mode,” you can add the -Wextra

or -Weverything flag, as in Figure 4-9. Not all warnings will be useful, but it’s
best to try to understand exactly what an option intends to highlight before
disabling it.

-Weverything, used in Figure 4-9, is probably overkill unless you’re curious
about clang internals; -Wextra is normally sufficient. To save you a bit of time,
Table 4-1 discusses two warnings that are almost sure to get in your way (or
that are just plain bizarre).

Building Your Test Platform 51iOS Application Security: The Definitive Guide for Hackers and Developers 
© 2016 David Thiel

iOS Application Security, © 2016 by David Thiel



Figure 4-8: Treating all warnings as errors

Figure 4-9: This setting enables all warnings, including options for which there is no
exposed UI.
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Table 4-1: Obnoxious Warnings to Disable in Xcode

Compiler warning Justification for disabling

Implicit synthesized properties Since property synthesis is now auto-
matic, this isn’t really an error unless
your development guidelines require
explicit synthesis.

Unused parameters/functions/variables etc. These can be supremely irritating
when writing code, since your code is
obviously not completely implemented
yet. Consider enabling these only for
nondebug builds.

Enabling Full ASLR
In iOS 4.3, Apple introduced address space layout randomization (ASLR). ASLR
ensures that the in-memory structure of the program and its data (libraries,
the main executable, stack and heap, and memory-mapped files) are loaded
into less predictable locations in the virtual address space. This makes code
execution exploits more difficult because many rely on referencing the
virtual addresses of specific library calls, as well as referencing data on the
stack or heap.

For this to be fully effective, however, the application must be built as
a position-independent executable (PIE), which instructs the compiler to build
machine code that can function regardless of its location in memory. With-
out this option, the location of the base executable and the stack will remain
the same, even across reboots,7 making an attacker’s job much easier.

To ensure that full ASLR with PIE is enabled, check that Deployment
Target in your Target’s settings is set to at least iOS version 4.3. In your
project’s Build Settings, ensure that Generate Position-Dependent Code
is set to No and that the bizarrely named Don’t Create Position Independent
Executable is also set to No. So don’t create position-independent executa-
bles. Got it?

For black-box testing or to ensure that your app is built with ASLR cor-
rectly, you can use otool on the binary, as follows:

$ unzip MyApp.ipa

$ cd Payload/MyApp.app

$ otool -vh MyApp

MyApp (architecture armv7):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7 0x00 EXECUTE 21 2672 NOUNDEFS DYLDLINK

TWOLEVEL PIE

7. http://www.trailofbits.com/resources/ios4_security_evaluation_paper.pdf
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MyApp (architecture armv7s):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7S 0x00 EXECUTE 21 2672 NOUNDEFS DYLDLINK

TWOLEVEL PIE

At the end of each MH_MAGIC line, if you have your settings correct, you
should see the PIE flag, highlighted in bold. (Note that this must be done
on a binary compiled for an iOS device and will not work when used on iOS
Simulator binaries.)

Clang and Static Analysis
In computer security, static analysis generally refers to using tools to analyze
a codebase and identify security flaws. This could involve identifying dan-
gerous APIs, or it might include analyzing data flow through the program
to identify the potentially unsafe handling of program inputs. As part of the
build tool chain, clang is a good spot to embed static analysis language.

Beginning with Xcode 3.2, clang’s static analyzer8 has been integrated
with Xcode, providing users with a UI to trace logic, coding flaws, and
general API misuse. While clang’s static analyzer is handy, several of its
important features are disabled by default in Xcode. Notably, the checks
for classic dangerous C library functions, such as strcpy and strcat, are oddly
absent. Enable these in your Project or Target settings, as in Figure 4-10.

Figure 4-10: Enabling all clang static analysis checks in Xcode

8. http://clang-analyzer.llvm.org/
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Address Sanitizer and Dynamic Analysis
Recent versions of Xcode include a version of clang/llvm that features the
Address Sanitizer (ASan). ASan is a dynamic analysis tool similar to Valgrind,
but ASan runs faster and has improved coverage.9 ASan tests for stack and
heap overflows and use-after-free bugs, among other things, to help you
track down crucial security flaws. It does have a performance impact (pro-
gram execution is estimated to be roughly two times slower), so don’t enable
it on your release builds, but it should be perfectly usable during testing,
quality assurance, or fuzzing runs.

To enable ASan, add -fsanitize=address to your compiler flags for debug
builds (see Figure 4-11). On any unsafe crashes, ASan should write extra
debug information to the console to help you determine the nature and
severity of the issues. In conjunction with fuzzing,10 ASan can be a great help
in pinning down serious issues that may be security-sensitive and in giving an
idea of their exploitability.

Figure 4-11: Setting the ASan compiler flags

Monitoring Programs with Instruments
Regardless of whether you’re analyzing someone else’s application or trying
to improve your own, the DTrace-powered Instruments tool is extremely
helpful for observing an app’s activity on a fine-grained level. This tool is
useful for monitoring network socket usage, finding memory allocation
issues, and watching filesystem interactions. Instruments can be an excellent
tool for discovering what objects an application stores on local storage in
order to find places where sensitive information might leak; I use it in that
way frequently.

Activating Instruments
To use Instruments on an application from within Xcode, hold down the
Run button and select the Build for Profiling option (see Figure 4-12).
After building, you will be presented with a list of preconfigured templates
tailored for monitoring certain resources, such as disk reads and writes,
memory allocations, CPU usage, and so on.

9. http://clang.llvm.org/docs/AddressSanitizer.html

10. http://blog.chromium.org/2012/04/fuzzing-for-security.html
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Figure 4-12: Selecting the Build for Profiling option

The File Activity template (shown in Figure 4-13) will help you monitor
your application’s disk I/O operations. After selecting the template, the iOS
Simulator should automatically launch your application and begin recording
its activity.

Figure 4-13: Selecting the File Activity profiling template

There are a few preset views in Instruments for monitoring file activity.
A good place to start is Directory I/O, which will capture all file creation
or deletion events. Test your application the way you normally would and
watch the output here. Each event is listed with its Objective-C caller, the C
function call underlying it, the file’s full path, and its new path if the event is
a rename operation.

You’ll likely notice several types of cache files being written here (see
Figure 4-14), as well as cookies or documents your application has been
asked to open. If you suspend your application, you should see the applica-
tion screenshot written to disk, which I’ll discuss in Chapter 10.

For a more detailed view, you can select the Reads/Writes view, as shown
in Figure 4-15. This will show any read or write operations on files or sockets,
along with statistics on the amount of data read or written.
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Figure 4-14: Directory I/O view showing files created or deleted

Figure 4-15: Profiling results showing detailed file reads and writes
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Watching Filesystem Activity with Watchdog
Instruments should catch most iOS Simulator activity, but some file writes
or network calls may actually be performed by other system services, thereby
escaping the tool’s notice. It’s a good idea to manually inspect the iOS Simu-
lator’s directory tree to get a better feel for the structure of iOS and its appli-
cations and to catch application activity that you might otherwise miss.

One easy way to automate this is to use the Python watchdog module.11

Watchdog will use either the kqueue or FSEvents API to monitor directory
trees for file activity and can either log events or take specific actions when
these events occur. To install watchdog, use the following:

$ pip install watchdog

You can write your own scripts to use watchdog’s functionality, but
you’ll find a nice command line tool already included with watchdog called
watchmedo. If you open a Terminal window and navigate to the Simulator
directory, you should be able to use watchmedo to monitor all file changes
under the iOS Simulator’s directory tree, as follows:

$ cd ~/Library/Application\ Support/iPhone\ Simulator/6.1

$ watchmedo log --recursive .

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Library/Preferences>)

on_created(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

FileCreatedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots/com.yourcompany.UICatalog/UIApplicationAutomaticSnapshotDefault-

Portrait.png>)

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots>)

on_created(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirCreatedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots/com.yourcompany.UICatalog>)

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Library/SpringBoard>)

11. https://pypi.python.org/pypi/watchdog/
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Entries that start with on on_modified indicate a file was changed, and
entries that start with on_created indicate a new file. There are several other
change indicators you might see from watchmedo, and you can read about
them in the Watchdog documentation.

Closing Thoughts
You should now have your build and test environment configured for run-
ning, modifying, and examining iOS apps. In Chapter 5, we’ll take a closer
look at how to debug and inspect applications dynamically, as well as how to
change their behavior at runtime.
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6 

Bootkit Background and History 

 

 

This chapter will introduce you to bootkits by looking at the history, evolution, 

and recent re-emergence of bootkit infection methods. A bootkit is a malicious 

program that infects the early stages of the system startup process before the 

operating system is fully loaded. They first emerged in the old days of MS-DOS 

(the non-graphical operating system that preceded Windows), when the default 

behavior of the PC BIOS was to attempt to boot from whatever disk was in the 

floppy drive. Infecting floppies was the simplest strategy for attackers to gain 

control: all it took was for the user to leave an infected floppy in the drive when 

powering up or rebooting the PC—which, back then, happened often. As more 

systems were implemented with BIOSes that allowed PC owners to change the 

boot order and bypass the floppy drive, the utility of infected floppies decreased. 

With Windows taking control of the boot process over from MS-DOS, and 

allowing ample opportunity for the attacker to infect drivers, executables, DLLs, 

and other system resources post-boot without messing with the trickier Windows 

boot process, bootkits became a rare and exotic option among more practical 

threats, to be replaced by rootkits as the primary malware threat. 

This situation changed when Microsoft introduced the Kernel-Mode Code 

Signing Policy on 64-bit operating systems, starting with Windows Vista. 

Suddenly, easy loading of arbitrary code into the kernel no longer worked for the 

attackers. Anticipating that, attackers returned to the older methods of 
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compromising a PC before its operating system could load—bringing bootkits 

back into prominence. 

Bootkits have made an impressive comeback after their prominence waxed 

and waned (and then rebounded) with the changes in the boot process of a 

typical PC. The modern bootkit is making use of variations on really old 

approaches to stealth and persistence—the ability for malware to remain active 

on the targeted system for as long as possible and without the system user's 

knowledge. In this chapter, we’ll look at the resurgence of boot-infecting 

malware, trace the history of their spectacular comeback, and then briefly review 

the history of early viruses and original methods of bootkit infection.  

A New Boot Process, a New Beginning for Bootkits 

The introduction of Microsoft’s Kernel-Mode Code Signing Policy in Windows 

Vista and later 64-bit Windows turned the tables on the attackers by 

incorporating a new strategy for the distribution of system drivers. No longer 

able to inject their code into the kernel once the OS was fully loaded, attackers 

turned to the old BSI tricks. These tricks evolved—or, rather, co-evolved 

alongside boot process defenses--into new types of attacks on operating system 

boot loaders; a co-evolution that shows no signs of slowing down any time soon. 

In this section we’ll look at how the Kernel-mode Code Signing Policy 

determined the direction of new bootkits, and then examine the timeline of the 

co-evolution of bootkits and bootkit Proofs-of-Concepts. In the following 

chapters, we’ll go on to describe the details of bootkit attacks.  
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Bypassing Kernel-mode Code Signing Policy 

The development of modern bootkits was heavily influenced by the necessity of 

bypassing integrity checks in modern computer systems. All known tricks for 

bypassing the digital signature checks introduced with Microsoft’s Kernel-mode 

Code Signing Policy can be divided into three groups, as illustrated in Figure 6-

1. The first group works entirely within user mode and is based on the system-

provided methods for legitimately disabling the signing policy. The second 

group targets the process of booting the operating system in order to manipulate 

kernel-mode memory: this currently appears to be the most popular approach to 

bootkit development. The third group of methods is based on exploiting 

vulnerabilities in system firmware. In particular, there are only two ways for an 

unsigned driver to be loaded into the kernel: either by using an exploitable 

vulnerability in the system kernel or third-party driver, or by compromising the 

boot process and thus the entire system via a bootkit infection. In practice, 

malware typically makes use of the latter technique as it creates a more 

permanent way for penetrating into the system: once a vulnerability in a driver is 

patched it cannot be no longer exploited by malware while flaws in the boot 

processes last longer. But as more computers ship with Secure Boot protection 

enabled and supported by the OS, we expect to see the landscape changing once 

again, in the near future. 
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Figure 6-1: Kernel-Mode Code Signing Policy bypassing techniques  

Thus, modern bootkits have taken the form of infectors that target and 

compromise the OS booting process. 

Co-evolution of Bootkit Research and Malware 

The harbinger of the first modern bootkits is generally considered to be the 

eEye's Proof of Concept (PoC) BootRoot1, presented at the BlackHat conference 

in 2005. The BootRootKit code was an NDIS (Network Driver Interface 

Specification) backdoor by Derek Soeder and Ryan Permeh. It demonstrated for 

the first time how it was possible to use the original concepts behind boot virus 

infection as a model for modern operating system attacks.  However, while the 

eEye presentation was an important step toward the development of bootkit 

malware, it was two years before any new malicious samples with bootkit 

functionality were detected in the wild. 

                                                           
1 eEye BootRoot, BlackHat 2005 // http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-soeder.pdf 
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The first modern bootkit detected in the wild was Mebroot2, in 2007. The 

detection of Mebroot coincided with the presentation of another Proof-of-

Concept, Vbootkit3, at the BlackHat conference that same year. This Proof-of-

Concept code demonstrated possible attacks on Microsoft's Windows Vista 

kernel by modifying the boot sector. The authors of Vbootkit released its code as 

an open-source project. 

Mebroot was one of the most sophisticated malicious threat seen at this time. 

It offered a real challenge to antivirus companies because this malware used new 

stealth techniques for surviving after reboot. At the same time, and also at 

BlackHat, another Proof of Concept was released - the Stoned bootkit4, named 

so in homage to the much earlier but very successful Stoned boot sector virus 

(BSV, an alternative acronym to BSI).  

We must emphasize that these Proof-of-Concept bootkits are not the reason 

for the coinciding releases of malicious bootkits such as Mebroot. Rather, 

emergence of these Proofs-of-Concept enabled timely detection of such 

malware, by showing the industry what to look for.  Malware developers had 

already been searching for new and stealthy ways to push the moment a system 

could be actively infected to earlier into the boot process, before security 

software was able to detect the presence of the infection. Had the researchers 

hesitated to publish their results, malware authors would have succeeded in pre-

empting the system’s ability to detect the new bootkit malware.  

 

                                                           
2 Stoned Bootkit, BlackHat 2009 // http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSA09-
Kleissner-StonedBootkit-PAPER.pdf 
3 Vbootkit, BlackHat 2007 // https://www.blackhat.com/presentations/bh-europe-07/Kumar/Whitepaper/bh-eu-07-
Kumar-WP-apr19.pdf 
4 The Rise of MBR Rootkits // 
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/your_computer_is_now_stoned
.pdf 
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Figure 6-2: Bootkit resurrection timeline 

With bootkits, as in other fields of computer security, we see the co-evolution of 

Proofs-of-Concept that enable us to understand and detect the threats presented 

by real malware samples found in the wild. The former category is developed by 

security researchers to demonstrate that the threats are real and should be looked 

for; the latter consists of unequivocally malicious threats developed by 

cybercriminals.  Table 6.1 and Figure 6-2 show the evolution of such Proofs-of-

Concepts and real malware threats side-by-side, from 2005 to 2014.  

Proof of Concept Bootkits Evolution Bootkit Threats Evolution 

eEye Bootroot – 2005 

The first MBR–based bootkit for MS Windows 

operating systems. 

Mebroot – 2007 

The first MBR-based bootkit for MS Windows 

operating systems in the wild. 

Vbootkit – 2007 

The first bootkit to abuse Microsoft Windows 

Vista.  

Mebratix – 2008 

The other malware family based on MBR 

infection. 

Vbootkit5 x64 – 2009 

The first bootkit to bypass the digital signature 

checks on MS Windows 7. 

Mebroot v2 – 2009 

The evolved version of Mebroot malware. 

                                                           
5 VBootkit 2.0 – Attacking Windows 7 via Boot Sectors, HiTB 2009 // 
http://conference.hitb.org/hitbsecconf2009dubai/materials/D2T2%20-%20Vipin%20and%20Nitin%20Kumar%20-
%20vbootkit%202.0.pdf 
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Stoned Bootkit – 2009 

Another example of MBR-based bootkit infection. 

Olmarik (TDL4) - 2010/11 

The first 64-bit bootkit in the wild. 

Stoned Bootkit x64 – 2011 

MBR-based bootkit supporting the infection of 64-

bit operating systems. 

Olmasco (TDL4 modification) - 2011  

The first VBR-based bootkit infection. 

DeepBoot6  – 2011 

Used interesting tricks to switch from real-mode to 

protected mode. 

Rovnix – 2011 

The evolution of VBR based infection with 

polymorphic code. 

Evil Core7  - 2011 

Concept bootkit that used SMP (symmetric 

multiprocessing) for booting into protected-mode 

Mebromi   – 2011 

The first exploration of the concept of BIOSkits 

seen In the Wild. 

VGA Bootkit8 – 2012 

VGA based bootkit concept. 

 Gapz9 – 2012 

The next evolution of VBR infection 

DreamBoot10  – 2013 

The first public concept of UEFI bootkit. 

OldBoot11  - 2014 

The first bootkit for the Android operating 

system in the wild. 

Table 1-1: The chronological evolution of PoC bootkits versus real world 

bootkit threats  

Bootkits on this timeline are  classified by the stage of the initial boot 

process they subvert, as well as by the data structure they abuse for this 

subversion. The first such subdivision starts with the Master Boot Record 

(MBR), the first sector of the bootable hard drive. The MBR consists of the boot 
                                                           
6 DeepBoot, Ekoparty 2011 //  http://www.ekoparty.org//archive/2011/ekoparty2011_Economou-
Luksenberg_Deep_Boot.pdf 
7 Evil Core Bootkit,  NinjaCon 2011 //  http://downloads.ninjacon.net/downloads/proceedings/2011/Ettlinger_Viehboeck-
Evil_Core_Bootkit.pdf 
8 VGA Persistent Rootkit, Ekoparty 2012 // 
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=vga_persistent_rootki
t 
9 Mind the Gapz: The most complex bootkit ever analyzed?// http://www.welivesecurity.com/wp-
content/uploads/2013/05/gapz-bootkit-whitepaper.pdf 
10 UEFI and Dreamboot, HiTB 2013 // http://www.quarkslab.com/dl/13-04-hitb-uefi-dreamboot.pdf 
11 Oldboot: the first bootkit on Android // http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/ 
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code and a partition table that describes the hard drive’s partitioning scheme. At 

the very beginning of the bootup process the BIOS code reads the MBR and 

transfers execution flow to the code located there--if it finds the MBR correctly 

formatted. The main purpose of the MBR code is to locate an active partition on 

the disk and read its very first sector – the Volume Boot Record (VBR). The 

VBR contains file system-specific boot code, which is needed to load the OS 

boot loader’s components. In fact, in Windows systems there are 15 consecutive 

sectors following the VBR that contain bootstrap code for the New Technology 

File System (NTFS) partition. These 15 sectors are refered to as Initial Program 

Loader (IPL). The IPL parses the NTFS file system and locates the OS boot 

loader components (for instance, BOOTMGR, the Windows Boot Manager).  

 
Figure 6-3: Bootkit classification by type of boot sector infection 

Modern bootkits can be classified into two groups according to the type of 

boot sector infection employed: MBR and VBR bootkits (as shown in Figure 6-
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3). The more sophisticated and stealthier bootkits we see are based on VBR 

infection techniques.  

The control flow of the bootstrap code from the MBR to the full Windows 

system initialization is shown in Figure 6-4. 

 

Figure 6-4: Booting scheme of compromised operating system 

Microsoft Windows operating system versions before Windows 8.x do not 

check the integrity of firmware, such as BIOS or UEFI, that are responsible for 

booting the operating system in its early stages. Before the Windows 8 operating 

system became available, the firmware that booted the system was by default 

assumed to be trustworthy—obviously, an unwarranted assumption considering 

the complexity the boot process has reached. Windows 8 onwards incoporated 

Secure Boot technology, intended to work in cooperation with modern BIOS 
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software, in order to prevent or mitigate bootkit infections—but as any complex 

security technology, it has its vulnerbilities. In  chapters 11 and 12 of this book 

we will discuss ways to bypass Secure Boot by using BIOS vulnerabilities.  

The History of Bootkits and its Lessons 

The history of bootkits goes back a long way, to the early IBM-PC days and 

even earlier. Ironically, the first IBM-PC-compatible boot sector viruses from 

1987 use the same concepts and approaches as modern threats: infecting boot 

loaders so that malicious code is launched even before the operating system is 

booted. 

In fact, attacks on the PC boot sector were already known from even before 

the days of MS-DOS. Indeed, early versions of Windows essentially ran under 

MS-DOS rather than running as the core operating system, and were often 

referred to as an operating environment rather than as an operating system. 

While it's unlikely that any of those prehistoric viruses are still 'in the wild' today 

in any meaningful sense, they have a part to play in our understanding of the 

development of approaches to taking over a system by compromising and 

hijacking the boot process.  

Bootkit Pre-History 

Boot Sector Infectors (BSIs) were certainly among the earliest bootkit 

contenders, and the first to be seen on microcomputers, but they weren't the very 

earliest forms of malware.  

The honor of being the first virus is usually bestowed upon Creeper (1971-

72), a self-replicating program running under the TENEX networked operating 

system on VAX PDP-10s at BBN Technologies. The first “antivirus” was a 

program called Reaper, dedicated to the removal of Creeper infections.  
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It could be argued that as these were experimental/Proof-of-Concept 

programs, the term ‘malware’ (MAL-icious soft-WARE) isn't really appropriate, 

but in fact many of the earliest viruses now unequivocally regarded as malware 

did no deliberate harm and were written by way of experimentation and out of 

curiosity, so we tend not to discriminate. Bear in mind that software doesn't 

really need to be consciously malicious to be illegal: software that deliberately 

accesses and/or modifies a system that isn’t the property of its author without 

permission from the system’s owner contravenes modern anti-malware 

legislation in many countries and jurisdictions.  

Legally, this could include programs like Reaper and other software intended 

to counteract earlier malicious software—it's not uncommon for unequivocally 

malicious software to disinfect other malware, though the motivation in such 

cases has usually more to do with eliminating competition than concern for the 

wellbeing of the target system. 

After Creeper came PERVADE (1975), a subroutine in the ANIMAL game, 

running on a UNIVAC 1100//42 mainframe that copied ANIMAL to any 

directory the current user had access to. 

PC Floppy Flotsam & the Original PC Boot Process 

Before going into the history and evolution of bootkits, we’ll look at how boot 

sector infectors work. In these days of optical disks and USB thumb drives it 

may be difficult to comprehend that early operating systems could be contained 

on such low capacity media as floppies, so we’ll summarize the architecture of 

floppy disks in order to understand the boot process better, and to see how it was 

manipulated by original bootkits.  

Every formatted diskette had a boot sector, located in its first physical sector. 

Unlike hard drives, diskettes were not partitioned. On a hard drive, the boot 
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sector is located in first logical sector. The Master Boot Record (MBR) in that 

first logical sector contains the partition table, specifying the hard disk type and 

how it is partitioned.  

At bootup, the BIOS program looked for a bootable diskette to start from in 

drive A and ran whatever code it found in the appropriate sector. In the case of 

an unbootable diskette (that is, one not capable of loading the operating system), 

the boot sector code would simply display a ”Not a bootable disk” message.  It 

was all too easy to leave a diskette in the drive, and if it happened to be infected 

with a BSI, the diskette would infect the system even if the disk wasn't bootable, 

which goes some way to accounting for the early success of the boot sector 

infector (BSI).  

'Pure' BSIs were hardware-specific and not OS-specific: if an infected floppy 

found itself in the drive at bootup it attempted to infect IBM-compatible PCs 

irrespective of what operating system was being run. This made its effect upon 

the targeted system somewhat unpredictable. However, malware droppers using 

BIOS and DOS services to install malware into the MBR were (and are) unable 

to do so in a Windows NT or NT-derived system (Windows 2000 and onward) 

unless it was set up to multiboot a less secure OS. An MBR infector that 

succeeded in installing on an NT or NT-derived system could locate itself in 

memory, but once the OS had loaded, the direct disk services provided by the 

BIOS were no longer available, due to NT's use of protected mode drivers, so 

secondary infection of diskettes was stymied.  

There were other potential problems, too. If the virus didn't preserve the 

original boot record it could prevent the system from booting at all. BSIs that 

infected the DOS Boot Record (DBR) rather than the MBR (as did Form, 
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another highly successful BSI) could prevent booting from a new technology file 

system (NTFS) partition, too.  

The rate of BSI infection first began to decline when it became possible to 

change the boot order in setup so that the system would boot from the hard disk 

and ignore any floppy that happened to have been left in the drive. It was with 

the increasing take-up of modern Windows versions and the virtual 

disappearance of the floppy drive that the old-school BSI was finally killed off.  

 

Apple Disorder 

The first microcomputer affected by viral software seems to have been the Apple 

II. At that time, Apple II (sometimes written Apple ][) diskettes normally 

contained the disk operating system. Around 1981, according to Robert Slade12 

in his first book on viruses and malware, there were versions of a viral DOS 

circulating after discussions about 'evolution' and 'natural selection' in pirated 

games at Texas A&M. In general, though, the credit for the first Apple II virus is 

given to Rich Skrenta's Elk Cloner (1982-3), as noted in Viruses Revealed13 and 

in a more research-oriented book by Peter Szor 14.  

Though Elk Cloner preceded PC boot sector viruses by several years, it’s 

usually described as a boot sector infector as its method of infection was very 

similar. Elk Cloner modified the loaded OS by hooking itself, and stayed 

resident in RAM in order to infect other floppies, intercepting disk accesses and 

                                                           
12 Robert Slade’s Guide to Computer Viruses, Robert Slade, Springer. http://www.amazon.com/Robert-Slades-Guide-
Computer-Viruses/dp/0387946632 
13 Viruses Revealed; David Harley, Robert Slade and Urs Gattiker, Osborne http://www.amazon.com/Viruses-Revealed-
David-Harley/dp/B007PMOWTQ  
14 The Art of Computer Virus Research and Defense, Peter Szor, Addison Wesley 
http://books.google.co.uk/books/about/The_Art_of_Computer_Virus_Research_and_D.html?id=XE-
ddYF6uhYC&redir_esc=y 
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overwriting their system boot sectors with its own code. At every 50th bootup it 

displayed a message (sometimes generously described as a poem):  

 

ELK CLONER:  

 

   THE PROGRAM WITH A PERSONALITY 

 

IT WILL GET ON ALL YOUR DISKS 

IT WILL INFILTRATE YOUR CHIPS 

YES, IT'S CLONER! 

 

IT WILL STICK TO YOU LIKE GLUE 

IT WILL MODIFY RAM TOO 

SEND IN THE CLONER! 

 

As David Harley wrote in an article15 for Infosecurity Magazine, after 

Skrenta was interviewed for The Register in 201216: "I guess it’s as well that 

Skrenta subsequently went into the IT industry rather than embarking on a career 

in literature. As verse goes, that’s really shaggy doggerel." Still, no verse that 

Harley wrote when he was in his teens has stood the test of time, either.  

The later (1989) Load Runner malware, affecting Apple IIGS and ProDOS, 

is rarely mentioned nowadays, but it does have an interesting extra wrinkle. 

Apple users frequently needed to reboot to change operating systems, or 

sometimes to boot a 'special' disk. Load Runner's specialty was trapping the reset 

command triggered by the key combination CONTROL+COMMAND+RESET 
                                                           
15 http://www.infosecurity-magazine.com/blog/2012/12/17/send-in-the-clones/735.aspx  
16 http://www.theregister.co.uk/2012/12/14/first_virus_elk_cloner_creator_interviewed/  
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and taking it as a cue to write itself to the current diskette, so that it would 

survive a reset. This may not be the earliest example of malware persistence, but 

it's certainly a precursor to more sophisticated attempts to maintain its presence. 

PC © Brain Damage 

We have to look ahead to 1986 for the first PC virus, usually considered to be 

Brain . Brain was a fairly bulky BSI, occupying the first two sectors of a diskette 

with its own code and marking the sectors as 'bad' so that the space wouldn't be 

overwritten. This meant that the boot code was moved from the first sector to the 

third. The version usually taken to be the 'original' did not infect hard disks, only 

360k diskettes.  

However, Brain had features that prefigured some of the characterizing 

features of modern bootkits. Firstly, the use of a hidden storage area in which to 

keep its own code, though on an infinitely more basic level than TDSS and its 

contemporaries and successors. Secondly, the use of 'bad' sectors to protect that 

code from legitimate housekeeping by the operating system. Thirdly, the use of a 

stealth technique: if the virus was active when an infected sector was accessed, it 

hooked the disk interrupt handler to ensure that the original, legitimate boot 

sector stored in sector three was displayed.  

Characteristically, a boot sector virus would allocate a memory block for the 

use of its own code and hook the execution of the code flow there in order to 

infect new files or system areas (in the case of a BSI). Occasionally, multi-stage 

malware would use a combination of these methods; these were known as 

Multipartites. 

Multipartites 
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Multipartite is a term used to describe malware that capable of infecting both 

boot sectors and files, though it isn't strictly correct to restrict the use of the term 

to 'file and boot' viruses. For example, there were instances of macro viruses that 

dropped file viruses, while there are also examples of malware that can spread 

both non-parasitically in worm fashion and also as file infectors. While the 

malware we see nowadays tends to a degree of sophistication, complexity, and 

modularity that would have been almost unimaginable in the 1980s and 1990s, 

the term has fallen largely into disuse in discussion of modern threats.  

 

Conclusion 

This chapter has been devoted to the history and evolution of boot compromises, 

with the intention of giving the reader a solid understanding of the basic 

concepts on which to build as we look at the detail of bootkit technology. In the 

next chapter we will be going deeper into Kernel-Mode Code Signing Policy and 

exploring the ways of bypassing this technology via bootkit infection, with 

particular reference to TDSS. The evolution of TDL3 and TDL4 neatly 

exemplifies the shift from user mode to kernel mode system compromise as a 

means of keeping the malware unnoticed but active for longer on a compromised 

system. 
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2
Making Things Move with 
Electricity and Magnets

ig magnets attract small metal objects; 
small magnets stick to large metal 
objects. For example, refrigerator doors 

are usually big pieces of metal, so it’s easy cover 
them with tiny, decorative magnets. You’ve probably 
seen magnets in cartoons, too: characters like to use 
giant horseshoe-shaped magnets to cause mischief. 
You can find magnets in nature or create them with 
electricity. A magnet created with electricity is called 
an electromagnet. 
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You can use an electromagnet to make things move, and 
you don’t even have to be a superhero to do it! In fact, many 
things you see every day—like motors, loudspeakers, and the 
automatic doors in shops—work because electromagnets make 
something in them move. 

An electromagnet is very easy to make, and in this chap-
ter, you’ll build an electromagnet that you can turn on and off 
with a switch. Then, you’ll use an electromagnet to build your 
very own motor!

How Magnets Work
Magnets have two poles, the north pole (N) and south pole (S), 
and they’re surrounded by a magnetic field. 

N S

If you place two magnets side by side, the north pole of one 
magnet attracts the other magnet’s south pole and repels that 
magnet’s north pole. Try pushing two magnets together. If you 
don’t force them, they should naturally attach to each other 
at their opposite poles. Now, try to force two of the same poles 
toward each other. That’s harder, isn’t it? Opposite poles are 
attracted to each other, and identical poles repel each other.
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Unlike poles attract

Like poles repel

Note   Thin, flexible refrigerator magnets don’t have two 
distinct poles. Instead they have many poles of opposite polar-
ity next to each other, so it’s harder to feel the magnets attract 
and repel.

But magnets don’t attract all materials. For example, plas-
tic is unaffected by magnets. Try testing some metal objects 
around you! 

Try It Out:  
Find Some Magnetic Objects!

Take any magnet and place it over objects made out of 
different materials, such as:

XX Aluminum foil
XX A stainless steel spoon
XX A soda can
XX An iron nail
XX A piece of metal jewelry
XX A few different coins

Which objects does the magnet attract or stick to? 
You should find that the magnet attracts some metals, 
but not all metals. What happens with aluminum foil? 

It turns out that some metals can turn into magnets if you 
apply a little electricity. That’s where electromagnets come in.
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Meet the Electromagnet
When current flows through a wire, something strange 
happens: the current creates a magnetic field around the wire.

current

+

−

magnetic field
wire

The magnetic field of one wire, however, is very weak. 
To make a stronger magnetic field, you need to run current 
through lots of wires placed next to each other. But you still 
need only a single wire: you can just wind that wire into many 
loops to make a coil, and then send a current through it. The 
magnetic fields from each loop in the coil overlap and com-
bine to create a stronger magnetic field. If you wind your wire 
around a piece of iron—like a nail, a bolt, or a screw—you’ll 
get an even stronger magnetic field. 

All you have to do to create an electromagnet is connect a 
battery to the ends of the coiled wire, making a closed circuit. 
When current flows through the wire, the piece of iron it’s 
wrapped around starts to behave like a magnet, with the south 
pole at one end and the north pole at the other end. Which pole 
is which depends on the direction of the current, as well as the 
direction of the coil windings. When you disconnect the battery, 
the current stops and the magnetic field disappears. 

Building an electromagnet will help you start to under-
stand how you can use electricity to make things like a 
loudspeaker in the real world, so let’s make one! With enough 
current, enough wire, and the right circuit, you could build a 
supermagnet straight out of your favorite cartoon, but for now, 
we’ll start with a small one. 
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a simple electromagnet

Project #3: Create Your Own 
Electromagnet
You know the theory behind how to build your own electro-
magnet. But reading the theory isn’t the same as making 
something in real life, so it’s time to have some fun!

You’re going to build your own electromagnet with wire 
and a bolt. All you need to do is to wrap the wire around the 
bolt several times and connect the battery to the wire. To 
make it easy to turn the electromagnet on and off, you’ll also 
add a switch to the circuit so that you can control whether or 
not current flows through the wires.

NS

+
−9
V

electromagnet

switch
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Shopping List

XX A 1.5 V alkaline (C) battery (Jameco #2112428, 
Bitsbox.co.uk #BAT040), like the big round ones used 
in older flashlights. Don’t use a rechargeable battery or 
plug-in power supply.

XX Insulated solid-core wire (Jameco #36792, Bitsbox.co.uk 
#W106BK), about 7 feet. Standard hook-up wire works fine.

XX Tape to fasten everything. You can use masking tape, 
electrical tape, or whatever you have. 

XX Washers or paper clips, or other small metal objects 
that your electromagnet can lift.

XX A bolt to wind the wire around. Choose a big one to make 
room for many turns with the wire. The bolt I used was 
0.3 inches thick and 4 inches long.

XX A switch (Jameco #581685, Bitsbox.co.uk #SW018) to 
turn the electromagnet on and off.

C batteryinsulated wire

switch

electrical tape

bolt

washers
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Tools

XX A wire cutter (Jameco #35482, Bitsbox.co.uk #TL008) to 
cut or remove the insulation from wire.

XX A standard magnet

Step 1: Check Your Bolt
Your bolt is going to be the core of your electromagnet, 
making it stronger. But not all materials will work as an 
electromagnet’s core! Most metal bolts should work, but if 
you’re unlucky and find one that is made of nonmagnetic 
material, your electromagnet won’t be very effective. 

To check whether a bolt is okay to use in this project, just 
hold it close to any standard magnet. If the magnet attracts 
the bolt, then the bolt is a good one.

wire cutter

magnet
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Step 2: Remove Insulation from One End of 
the Coil Wire
To connect the coil wire to the battery and the switch, you 
need to expose the metal of the wire at both ends. You’ll use a 
wire cutter to strip away about 0.5 inches of insulation from 
the beginning of your wire. After you’ve wound the coil, you’ll 
do the same with the end of your wire. Stripping wires can be 
a bit difficult if you’ve never done it before, so ask a parent or 
teacher for help to get started. 

First, gently grasp the end of the wire with the cutters.

Apply just enough pressure with the wire cutter to cut the 
plastic around the wire, but not the wire itself. When you’ve 
cut through the insulation, your wire should look something 
like this:

Then, place the wire cutter in the cut you made. Squeeze 
the wire cutter enough to grip the loose plastic with the blades. 
Use the wire cutter to gently pull off the plastic without cut-
ting into the metal of the wire.
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Now, you should have a wire with some exposed metal at 
the end, like this: 

If stripping wires seems tricky in the beginning, don’t 
worry: it becomes much easier with practice.

Step 3: Wind the Wire
Take the wire and wrap it around your bolt 50 to 100 times. 
Leave about 3 inches of each end of the wire hanging loose. 
Make sure you don’t use all the wire; you’ll need a piece of 
wire about 4 inches long in a later step. 
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Wrap the wire as tight as possible and tape the end to 
make sure the turns stay in place. We call this wound wire the 
coil of the electromagnet. 

Repeat Step 2 to strip the insulation off the other end of 
your coil.

Step 4: Connect the Negative Battery Terminal to  
the Coil
Connect one end of the coil—
it doesn’t matter which—to 
the negative terminal of the 
battery. Fasten it to the battery 
with tape.

Warning   Be sure 
you’re using the recommended 
1.5 V battery! Anything more 
powerful could send too 
much current through your 
coil, which could make both 
the battery and the coil hot 
enough to burn you.

Step 5: Connect the Switch
In Chapter 1, I showed 
you how to build your own 
switch and described how 
you can use one to turn 
something on and off. Now, 
you’re going to connect a 
prebuilt switch to your 
electromagnet to turn it on 
and off. A switch often has 
three pins that you can con-
nect to. 

1 2 3
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On the switch in this project’s Shopping List, pin 2 is 
the common pin, which is connected to either pin 1 or pin 3, 
depending on the position of the button. If the button is 
pushed toward pin 1, then pins 2 and 1 are connected. If 
it’s pushed toward pin 3, then pins 2 and 3 are connected. 

Some switches have only two pins. In that case, the two 
pins are connected when the button is in one position, and not 
connected in the other—just like the switch you built in “Proj-
ect #2: Intruder Alarm” on page 72.

Fasten the other end of the coil wire to pin 1 of the switch 
and make sure the button of the switch is pushed toward 
pin 3. Then, cut a brand-new piece of wire from your spool, 
about 4 inches long, and strip some insulation from both ends 
to expose the metal. Connect one end of the new wire to the 
positive battery terminal and one end to the middle pin of 
the switch. Use tape to make sure the wires are properly con-
nected and stay in place.
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Step 6: Test Your Super Electromagnet
That’s it for building the circuit! Now, let’s test it. If you’ve 
connected everything correctly, your electromagnet should be 
off now.

First, find a good piece of metal to attract with your 
electromagnet. A small metal paper clip should do the 
trick, though I used a little pile of steel washers. Magnets 
won’t attract all metals—for example, aluminum foil is not 
magnetic—so hold a regular magnet next to the metal you 
want to attract first to make sure it’s magnetic. 

Then, flip your switch and place your electromagnet close 
to your paper clip or whatever other metal object you’re using. 
If you’ve found the on position, the bolt should pull the metal 
object toward it. 

If nothing happens, press your switch into the other posi-
tion; the bolt should start to pull the metal object now. 

The electromagnet consumes a lot of power, so if you keep 
the switch flipped on for too long, your battery will drain 
quickly. You might also notice that the battery and the coil 
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become hot. Try to limit the time your electromagnet is on to 
only a few seconds, and always disconnect the battery before 
you leave your circuit.

Step 7: What If the Electromagnet Isn’t Working?
Make sure you used insulated wire to make the loops around 
the bolt. The wire must have some kind of insulating layer 
on the outside of the metal; otherwise, it won’t work. The rea-
son for this is that without the insulating layer, the electrons 
won’t follow the wire loops around the bolt. Instead, they’ll 
go through the bolt if the bolt is conductive or through to the 
neighboring wire if the loops of wire are touching. In either 
case, the electrons will function as if you had one thick wire.

Another possible problem is that your battery is dead. 
Try switching to a different battery that you’re sure is 
working.

If you’re sure you’re using insulated wire and that 
the battery has power, check that the connections on the 
switch and battery are connected, as I described in Steps 4 
and 5. If you’re unsure, it might be a good idea to redo the 
connections.

Meet the Motor
A wire with flowing current creates a magnetic field, as I 
described in “Meet the Electromagnet” on page 72. When 
powered, the coil from Project #3 will have a magnetic field 
with south and north poles, just like any other magnet. Like 
poles repel each other and opposite poles attract each other. 
So, if you put a magnetized coil of wire over a regular magnet 
with the same poles close to each other, the coil will try to 
twist itself around. 
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Like poles repel.
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Coil will try to twist
because like poles
repel each other.

coil

If you placed the wire coil on some kind of stand so that 
it could rotate freely over the magnet, it would flip back and 
forth without making a full spin. This is because when the coil 
has made a half spin, the opposite poles face and attract each 
other, which will force the coil in the opposite direction.

How can you make the coil continue to spin in one direc-
tion? You just need to find a way to disconnect the battery 
halfway around and turn the battery back on when the coil 
is back in its starting position. Then, here’s what happens. 
The coil starts moving when it’s powered and pushes the wire 
coil halfway through one round. Because you disconnect the 
battery halfway through, the existing motion keeps the coil 
moving forward. When it comes back to its original position, 
the battery gets reconnected and gives the coil another push 
forward, and it continues the same way. 

Electric motors are based on this basic principle of mag-
netic poles attracting and repelling each other.

Project #4: Create a Motor
In this chapter, you’ve built your own electromagnet, and 
you’ve learned how motors work. Now, it’s time to combine 
these two concepts. In this project, you’ll build your very own 
motor from scratch! 
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You’ll use a magnet together with a coil of wire. The coil 
will spin, and this spinning coil is called the rotor of the motor. 
You’re going to build the motor so that the rotor coil has cur-
rent through it for only half of the spin. The magnet should 
push the electromagnet for half of the spin, and the rotor coil 
should continue around the second half of its spin with the 
energy it gets from the first push.

spinning 
rotor
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Shopping List

XX A 1.5 V alkaline (C) battery (Jameco #2112428, 
Bitsbox.co.uk #BAT040), like the big round ones used 
in older flashlights.

XX Insulated solid-core wire (Jameco #36792, Bitsbox.co.uk 
#W106BK), about 13 feet. The stiff insulated wire will be 
used both for the coil and to support the coil. 

XX Tape to fasten everything. You can use masking tape, 
electrical tape, or whatever you have.

XX A paper or plastic cup to hold everything in place. 
XX Two disc magnets (Jameco #2181319, Bitsbox.co.uk 

#HW145), the stronger the better.

Warning 	 Always keep small supermagnets like 
these away from babies and young children. These magnets 
are very dangerous if swallowed.

C battery

insulated wire

magnets
electrical 
tape

cup
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Tools

XX A wire cutter (Jameco #35482, Bitsbox.co.uk #TL008) to 
cut or remove the insulation from wire. 

Step 1: Create the Rotor
First, we’ll create a new coil of wire; this coil will be the rotor, 
or spinning part, of your motor. To create the rotor, first take 
your spool of wire and strip the insulation from about 1.5 inches 
of the free end. Then, wind the wire around the battery. 

wire cutter
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If you buy the wire I recommend in this project’s Shopping 
List, try making around 30 windings; if you use thinner wire, 
wind it more. The point is to make the coil as magnetic as pos-
sible, without making it too heavy. More windings make the 
rotor more magnetic, but also heavier.

Carefully slide your coiled wire off the battery. Gather the 
windings into a loop and wrap the ends of the wire around your 
loop a few times on each side so that the coils stay together. Cut 
your loop from the spool of wire, leaving the other end about 
1.5 inches long. Then, remove the insulation from this end, 
too, so that the metal inside is exposed. If you’re using wires 
with plastic insulation, you can use a wire cutter, as described 
in “Step 2: Remove Insulation from One End of the Coil Wire” 
on page 76. 

Step 2: Build the Motor’s Structure
Set your coil aside for now and take out your paper cup. Punch 
a hole in one side of the cup about 0.4 inches from the top and 
another one about 0.4 inches from the bottom. Pull a piece of 
the stiff wire around 8 inches long through these two holes. 
Then, do the same on the other side of the cup. Turn the cup 
upside down, remove the insulation from the ends of both 
wires, and tape the wires to the cup to ensure they stay in 
place. 

rotor
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The ends that are now on the bottom will connect to the 
battery, and the top ends are going to make up the connec-
tion to the rotor and support it. Bend the top ends of the two 
wires into two U-shapes that can hold the rotor. Make sure 
the bottom part of each U has exposed metal so that it will 
touch the exposed wires of the rotor. This U-structure will 
be the battery’s connection to the rotor.

Step 3: Place the Magnets
Place one magnet on top of the cup. Then place one magnet 
inside the cup so that the two magnets stick to each other 
through the cup. Place your rotor into the U-structure and 
adjust the position of the magnets to make sure they are at 
the center, just under the coil.

magnet

rotor connector

battery 
connector

battery 
connector

rotor 
connector



Electronics for Kids, © 2016 by Øyvind Nydal Dahl

Step 4: Reinsulate Part of the Coil
If you connected the battery now, the motor wouldn’t work. 
With your coil rotor attached, you’d see movement, but the 
rotor would just be pushed back and forth in opposite direc-
tions because it’s always connected to the battery. You need a 
way to disconnect the coil from the battery halfway through 
so that it’s first pushed away from the magnet and then 
released until it has spun the rest of the way around. Then, 
it can reconnect with the magnet and get pushed again, and 
so on. You can make this happen by insulating the wire on 
one side with a permanent marker. Do this on only one arm 
of the rotor.

wire insulated with permanent marker

no insulation

Lay your coil flat on the table and use a permanent 
marker to draw along the wire on one side to make it noncon-
ductive. Draw your line so that the rotor disconnects from the 
battery when the loop lies horizontally above the magnet.
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Step 5: Rev Up Your Motor
Let’s get that motor running! Connect the battery by taping 
the two wires to the positive and negative terminals.  

Now, place the rotor into the U-structure. The motor 
should start spinning. You might need to give it a little push. 
It won’t run any cars, but if it works, then you definitely just 
made something move with electricity. Congratulations!

wire connected to the 
positive battery terminal

The motor is 
running!
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Step 6: What If the Motor Doesn’t Work?
Can you see any movement? If you’re very lucky, it’ll work 
right away, but you’ll most likely need to make some adjust-
ments. Here are some places to start:

1.	 Make sure your coil is placed so that it starts with the 
exposed wire—that is, not the part you covered with the 
marker—touching the exposed wire of the U-shaped struc-
ture. That way, when you connect the battery, the coil 
becomes magnetic.

2.	 Figure out which way the battery should be connected. 
You might find that the rotor spins better in one direction 
than the other, so try to connect the battery the other way 
around to see what’s best for your motor.

3.	 If your coil is a bit too heavy, the magnetism won’t be 
enough to push the coil all the way around the loop. Try 
unwinding a few loops to make the coil lighter.

4.	 You might need to adjust the position of the magnets 
under your rotor. They should be as centered as possible.

If your motor still doesn’t run, your rotor may just need 
a little push to get started. Try tapping it lightly with your 
finger to see whether that unleashes a speed demon.
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What’s Next? 
In this chapter, you’ve learned that magnets can be created by 
winding a wire around a bolt and connecting it to a battery, 
and you’ve tested this by building your own electromagnet. At 
the end, you learned how electric motors work, and you even 
built one for yourself. You really got things moving! 

Now, take that knowledge and explore electricity a little 
further. Try adding even more magnets under the rotor of 
your motor. Then, wind a rotor coil that is twice as big or even 
bigger. You can create a much larger structure for the motor. 
How fast can you make your motor go?

So far, you’ve only used electricity, but you can actually 
generate it, too. In the next chapter, you’ll learn a couple of 
different ways to generate electricity, and you’ll be playing 
around a bit more with magnets.
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Project 3:  
Bar Graph
In this project, you’ll 
combine what you’ve 
learned in the previous 
LED projects to create 
an LED bar graph that 
you can control with a 
potentiometer.
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Parts Required
•	 Arduino board

•	 Breadboard

•	 Wires

•	 9 LEDs

•	 50k-ohm potentiometer

•	 9 220-ohm resistors

Arduino Project Handbook, © 2016 by Mark Geddes



How It Works
A bar graph is a series of LEDs in a line, similar to what you might 
see on an audio display. It’s made up of a row of LEDs with an analog 
input, like a potentiometer or microphone. In this project, you use the 
analog signal from the potentiometer to control which LEDs are lit. 
When you turn the potentiometer one way, the LEDs light up one at 
a time in sequence, as shown in Figure 3-1(a), until they are all on, 
shown in Figure 3-1(b). When you turn it the other way, they turn off 
in sequence, as shown in Figure 3-1(c).

A

B

C

Figure 3-1: 

The LEDs light up and 

turn off in sequence 

as you turn the 

potentiometer. 
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The Build
1.	 Insert the LEDs into the breadboard with their shorter, negative 

legs in the GND rail. Connect this rail to Arduino GND using a 
jumper wire.

2.	 Insert a 220-ohm resistor for each LED into the breadboard, with 
one resistor leg connected to the positive LED leg. Connect the 
other legs of the resistors to digital pins 2–10 in sequence, as 
shown in Figure 3-2. It’s important that the resistors bridge the 
break in the breadboard as shown.

THE NEGATIVE LEGS OF THE LEDS ARE CONNECTED

TO GND ON THE ARDUINO. THE POSITIVE LEGS ARE

CONNECTED TO PINS 2−10.

THE CENTER PIN

OF THE POTEN-

TIOMETER IS 

CONNECTED TO

ARDUINO A0.

LEDs arduino

Positive legs Pins 2–10 via resistor

Negative legs GND

Figure 3-2: 

Circuit diagram for  

the bar graph 
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3.	 Place the potentiometer in the breadboard and connect the 
center pin to Arduino A0. Connect the right outer pin to +5v and 
the left potentiometer pin to GND.

Potentiometer arduino

Left pin GND

Center pin A0

Right pin +5v

4.	 Upload the code in “The Sketch” below.

The Sketch
The sketch first reads the input from the potentiometer. It maps the 
input value to the output range, in this case nine LEDs. Then it sets 
up a for loop over the outputs. If the output number of the LED in 
the series is lower than the mapped input range, those LEDs turn on; 
if not, they turn off. See? Simple! If you turn the potentiometer to the 
right, the LEDs light up in sequence. Turn it to the left, and they turn 
off in sequence.

const int analogPin = A0; // Pin connected to the potentiometer 
const int ledCount = 9;   // Number of LEDs
int ledPins[] = {2,3,4,5,6,7,8,9,10}; // Pins connected to the LEDs 

void setup() {
  for (int thisLed = 0; thisLed < ledCount; thisLed++) {
    pinMode(ledPins[thisLed], OUTPUT); // Set the LED pins as output
  }
}

// Start a loop
void loop() {                               
  int sensorReading = analogRead(analogPin); // Analog input
  int ledLevel = map(sensorReading, 0, 1023, 0, ledCount);
  for (int thisLed = 0; thisLed < ledCount; thisLed++) {
    if (thisLed < ledLevel) { // Turn on LEDs in sequence
      digitalWrite(ledPins[thisLed], HIGH);
    }
    else { // Turn off LEDs in sequence
      digitalWrite(ledPins[thisLed], LOW); 
    }
  }
}

Note 

As mentioned in  

Project 2, it doesn’t actually 

matter which way the 

outer potentiometer pins 

are connected, but I’ve 

given instructions here to 

reflect the images.
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Project 4: Disco 
Strobe Light
In this project, you'll apply 
the skills you learned in 
Project 3 to make a strobe 
light device with adjust­
able speed settings.

Arduino Project Handbook, © 2016 by Mark Geddes



Parts Required
•	 Arduino board

•	 Breadboard

•	 Wires

•	 2 Blue LEDs

•	 2 Red LEDs

•	 50k-ohm potentiometer

•	 4 220-ohm resistors

Arduino Project Handbook, © 2016 by Mark Geddes



How It Works
Turning the potentiometer up or down changes the speed of the flash-
ing lights, creating a strobe effect. You can use red and blue LEDs for 
a flashing police light effect (see Figure 4-1). Connect the LEDs of the 
same color to the same Arduino pin so they’ll always light together. 
If you build a casing to house your LEDs, you’ll have your own mobile 
strobe unit. You can add up to 10 LEDs and change the sketch code 
to include your output pins and the new number of LEDs.

The Build
1.	 Place your LEDs into the breadboard with the short, negative 

legs in the GND rail, and then connect this rail to Arduino GND.

2.	 Insert the resistors into the board, connecting them to the longer, 
positive legs of the LEDs. Use jumper wires to connect the two 
red LEDs together and the two blue LEDs together via the resis-
tors, as shown in Figure 4-2; this allows the LEDs of the same 
color to be controlled by a single pin.

Figure 4-1: 

Red and blue LEDs mimic a 

police car siren.

Note 

Remember to add power 

to the breadboard.
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3.	 Connect the red LEDs to Arduino pin 11 and the blue LEDs to 
Arduino pin 12.

LEDs arduino

Negative legs GND

Positive leg (red) Pin 11

Positive leg (blue) Pin 12

4.	 Place the potentiometer in the breadboard and connect the 
center pin to Arduino A0, the left pin to GND, and the right pin 
to +5v.

Potentiometer arduino

Left pin GND

Center pin A0

Right pin +5v

5.	 Confirm that your setup matches that of Figure 4-3, and then 
upload the code in “The Sketch” on page 103.

Figure 4-2: 

Connecting LEDs 

with jumper wires 
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BOTH BLUE LEDS CONNECT TO

ARDUINO PIN 12 THROUGH THE

220-OHM RESISTOR.

BOTH RED LEDS CONNECT TO 

ARDUINO PIN 11 THROUGH THE

220-OHM RESISTOR.

TURN THE POTENTIOMETER

TO CHANGE THE SPEED OF

THE FLASHING LIGHTS.

The Sketch
The sketch works by setting the analog signal from the potentiometer 
to the Arduino as an input and the pins connected to the LEDs as out-
puts. The Arduino reads the analog input from the potentiometer and 
uses this value as the delay value—the amount of time that passes 
before the LEDs change state (either on or off). This means that the 
LEDs are on and off for the duration of the potentiometer value, so 
changing this value alters the speed of the flashing. The sketch 
cycles through the LEDs to produce a strobe effect.

Figure 4-3: 

Circuit diagram for the 

disco strobe light
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const int analogInPin = A0; // Analog input pin connected to the 
                            // potentiometer
int sensorValue = 0;        // Value read from the potentiometer
int timer = 0;              // Delay value

// Set digital pins 12 and 11 as outputs
void setup() {
  pinMode(12, OUTPUT);
  pinMode(11, OUTPUT);
}

// Start a loop to turn LEDs on and off with a delay in between
void loop() {
  sensorValue = analogRead(analogInPin); // Read value from the 
                                         // potentiometer
  timer = map(sensorValue, 0, 1023, 10, 500); // Delay 10ms to 500ms
  digitalWrite(12, HIGH); // LED turns on
  delay(timer);           // Delay depending on potentiometer value
  digitalWrite(12, LOW);  // LED turns off
  delay(timer);
  digitalWrite(12, HIGH);
  delay(timer);
  digitalWrite(12, LOW);
  digitalWrite(11, HIGH);
  delay(timer);
  digitalWrite(11, LOW);
  delay(timer);
  digitalWrite(11, HIGH);
  delay(timer);
  digitalWrite(11, LOW);
}
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Project 5: 
Plant Monitor
In this project I’ll 
introduce a new type 
of analog sensor that 
detects moisture levels. 
You’ll set up a light and 
sound alarm system to 
tell you when your plant 
needs watering.
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Parts Required
•	 Arduino board

•	 Wires

•	 HL-69 moisture sensor

•	 LED

•	 Piezo buzzer

Arduino Project Handbook, © 2016 by Mark Geddes



How It Works
You’ll use an HL-69 moisture sensor, readily available online for a few 
dollars or from some of the retailers listed in Chapter XX. The prongs 
of the sensor detect the moisture level in the surrounding soil by pass-
ing current through the soil and measuring the resistance. Damp soil 
conducts electricity easily, so it provides lower resistance, while dry 
soil conducts poorly and has a higher resistance.

The sensor consists of two parts, as shown in Figure 5-1: the 
actual prong sensor (a) and the controller (b). The two pins on the 
sensor need to connect to the two separate pins on the controller 
(connecting wires are usually supplied). The other side of the con
troller has four pins, three of which connect to the Arduino.

A

B

The four pins are, from left to right, AO (analog out), DO (digital 
out), GND, and VCC. You can read the values from the controller 
through the IDE when it’s connected to your computer. This project 

Figure 5-5: 

The HL-69 moisture sensor 

prong (a) and controller (b) 
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doesn’t use a breadboard, so the connections are all made directly to 
the Arduino.

Lower readings indicate that more moisture is being detected, and 
higher readings indicate dryness. If your reading is above 900, your 
plant is seriously thirsty.

The Build
1.	 Connect the sensor’s two pins to the + and – pins on the 

controller using the provided connecting wires, as shown in 
Figure 5-2.

POSITIVE NEGATIVEFigure 5-2: 

Connecting the sensor 

to the controller 
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2.	 Connect the three prongs from the controller to +5v, GND, and 
Arduino A0 directly on the Arduino, as shown in the following 
table. The DO pin is not used.

Sensor Controller arduino

VCC +5v

GND GND

A0 A0

DO Not used

3.	 Connect an LED directly to the Arduino with the shorter, nega-
tive leg in GND and the longer, positive leg in Arduino pin 13, as 
shown in Figure 5-3.

LED arduino

Positive leg Pin 13

Negative leg GND

4.	 Connect the piezo buzzer’s black wire to GND and its red wire to 
Arduino pin 11.

Piezo Buzzer arduino

Red Pin 11

Black GND

5.	 Check that your setup matches that of Figure 5-4, and then 
upload the code in “The Sketch” on page 111.

Figure 5-3: 

Connecting the LED to the 

Arduino
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WHEN THE VALUE FROM THE SENSOR

RISES ABOVE YOUR CALIBRATED VALUE,

THE LED WILL LIGHT AND THE BUZZER

WILL SOUND.

PLACE THE SENSOR IN THE SOIL OF

THE PLANT YOU WANT TO MONITOR.

AS THE SOIL DRIES OUT, THE ARDUINO

READS THE VALUE FROM THE SENSOR

AND SENDS IT TO THE IDE. 

6.	 Connect the Arduino to your computer using the USB cable. 
Open the Serial Monitor in your IDE to see the values from the 
sensor—this will also help you to calibrate your plant monitor. 
The IDE will display the value of the sensor’s reading. My value 
was 1000 with the sensor dry and not inserted in the soil, so I 
know this is the highest, and driest, value. To calibrate this value, 
turn the potentiometer on the controller clockwise to increase the 
resistance and counterclockwise to decrease it (see Figure 5-5).

Figure 5-4: 

Circuit diagram for 

the plant monitor 
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POTENTIOMETER

7.	 When the sensor is inserted into moist soil, the value will drop to 
about 400. As the soil dries out, the sensor value rises; when it 
reaches 900, the LED will light and the buzzer will sound.

The Sketch
The sketch first defines pin A0 so that it reads the moisture sensor 
value. It then defines pin 11 as output for the buzzer, and pin 13 as 
output for the LED. Use the Serial.Println function to send the 
reading from the sensor to the IDE, in order to see the value on the 
screen.

Change the value in the line

if(analogRead(0) > 900){ 

depending on the reading from the sensor when it is dry (here it’s 
900). When the soil is moist, this value will be below 900, so the LED 
and buzzer will remain off. When the value rises above 900, it means 
the soil is drying out, and the buzzer and LED will alert you to water 
your plant.

const int moistureAO = 0;
int AO = 0;       // Pin connected to A0 on the controller
int tmp = 0;      // Value of the analog pin
int buzzPin = 11; // Pin connected to the piezo buzzer
int LED = 13;     // Pin connected to the LED

void setup () {
  Serial.begin(9600); // Send Arduino reading to IDE
  Serial.println("Soil moisture sensor");
  pinMode(moistureAO, INPUT);
  pinMode(buzzPin, OUTPUT); // Set pin as output
  pinMode(LED, OUTPUT);     // Set pin as output
}

Figure 5-5: 

Turn the potentiometer 

to calibrate your plant 

monitor.
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void loop () {
  tmp = analogRead( moistureAO );
  if ( tmp != AO ) {
    AO = tmp;
    Serial.print("A = "); // Show the resistance value of the sensor 
                          // in the IDE
    Serial.println(AO);
  }
  delay (1000);
  if (analogRead(0) > 900) { // If the reading is higher than 900,
    digitalWrite(buzzPin, HIGH); // the buzzer will sound
    digitalWrite(LED, HIGH);     // and the LED will light
    delay(1000); // Wait for 1 second
    digitalWrite(buzzPin, LOW);
    digitalWrite(LED, HIGH);
  }
  else {
    digitalWrite(buzzPin, LOW); // If the reading is below 900, 
                                // the buzzer and LED stay off
    digitalWrite(LED, LOW);
  }
}
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