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Preface
This book is what you get if you put together an Erlang enthusiast who worked on the R1 release of OTP in 1996 and a Distributed Systems specialist who discovered a decade later how Erlang/OTP allows you to focus on the real challenges of systems development while avoiding accidental difficulties.
By describing how OTP behaviors are built and why they are needed, we show you how to use them to architect standalone nodes. In our original proposal to O’Reilly, we stopped here. But when writing the book, we decided to push the bar further, documenting our practices, design decisions, and common pitfalls when architecting a distributed system. These patterns, through a set of design choices and tradeoffs we make, give us the scalability, reliability, and availability for which Erlang/OTP is well known. Contrary to popular belief, this does not happen magically or out of the box, but it sure is much easier to achieve than with any other programming language out there that does not emulate Erlang’s semantics nor run on the BEAM virtual machine.
Francesco: Why This Book?
Someone once told me that writing books is a bit like having children.  Once you’ve written one and are holding your paper copy, excitement takes over, you quickly forget the hard work and sacrifices, and you want to start writing another one. I’ve been intending to write the sequel to Erlang Programming (O’Reilly) since first holding the paper copy in June 2009. I had no children of my own when I started this project, but it ended up taking so long that my second one is now on its way. Whoever said that good things are not worth waiting for?
As with the first book, we based Designing for Scalability with Erlang/OTP on the examples in the Erlang Solution’s OTP training material I developed. I used the examples and started explaining them, converting my lectures and approach to teaching into words. When done with a chapter, I went back and ensured the parts students struggled to understand were clear. Questions that were commonly asked by the best students ended up in sidebars, and long chapters were divided into smaller ones. It all went well until we reached Chapter 11 and 12, because there was no unified way of doing release handling or software upgrade. Rather, there were tools, many of them. Some were integrated in our client’s build and release cycle, others worked out of the box. Some were unusable. The chapters are what we hope will become the ultimate guide to anyone wanting to understand how release handling and software upgrade of systems works behind the scenes. They also explain what you need to know should you have to troubleshoot existing tools or write your own.
But the real trouble started with Chapter 13. Not having examples or training material, I found myself formalizing what was in our heads and documenting the approaches we take when architecting Erlang/OTP systems, trying to align it with the theory of distributed computing. Chapter 13 turned into four chapters that took as long to write as the first ten. For those of you who bought the early access, I hope the wait was worth it. For those who wisely waited for us to finish before buying your copy, enjoy!

Steve: Why This Book?
I first discovered Erlang/OTP in 2006 while researching ways to develop enterprise integration software faster, cheaper, and better. No matter how I looked at it, Erlang/OTP was clearly superior to the C++ and Java languages my colleagues and I had long been using at that time. In 2007 I joined a new company and began using Erlang/OTP for a commercial product, and it turned out to be everything my earlier investigation promised it would be. I taught the language to some colleagues and before long, fewer than a handful of us were developing software that was more capable, more reliable, easier to evolve, and ready for production far faster than similar code being written by a significantly larger team of C++ programmers. To this day I remain wholly convinced of the impressive practical effectiveness of Erlang/OTP.
Over the years I’ve published quite a bit of technical material, and my intended audience for all of it has always been other practitioners like me. This book is no exception. In the first 12 chapters we provide the deep level of detail that practicing developers need in order to fully understand the fundamental design principles of OTP. With those details we mix a number of useful nuggets of practical knowledge—modules, functions, and approaches that will save you significant time and effort in your day-to-day design, development, and debugging efforts. In the final four chapters we shift gears, focusing more on the big picture of the tradeoffs involved in developing, deploying, and operating resilient, scalable distributed applications. Due to the staggering amount of knowledge, approaches, and tradeoffs involved in distributed systems, fault tolerance, and DevOps, writing these chapters concisely proved difficult, but I believe we hit just the right balance of providing plenty of great advice without getting lost in the weeds.
I hope this book helps you improve the quality and utility of the software and systems you develop.

Who Should Read This Book
This book’s intended audience includes Erlang and Elixir developers and architects who have made their way through at least one of the introductory books and are ready to take their knowledge to the next level. It is not a book to start off with, but rather the book that picks up where all others leave you. Chapters 3–12 build on each other and should be read sequentially, as do Chapters 13–16. If you do not need an Erlang primer, feel free to skip Chapter 2.

How To Read This Book
We wrote this book to be compatible with Erlang Release 18.2. Most of the features we describe work with earlier releases; major features that don’t are indicated in the book. Currently unknown incompatibilities with future releases will be detailed on our errata page and fixed in the book’s github repository. You are encouraged to download the examples in the book from our github repository and run them yourself to better understand them.

Acknowledgments
Writing this book has been a long journey. While undertaking it we’ve had a lot of great help from a lot of wonderful people. Our editor Andy Oram has been an endless source of ideas and suggestions, patiently guiding us, giving us feedback while providing ongoing encouragement. Thank you Andy, we couldn’t have done it without you! Simon Thompson, coauthor of Erlang Programming helped with the book proposal and laid the foundation for the second chapter. Many thanks to Robert Virding for contributing some of the examples. We’ve had many readers, reviewers and contributors give us feedback as we drip-fed them the chapters. At the risk of forgetting someone, they are: are Richard Ben Aleya, Roberto Aloi, Jesper Louis Andersen, Bob Balance, Eva Bihari, Martin Bodocky, Natalia Chechina, Jean-François Cloutier, Richard Croucher, Viktória Fördős, Heinz Gies, Joacim Halén, Fred Hebert, Csaba Hoch, Torben Hoffmann, Bob Ippolito, Aman Kohli, Jan Willem Luiten, Jay Nelson, Robby Raschke, Andrzej Śliwa, David Smith, Sam Tavakoli, Premanand Thangamani, Jan Uhlig, John Warwick, David Welton, Ulf Wiger, and Alexander Yong. If we missed you, our sincere apologies! Drop us an email and you will be promptly added. A shout-out goes to the staff at Erlang Solutions for reading the chapters as they were being written and everyone else who submitted to the errata as part of the early release. A special thank you goes to all of you who cheered us on through social media channels, especially other authors. You know who you are! Last, but not least, thanks to the production, marketing, and conference teams at O’Reilly who kept on reminding us that it’s not over until you are holding the paper copy. We really appreciate your support!

Conventions Used in This Book
The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, applications, URLs, email addresses, filenames, directory names, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords. Also used for behaviors, commands, and command-line options.

	Constant width bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.


Tip
This icon signifies a tip or suggestion.

Note
This icon signifies a general note.

Caution
This icon indicates a warning or caution.


Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at: https://github.com/francescoc/scalabilitywitherlangotp
This book is here to help you get your job done. In general, you may
    use the code in this book in your programs and documentation. You do not
    need to contact us for permission unless you’re reproducing a significant
    portion of the code. For example, writing a program that uses several
    chunks of code from this book does not require permission. Selling or
    distributing a CD-ROM of examples from O’Reilly books does require
    permission. Answering a question by citing this book and quoting example
    code does not require permission. Incorporating a significant amount of
    example code from this book into your product’s documentation does require
    permission.
We appreciate, but do not require, attribution. An attribution
    usually includes the title, author, publisher, and ISBN. For example:
    “Designing for Scalability with Erlang/OTP by Francesco Cesarini and Steve Vinoski (O’Reilly). Copyright 2016 Francesco Cesarini and Stephen Vinoski, 978-1-449-32073-7.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online
Note
Safari Books Online is an on-demand digital library that lets you
      easily search over 7,500 technology and creative reference books and
      videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
    our library online. Read books on your cell phone and mobile devices.
    Access new titles before they are available for print, and get exclusive
    access to manuscripts in development and post feedback for the authors.
    Copy and paste code samples, organize your favorites, download chapters,
    bookmark key sections, create notes, print out pages, and benefit from
    tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
    service. To have full digital access to this book and others on similar
    topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
    and any additional information. You can access this page at:
	http://bit.ly/designing-for-scalability-with-erlangotp

To comment or ask technical questions about this book, send email
    to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia


Chapter 1. Introduction
You need to implement a fault-tolerant, scalable, soft real-time
  system with requirements for high availability. It has to be event-driven
  and react to external stimuli, load, and failure. It must always be
  responsive. You have heard, rightfully so, of many success stories telling
  you Erlang is the right tool for the job. And indeed it is—but while Erlang
  is a powerful programming language, it’s not enough on its own to group
  these features all together and build complex reactive systems. To get the
  job done correctly, quickly, and efficiently, you also need middleware,
  reusable libraries, tools, design principles, and a programming model that
  tells you how to architect and distribute your system.
Our goal with this book is to explore multiple facets of availability
  and scalability, as well as related topics such as concurrency,
  distribution, and fault tolerance, in the context of the Erlang programming
  language and its OTP framework. Erlang/OTP was created when the team at the Ericsson Computer Science Laboratory (CS Lab) set
  out to investigate how they could efficiently develop the next generation of
  telecommunications systems in an industry where time to market was becoming
  critical. This was before the Web, before tablets and smartphones, massively
  multiuser online gaming, messaging, and the Internet of Things.
At that time, the only systems that required the levels of scalability
  and fault tolerance we take for granted today were boring phone switches.
  They had to handle massive traffic spikes on New Year’s Eve, fulfill
  regulatory obligations for the availability of calls to emergency services,
  and avoid the painfully expensive contractual penalties forced on
  infrastructure suppliers whose equipment caused outages. In layman’s terms,
  if you picked up the phone and did not hear the dial tone on the other end,
  you could be sure of two things: top-level management would get into serious
  trouble and the outage would make the front page news in the papers. No
  matter what, those switches were not allowed to fail. Even when components
  and infrastructure around them were failing, requests had to be handled.
  Today, regulators and fines have been replaced with impatient users with no
  loyalty who will not hesitate to switch suppliers, and front-page newspaper
  articles have been replaced by mass hysteria on social media. But the core
  problems of availability and scalability remain.
As a result, telecoms switches and modern systems alike have to react
  to failure as much as they have to react to load and internal events. So
  while the folks at the Ericsson Computer Science Lab did not set out to
  invent a programming language, the solution to the problem they were out to
  solve happened to be one. It’s a great example of inventing a language and
  programming model that facilitates the task of solving a specific,
  well-defined problem.
Defining the Problem
As we show throughout this book, Erlang/OTP is unique among programming languages and
    frameworks in the breadth, depth, and consistency of the features it
    provides for scalable, fault-tolerant systems with requirements for high
    availability. Designing, implementing, operating, and maintaining these
    systems is challenging. Teams that succeed in building and running them do
    so by continuously iterating through those four phases, constantly using
    feedback from production metrics and monitoring to help find areas they
    can improve not only in their code, but also in their development and
    operating processes. Successful teams also learn how to improve
    scalability through other means, such as testing, experimentation, and
    benchmarking, and they keep up on research and development relevant to
    their system characteristics. Nontechnical issues such as organizational
    values and culture can also play a significant part in determining whether
    teams can meet or exceed their system requirements.
We used the terms distributed,
    fault-tolerant, scalable,
    soft real-time, and highly
    available to describe the systems we plan on building with OTP.
    But what do these words actually mean?
Scalable refers to how well a computing system can adapt to changes in load or
    available resources. Scalable websites, for example, are able to smoothly
    handle traffic spikes without dropping any client requests, even when
    hardware fails. A scalable chat system might be able to accommodate
    thousands of new users per day without disruption of the service it
    provides to its current users.
Distributed refers to how systems are clustered together and interact with each
    other. Clusters can be architected to scale horizontally by adding
    commodity (or regular) hardware, or on a single machine, where additional
    instances of standalone nodes are deployed to better utilize the available
    cores. Single machines can also be virtualized, so that instances of an
    operating system run on other operating systems or share the bare-metal
    resources. Adding more processing power to a database cluster could enable
    it to scale in terms of the amount of data it can store or how many
    requests per second it can handle. Scaling downward is often equally as
    important; for example, a web application built on cloud services might
    want to deploy extra capacity at peak times and release unused computing
    instances as soon as usage drops.
Systems that are fault tolerant
    continue to operate predictably when things in their environment are
    failing. Fault tolerance has to be designed into a system from the start;
    don’t even consider adding it as an afterthought. What if there is a bug
    in your code or your state gets corrupted? Or what if you experience a
    network outage or hardware failure? If a user sending a message causes a
    process to crash, the user is notified of whether the message was
    delivered or not and can be assured that the notification received is
    correct.
By soft real-time, we mean the predictability of response and latency, handling a
    constant throughput, and guaranteeing a response within an acceptable time
    frame. This throughput has to remain constant regardless of traffic spikes
    and number of concurrent requests. No matter how many simultaneous
    requests are going through the system, throughput must not degrade under
    heavy loads. Response time, also known as latency, has to be relative to
    the number of simultaneous requests, avoiding large variances in requests
    caused by “stop the world” garbage collectors or other sequential
    bottlenecks. If your system throughput is a million messages per second
    and a million simultaneous requests happen to be processed, it should take
    1 second to process and deliver a request to its recipient. But if during
    a spike, two million requests are sent, there should be no degradation in
    the throughput; not some, but all of the requests should be handled within
    2 seconds.
High availability minimizes or
    completely eliminates downtime as a result of bugs, outages,
    upgrades, or other operational activities. What if a process crashes? What
    if the power supply to your data center is cut off? Do you have a
    redundant supply or battery backup that gives you enough time to migrate
    your cluster and cleanly shut down the affected servers? Or network and
    hardware redundancy? Have you dimensioned your system ensuring that, even
    after losing part of your cluster, the remaining hardware has enough CPU
    capacity to handle peak loads? It does not matter if you lose part of your
    infrastructure, if your cloud provider is experiencing an embarrassing
    outage, or if you are doing maintenance work; a user sending a chat
    message wants to be reassured that it reaches its intended recipient. The
    system’s users expect it to just work. This is in contrast to fault tolerance, where the user is told it did
    not work, but the system itself is unaffected and continues to run.
    Erlang’s ability to do software upgrades during runtime helps. But if you
    start thinking of what is involved when dealing with database schema
    changes, or upgrades to non–backward-compatible protocols in potentially
    distributed environments handling requests during the upgrade, simplicity
    fades very quickly. When doing your online banking on weekends or at
    night, you want to be sure you will not be met with an embarrassing
    “closed for routine maintenance” sign posted on the website.
Erlang indeed facilitates solving many of these problems. But at the
    end of the day, it is still just a programming language. For the complex
    systems you are going to implement, you need ready-built applications and
    libraries you can use out of the box. You also need design principles and
    patterns that inform the architecture of your system with an aim to create
    distributed, reliable clusters. You need guidelines on how to design your
    system, together with tools to implement, deploy, monitor, operate, and
    maintain it. In this book we cover libraries and tools that allow you to
    isolate failure on a node level, and create and distribute multiple nodes
    for scalability and availability.
You need to think hard about your requirements and properties,
    making certain you pick the right libraries and design patterns that
    ensure the final system behaves the way you want it to and does what you
    originally intended. In your quest, you will have to make tradeoffs that
    are mutually dependent—tradeoffs on time, resources, and features and
    tradeoffs on availability, scalability, and reliability. No ready-made
    library can help you if you do not know what you want to get out of your
    system. In this book, we guide you through the steps in understanding
    these requirements, and walk you through the steps involved in making
    design choices and the tradeoffs needed to achieve them.

OTP
OTP is a domain-independent set of frameworks, principles, and
    patterns that guide and support the structure, design, implementation, and
    deployment of Erlang systems. Using OTP in your projects will help you
    avoid accidental complexity: things that are difficult because you picked
    inadequate tools. But other problems remain difficult, irrespective of the
    programming tools and middleware you choose.
Ericsson realized this very early on. In 1993, alongside the development of the first Erlang
    product, Ericsson started a project to tackle tools, middleware, and
    design principles. The developers wanted to avoid accidental difficulties
    that had already been solved, and instead focus their energy on the hard
    problems. The result was BOS, the Basic Operating System. In 1995, BOS merged with
    the development of Erlang, bringing everything under one roof to form
    Erlang/OTP as we know it today. You might have heard the
    dream team that supports Erlang being referred to as the OTP team. This
    group was a spinoff of this merge, when Erlang was moved out of a research
    organization and a product group was formed to further develop and
    maintain it.
Spreading knowledge of OTP can promote Erlang adoption in more
    “tried and true” corporate IT environments. Just knowing there is a stable
    and mature platform available for application development helps
    technologists sell Erlang to management, a crucial step in making its
    industrial adoption more widespread. Startups, on the other hand, just get
    on with it, with Erlang/OTP allowing them to achieve speed to market and
    reduce their development and operations costs.
OTP is said to consist of three building blocks (Figure 1-1) that, when used together, provide a solid
    approach to designing and developing systems in the problem domain we’ve
    just described. They are Erlang itself, tools and libraries, and a set of
    design principles. We’ll look at each in turn.
Figure 1-1. OTP components

What’s in a Name?
What does OTP stand for? We’d rather not tell you. If you search
      for the “OTP song” you might be led to believe it means One True Pair. Or let your imagination go wild,
      and guess Oh This is Perfect,
      On The Phone, or Open Transaction Platform. Some might think OTP
      stands for Online Transaction
      Processing, but that’s normally abbreviated as OLTP. More
      politically incorrect suggestions have also been made when hipsters were
      enlisted in an attempt to make Erlang more cool in the Erlang the Movie sequel. Alas, none of these
      are correct. OTP is short for Open Telecom Platform, a name coined by Bjarne Däcker, former head of the Computer Science Lab
      (the birthplace of Erlang) at Ericsson.
Open was a buzzword at Ericsson in the mid-90s. Everything had to
      be open: open systems, open hardware, open platforms. Ericsson’s
      marketing department went as far as to print posters of open landscapes,
      hanging them in the corridors with the text “Open Systems.” No one
      really understood what was meant by Open Systems (or any of the other
      openness), but it was a buzzword, so why disappoint and not jump on an
      opportunity and (for once) be buzzword compliant? As a result, the Open
      in OTP became a no-brainer.
Today, we say that “open” stands for the openness of Erlang toward
      other programming languages, APIs, and protocols—a far cry from the
      openness of the days when it was first released. OTP R1 was in fact
      everything but open. Today, think of openness as being about JInterface,
      ei and erl_interface, HTTP, TCP/IP, UDP/IP, IDL,
      ASN.1, CORBA, SNMP, and other integration-oriented support provided by
      Erlang/OTP.
The word “telecom” was chosen when Erlang was used only internally
      within Ericsson for telecom products, long before open source would
      change the world. It might have made sense in the mid-90s, but no
      rebranding ever took place, so today we say that the telecom in the name
      refers to the distributed, fault-tolerant, scalable, soft real-time
      characteristics with requirements of high availability. These are
      characteristics present in telecom systems, but equally valid in a wide
      range of other verticals. The developers of OTP were solving a problem
      for telecom systems that became relevant to the rest of the software
      industry only when the Web was invented and everything had to be web
      scale. Erlang was web scale even before the Web itself!
The final word in OTP, “platform,” while boring, is the only word
      truly describing the OTP middleware. It was chosen at a time when
      Ericsson’s management was going over the top developing a variety of
      platforms. Everything software related had to be developed on a
      (preferably open) platform.
So indeed, Bjarne picked an acronym that made sense and would keep
      higher management happy, ensuring they kept on funding the project. They
      might not have understood what the CS Lab was working on and the trouble
      it was about to cause, but at least they were pleased and allowed it all
      to happen.
Since Erlang/OTP was released as open source in 1998, many
      discussions on rebranding have taken place, but none were conclusive. In
      the early days, developers outside of the telecoms sector mistakenly
      bypassed OTP, because—using their own words—they were “not developing
      telecom applications.” The community and Ericsson have today settled for
      using OTP, toning down the telecom, but stressing its importance. This
      seems to be a fair compromise. In this book, this sidebar is the only
      place where telecom will be mentioned as being part of OTP.

Erlang
The first building block is Erlang itself, which includes the
      semantics of the language and its underlying virtual machine. Key
      language features such as lightweight processes, lack of shared memory,
      and asynchronous message passing will bring you a step closer to your
      goal. Just as important are links and monitors between processes, and
      dedicated channels for the propagation of the error signals. The
      monitors and error reporting allow you to build, with relative ease,
      complex supervision hierarchies with built-in fault recovery. Because
      message passing and error propagation are asynchronous, the semantics and
      logic of a system that was developed to run in a single Erlang node can be easily distributed without having to
      change any of the code base.
One significant difference between running on a single node and
      running in a distributed environment is the latency with which messages
      and errors are delivered. But in soft real-time systems, you have to
      consider latency regardless of whether the system is distributed or
      under heavy load. So if you have solved one facet of the problem, you
      have solved both.
Erlang lets you run all your code on top of a virtual machine
      highly optimized for concurrency, with a per-process garbage collector,
      yielding predictable and simple system behavior. Other programming
      environments do not have this luxury because they need an extra layer to
      emulate Erlang’s concurrency model and error semantics. To quote
      Joe Armstrong, coinventor of Erlang, “You can emulate the
      logic of Erlang, but if it is not running on the Erlang virtual machine,
      you cannot emulate the semantics.” The only languages that today get
      away with this are built on the BEAM emulator, the prevailing Erlang virtual machine.
      There is a whole ecosystem of them, with the Elixir and Lisp Flavored
      Erlang languages being the ones gaining most traction at the time of
      writing. What we write in this book about Erlang also applies to
      them.

Tools and Libraries
The second building block, which came about before open source became
      the widespread norm for software projects, includes applications that
      ship as part of the standard Erlang/OTP distribution. You can view each
      application as a way of packaging resources in OTP, where applications
      may have dependencies on other applications. The applications include
      tools, libraries, interfaces toward other languages and programming
      environments, databases and database drivers, standard components, and
      protocol stacks. The OTP documentation does a fine job of separating
      them into the following subsets:
	The basic applications include the following:
	The Erlang runtime system (erts)

	The kernel

	The standard libraries (stdlib)

	The system architecture support libraries (sasl)


They provide the tools and basic building blocks needed to
            architect, create, start, and upgrade your system. We cover the
            basic applications in detail throughout this book. Together with
            the compiler, these are the minimal subset of applications
            necessary in any system written in Erlang/OTP to do anything
            meaningful.

	The database applications include mnesia,
            Erlang’s distributed database, and odbc, an interface used to communicate with relational SQL
            databases. Mnesia is a popular choice because it is fast, runs and
            stores its data in the same memory space as your applications, and
            is easy to use, as it is accessed through an Erlang API.

	The operations and maintenance applications include os_mon,
            an application that allows you to monitor the underlying operating
            system; snmp, a Simple Network Management Protocol agent and client;
            and otp_mibs,
            management information bases that allow you to manage Erlang
            systems using SNMP.

	The collection of interface and communication applications
            provide protocol stacks and interfaces to work with other
            programming languages, including an ASN.1 (asn1)
            compiler and runtime support, direct hooks into C (ei and erl_interface) and Java (jinterface) programs, along with an XML parser (xmerl). There are security applications
            for SSL/TLS, SSH, cryptography, and public key infrastructure.
            Graphics packages include a port of wxWidgets (wx),
            together with an easy-to-use interface. The eldap application provides a client interface toward the Lightweight
            Directory Access Protocol (LDAP). And for telecom aficionados, there is a Diameter stack (as defined in RFC 6733), used for
            policy control and authorization, alongside authentication and
            accounting. Dig even deeper and you will find the Megaco stack. Megaco/H.248 is a protocol for
            controlling elements of a physically decomposed multimedia
            gateway, separating the media conversion from the call control. If
            you have ever used a smartphone, you have very likely indirectly
            taken the Erlang diameter and
            megaco applications for a
            spin.

	The collection of tools applications facilitate the
            development, deployment, and management of your Erlang system. We
            cover only the most relevant ones in this book, but outline them
            all here so you are aware of their existence: 
	The debugger is a
                  graphical tool that allows you to step through your code
                  while influencing the state of the functions.

	The observer
                  integrates the application monitor and the process
                  manager, alongside basic tools to monitor your Erlang
                  systems as they are being developed and in
                  production.

	The dialyzer is a
                  static analysis tool that finds type discrepancies,
                  dead code, and other issues.

	The event tracer (et) uses ports to collect trace events in distributed
                  environments, and percept
                  allows you to locate bottlenecks in your system by tracing
                  and visualizing concurrency-related activities.

	Erlang Syntax Tools (syntax_tools) contains modules for handling Erlang syntax trees in a
                  way that is compatible with other language-related tools. It
                  also includes a module merger allowing you to merge Erlang
                  modules, together with a renamer, solving the issue of
                  clashes in a nonhierarchical module space.

	The parsetools
                  application contains the parse generator (yecc) and a
                  lexical analyzer generator for Erlang
                  (leex).

	Reltool is a
                  release management tool that provides a graphical
                  front end together with back-end hooks that can be used by
                  more generic build systems.

	Runtime_tools is a
                  collection of utilities including DTrace and SystemTap probes,
                  and dbg, a user-friendly
                  wrapper around the trace built-in functions (BIFs).

	Finally, the tools
                  application is a collection of profilers, code coverage
                  tools, and module cross-reference analysis tools, as well as
                  the Erlang mode for the emacs editor.



	The test applications provide tools for unit testing (eunit), system testing, and black-box
            testing. The Test Server (packaged in the test_server application) is a framework
            that can be used as the engine of a higher-level test tool
            application. Chances are that you will not be using it, because
            OTP provides one of these higher-level test tools in the
            form of common_test, an application suited for
            black-box testing. Common_test
            supports automated execution of Erlang-based test cases toward
            most target systems irrespective of programming language.

	We need to mention the Object Request Brokers (ORBs) and interface
            definition language (IDL) applications for nostalgic reasons,
            reminding one of the coauthors of his past sins. They include a
            broker called orber, an IDL compiler called ic, and a
            few other CORBA Common Object Services no longer used by
            anyone.


We cover and refer to some of these applications and
      tools in this book. Some of the tools we do not cover are described in
      Erlang Programming (O’Reilly), and
      those that aren’t are covered by the set of reference manual pages and
      the user’s guide that comes as part of the standard Erlang/OTP
      documentation.
These applications are not the full extent of tool support for
      Erlang; they are enhanced by thousands of other applications implemented
      and supported by the community and available as open source. We cover
      some of the prevailing applications in the latter half of the book,
      where we focus on distributed architectures, availability, scalability,
      and monitoring. They include the Riak
      Core and Scalable Distributed
      (SD) Erlang frameworks; load regulation applications such as jobs and safetyvalve; and monitoring and logging applications such as elarm, folsom, exometer, and lager. Once you’ve read this book and before
      starting your project, review the standard and open source Erlang/OTP
      reference manuals and user’s guides, because you never know when they
      will come in handy.

System Design Principles
The third building block of OTP consists of a set of abstract principles,
      design rules, and generic behaviors. The abstract principles describe
      the software architecture of an Erlang system, using processes in the
      form of generic behaviors as basic ingredients. Design rules keep the
      tools you use compatible with the system you are developing. Using this
      approach provides a standard way of solving problems, making code easier
      to understand and maintain, as well as providing a common language and
      vocabulary among the teams.
OTP generic behaviors can be seen as formalizations of concurrent
      design patterns. Behaviors are packaged into library modules containing
      generic code that solves a common problem. They have built-in support
      for debugging, software upgrade, generic error handling, and built-in
      functionality for upgrades.
Behaviors can be worker processes, which
      do all of the hard work, and supervisor
      processes, whose only tasks are to start, stop, and monitor
      workers or other supervisors. Because supervisors can monitor other
      supervisors, the functionality within an application can be chained so
      that it can be more easily developed in a modular fashion. The processes
      monitored by a supervisor are called its children.
OTP provides predefined libraries for workers and supervisors,
      allowing you to focus on the business logic of the system. We structure
      processes into hierarchical supervision trees,
      yielding fault-tolerant structures that isolate failure and facilitate
      recovery. OTP allows you to package a supervision tree into an
      application, as seen in Figure 1-2, where circles
      with double rings are supervisors and the other processes are
      workers.
[image: ]Figure 1-2. OTP application

Generic behaviors that come as part of the OTP middleware include:
      
	Generic servers, providing a client-server design pattern

	Generic finite state machines, allowing you to implement
            FSMs

	Event handlers and managers, allowing you to generically
            deal with event streams

	Supervisors, monitoring other worker and supervision processes

	Applications, allowing you to package resources, including
            supervision trees


We cover them all in detail in this book, as well as explaining
      how to implement your own. We use behaviors to create supervision trees,
      which are packaged into applications. We then group applications
      together to form a release. A release
      describes what runs in a node.

Erlang Nodes
An Erlang node consists of several loosely coupled applications, which
      might be comprised of some of the applications described in “Tools and Libraries” combined with other third-party
      applications and applications you write specifically for the system you
      are trying to implement. These applications could be independent of each
      other or rely on the services and APIs of other applications. Figure 1-3 illustrates a typical release of an Erlang node with
      the virtual machine (VM) dependent on the hardware and operating system,
      and Erlang applications running on top of the VM interfacing with
      non-Erlang components that are OS and hardware dependent.
[image: ]Figure 1-3. An Erlang node

Group together a cluster of Erlang nodes—potentially pairing them
      up with nodes written in other programming languages—and you have a
      distributed system. You can now scale your system by adding nodes until
      you hit certain physical limits. These may be dictated by how you shared
      your data, by hardware or network constraints, or by external
      dependencies that act as bottlenecks.


Distribution, Infrastructure, and Multicore
Fault tolerance—one of Erlang’s fundamental requirements from its telecom roots—has
    distribution as its mainspring. Without distribution, the reliability and
    availability of an application running on just a single host would depend
    heavily on the reliability of the hardware and software comprising that
    host. Any problems with the host’s CPU, memory, persistent storage,
    peripherals, power supply, or backplane could easily take down the entire
    machine and the application along with it. Similarly, problems in the
    host’s operating system or support libraries could bring down the
    application or otherwise render it unavailable. Achieving fault tolerance
    requires multiple computers with some degree of coordination between them,
    and distribution provides the avenue for that coordination.
For decades, the computing industry has explored how programming
    languages can support distribution. Designing general-purpose languages is
    difficult enough; designing them to support distribution significantly
    adds to that difficulty. Because of this, a common approach is to add
    distribution support to nondistributed programming languages through
    optional libraries. This approach has the benefit of allowing distribution
    support to evolve separately from the language itself, but it often
    suffers from an impedance mismatch with the language, feeling to
    developers as if it were “bolted on.” Since most languages use function
    calls as the primary means of transferring control and data from one part
    of an application to another, add-on distribution libraries often model
    exchanges between distributed parts of an application as function calls as
    well. While convenient, this approach is fundamentally broken because the
    semantics of local and remote function calls, especially their failure
    modes, are markedly different.
In Erlang, processes communicate via asynchronous message passing. This works even if a process
    is on a remote node because the Erlang virtual machine supports passing
    messages from one node to another. When one node joins another, it also
    becomes aware of any nodes already known to the other. In this manner, all
    the nodes in a cluster form a mesh, enabling any process to send a message
    to another process on any other node in the cluster. Each node in the
    cluster also automatically tracks liveness of other nodes in order to
    become aware of nonresponsive nodes. The advantages of asynchronous
    message passing in systems running on a node is extended to systems
    running in clusters, as replies can be received alongside errors and
    timeouts.
Erlang’s message passing and clustering primitives can serve as the
    basis for a wide variety of distributed system architectures. For example,
    service-oriented architecture (SOA), especially in its more modern variant, microservices, is a
    natural fit for Erlang given the ease of developing and deploying
    server-like processes. Clients treat such processes as services,
    communicating with them by exchanging messages. As another example,
    consider that Erlang clusters do not require master or leader nodes, which
    means that using them for peer-to-peer systems of replicas works well.
    Clients can send service request messages to any peer node in the cluster,
    and the peer can either handle the request itself or route it to another
    peer. The concept of standalone clusters, known as groups that communicate with each other through
    gateway nodes that can go up and down or lose connectivity exists in a
    framework called SD Erlang. Another
    popular distributed framework, inspired by the Amazon Dynamo paper published in 2007, is
    Riak Core, offering consistent hashing to schedule jobs, recovery from
    partitioned networks and failed nodes through consistent hashing, eventual
    consistency, and virtual nodes dividing state and the data into small,
    manageable entities that can be replicated and moved across nodes.
With distributed systems, you can also achieve scalability. In fact, availability, consistency, and
    scalability go hand in hand, each affecting the others. It starts with the
    concurrency model and the concept of message passing within the node,
    which we extend across the network to use for clustering nodes. Erlang’s
    virtual machine takes advantage of today’s multicore systems by allowing processes to execute with true
    concurrency, running simultaneously on different cores. Because of the
    symmetric multiprocessing (SMP) capabilities of the Erlang virtual machine, Erlang is
    already prepared to help applications scale vertically as the number of
    cores per CPU continues to increase. And because adding new nodes to a
    cluster is easy—all it takes is to have that node contact just one other
    node to join the mesh—horizontal scaling is also well within easy reach.
    This, in turn, allows you to focus on the real challenge when dealing with
    distributed systems: namely, distributing your data and state across hosts
    and networks that are unreliable.

Summing Up
To make design, implementation, operation, and maintainability
    easier and more robust, your programming language and middleware have to
    be compact, their behavior in runtime predictable, and the resulting code
    base maintainable. We keep talking about fault-tolerant, scalable, soft
    real-time systems with requirements for high availability. The problems
    you have to solve do not have to be complicated in order to benefit from
    the advantages Erlang/OTP brings to the table. Advantages will be evident
    if you are developing solutions targeted for embedded hardware platforms
    such as the Parallela board, the BeagleBoard, or the Raspberry Pi. You
    will find Erlang/OTP ideal for the orchestration code in embedded devices,
    for server-side development where concurrency comes in naturally, and all
    the way up to scalable and distributed multicore architectures and
    supercomputers. It eases the development of the harder software problems
    while making simpler programs even easier to implement.

What You’ll Learn in This Book
This book is divided into two sections. The first part, from Chapter 3 to Chapter 10,
    deals with the design and implementation of a single node. You should read
    these chapters sequentially, because their examples and explanations build
    on prior ones. The second half of the book, from Chapter 11 to Chapter 16,
    focuses on tools, techniques, and architectures used for deployment,
    monitoring, and operations, while explaining the theoretical approaches
    needed to tackle issues such as reliability, scalability, and high
    availability. The second half builds in part on the examples covered in
    the first half of the book, but can be read independently of it.
We begin with an overview of Erlang in Chapter 2, intended not to teach you the language but
    rather as a refresher course. If you do not yet know Erlang, we recommend
    that you first consult one or more of the excellent books designed to help
    you learn the language, such as Simon St. Laurent’s Introducing
    Erlang, Erlang Programming
    by Francesco Cesarini and Simon Thompson, or any of the other books we
    mention in Chapter 2. Our overview touches on the
    major elements of the language, such as lists, functions, processes and
    messages, and the Erlang shell, as well as those features that make Erlang
    unique among languages, such as process linking and monitoring, live
    upgrades, and distribution.
Following the Erlang overview, Chapter 3
    dives into process structures. Erlang processes can handle a wide variety
    of tasks, yet regardless of the particular tasks or their problem domains,
    similar code structures and process lifecycles surface, akin to the common
    design patterns that have been observed and documented for popular
    object-oriented languages like Java and C++. OTP captures and formalizes
    these common process-oriented structures and lifecycles into behaviors, which serve as the base elements of
    OTP’s reusable frameworks.
In Chapter 4 we explore in detail our first
    worker process. It is the most popular and frequently used OTP behavior,
    the gen_server. As its name implies, it supports generic client-server structures,
    with the server governing particular computing resources—perhaps just a
    simple Erlang Term Storage (ETS) instance, or a pool of network
    connections to a remote non-Erlang server—and granting clients access to
    them. Clients communicate with generic servers synchronously in a
    call-response fashion, asynchronously via a one-way message called a
    cast, or via regular Erlang messaging
    primitives. Full consideration of these modes of communication requires us
    to scrutinize various aspects of the processes involved, such as what
    happens if the client or server dies in the middle of a message exchange,
    how timeouts apply, and what might happen if a server receives a message
    it does not understand. By addressing these and other common issues, the
    gen_server handles a lot of details independently of the
    problem domain, allowing developers to focus more of their time and energy
    on their applications. The gen_server behavior is so useful
    that it not only appears in most nontrivial Erlang applications but is
    used throughout OTP itself as well.
Prior to examining more OTP behaviors, we follow our discussion of
    gen_server with a look at some of the control and observation
    points the OTP behaviors provide (Chapter 5). These features reflect
    another aspect of Erlang/OTP that sets it apart from other languages and
    frameworks: built-in observability. If you want to know what your
    gen_server process is doing, you can simply enable debug
    tracing for that process, either at compile time or at runtime from an
    Erlang shell. Enabling traces causes it to emit information that indicates
    what messages it is receiving and what actions it is taking to handle
    them. Erlang/OTP also provides functions for peering into running
    processes to see their backtraces, process dictionaries, parent processes,
    linked processes, and other details. There are also OTP functions for
    examining status and internal state specifically for behaviors and other
    system processes. Because of these debug-oriented features, Erlang
    programmers often forego the use of traditional debuggers and instead rely
    on tracing to help them diagnose errant programs, as it is typically both
    faster to set up and more informative.
We then examine another OTP behavior, gen_fsm (Chapter 6), which supports a generic FSM pattern. As you may already know, an FSM is a system that has a finite
    number of states, and incoming messages can advance the system from one
    state to another, with side effects potentially occurring as part of the
    transitions. For example, you might consider your television set-top box
    as being an FSM where the current state represents the selected channel
    and whether any on-screen display is shown. Pressing buttons on your
    remote causes the set-top box to change state, perhaps selecting a
    different channel, or changing its on-screen display to show the channel
    guide or list any on-demand shows that might be available for purchase.
    FSMs are applicable to a wide variety of problem domains because they
    allow developers to more easily reason about and implement the potential
    states and state transitions of their applications. Knowing when and how
    to use gen_fsm can save you from trying to implement your own
    ad hoc state machines, which often quickly devolve into spaghetti code
    that is hard to maintain and extend.
Logging and monitoring are critical parts of any scalability success
    story, since they allow you to glean important information about your
    running systems that can help pinpoint bottlenecks and problematic areas
    that require further investigation. The Erlang/OTP gen_event behavior (Chapter 7) provides support for subsystems that
    emit and manage event streams reflecting changes in system state that can
    impact operational characteristics, such as sustained increases in CPU
    load, queues that appear to grow without bound, or the inability of one
    node in a distributed cluster to reach another. These streams do not have
    to stop with your system events. They could handle your
    application-specific events originating from user interaction, sensor
    networks, or third-party applications. In addition to exploring the
    gen_event behavior, we also take a look at the OTP system
    architecture support libraries (SASL) error-logging event handlers, which provide flexibility for
    managing supervisor reports, crash reports, and progress reports.
Event handlers and error handlers are staples of numerous
    programming languages, and they are incredibly useful in Erlang/OTP as
    well, but do not let their presence here fool you: dealing with errors in
    Erlang/OTP is strikingly different from the approaches to which most
    programmers are accustomed.
After gen_event, the next behavior we study is
    the supervisor (Chapter 8),
    which manages worker processes. In Erlang/OTP, supervisor processes start
    workers and then keep an eye on them while they carry out application
    tasks. Should one or more workers die unexpectedly, the supervisor can
    deal with the problem in one of several ways that we explain later in the
    book. This form of handling errors, known as “let it crash,” differs
    significantly from the defensive programming tactics that most programmers
    employ. “Let it crash” and supervision, together a critical cornerstone of
    Erlang/OTP, are highly effective in practice.
We then look into the final fundamental OTP behavior, the application (Chapter 9),
    which serves as the primary point of integration between the Erlang/OTP
    runtime and your code. OTP applications have configuration files that
    specify their names, versions, modules, the applications upon which they
    depend, and other details. When started by the Erlang/OTP runtime, your
    application instance in turn starts a top-level supervisor that brings up
    the rest of the application. Structuring modules of code into applications
    also lets you perform code upgrades on live systems. A release of an
    Erlang/OTP package typically comprises a number of applications, some of
    which are part of the Erlang/OTP open source distribution and others that
    you provide.
Having examined the standard behaviors, we next turn our attention
    to explaining how to write your own behaviors and special processes (Chapter 10). Special processes are processes that follow certain design rules, allowing them to
    be added to OTP supervision trees. Knowing these design rules can not only
    help you understand implementation details of the standard behaviors, but
    also inform you of their tradeoffs and allow you to better decide when to
    use them and when to write your own instead.
Chapter 11 describes how OTP applications
    in a single node are coupled together and started as a whole. You will
    have to create your own release files, referred to in the Erlang world as
    rel files. The rel file lists the
    versions of the applications and the runtime system that are used by the
    systools module to bundle up the software into a standalone
    release directory that includes the virtual machine. This release
    directory, once configured and packaged, is ready to be deployed and run
    on target hosts. We cover the community-contributed tools rebar3 and relx, the best way to build your code and your
    releases.
The Erlang virtual machine has configurable system limits and
    settings you need to be aware of when deploying your systems. There are
    many, ranging from limits regulating the maximum number of ETS tables or
    processes to included code search paths and modes used for loading
    modules. Modules in Erlang can be loaded at startup, or when they are
    first called. In systems with strict revision control, you will have to
    run them in embedded mode, loading modules at startup and crashing if modules do not
    exist, or in interactive mode, where
    if a module is not available, an attempt to load it is made
    before terminating the process. An external monitoring heart process
    monitors the Erlang virtual machine by sending heartbeats and invoking a
    script that allows you to react when these heartbeats are not
    acknowledged. You implement the script yourself, allowing you to decide
    whether restarting the node is enough or whether—based on a history of
    previous restarts—you want to escalate the crash and terminate the virtual
    instance or reboot the whole machine.
Although Erlang’s dynamic typing allows you to upgrade your module
    at runtime while retaining the process state, it does not coordinate
    dependencies among modules, changes in process state, or
    non–backward-compatible protocols. OTP has the tools to support system
    upgrades on a system level, including not only the applications, but also
    the runtime system. The principles and supporting libraries are presented
    in Chapter 12, from defining your own
    application-upgrade scripts to writing scripts that support release
    upgrades. Approaches and strategies for handling changes to your database
    schema are provided, as are guidelines for upgrades in distributed
    environments and non–backward-compatible protocols. For major upgrades in
    distributed environments where bugs are fixed, protocols improved, and
    database schema changed, runtime upgrades are not for the faint of heart.
    But they are incredibly powerful, allowing automated upgrades and nonstop
    operations. Finding your online banking is unavailable because of
    maintenance should now be a thing of the past. If it isn’t, send a copy of
    this book to your bank’s IT department.
Operating and maintaining any system requires visibility into what
    is going on. Scaling clusters require strategies for how you share your
    data and state. And fault tolerance requires an approach to how you
    replicate and persist it. In doing so, you have to deal with unreliable
    networks, failure, and recovery strategies. While each of these subjects
    merits a book of its own, the final chapters of this book will provide you
    with the theoretical background needed when distributing your systems and
    making them reliable and scalable. We provide this theory by describing
    the steps needed to design a scalable, highly available architecture in
    Erlang/OTP.
Chapter 13 will give you an overview of
    the approaches needed when designing your distributed architecture,
    breaking up your functionality into standalone nodes. In doing so, each
    standalone node type will be assigned a
    specific purpose, such as acting as a client gateway managing TCP/IP
    connection pools or providing a service such as authentication or
    payments. For each node type, we define an approach to specifying
    interfaces and defining the state and data each node needs. We conclude
    the chapter by describing the most common distributed architectural
    patterns and the different network protocols that can be used to connect
    them.
When you have your distributed architecture in place, you need to
    make design choices that will impact fault tolerance, resilience,
    reliability, and availability. You know what data and state you need in
    your node types, but how are you going to distribute it and keep it
    consistent? Are you going for the share-everything, share-something, or
    share-nothing approach, and what are the tradeoffs you need to make when
    choosing strong, causal, or eventual consistency? In Chapter 14, we describe the different approaches
    you can take, introducing the retry strategies you need to be aware of in
    case a request times out as the result of process, node, or network
    failure or the mere fact that the network or your servers are running over
    capacity.
It is easy to say that you are going to add hardware to make your
    system scale horizontally, but alas, the design choices introduced in
    Chapter 14 will have an impact on your
    system’s scalability. In Chapter 15, we describe the impacts resulting from
    your data-sharing strategy, consistency model, and retry strategy. We
    cover capacity planning, including the load, peak, and stress tests you
    need to subject your system to to guarantee it behaves in a predictable
    way under heavy load even when the hardware, software, and infrastructure
    around it are failing.
Once you’ve designed your scalability and availability strategies, you need to tackle monitoring. If
    you want to achieve five-nines uptime, you need to not only know what is
    going on, but also be able to quickly determine what happened, and why. We
    conclude the book with Chapter 16, looking at
    how monitoring is used for preemptive support and postmortem
    debugging.
Monitoring focuses on metrics, alarms, and logs. This chapter
    discusses the importance of system and business metrics. Examples of system metrics
    include the amount of memory your node is using, process message queue
    length, and hard-disk utilization. Combining these with business metrics,
    such as the number of failed and successful login attempts, message
    throughput per second, and session duration, yields full visibility of how
    your business logic is affecting your system resources.
Complementing metrics is alarming, where you detect and report anomalies, allowing the system to take
    action to try to resolve them or to alert an operator when human
    intervention is required. Alarms could include a system running out of
    disk space (resulting in the automatic invocation of scripts for
    compressing or deleting logs) or a large number of failed message
    submissions (requiring human intervention to troubleshoot connectivity
    problems). Preemptive support at its best, detecting and resolving issues
    before they escalate, is a must when dealing with high availability. If
    you do not have a real-time view of what is going on, resolving issues
    before they escalate becomes extremely difficult and cumbersome.
And finally, logging of
    major events in the system helps you troubleshoot your
    system after a crash where you lost its state, so you can retrieve the
    call flow of a particular request among millions of others to handle a
    customer services query, or just provide data records for billing
    purposes.
With your monitoring in place, you will be ready to architect
    systems that are not only scalable, but also resilient and highly
    available. Happy reading! We hope you enjoy the book as much as we enjoyed
    writing it.


Chapter 2. Introducing Erlang
This book assumes a basic knowledge of Erlang, which is best obtained
  through practice and by reading some of the many excellent introductory
  Erlang books out there (including two written for O’Reilly; see “Summing Up”). But for a quick refresher, this chapter gives you
  an overview of important Erlang concepts. We draw attention particularly to
  those aspects of Erlang you’ll need to know when you come to learn
  OTP.
Recursion and Pattern Matching
Recursion is the way Erlang programmers get iterative or repetitive
    behavior in their programs. It is also what keeps processes alive in
    between bursts of activity. Our first example shows how to compute the
    factorial of a positive number:
-module(ex1).
-export([factorial/1]).

factorial(0) ->
    1;
factorial(N) when N > 0 ->
    N * factorial(N-1).
We call the function factorial
    and indicate that it takes a single argument (factorial/1). The trailing /1 is the arity of a
    function, and simply refers to the number of arguments the function
    takes—in our example, 1.
If the argument we pass to the function is the integer
    0, we match the first clause, returning 1. Any
    integer greater than 0 is bound to the variable
    N, returning the product of N and
    factorial(N-1). The iteration will continue until we pattern
    match on the function clause that serves as the base case. The base case
    is the clause where recursing stops. If we call factorial/1 with a negative integer, the call
    fails as no clauses match. But we don’t bother dealing with the problems
    caused by a caller passing a noninteger argument; this is an Erlang
    principle we discuss later.
Erlang definitions are contained in modules, which are stored in files of the same name, but
    with a .erl extension. So, the
    filename of the preceding module would be ex1.erl. Erlang programs can be evaluated in
    the Erlang shell, invoked by the command erl in your Unix
    shell or by double-clicking on the Erlang icon. Make sure that you start
    your Erlang shell in the same directory as your source code. A typical
    session goes like this:
$ erl              % Comments on interactions are given in this format.
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> c(ex1).
{ok,ex1}
2> ex1:factorial(3).
6
3> ex1:factorial(-3).
** exception error: no function clause matching
                    ex1:factorial(-3) (ex1.erl, line 4)
4> factorial(2). 
** exception error: undefined shell command factorial/1
5> q().
ok
$
In shell command 1, we compile the Erlang file. We go on to do a
    fully qualified function call in command line 2, where by prefixing the
    module name to the function we are able to invoke it from outside the
    module itself. The call in shell command 3 fails with a function clause
    error because no clauses match for negative numbers. Before terminating
    the shell with the shell command q(), we call a local
    function, factorial(2), in shell command 4. It fails as it is
    not fully qualified with a module name.
Recursion is not just for computing simple values; we can write
    imperative programs using the same style. The following is a program to
    print every element of a list, separated by tabs. As with the previous example, the
    function is presented in two clauses,
    where each clause has a head and a body, separated by the arrow
    (->). In the head we see the function applied to a
    pattern, and when a function is applied to an argument, the first clause
    whose pattern matches the argument is used. In this example the [] matches an empty list, whereas [X|Xs] matches a nonempty list. The [X|Xs] syntax assigns the first element of the
    list, or head, to X and the remainder of the list, or
    tail, to Xs (if
    you have not yet noted it, Erlang variables such as X,
    Xs, and N all start with uppercase letters):
    
-module(ex2).
-export([print_all/1]).

print_all([]) ->
    io:format("~n");
print_all([X|Xs]) ->
    io:format("~p\t",[X]),
    print_all(Xs).
The effect is to print each item from the
    list, in the order that it appears in the list, with a tab (\t) after each item. Thanks to the base case,
    which runs when the list is empty (when it matches []), a newline (~n) is printed at the end. Unlike in the
    ex1:factorial/1 example shown earlier, the pattern of
    recursion in this example is tail recursive. It is
    used in Erlang programs to give looping behavior. A function is said to be tail recursive if
    the only recursive calls to the function occur as the last expression to
    be executed in the function clause. We can think of this final call as a
    “jump” back to the start of the function, now called with a different
    parameter. Tail-recursive functions allow last-call optimization,
    ensuring stack frames are not added in each iteration. This allows
    functions to execute in constant memory space and removes the risk of
    a stack overflow, which in Erlang manifests itself through
    the virtual machine running out of memory.
If you come from an imperative programming background, writing the
    function slightly differently to use a case expression rather than separate clauses may make tail recursion easier
    to understand:1
all_print(Ys) ->
    case Ys of
        [] ->
            io:format("~n");
        [X|Xs] ->
            io:format("~p\t",[X]),
            all_print(Xs)
    end.
When you test either of these print functions, note the ok printed out after the newline. Every Erlang
    function has to return a value. This value is whatever the last executed
    expression returns. In our case, the last executed expression is io:format("~n"). The newline appears as a side
    effect of the function, while the ok is
    the return value printed by the shell:
1> c(ex2).
{ok,ex2}
2> ex2:print_all([one,two,three]).
one     two     three
ok
3> Val = io:format("~n").

ok
4> Val.
ok
The arguments in our example play the role of mutable variables, whose
    values change between calls. Erlang variables are single assignment, so
    once you’ve bound a value to a variable, you can no longer change that
    variable. In a recursive function variables of the same name, including
    function arguments, are considered fresh in every function iteration. We
    can see the behavior of single assignment of variables here:
    
1> A = 3.
3
2> A = 2+1.
3
3> A = 3+1.
** exception error: no match of right hand side value 4
In shell command 1, we successfully assign an unbound variable. In
    shell command 2, we pattern match an assigned variable to its value.
    Pattern matching fails in shell command 3, because the value on the
    right-hand side differs from the current value of A.
Erlang also allows pattern matching over binary data, where we match
    on a bit level. This is an incredibly powerful and efficient construct for
    decoding frames and dealing with network protocol stacks. How about
    decoding an IPv4 packet in a few lines of code?
-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

handle(Dgram) ->
   DgramSize = byte_size(Dgram),
   <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16, ID:16, ...,
     Flgs:3, FragOff:13, TTL:8, Proto:8,  HdrChkSum:16, ...,
     SrcIP:32, DestIP:32, Body/binary>> = Dgram,
   if
     (HLen >= 5) and (4*HLen =< DgramSize) ->
        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
        <<Opts:OptsLen/binary, Data/binary>> = Body,
        ...
   end.
We first determine the size (number of bytes) of Dgram,
    a variable holding an IPv4 packet as binary data previously received from
    a network socket. Next, we use pattern matching against Dgram
    to extract its fields; the left-hand side of the pattern matching
    assignment defines an Erlang binary, delimited by <<
    and >> and containing a number of fields. The ellipses
    (...) within the binary are not legal Erlang code; they indicate fields
    we’ve left out to keep the example brief. The numbers following most of
    the fields specify the number of bits (or bytes for binaries) each field
    occupies. For example, Flgs:3 defaults to an integer that
    matches 3 bits, the value of which it binds to the variable
    Flgs. At the point of the pattern match we don’t yet know the
    size of the final field, Body, so we specify it as a binary
    of unknown length in bytes that we bind to the variable Data.
    If the pattern match succeeds, it extracts, in just a single statement,
    all the named fields from the Dgram packet. Finally, we check
    the value of the extracted HLen field in an if
    clause, and if it succeeds, we perform a pattern matching assignment
    against Body to extract Opts as a binary of
    OptsLen bytes and Data as a binary consisting of
    all the rest of the data in Body. Note how
    OptsLen is calculated dynamically. If you’ve ever written
    code using an imperative language such as Java or C to extract fields from
    a network packet, you can see how much easier pattern matching makes
    the task.

Functional Influence
Erlang was heavily influenced by other functional programming
    languages. One functional principle is to treat functions as first-class
    citizens; they can be assigned to variables, be part of complex data
    structures, be passed as function arguments, or be returned as the results of
    function calls. We refer to the functional data type as an anonymous function, or fun for short. Erlang also provides constructs
    that allow you to define lists by “generate and test,” using the analogue of
    comprehensions in set theory. Let’s first start with anonymous functions:
    functions that are not named and not defined in an Erlang module.
Fun with Anonymous Functions
Functions that take funs as arguments are called higher-order
      functions. An example of such a function is filter, where a predicate is represented by a
      fun that returns true or false, applied to the elements of a list.
      filter returns a list made up of those elements that have
      the required property; namely, those for which the fun returns true. We often use the term “predicate” to
      refer to a fun that, based on certain conditions defined in the
      function, returns the atoms true or
      false. Here is an example of how
      filter/2 could be implemented:
-module(ex3).
-export([filter/2, is_even/1]).

filter(P,[]) -> [];
filter(P,[X|Xs]) ->
    case P(X) of
        true ->
            [X|filter(P,Xs)];
        _ ->
            filter(P,Xs)
    end.

is_even(X) ->
    X rem 2 == 0.
To use filter, you need to pass it a function and a
      list. One way to pass the function is to use a fun expression, which is a way of defining an
      anonymous function. In shell command 2, shown next, you can see an
      example of an anonymous function that tests for its argument being an
      even number: 
2> ex3:filter(fun(X) -> X rem 2 == 0 end, [1,2,3,4]).
[2,4]
3> ex3:filter(fun ex3:is_even/1,[1,2,3,4]).
[2,4]
A fun does not have to be anonymous, and could
      instead refer to a local or global function definition. In shell command
      3, we described the function by fun
      ex3:is_even/1; i.e., by giving its module, name, and arity.
      Anonymous functions can also be spawned as the body of a process and
      passed in messages between processes; we look at processes in general
      after the next topic.
If you’re using Erlang/OTP 17.0 or newer, there’s another way a
      fun does not have to be anonymous: it can be given a name. This feature
      is especially handy in the shell as it allows for easy definition of
      recursive anonymous functions. For example, we can implement the
      equivalent of ex3:filter/2 in the
      shell like this: 
4> F = fun Filter(_,[]) -> [];
4> Filter(P,[X|Xs]) -> case P(X) of true -> [X|Filter(P,Xs)];
4> false -> Filter(P,Xs) end end.
#Fun<erl_eval.36.90072148>
5> Filter(fun(X) -> X rem 2 == 0 end,[1,2,3,4]).
* 1: variable 'Filter' is unbound
6> F(fun(X) -> X rem 2 == 0 end,[1,2,3,4]).
[2,4]
We name our recursive function Filter by putting that
      name just after the fun keyword. Note that the name has to
      appear in both function clauses: the one on the first line, which
      handles the empty list case, and the one defined on the next two lines,
      which handles the case when the list isn’t empty. You can see two places
      in the body of the second clause where we recursively call
      Filter to handle remaining elements in the list. But even
      though the function has the name Filter, we still assign it
      to shell variable F because the name Filter is
      local to the function itself, and thus can’t be used outside the body to
      invoke it, as our attempt to call it on line 5 shows. On line 6, we
      invoke the named fun via F and it works as expected. And
      because shell variables and function names are in different scopes, we
      could have used the shell variable name Filter rather than
      F, thus naming the function the same way in both scopes.

List Comprehensions: Generate and Test
Many of the examples we have looked at so far deal with the
      manipulation of lists. We’ve used recursive functions on them, as well
      as higher-order functions. Another approach is to use list
      comprehensions, expressions that generate elements and apply
      tests (or filters) to them. The format is like this:
[Expression || Generators, Tests, Generators, Tests]
where each Generator has the
      format
   X <- [2,3,5,7,11]
The effect of this is to successively bind the variable X to the values 2,
      3, 5, 7, and 11. In
      other words, it generates the elements from the
      list: the symbol <- is meant to
      suggest the “element of” symbol for sets, ∈. In this example, X is called a bound
      variable. We’ve shown only one bound variable here, but a
      list comprehension can be built from multiple bound variables and
      generators; we show some examples later in this section.
The Tests are Boolean expressions,
      which are evaluated for each combination of values of the bound
      variables. If all the Tests in a group return
      true, then the Expression is generated from the
      current values of the bound variables. The use of
      Tests in a list comprehension is optional.
      The list comprehension construct as a whole generates a list of results,
      one for each combination of values of the bound variables that passes
      all the tests.
As a first example, we could rewrite the function filter/2 as a list comprehension:
filter(P,Xs) -> [ X || X<-Xs, P(X) ].
In this list comprehension, the first X is the
      expression, X<-Xs is the generator, and
      P(X) is the test. Each value from the generator is tested
      with the test, and the expression comprises only those values for which
      the test returns true. Values for which the test returns
      false are simply dropped. We can use list comprehensions
      directly in our programs, as in the previous filter/2
      example, or in the Erlang shell:
1> [Element || Element <- [1,2,3,4], Element rem 2 == 0].
[2,4]
2> [Element || Element <- [1,2,3,4], ex3:is_even(Element)].
[2,4]
3> [Element || Element <- lists:seq(1,4), Element rem 2 == 0].
[2,4]
4> [io:format("~p~n",[Element]) || Element <- [one, two, three]].
one
two
three
[ok,ok,ok]
Note how, in shell command 4, we are using list comprehensions to
      create side effects. The expression still returns a list [ok,ok,ok] containing the return values of
      executing the io:format/2 expression on the
      elements.
The next set of examples show the effect of multiple generators
      and interleaved generators and tests. In the first, for each value of
      X, the values bound to Y run through 3, 4,
      and 5. In the second example, the values of Y depend on the value chosen for X (showing that the expression evaluates
      X before Y). The remaining two examples apply tests to
      both of the bound variables:
5> [ {X,Y} || X <- [1,2], Y <- [3,4,5] ].
[{1,3},{1,4},{1,5},{2,3},{2,4},{2,5}]
6> [ {X,Y} || X <- [1,2], Y <- [X+3,X+4,X+5] ].
[{1,4},{1,5},{1,6},{2,5},{2,6},{2,7}]
7> [ {X,Y} || X <- [1,2,3], X rem 2 /= 0, Y <- [X+3,X+4,X+5], (X+Y) rem 2 == 0 ].
[{1,5},{3,7}]
8> [ {X,Y} || X  <-[1,2,3], X rem 2 /= 0, Y <- [X+3,X+4,X+5], (X+Y) rem 2 /= 0 ].
[{1,4},{1,6},{3,6},{3,8}]
We’ll leave you with one of our favorite list comprehensions,
      which we contemplated leaving as an exercise.2 Given an 8 × 8 chessboard, how many ways can you place N queens on it so that they do not threaten
      each other? In our example, queens(N)
      returns choices of positions of queens in the bottom N rows of the chessboard, so that each of
      these is a list of column numbers (in the given rows) where the queens
      lie. To find out the number of different possible placements, we just
      count the permutations. Note the -- list difference operator. It
      complements ++, which appends lists together. We also use
      andalso instead of and, as it short-circuits
      the operation if an expression evaluates to false:
-module(queens).
-export([queens/1]).

queens(0) -> [[]];
queens(N) ->
    [[Row | Columns] || Columns <- queens(N-1),
        Row <- [1,2,3,4,5,6,7,8] -- Columns,	% -- returns the list difference
        safe(Row, Columns, 1)].

safe(_Row, [], _N) -> true;
safe(Row, [Column|Columns], N) ->
    (Row /= Column + N) andalso (Row /= Column - N) andalso
        safe(Row, Columns, (N+1)).


Processes and Message Passing
Concurrency is at the heart of the Erlang programming model. Processes are
    lightweight, meaning that creating them involves negligible time and
    memory overhead. Processes do not share memory, and instead communicate
    with each other through message passing. Messages are copied from the
    stack of the sending process to the heap of the receiving one. As
    processes execute concurrently in separate memory spaces, these memory
    spaces can be garbage collected separately, giving Erlang programs very
    predictable soft real-time properties, even under sustained heavy loads.
    Millions of processes can run concurrently within the same VM, each
    handling a standalone task. Processes fail when exceptions occur, but
    because there is no shared memory, failure can often be isolated as the
    processes were working on standalone tasks. This allows other processes
    working on unrelated or unaffected tasks to continue executing and the
    program as a whole to recover on its own.
So, how does it all work? Processes are created via the spawn(Mod, Func,
    Args) BIF or one of its variants. The result of a
    spawn call is a process identifier, normally referred to as a pid. Pids are used for sending messages, and can themselves be part of
    the message, allowing other processes to communicate back. As we see in
    Figure 2-1, the process starts executing in the function
    Func, defined in the module Mod with arguments
    passed to the Args list.
[image: ]Figure 2-1. Spawning a process

The following example of an “echo” process shows these basics. The
    first action of the go/0 function is to
    spawn a process executing loop/0, after
    which it communicates with that process by sending and receiving messages.
    The loop/0 function receives messages
    and, depending on their format, either replies to them (and loops) or
    terminates. To get this looping behavior, the function is tail recursive,
    ensuring it executes in constant memory space.
We know the pid of the process executing loop/0 from
    the spawn, but when we send it a message, how can it communicate back to
    us? We’ll have to send it our pid, which we find using the self() BIF:
-module(echo).
-export([go/0, loop/0]).

go() ->
    Pid = spawn(echo, loop, []),
    Pid ! {self(), hello},
    receive
        {Pid, Msg} ->
        io:format("~w~n",[Msg])
    end,
    Pid ! stop.

loop() ->
    receive
        {From, Msg} ->
            From ! {self(), Msg},
            loop();
        stop ->
            ok
    end.
In this echo example, the go/0 function
    first spawns a new process executing the echo:loop/0
    function, storing the resulting pid in the variable Pid. It
    then sends to the Pid process a message containing the pid of
    the sender, retrieved using the self() BIF, along with the
    atom hello. After that, go/0 waits to receive a
    message in the form of a pair whose first element matches the pid of the
    loop process; when such a message arrives, go/0 prints out
    the second element of the message, exits the receive
    expression, and finishes by sending the message stop to
    Pid.
The echo:loop/0 function first waits for a message. If it receives a pair containing
    a pid From and a message, it sends a message containing its
    own pid along with the received Msg back to the
    From process and then calls itself recursively. If it instead
    receives the atom stop, loop/0 returns
    ok. When loop/0 stops, the process that
    go/0 originally spawned to run loop/0 terminates
    as well, as there is no more code to execute.
Note how, when we run this program, the go/0 call returns stop. Every function returns a value, that of
    the last expression it evaluated. Here, the last expression is Pid !
    go, which returns the message we just sent to
    Pid:
1> c(echo).
{ok,echo}
2> echo:go().
hello
stop
Bound Variables in Patterns
Pattern matching is different in Erlang than in other languages with pattern
      matching because variables occurring in patterns can be already bound. In the go function in the echo example, the variable Pid is already bound to the pid of the process
      just spawned, so the receive expression will accept only
      those messages in which the first component is that particular pid; in
      the scenario here, it will be a message from that pid, in fact.
If a message is received with a different first component, then
      the pattern match in the receive will
      not be successful, and the receive
      will block until a message is received from process Pid.

Erlang message passing is asynchronous: the expression that
    sends a message to a process returns immediately and always appears to be
    successful, even when the receiving process doesn’t exist. If the process
    exists, the messages are placed in the mailbox of
    the receiving process in the same order in which they are received. They
    are processed using the receive
    expression, which pattern matches on the messages in sequential order.
    Message reception is selective, meaning that messages are not necessarily
    processed in the order in which they arrive, but rather the order in which
    they are matched. Each receive clause selects the message it
    wants to read from the mailbox using pattern matching.
Suppose that the mailbox for the loop process has received the
    messages foo, stop, and {Pid,
    hello} in that order. The receive expression will try to match the first
    message (here, foo) against each of the
    patterns in turn; this fails, leaving the message in the mailbox. It then
    tries to do the same with the second message, stop; this doesn’t match the first pattern but
    does match the second, with the result that the process terminates, as
    there is no more code to execute.
These semantics mean that we can process
    messages in whatever order we choose, irrespective of when they
    arrive. Code like this: 
receive
    message1 -> ...
end
receive
    message2 -> ...
end
will process the atoms message1 and then message2. Without this feature, we’d have to
    anticipate all the different orders in which messages can arrive, and
    handle each of those, greatly increasing the complexity of our programs.
    With selective receive, all we do is leave them in the mailbox for later
    retrieval.
Multicore, Schedulers, and Reductions
The biggest challenges in scaling systems on multicore architectures are sequential code and the
      serialization of operations. These could be in your program, in
      libraries you use, in the underlying virtual machine, or all of the
      above. Memory lock contention is often the major bottleneck, caused when
      threads try to acquire a lock allowing them to access and manipulate
      shared memory. Erlang processes do not share memory, removing one of the
      major obstacles and making it the ideal language to fully utilize
      many-core computers. Program in Erlang as you would have done on a
      single-core architecture, ensuring you have a process for each truly
      concurrent activity, and your system will scale as you add more cores.
      You will be limited only by your sequential code and bottlenecks in the
      BEAM virtual machine—bottlenecks that release after release, are
      continually optimized or removed.
For every core, the BEAM virtual machine starts a thread that runs a scheduler. Each scheduler is responsible for a group of
      processes, and at any one time, a process from each scheduler executes
      in parallel on each core. Processes that are not suspended and are ready
      to execute are placed in the scheduler’s run queue. The virtual machine
      also starts a separate thread pool used for drivers and file I/O that
      can operate without blocking any scheduler threads. At startup, you can
      limit the number of threads and schedulers, and specify whether you want
      schedulers to be bound to a core or be allowed to migrate from one core
      to another. Schedulers are not bound to cores by default because such
      binding can backfire, slowing down the system on certain architectures.
      However, it can result in speedups in other situations. Benchmark your
      system with both approaches. We cover how to set startup flags and
      parameters in “Arguments and Flags” and benchmarking
      in Chapter 15.
If the system is running under full load, the schedulers try to
      guarantee soft real-time properties by retaining an even balance of CPU
      time across all processes. What the BEAM virtual machine tries to do is
      avoid cases where processes in a run queue with 10 processes get twice
      as much CPU time as those in a run queue with 20 processes. This is
      achieved by allowing processes to migrate between run queues, evening
      out their sizes across the schedulers. But if the system isn’t fully
      loaded, the virtual machine migrates processes so they occupy fewer
      cores, and then pauses the unused scheduler threads. This allows cores
      to be shut down and put in energy saving mode, and later awakened when
      the load of the virtual machine increases.
Schedulers decide when to preempt processes based on an
      approximation of the workload they have executed. This approximation is
      called the reduction count. When a process
      is preempted, it stops running and is placed at the end of the run
      queue, allowing the process first in line to execute. Function calls and
      BIFs are assigned a value of one or more reductions, with
      the theory that expensive calls have a higher reduction count than
      cheaper ones. Each process is allowed to execute a predefined number of
      reductions before being preempted, allowing the process at the head of
      the run queue to execute. The number of reductions each process is
      allowed to execute before being suspended and the reduction count of
      each instruction are purposely not documented to discourage premature
      optimization, because the reduction count and the total number of
      reductions the scheduler allows a process to execute may change from one
      release and hardware architecture to another.
Scheduler balance, reductions, and the per-process garbage collector give the BEAM virtual machine
      predictable, soft real-time properties, even during times of peak and
      extended load, by maximizing fairness and ensuring there is no process
      starvation. Other programming languages and frameworks not running on
      BEAM don’t provide preemptive multitasking. Application activities are
      not allowed to block, preventing the event loop from running frequently
      and dispatching events to their intended targets. If an application
      blocks, it blocks every part of the application, whereas in Erlang, the
      only way to block a scheduler (and all the processes in its run queue)
      is to drop into C code and either ignorantly or purposefully implement a
      misbehaving native implemented function (NIF) or driver. Lack of
      preemptive multitasking will therefore affect the soft real-time
      properties of a system, as it will either rely on the process to
      cooperatively preempt itself, or base preemption on specific operations
      instead of the number and cost of the operations themselves. Having said
      this, don’t even get us started with “stop the world” garbage collectors
      in shared memory architectures, which force all threads to synchronize
      in order to determine which objects are still being used and which ones
      can be freed. No one named, no one shamed.


Fail Safe!
In “Recursion and Pattern Matching” we saw the factorial example, and how passing a negative number to the function causes it to raise an
    exception. This also happens when factorial is applied to
    something that isn’t a number, in this case the atom zero: 
1> ex1:factorial(zero).
** exception error: bad argument in an arithmetic expression
in function  ex1:factorial/1
The alternative to this would be
    to program defensively, and explicitly identify the
    case of negative numbers, as well as arguments of any other type, by means
    of a catch-all clause:
factorial(0) ->
    1;
factorial(N) when N > 0, is_integer(N) ->
    N * factorial(N-1);
factorial(_) ->
    {error,bad_argument}.
The effect of this is would be to
    require every caller of the function to deal not only with proper results
    (like 120 = factorial(5)) but also
    improper ones of the format {error,bad_argument}. If we do this, clients of
    any function need to understand its failure modes and provide ways of
    dealing with them, mixing correct computation and error-handling code. How
    do you handle errors or corrupt data when you do not know what these
    errors are or how the data got corrupted?
The Erlang design philosophy says “let it fail!” so that a function,
    process, or other running entity deals only with the correct case and
    leaves it to other parts of the system (specifically designed to do this)
    to deal with failure. One way of dealing with failure in sequential code
    is to use the mechanism for exception handling given by the try-catch construct.
    Using the definition:
factorial(0) ->
    1;
factorial(N) when N > 0, is_integer(N) ->
    N * factorial(N-1).
we can see the construct in action:
2> ex1:factorial(zero).
** exception error: no function clause matching ex1:factorial(zero)
3> try ex1:factorial(zero) catch Type:Error -> {Type, Error} end.
{error,function_clause}
4> try ex1:factorial(-2) catch Type:Error -> {Type, Error} end.
{error,function_clause}
5> try ex1:factorial(-2) catch error:Error2 -> {error, Error2} end.
{error,function_clause}
6> try ex1:factorial(-2) catch error:Error3 -> {error, Error3};
6>                             exit:Reason  -> {exit, Reason} end.
{error,function_clause}
The try-catch construct gives the
    user the opportunity to match on the different kinds of exceptions in the
    clauses, handling them individually. In this example, we match on
    an error exception caused
    by a pattern match failure. There are also exit and throw exceptions, the first being the result of
    a process calling the exit BIF and the latter the result of a
    user-generated exception using the throw expression.

Links and Monitors for Supervision
A typical Erlang system has lots of (possibly dependent) processes running at the
    same time. How do these dependencies work with the “let it fail”
    philosophy? Suppose process A interacts
    with processes B and C (Figure 2-2); these
    processes are dependent on each other, so if A fails, they
    can no longer function properly. A’s
    failure needs to be detected, after which B and C need
    to be terminated before restarting them all. In this section we describe
    the mechanisms that support this approach, namely process linking, exit
    signals, and monitoring.
    These simple constructs enable us to build libraries with complex
    supervision strategies, allowing us to manage processes that may be
    subjected to failure at any time.
[image: ]Figure 2-2. Dependent processes

Links
Calling link(Pid) in a
      process A creates a
      bidirectional link between processes A and
      Pid. Calling spawn_link/3 has the same effect as calling spawn/3 followed by link/1, except that it is executed atomically,
      eliminating the race condition where a process terminates between the
      spawn and the link. A link from the calling process to Pid is removed by calling unlink(Pid).
The key insight here is that the mechanism needs to be orthogonal
      to Erlang message passing, but effectuated with it. If two Erlang
      processes are linked, when either of them terminates, an exit signal is sent to the
      other, which will then itself terminate. The terminated process will in
      turn send the exit signal to all the processes in its linked set,
      propagating it through the system. This can be seen in Figure 2-3, where PidC terminates from
      whichever exit signal from PidA or PidB gets
      there first. The power of the mechanism comes from the ways that this
      default behavior can be modified, giving the designer fine control over
      the termination of the processes within a system. We now look at this in
      more detail.
[image: ]Figure 2-3. Exit signals propagating among linked processes

One pattern for using links is as follows: a server that controls
      access to resources links to a client while that client has access to a
      particular resource. If the client terminates, the server will be
      informed so it can reallocate the resource (or just terminate). If, on
      the other hand, the client hands back the resource, the server may
      unlink from the client.
Remember, though, that links are bidirectional, so if the server
      dies for some reason while client and server are linked, this will by
      default kill the client too, which you may not want to happen. If that’s
      the case, use a monitor instead of a link, as we explain in “Monitors”.
Exit signals can be trapped by calling
      the process_flag(trap_exit,
      true) function. This converts exit signals into messages of
      the form {'EXIT', Pid, Reason}, where Pid is the process identifier of the process
      that has died and Reason is the
      reason it has terminated. These messages are stored in the recipient’s
      mailbox and processed in the same way as all other messages. When a
      process is trapping exits, the exit signal is not propagated to any of the processes in its
      link set.
Why does a process exit? This can happen for two reasons. If a
      process has no more code to execute, it terminates normally. The Reason propagated
      will be the atom normal. Abnormal termination is initiated in case of a runtime error, receiving an exit signal when not
      trapping exits, or by calling the exit BIFs. Called with a
      single argument, exit(Reason) will terminate the
      calling process with reason Reason,
      which will be propagated in the exit signal to any other processes to
      which the exiting one is linked. When the exit BIF is
      called with two arguments, exit(Pid, Reason), it sends an
      exit signal with reason Reason to the
      process Pid. This will have the same
      effect as if the calling process had terminated with reason Reason.
As we said at the start of this section, users can control the way
      in which termination is propagated through a system. The options are
      summarized in Table 2-1 and vary depending on
      if the trap_exit process flag is set.
Table 2-1. Propagation semantics	Reason	Trapping exits	Not trapping exits
	normal	Receives {'EXIT', Pid, normal}	Nothing happens
	kill	Terminates with reason killed	Terminates with reason killed
	Other	Receives {'EXIT', Pid, Other}	Terminates with reason Other

As the second column of the table shows, a process that is
      trapping exits will receive an 'EXIT'
      message when a linked process terminates, whether the termination is
      normal or abnormal. The kill reason
      allows one process to force another to exit along with it. This means
      that there’s a mechanism for killing any process, even those that trap
      exits; note that its reason for termination is killed and not kill, ensuring that the unconditional
      termination does not itself propagate. If a process is not trapping
      exits, nothing happens if a process in its link set terminates normally.
      Abnormal termination, however, results in the process terminating.

Monitors
Monitors provide an alternative, unidirectional mechanism for processes to
      observe the termination of other processes. Monitors differ from links
      in the following ways:
	A monitor is set up when process A calls erlang:monitor(process, B), where the atom
          process indicates we’re
          monitoring a process and B is
          specified by a pid or registered name. This causes A to monitor B.

	Monitors have an identity given by an Erlang
          reference, which is a unique value returned
          by the call to erlang:monitor/2.
          Multiple monitors of B by
          A can be set up, each identified
          by a different reference.

	A monitor is unidirectional
          rather than bidirectional: if process A monitors process B, this does not mean that B monitors A.

	When a monitored process terminates, a message of the form
          {'DOWN', Reference, process, Pid, Reason} is sent to
          the monitoring process. This contains not only the Pid and Reason for the termination, but also the
          Reference of the monitor and the
          atom process, which tells us we
          were monitoring a process.

	A monitor is removed by the call erlang:demonitor(Reference). Passing a
          second argument to the function in the format
          erlang:demonitor(Reference, [flush]) ensures that any
          {'DOWN', Reference, process, Pid, Reason} messages from
          the Reference will be flushed
          from the mailbox of the monitoring process.

	Attempting to monitor a nonexistent process results in a
          {'DOWN', Reference, process, Pid, Reason} message with
          reason noproc; this contrasts
          with an attempt to link to a nonexistent process, which terminates
          the linking process.

	If a monitored process terminates, processes that are
          monitoring it and not trapping exits will not terminate.
Note
References in Erlang are
            used to guarantee the identity of messages, monitors, and other
            data types or requests. A reference can be generated indirectly by
            setting up a monitor, but also directly by calling the BIF
            make_ref/0. References
            are, for all intents and purposes, unique across a
            multinode Erlang system. References can be compared for equality
            and used within patterns, so that it’s possible to ensure that a
            message comes from a particular process, or is a reply to a
            particular message within a communication protocol.



Taking monitor/2 and exit/2 for a trial
      run, we get the following self-explanatory results:
1> Pid = spawn(echo, loop, []).
<0.34.0>
2> erlang:monitor(process, Pid).
#Ref<0.0.0.34>
3> exit(Pid, kill).
true
4> flush().
Shell got {'DOWN',#Ref<0.0.0.34>,process,<0.34.0>,killed}
ok


Records
Erlang tuples provide a way of grouping related items, and unlike lists
    they provide convenient access to elements at arbitrary indexes via the
    element/2 BIF. In practice, though, they are most useful and
    manageable for groups of no more than about five or six items. Tuples
    larger than that can cause maintenance headaches by forcing you to keep
    track throughout your code of what field is in which position in the
    tuple, and using plain numbers to address fields through element/2 is error-prone. Pattern
    matching large tuples can be tedious due to having to ensure the correct
    number and placement of variables within the tuple. Worst of all, though,
    is that if you have to add or remove a field in a tuple, you have to find
    all the places your code uses it and make sure to change each occurrence
    to the correct new size.
Records address the shortcomings of tuples by providing a way to
    access fields of a tuple-like collection by name. Here’s an example of a
    record used with the Erlang/OTP inet module, which provides
    access to TCP/IP information:
-record(hostent,
        {
         h_name            % offical name of host
         h_aliases = []    % alias list
         h_addrtype        % host address type
         h_length          % length of address
         h_addr_list = []  % list of addresses from name server
        }).
The -record directive is used to define a record, with the record name specified
    as the directive’s first argument. The second argument, which resembles a
    tuple of atoms, defines the fields of the record. Fields can have specific
    default values, as shown here for the h_aliases and
    h_addr_list fields, both of which have the empty list as
    their defaults. Fields without specified defaults have the atom
    undefined as their default values.
Records can be used in assignments, in pattern matching, and as
    function arguments, similarly to tuples. But unlike tuples, record fields
    are accessed by name, and any fields not pertinent to a particular part of
    the code can be left out. For example, the type/1 function in
    this module requires access only to the h_addrtype field of a
    hostent record:
-module(addr).
-export([type/1]).

-include_lib("kernel/include/inet.hrl").

type(Addr) ->
    {ok, HostEnt} = inet:gethostbyaddr(Addr),
    HostEnt#hostent.h_addrtype.
First, note that to be able to use a record, we must have access to
    its definition. The -include_lib(...) directive here includes
    the inet.hrl file from the kernel application, where the
    hostent record is defined. In the final line of this example,
    we access the HostEnt variable as a hostent
    record by supplying the record name after the # symbol. After
    the record name, we access the required record field by name,
    h_addrtype. This reads the value stored in that field and
    returns it as the return value of the type/1
    function:
1> c(addr).
{ok,addr}
2> addr:type("127.0.0.1").
inet
3> addr:type("::1").
inet6
Another way to implement the type() function would be
    to pattern match the h_addrtype field against the return
    value of the inet:gethostbyaddr/1
    function:
type(Addr) ->
    {ok, #hostent{h_addrtype=AddrType}} = inet:gethostbyaddr(Addr),
    AddrType.
Here, the AddrType variable within the pattern match
    captures the value of the h_addrtype field as part of the
    match. This form of pattern matching is quite common with records, and is
    especially useful within function heads to extract fields of interest into
    local variables. As you can see, this approach is also cleaner than the
    field access syntax used in the previous example.
To create a record instance, you set the fields as
    required:
hostent(Host, inet) ->
    #hostent{h_name=Host, h_addrtype=inet, h_length=4,
             h_addr_list=inet:getaddrs(Host, inet)}.
In this example, the hostent/2 function returns a
    hostent record instance with specific fields set. Any fields
    not explicitly set in the code retain their default values specified in
    the record definition.
Records are just syntactic sugar; under the covers, they are
    implemented as tuples. We can see this by calling the
    inet:gethostbyname/1 function in the Erlang shell:
1> inet:gethostbyname("oreilly.com").
{ok,{hostent,"oreilly.com",[],inet,4,
             [{208,201,239,101},{208,201,239,100}]}}
2> rr(inet).
[connect_opts,hostent,listen_opts,...]
3> inet:gethostbyname("oreilly.com").
{ok,#hostent{h_name = "oreilly.com",h_aliases = [],
             h_addrtype = inet,h_length = 4,
             h_addr_list = [{208,201,239,101},{208,201,239,100}]}}
In shell command 1, we call gethostbyname/1 to retrieve
    address information for the host oreilly.com. The second element of the result
    tuple is a hostent record, but the shell displays it as a
    plain tuple where the first element is the record name and the rest of the
    elements are the fields of the record in declaration order. Note that the
    names of the record fields are not part of the actual record instance. To
    have the record instance be displayed as a record instead of a tuple, we
    need to inform the shell of the record definition. We do that in shell
    command 2 using the rr shell command, which reads record
    definitions from its argument and returns a list of the definitions read
    (we abbreviated the returned list in this example by replacing most of it
    with an ellipsis). The argument passed to the rr command can
    either be a module name, the name of a source or include file, or a
    wildcarded name as specified for the filelib:wildcard/1,2 functions. In
    shell command 3, we again fetch address information for oreilly.com, but this time the shell prints the
    returned hostent value in record format, with field names
    included.
Correct Record Versions
You need to be extremely careful in dealing with all versions of records
      once you’ve changed their definition. You might forget to compile a
      module using the record (or compile it with the wrong version), load the
      wrong specification in the shell, or send it to a process running code
      that has not been upgraded. Doing so will in the best case throw an
      exception when trying to access or manipulate a field that does not
      exist, and in the worse case silently assign or return the value of a
      different field.


Maps
A map in Erlang is a key-value collection type that resembles the dictionary and hash types
    found in other programming languages. Maps differ from records in several
    ways: map is a built-in type, the number of its fields or key-value pairs
    is not fixed at compile time, and its keys can be any Erlang term rather
    than just atoms. While some have touted maps as a replacement for records,
    in practice they each fulfill different needs and both are useful. Records
    are fast, so use them when you have a fixed number of fields known at
    compile time, while maps should be used when you have a need to add fields
    at runtime.
Creating and manipulating a map is straightforward, as shown
    here:
1> EmptyMap = #{}.
#{}
2> erlang:map_size(EmptyMap).
0
3> RelDates = #{ "R15B03-1" => {2012, 11, 28}, "R16B03" => {2013, 12, 11} }.
#{"R15B03-1" => {2012,11,28},"R16B03" => {2013,12,11}}
4> RelDates2 = RelDates#{ "17.0" => {2014, 4, 2}}.
#{"17.0" => {2014,4,2},
  "R15B03-1" => {2012,11,28},
  "R16B03" => {2013,12,11}}
5> RelDates3 = RelDates2#{"17.0" := {2014, 4, 9}}.
#{"17.0" => {2014,4,9},
  "R15B03-1" => {2012,11,28},
  "R16B03" => {2013,12,11}}
6> #{ "R15B03-1" := Date } = RelDates3.
#{"17.0" => {2014,4,2},
  "R15B03-1" => {2012,11,28},
  "R16B03" => {2013,12,11}}
7> Date.
{2012,11,28}
In shell command 1, we bind the empty map #{} to the
    variable EmptyMap, and then we check its size in shell
    command 2 using the erlang:map_size/1 function. As expected, its size is 0 since it contains no
    key-value pairs. In shell command 3, we create a map with multiple
    entries, where each key is the name of an Erlang/OTP release paired with a
    value denoting its release date, using the => map
    association operator. Shell command 4 takes the existing
    RelDates map and adds a new key-value pair to create a new map,
    RelDates2. Unfortunately, the date we set in shell command 4
    is off by one week and we need to change it; shell command 5 shows how we
    use the := map set-value operator to update the release date.
    Unlike the => operator, the := operator
    ensures that the key being updated already exists in the map, thereby
    preventing errors where the developer misspells the key and accidentally
    creates a new key-value pair instead of updating an existing key. Finally,
    shell command 6 shows how using a map in a pattern match allows us to
    capture the release date associated with the key "R15B03-1"
    into the variable Date, the value of which is accessed in
    shell command 7. Note that using the := set-value operator is required for
    map pattern matching.

Macros
Erlang has a macro facility, implemented by the Erlang preprocessor
    (epp), which is invoked prior to compilation of source code into BEAM
    code. Macros can be constants, as in:
-define(ANSWER,42).
-define(DOUBLE,2*).
or take parameters, as in:
-define(TWICE(F,X),F(F(X))).
As you can see from the definition of DOUBLE, it is conventional (but only
    conventional) to use uppercase names. The definition can be any legal
    sequence of Erlang tokens; it doesn’t have to be a meaningful expression
    in its own right.
Macros are invoked by preceding them with a ? character, as
    in:
test() -> ?TWICE(?DOUBLE,?ANSWER)
It is possible to see the effect of macro definitions by compiling
    with the 'P' flag in the shell:
c(<filename>,['P']),
which creates a filename.P file in which the previous definition of
    test/0 becomes:
test() -> 2 * (2 * 42).
It is also possible for a macro call to record the text of its
    parameters. For example, if we define:

 -define(Assign(Var,Exp), Var=Exp,
         io:format("~s = ~s -> ~p~n",[??Var,??Exp,Var]) ).
then ?Assign(Var,Exp) has the
    effect of performing the assignment Var =
    Exp, but also, as a side effect, prints out a diagnostic
    message. For example:
test_assign() -> ?Assign(X, lists:sum([1,2,3])).
behaves like this:
1> macros:test_assign().
X = lists : sum ( [ 1 , 2 , 3 ] ) -> 6
ok
 Using flags, you can define conditional macros, such
    as:
-ifdef(debug).
  -define(Assign(Var,Exp), Var=Exp,
          io:format("~s = ~s -> ~p~n",[??Var,??Exp,Var]) ).
-else.
  -define(Assign(Var,Exp), Var=Exp).
-endif.
Now, if you use the compiler flags {d,debug} to set the debug flag, ?Assign(Var,Exp) will perform the assignment and
    print out the diagnostic code. Conversely, leaving the debug flag unset by default or clearing it
    through {u,debug} will cause the
    program to do the assignment without executing the io expression.

Upgrading Modules
One of the advantages of dynamic typing is the ability to upgrade your
    code during runtime, without the need to take down the system. One second,
    you are running a buggy version of a module, but you can load a fix
    without terminating the process and it starts running the fixed version,
    retaining its state and variables (Figure 2-4). This
    works not only for bugs, but also for upgrades and new features. This is a
    crucial property for a system that needs to guarantee “five-nines
    availability”—i.e., 99.999% uptime including upgrades and
    maintenance.
[image: ]Figure 2-4. A software upgrade

At any one time, two versions of a module may exist in the virtual
    machine: the old and current versions. Frame 1 in Figure 2-4 shows PidA executing in the current version of module
    B. In Frame 2, new code for the module
    B is loaded, either by compiling the
    module in the shell or by explicitly loading it. After you load the
    module, PidA is still linked to the same
    version of B, which has now become the
    old version. But the next time PidA makes
    a fully qualified call to a function in module B, a check will be made to ensure that PidA is running the latest version of the code. (If
    you recall from earlier in this chapter, a fully qualified call is one
    where the module name is prefixed to the function name.) If the process is
    not running the latest version, the pointer to the code will be switched
    to the new current version, as shown in Frame 3. This applies to all functions in B, not just the function whose call triggered
    the switch. While this is the essence of a software upgrade, let’s go
    through the fine print to make sure you understand all the details:
	Suppose that the code for the loop of a running process is
          itself upgraded. The effect depends on the form of the function
          call. If the function call is fully
          qualified—i.e., of the form B:loop()—the next call will use the
          upgraded code; otherwise (when the call is simply loop()), the process will continue to run
          the old code.

	The system holds only two versions of the code, so suppose
          that process p is still executing
          v(1) of module B, and another two new versions v(2) and v(3) are loaded: since only two versions
          may be present, the earliest version v(1) will be purged, and any process (such as p) looping in that version of the module
          will be unconditionally terminated.

	New code can be loaded in a number of ways. Compiling the
          module will cause code to be reloaded; this can be initiated in the
          shell by c(Module) or by calling
          the Erlang function compile:file(Module). Code can also be loaded explicitly in the shell by
          l(Module) or by a call to code:load_file(Module). In general, code
          is loaded by calling a function in a module that is not already
          loaded. This causes the compiled code, a .beam file, to be loaded, and for that to
          happen the code has to have been already compiled, perhaps using the
          erlc command-line tool. Note that recompiling a
          module with erlc does not cause it to be
          reloaded.

	While old code is purged when a new version is loaded, it is
          possible to call code:purge(Module) explicitly to purge an old version (without loading a new
          version). This has the effect of terminating all processes running
          the old code before removing the code. The call returns true if any processes were indeed
          terminated, and false if none
          were. Calling code:soft_purge(Module) will remove the code only if no processes were running it:
          the result is true in
          that case and false
          otherwise.



ETS: Erlang Term Storage
While lists are an important data type, they need to be linearly traversed
    and, as a result, will not scale. If you need a key-value store where the
    lookup time is constant, or the ability to traverse your keys in
    lexicographical order, Erlang Term Storage (ETS) tables come in handy. An
    ETS table is a collection of Erlang tuples, keyed on a particular position
    in the tuple.
ETS tables come in four different kinds:
	Set
	Each key-value tuple can occur only once.

	Bag
	Each key-value tuple combination can only occur once, but a
          key can appear multiple times.

	Duplicate bag
	Tuples can be duplicated.

	Ordered set
	These have the same restriction as sets, but the tuples can be
          visited in order by key.


Access time to a particular element is in constant time, except for
    ordered sets, where access time is proportional to the logarithm of the
    size of the table (O(log n) time).
Depending on the options passed in at table creation (ets:new),
    tables have one of the following traits: 
	public
	Accessible to all processes.

	private
	Accessible to the owning process only.

	protected
	All processes can read the table, but only the owner can
            write to it.


Tables can also have their key position specified at
    creation time ({keypos,N}). This is
    mainly useful when storing records, as it allows the developer to specify
    a particular field of the record as the key. The default key position is
    1.
Normally, programs access tables through the table ID returned by
    the call to new, but tables can also be
    named when created, which makes them accessible by
    name.
A table is linked to the process that creates it, and is deleted
    when that process terminates. ETS tables are in-memory only, but
    long-lived tables are provided by DETS tables, which are stored on disk (hence the
    “D”).
Elementary table operations are shown in the following
    interaction:
1> TabId = ets:new(tab,[named_table]).
tab
2> ets:insert(tab,{haskell, lazy}).
true
3> ets:lookup(tab,haskell).
[{haskell,lazy}]
4> ets:insert(tab,{haskell, ghci}).
true
5> ets:lookup(tab,haskell).
[{haskell,ghci}]
6> ets:lookup(tab,racket).
[]
As can be seen, the default ETS table is a set, so that the
    insertion at line 4 overwrites the insertion at line 2, and the table is
    keyed at the first position. Note also that looking up a key returns a
    list of all the tuples matching the key.
Tables can be traversed, as seen here:
7> ets:insert(tab,{racket,strict}).
true
8> ets:insert(tab,{ocaml,strict}).
true
9> ets:first(tab).
racket
10> ets:next(tab,racket).
haskell
Since tab is a set ETS, the
    elements are not ordered by key; instead, their ordering is determined by
    a hash value internal to the table implementation. In the example here,
    the first key is racket and the next is
    haskell. However, using first and next on an ordered set will give traversal in
    order by key. It is also possible to extract bulk information using
    the match
    function:
11> ets:match(tab,{'$1','$0'}).
[[strict,ocaml],[ghci,haskell],[strict,racket]]
12> ets:match(tab,{'$1','_'}).
[[ocaml],[haskell],[racket]]
13> ets:match(tab,{'$1',strict}).
[[ocaml],[racket]]
The second argument, which is a symbolic
    tuple, is matched against the tuples in the ETS table. The
    result is a list of lists, with each list giving the values matched to the
    named variables '$0' etc., in ascending
    order; these variables match any value in the tuple. The wildcard value
    '_' also matches any value, but its
    argument is not reported in the result.
Let’s implement code that uses an ETS table to associate phone
    numbers—or more accurately, mobile subscriber integrated services digital
    network (MSISDN) numbers—to pids in a module called hlr. We create the associations when phones
    attach themselves to the network and delete them when they detach. We then
    allow users to look up the pid associated with a particular phone number
    as well as the number associated with a pid. Read through this code, as we
    use it as part of a larger example in later chapters:
-module(hlr).
-export([new/0, attach/1, detach/0, lookup_id/1, lookup_ms/1]).

new() ->
    ets:new(msisdn2pid, [public, named_table]),
    ets:new(pid2msisdn, [public, named_table]),
    ok.

attach(Ms) ->
    ets:insert(msisdn2pid, {Ms, self()}),
    ets:insert(pid2msisdn, {self(), Ms}).

detach() ->
    case ets:lookup(pid2msisdn, self()) of
        [{Pid, Ms}] ->
            ets:delete(pid2msisdn, Pid),
            ets:delete(msisdn2pid, Ms);
        [] ->
            ok
    end.

lookup_id(Ms) ->
    case ets:lookup(msisdn2pid, Ms) of
        [] -> {error, invalid};
        [{Ms, Pid}] -> {ok, Pid}
    end.

lookup_ms(Pid) ->
    case ets:lookup(pid2msisdn, Pid) of
        [] -> {error, invalid};
        [{Pid, Ms}] -> {ok, Ms}
    end.
In our test run of the module, the shell process attaches itself to
    the network using the number 12345. We look up the mobile handset using
    both the number and the pid, after which we detach. When reading the code,
    note that we are using a named public table, meaning any process can read
    and write to it as long as they know the table name:
2> hlr:new().
ok
3> hlr:attach(12345).
true
4> hlr:lookup_ms(self()).
{ok,12345}
5> hlr:lookup_id(12345).
{ok,<0.32.0>}
6> hlr:detach().
true
7> hlr:lookup_id(12345).
{error,invalid}

Distributed Erlang
All of the examples we have looked at so far execute on a single
    virtual machine, also referred to as a node. Erlang
    has built-in semantics allowing programs to run across multiple nodes:
    processes can transparently spawn processes on other nodes and communicate
    with them using message passing. Distributed nodes can reside either on
    the same physical or virtual host or on different ones.
This programming model is designed to support scaling and fault
    tolerance on systems running behind firewalls over trusted networks. Out
    of the box, Erlang distribution is not
    designed to support systems operating across potentially hostile
    environments such as the Internet or shared cloud instances. Because
    different systems have different requirements on security, no one size
    fits all. Varying security requirements can easily (or not so easily) be
    addressed if you provide your own security layers and authentication
    mechanisms, or by modifying Erlang’s networking and security
    libraries.
Naming and Communication
In order for an Erlang node to be part of a distributed Erlang system, it
      needs to be given a name. A short name is given
      by starting Erlang with erl -sname
      node, identifying the node on a local
      network using the hostname. On the other hand, starting a node with the
      -name flag means that it will be given a long
      name and identified by the fully qualified domain name or IP
      address. In a particular distributed system, all nodes must be of the
      same kind, i.e., all short or all long.
Processes on distributed nodes are identified in precisely the
      same way as local nodes, using their pids. This allows constructs such
      as Pid!Msg to send messages to a process running on any
      node in the cluster. On the other hand, registering a process with an
      alias is local to each host, so {bar,'foo@myhost'}!Msg is
      used to send the message Msg to the
      process named bar on the node
      'foo@myhost'. Note the form of this
      node identifier: it is a combination
      of foo (the name of the node) and
      myhost (the short or local network
      name of the host on which the node foo is running).
You can spawn and link to processes on any node in the system, not
      just locally, using link(Pid), spawn(Node, Mod, Fun,
      Args), and spawn_link. If the call is successful, link will return the atom
      true, while spawn
      returns the pid of the process on the remote host.
Warning
Code is not automatically deployed remotely for you! If you
        spawn a process remotely, it is your responsibility to ensure that the
        compiled code for the spawned process is already available on the
        remote host, and that it is placed in the search path for the node on
        that host.


Node Connections and Visibility
In order to communicate, Erlang nodes must share a secret
      cookie. By default, each node has a randomly generated cookie, unless
      there is already a value stored in the .erlang.cookie file in your home directory.
      If this file does not exist, it is created the first time you start a
      distributed Erlang node, and populated with a random sequence of
      characters. This behavior can be overridden by starting the node with
      the -setcookie Cookie flag, where
      Cookie is the cookie value. Cookie values can
      also be changed within a program by calling erlang:set_cookie(Node,
      Cookie).
In an Erlang distributed system, by default, all nodes know about
      and can interact with all others so long as they share a cookie.
      However, starting a node with the -hidden flag leaves it unconnected to anything initially, and any
      connections that it needs to make have to be set up by hand. The
      net_kernel module allows fine-grained control of this and other aspects of
      interconnections. Hidden nodes can have a variety of uses, including
      operations and maintenance, as well as serving as bridges between
      different node clusters.
Messages between two processes on different nodes are guaranteed
      to be delivered in order: the difference in a distributed system is that
      it is possible for a remote node to go down. A general mechanism for
      dealing with this is to monitor whether or not
      the remote node is alive. This is different from monitoring a local
      process, described in “Monitors”. Here’s an
      example:
monitor_node(Node, true),
{serve, Node} ! {self(), Msg},
receive
    {ok, Resp} ->
        monitor_node(Node, false),
        <handle process response>;  % Pseudocode to handle the process response
    {nodedown, Node} ->
        <handle lack of response>   % Pseudocode to handle lack of response
end.
In this fragment, a message—such as a remote procedure call—is
      sent to the serve process on Node. Before sending the request, Node is monitored, so that if the node goes
      down, a {nodedown, Node} message will
      be received, and the lack of response can be handled. Once a response
      (Resp) is successfully received, the
      code switches off monitoring before processing the response. You can
      also use the monitor_node/2,3 BIFs to get notifications of
      the health of remote nodes.
To test distributed communications, start two distributed Erlang
      nodes using different names, but the same cookie:
 erl -sname foo -setcookie abc
 erl -sname bar -setcookie abc
In the following sequence, shell command 1 pings the remote node,
      creating a connection. Shell command 2 looks up all of the connected
      nodes using the nodes() BIF,
      binding the remote node to the variable Node. Shell command 4 spawns a process on the
      remote node, which sends the shell process on our local node its pid. We
      receive that pid in command 5 and inspect its node of origin in command
      6 using the node/1 BIF.
      Shell command 7 spawns a process on a remote node, sending the node
      identifier back to the local node. Note how node names are atoms, and
      thus are defined within single quotes:
$ erl -sname bar -setcookie abc
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
(bar@macbook-pro-2)1> net_adm:ping('foo@macbook-pro-2').
pong
(bar@macbook-pro-2)2> [Node] = nodes().
['foo@macbook-pro-2']
(bar@macbook-pro-2)3> Shell = self(). 
<0.38.0>
(bar@macbook-pro-2)4> spawn(Node, fun() -> Shell ! self() end).
<5985.46.0>
(bar@macbook-pro-2)5> receive Pid -> Pid end.
<5985.46.0>
(bar@macbook-pro-2)6> node(Pid).
'foo@macbook-pro-2'
(bar@macbook-pro-2)7> spawn(Node, fun() -> Shell ! node() end).
<5985.47.0>
(bar@macbook-pro-2)8> flush().
Shell got 'foo@macbook-pro-2'
ok


Summing Up
In this chapter, we’ve given an overview of the basics of Erlang we
    believe are important for understanding the examples in the remainder of
    the book. The concurrency model, error-handling semantics, and distributed
    processing not only make Erlang a powerful tool, but are the foundation of
    OTP’s design. Module upgrades during runtime is just the icing on the
    cake. Before you progress, be warned that the better you understand the
    internals of Erlang, the more you are going to get out of the OTP design
    principles and this book. We provide many more examples written in pure
    Erlang, which for some might be enough to understand the OTP rationale.
    Try moving ahead, but if you find yourself struggling, we suggest reading
    Erlang Programming, published by
    O’Reilly and coauthored by one of the authors of this book. The current
    book can be seen as a continuation of Erlang
    Programming, expanding many of the original examples from that
    book. Other great titles that will also do the trick include Simon St.
    Laurent’s Introducing Erlang, also
    published by O’Reilly; Fred Hébert’s Learn You
    Some Erlang for Great Good! from No Starch Press (and also
    available online free of charge); and Programming
    Erlang, written by Erlang coinventor Joe Armstrong and
    published by The Pragmatic Bookshelf.

What’s Next?
In the upcoming chapters, we introduce process design patterns and
    OTP behaviors. We start by providing an Erlang example of a client-server
    application, breaking it up into generic and specific parts. The generic
    parts are those that can be reused from one client-server application to
    another and are packaged in library modules. The specific parts are those
    that are project-specific and have to be implemented for the individual
    client-server applications. In Chapter 4, we
    migrate the code to an OTP-based generic server behavior, introducing the
    first building block of Erlang-based systems. As more behaviors are
    introduced in the subsequent chapters, it will become clear how Erlang
    systems are architected and glued together.

1 But uglier, as we are using a case expression instead of pattern matching
        in the function head.
2 You should thank us for this example. When still a student,
          one of the authors spent two sleepless nights trying to figure this
          one out after Joe Armstrong told him it was possible to solve it
          with four lines of code.


Chapter 3. Behaviors
As a prelude to learning how to structure our process supervision
  trees and architect our concurrency models, let’s spend some time understanding
  the underlying principles behind behaviors. Instead of diving straight into
  the world of interface functions and callbacks, we explain what goes on
  behind the scenes, ensuring you use OTP behaviors efficiently and understand
  their benefits and advantages. So, what are they?
Erlang processes that solve radically different tasks follow similar
  design patterns. The most commonly used patterns have been abstracted and
  implemented in a set of generic library modules called the OTP behaviors.
  When reading about behaviors, you should see them as a formalization of process design patterns.
Although the strict concept of design patterns used in object-oriented programming
  hasn’t been applied to Erlang, OTP provides a powerful, reusable solution
  for concurrent processes that hides and abstracts away all of the tricky
  aspects and borderline conditions. It ensures that projects do not have to
  reinvent the wheel, while maximizing reusability and maintainability through
  a solid, well-tested, generic, and reusable code base. These behaviors are, in
  “design pattern speak,” implementation libraries of the concurrency
  models.
Process Skeletons
If you try to picture an Erlang process managing a key-value store
    and a process responsible for managing the window of a complex GUI system,
    they might at first glance appear very different in functionality and to have
    very little in common. That is often not the case, though, as both
    processes will share a common lifecycle. Both will: 
	Be spawned and initialized

	Repeatedly receive messages, handle them, and send
          replies

	Be terminated (normally or abnormally)


Processes, irrespective of their purpose, have to be spawned. Once spawned, they will initialize their state. The
    state will be specific to what that particular process does. In the
    case of a window manager, it might draw the window and display its
    contents. In the case of a key-value store, it might create the empty
    table and fill it with data stored in backup files or populate it using
    other tables spread across a distributed cluster of nodes.
Once the process has been initialized, it is ready to receive events. These
    events could, in the case of the window manager, be keystrokes in the
    window entry boxes, button clicks, or menu item selections. They could
    also be dragging and dropping of widgets, effectively moving the window or
    objects within it. Events would be programmed as Erlang messages. Upon
    receiving a particular message, the process would handle the request
    accordingly, evaluating the content and updating its internal state.
    Keystrokes would be displayed and clicking buttons or choosing menu items
    would result in window updates, while dragging and dropping would result
    in objects being moved across the screen. A similar analogy could be
    given for the key-value store. Asynchronous messages could be sent to
    insert and delete elements in the tables, and synchronous
    messages—messages that wait for a reply from the receiver—could be used to
    look up elements and return their values to the client.
Finally, processes will terminate. A user might have picked the Close entry in the menus or clicked on the
    Destroy button. If that happens in the window manager,
    resources allocated to that window have to be released and the window
    hidden or shut down. Once the cleanup procedure is completed, there will
    be no more code for the process to execute, so it should terminate
    normally. In the case of the key-value store, a stop message
    might have been sent to the process, resulting in the table being backed
    up on another node or saved on a persistent medium.
Abnormal termination of the process might also occur, as a result of a trapped
    exception or an exit signal from one of the processes in the link set.
    Where possible, if caught through a trap_exit flag or a try-catch expression, the exception should
    prompt the process to call the same set of commands that would have been
    called as a result of a normal termination. We say “where possible,” as
    the power cord of the computer might have been pulled out, the hard drive
    might have failed, the administrator might have tripped over the network
    cable, or the process might have been terminated unconditionally through
    an exit signal with the reason kill.
Figure 3-1 shows a typical process flow diagram outlining the lifecycle of a process.
[image: The process skeleton]Figure 3-1. The process skeleton

As we’ve described, even if processes perform different tasks, they
    will perform these tasks in a similar way, following particular patterns.
    As a result of following these patterns, processes share a similar code
    base. A typical Erlang process loop, which has to be started, must handle
    events, and is finally terminated, might look like this:
start(Args) ->                         % Start the server.
    spawn(server, init, [Args]).

init(Args) ->                          % Initialize the internal process state.
    State = initialize_state(Args),
    loop(State).

loop(State) ->                         % Receive and handle messages.
    receive
        {handle, Msg} ->
            NewState = handle(Msg, State),
            loop(NewState);
        stop ->
            terminate(State)           % Stop the process.
    end.

terminate(State) ->                    % Clean up prior to termination.
    clean_up(State).
This pattern is typical of a client-server behavior. The server is
    started, then it receives requests in the handle/2 function, where
    necessary sends replies, changes the state, and loops ready to handle the
    next incoming message. Upon receiving a stop message, the
    process terminates after having cleaned up its resources.
Although we say that this is typical Erlang client-server behavior,
    it is in fact the pattern behind all patterns. It is so common that even
    code written without the OTP behavior libraries tends to use the same
    function names. This allows anyone reading the code to know that the
    process state is initialized in init/1, that messages are received in loop/1 and individually handled in the
    handle/2 call, and finally, that any cleaning up of resources
    is managed in the terminate/1 function. Someone trying to
    maintain the code later will understand the basic behavior without
    needing any knowledge of the communication protocol, underlying
    architecture, or process structure.

Design Patterns
Let’s start drilling down into a more detailed example, focusing on client-server
    architectures implemented in Erlang. Clients and servers are represented as
    Erlang processes, with their requests and replies sent as messages. Have a
    look at Figure 3-2 and think of examples of
    client-server architectures that you have worked with or read about,
    preferably architectures with few similarities among them (as in our
    examples of a key-value store and a window manager). Focusing on Erlang
    constructs and patterns in the code of these applications, try to list the
    similarities and differences between the implementations. Ask yourself
    which parts of the code are generic and which parts are specific. What
    code is unique to that particular solution, and what code could be reused
    in other client-server applications?
[image: The client server process architecture]Figure 3-2. The client-server process architecture

Let’s give you a hint in the right direction: sending a client
    request to a server will be generic. It can be done in a uniform manner
    across any client-server architecture, irrespective of what the server
    does. What will be specific, however, are the contents of that
    message.
We start off by spawning a server. Creating a process that calls the
    init/1 function is generic. What is specific are the
    arguments passed to the call and the expressions in the function that
    initialize the process state returning the loop data. The loop data plays
    the role of a variable that stores process data between calls.
Storing the loop data in between calls will be the same from one
    process to another, but the loop data itself will be
    specific. It changes not only according to the particular task the process
    might execute, but for each particular instance of the task.
Sending a request to the server will be generic, as is the
    client-server protocol used to manage replies. What is specific are the
    types and contents of the requests sent to the server, how they are
    handled, and the responses sent back to the client. While the response is
    specific, sending it back to the client process is handled
    generically.
It should be possible to stop servers. While sending a
    stop message or handling an exception or EXIT
    signal is generic, the functions called to clean up the state prior to
    termination will be specific.
Table 3-1 summarizes which parts of a client-server architecture are generic and which parts are specific.
Table 3-1. Client-server generic and specific code	Generic	Specific
		Spawning the server

	Storing the loop data

	Sending requests to the server

	Sending replies to the client

	Receiving server replies

	Stopping the server


		Initializing the server state

	The loop data

	The client requests

	Handling client requests

	Contents of server reply

	Cleaning up




Callback Modules
The idea behind OTP behaviors is to split up the code into two modules:
      one for the generic pattern, referred to as the behavior module,
      and one for specifics, referred to as the callback module (Figure 3-3). The generic behavior module
      can be seen as the driver. While it doesn’t know anything about what the
      callback module does, it is aware of a set of exported callback
      functions it has to invoke and the format of their return values. The
      callback module isn’t aware of what the generic module does either; it
      only complies with the format of the data it has to return when its
      callback functions are invoked.
[image: The callback module]Figure 3-3. The callback module

Another way of explaining this is as a contract between the
      behavior and callback modules. They have to agree on a set of names and
      types for the functions in the callback API and respect the return
      values.
The behavior module contains all of the generic functionality
      reused from one implementation to another. Behaviors are provided by OTP
      as library modules. The callback module is implemented by the
      application developer. It contains all of the specific code for the
      implementation of that particular process.
OTP provides five behaviors
      that cover the majority of all cases. They are:
	Generic server
	Used to model client-server behaviors

	Generic finite state machine
	Used for FSM programming

	Generic event handler/manager
	Used for writing event handlers

	Supervisor
	Used for fault-tolerant supervision trees

	Application
	Used to encapsulate resources and functionality


Generic servers are the most commonly used behavior. They are used
      to model processes using the client-server architecture, including the
      examples of the key-value store and the window manager we’ve already
      discussed.
Generic FSM behaviors provide all of the generic constructs needed
      when working with FSMs. Developers commonly use FSMs to implement
      automated control systems, protocol stacks, and decision-making systems.
      The code for the FSMs can be implemented manually or generated by
      another program.
Generic event handlers and managers are used for event-driven
      programming, where events are received as messages and one or more
      actions (called handlers) are applied to them. Typical examples of
      handler functionality include logging, metrics gathering, and
      alarming.
You can view handlers as a publish-subscribe communication layer,
      where publishers are processes sending events of a specific type and
      subscribers are consumers who do something with the events.
A supervisor is a behavior whose only tasks are to start, stop, and monitor its children, which can be workers as well as other
      supervisors. Allowing supervisors to monitor other supervisors results
      in process structures we call supervision
      trees. We cover supervision trees in the upcoming chapters.
      Supervisors restart children based on configuration parameters defined
      in the callback functions.
Supervision trees are packaged in a behavior we call an application. The application starts the
      top-level supervisor, encapsulating processes that depend on each other
      into the main building blocks of an Erlang node.
Generic servers, FSMs, and event handlers are examples of workers:
      processes that perform the bulk of the computations. They are held
      together by supervisors and application behaviors. If you need other
      behaviors not included as part of the standard library, you can
      implement them following a set of specific rules and directives
      explained in Chapter 10. We call them
      special processes.
Now you might be wondering: what is the point of adding a layer of
      complexity to our software? The reasons are many. Using behaviors, we
      are reducing the code base while creating a standardized programming
      style needed when developing software in the large. By encapsulating all
      of the generic design patterns in library modules, we reuse code while
      reducing the development effort. The behavior libraries we use consist
      of a solid, well-tested base that has been used in production systems
      since the mid-90s. They cover all the tricky aspects of concurrency,
      hiding them from the programmer. As a result, the final system will have
      fewer bugs1 while being built on a fault-tolerant base. The behaviors
      have built-in functionality such as logs, tracing, and statistics, and
      are extensible in a generic way across all processes using that
      behavior.
Another important advantage of using behaviors is that they
      promote a common programming style. Anyone reading the code in a
      callback module will immediately know that the process state is
      initialized in the init function, and that
      terminate contains the cleanup code executed whenever the
      process is stopped. They will know how the communication protocol will
      work, how processes are restarted in case of failure, and how
      supervision trees are packaged. Especially when programming in the
      large, this approach allows anyone reading the code to focus on the
      project specifics while using their existing knowledge of the generics.
      This common programming style also brings a component-based terminology
      to the table, giving potentially distributed teams a way to package
      their deliverables and use a standard vocabulary to communicate with
      each other. At the end of the day, much more time is spent reading and
      maintaining code than writing it. Making code easy to understand is
      imperative when dealing with complex systems that never fail.
So, with lots of advantages, what are the disadvantages? Learning
      to use behaviors properly and proficiently can be difficult. It takes
      time to learn how to properly create systems using OTP design
      principles, but as documentation has improved, training courses and
      books have become available, and tools have been written, this has
      become less of an issue. Just the fact that you are reading a book
      dedicated largely to OTP says it all.
Behaviors add a few layers to the call chain, and slightly more
      data will be sent with every message and reply. While this might affect
      performance and memory usage, in most cases the impact will be negligible,
      especially considering the improvement in quality and free
      functionality. What is the point of writing code that is fast but buggy?
      The small increase in memory usage and reduction in performance is a
      small price to pay for reliability and fault tolerance. The rule of
      thumb is to always start with behaviors, and optimize when bottlenecks
      occur. You will find that optimizations as a result of inefficient
      behavior code are rarely if ever needed.


Extracting Generic Behaviors
Having introduced behaviors, let’s look at a familiar client-server example
    written in pure Erlang without using behaviors. We use the frequency
    server featured in the Erlang
    Programming book and implemented in the frequency module. No worries if you have not
    read the book and are not familiar with it; we explain what it does as we
    go along. The server is a frequency allocator for cell phones. When a phone connects a call, it needs to
    have a frequency allocated for it to use as a communication channel for
    that conversation. The client holds this frequency until the call is
    terminated, after which the frequency is deallocated, allowing other
    subscribers to reuse it (Figure 3-4).
As this is the first major Erlang example in the book, we step
    through it in more detail than usual. In the subsequent chapters, we speed
    up the pace, so if your Erlang is a bit rusty, take this opportunity to
    get up to speed. Here, we take the code from the frequency server example, find
    the generic parts embedded in the module, and extract them into a library
    module. The outcome will be two modules: one containing generic reusable
    code, the other containing specific code with the frequency server’s
    business logic.
[image: The frequency server]Figure 3-4. The frequency server

The clients and server are represented as Erlang processes, and the
    exchange of information between them occurs via message passing hidden
    behind a functional interface. The functional interface used by the
    clients contains the functions allocate/0 and
    deallocate/1:
allocate() -> {ok, Frequency} | {error, no_frequency}
deallocate(Frequency) -> ok
The
    allocate/0 function returns the result {ok,
    Frequency} if there is at least one available frequency. If all
    frequencies are in use, the tuple {error, no_frequency} is
    returned instead. When the client is done with a phone call, it can
    release the frequency it’s using by making a function call to
    deallocate/1, passing the Frequency in use as an
    argument.
We start the server with the start/0 call, later
    terminating it with stop/0:
start()-> true
stop() -> ok
The server is registered
    statically with the alias frequency, so
    no pids need to be saved and used for message passing.
A trial run of the frequency module from the shell might look like
    this. We start the server, allocate all six available frequencies, and
    fail to allocate a seventh one. Only by deallocating frequency 11 are we
    then able to allocate a new one. We terminate the trial run by stopping
    the server:
1> frequency:start().
true
2> frequency:allocate(), frequency:allocate(), frequency:allocate(),
   frequency:allocate(),frequency:allocate(), frequency:allocate(). 
{ok,15}
3> frequency:allocate(). 
{error,no_frequency}
4> frequency:deallocate(11).
ok
5> frequency:allocate().
{ok,11}
6> frequency:stop().
ok
If you need a deeper understanding of the code, feel free to
    download the module from the book’s code repository and run the example. Next, we go
    through the code in detail, explain what it does, and separate out the
    generic and the specific parts.
Starting the Server
Let’s begin with the functions used to create and initialize the server. The
      start/0 function spawns a process that calls the
      frequency:init/0 function, registering it with the
      frequency alias. The init function initializes
      the process state with a tuple containing the list of available
      frequencies, conveniently hardcoded in the
      get_frequencies/0 function, and the list of allocated
      frequencies, represented by the empty list. We bind the frequency tuple,
      referred to in the rest of the example as the process state or loop
      data, to the Frequencies variable. The process
      state variable changes with every iteration of the loop when available
      frequencies are moved between the lists of allocated and available
      ones.
Note how we export the init/0 function, because it
      is passed as an argument to the spawn BIF, and how we register the
      server process with the same name as the module. The latter, while not
      mandatory, is considered a good Erlang programming practice as it
      facilitates debugging and troubleshooting live systems: 
-module(frequency).
-export([start/0, stop/0, allocate/0, deallocate/1]).
-export([init/0]).

start() -> register(frequency, spawn(frequency, init, [])).

init() ->
    Frequencies = {get_frequencies(), []},
    loop(Frequencies).

get_frequencies() -> [10,11,12,13,14,15].
Have a look at
      the preceding code and try to spot the generic expressions. Which
      expressions will not change from one client-server implementation to
      another?
Starting with the export directives, you always have to start and
      stop servers, irrespective of what they do. So, we consider these
      functions to be generic. Also generic are the spawning,
      registering, and calling of an initialization function containing the
      expressions used to initialize the process state. The process state will
      be bound to a variable and passed to the process loop. Note, however,
      that while the functions and BIFs might be considered generic,
      expressions in the functions and arguments passed to them aren’t. They
      will differ between different client-server implementations. We’ve
      highlighted all the parts we consider generic in the following code
      example:
-module(frequency).
-export([start/0, stop/0, allocate/0, deallocate/1]).
-export([init/0]).

start() ->
    register(frequency, spawn(frequency, init, [])).

init() ->
    Frequencies = {get_frequencies(), []},
    loop(Frequencies).

get_frequencies() -> [10,11,12,13,14,15].
From the generic,
      let’s move on to the specific, which is the nonhighlighted code in the
      previous example. The first server-specific detail that stands out in the
      example is the module name frequency.
      Module names obviously differ from one server implementation to another.
      The client functions allocate/0 and
      deallocate/1 are also specific to this particular
      client-server application, as you will probably not find them in a
      window manager or a key-value store (and if they did happen to share
      the same name, the functions would be doing something completely
      different). Although starting the server, spawning the server process,
      and registering it are generic, the registered name and module
      containing the init function are
      considered specific.
The arguments passed to the init function are also specific. In our
      example, we are not passing any arguments (hence the arity 0), but that
      could change in other client-server implementations. The expressions in
      the init/0 function are used to initialize the process
      state. Initializing the state is different from one implementation to
      another. Various applications might initialize window settings and
      display the window, create an empty key-value store, and upload a
      persistent backup, or, in this example, generate a tuple containing the
      list of available frequencies.
When the process state has been initialized, it is bound to a
      variable. Storing the process state is considered generic, but the
      contents of the state itself are specific. In the code example that
      follows, we highlight the Frequency variable as specific.
      This means that the content of the variable is specific, whereas the
      mechanism of passing it to the process loop is generic. Finally, the
      get_frequencies/0 call used in init/0 is also
      specific. In a real-world implementation, we would probably read the
      frequencies from a configuration file or a persistent database, or through
      a query to the base stations. For the sake of this example, we’ve been
      lazy and hardcoded them in the module.
Let’s highlight the specific code:
-module(frequency).
-export([start/0, stop/0, allocate/0, deallocate/1]).
-export([init/0]).

start() ->
    register(frequency, spawn(frequency, init, [])).

init() ->
    Frequencies = {get_frequencies(), []},
    loop(Frequencies).

get_frequencies() -> [10,11,12,13,14,15].
Are you seeing the pattern and line of thought we are emphasizing?
      Let’s continue doing the same with the rest of the module, starting with
      the client functions.

The Client Functions
We refer to the functions called by client processes to control and access
      the services of a server process as the client
      API. It is always good practice, for readability and
      maintainability, to hide message passing and protocol in a functional
      interface. The client functions in the running example do exactly this.
      In fact, we’ve taken it a step further here, encapsulating the sending
      of requests and receiving of replies in the call/1 and
      reply/2 functions. They contain code that otherwise would
      have to be cloned for every message sent and received:
stop()	         -> call(stop).
allocate()	 -> call(allocate).
deallocate(Freq) -> call({deallocate, Freq}).

call(Message) ->
    frequency ! {request, self(), Message},
    receive
	{reply, Reply} -> Reply end.

reply(Pid, Reply) ->
    Pid ! {reply, Reply}.
The stop/0 function sends the atom stop
      to the server. The server, upon receiving stop in its
      receive-evaluate loop, interprets it and takes appropriate action. For
      readability and maintainability reasons, it is good practice to use
      keywords that describe what we are trying to do, but for all it matters,
      we could have used the atom foobar, as it is not the name
      of the atom but the meaning we give it in our program that is important.
      In our case, stop ensures a normal termination of the
      process. We will see how it is handled later in the example.
The client functions allocate/0 and
      deallocate/1 are called and executed in the scope of the
      client process. The client sends a message to the server by executing
      one of the client functions in the frequency module. The
      message is passed as an argument to the call/1 function and
      bound to the Message variable. The Message is
      in turn inserted in a tuple of the form {request, Pid,
      Message}, where the pid is the client process identifier,
      retrieved by calling the self() BIF and used by the server
      as the destination for a response in the format {reply,
      Reply}. We refer to this extra padding as the “protocol” between
      the client and the server (see Figure 3-5).
[image: The client/server message protocol]Figure 3-5. The message protocol

The server receives the request, handles it, and sends a reply
      using the reply/2 call. It passes the pid sent in the
      client request as the first argument and its reply message as the
      second. This message is pattern matched in the receive clause of the
      call/1 function, returning the contents of the variable
      Reply as a result. This will be the result returned by the
      client functions. A sequence diagram with the exchange of messages
      between the cell phones and the frequency server is shown in Figure 3-6.
[image: The frequency server messages and responses]Figure 3-6. The frequency server messages

So, which parts of the code are generic? Which will not change
      from one client-server implementation to another? First in line is the
      stop/0 function, used whenever we want to inform the server
      that it has to terminate. This code can be reused, as it is universal in
      what it does. Every time we want to send a message, we use
      call/1. There is a catch, however, as this function is not
      completely generic. Have a look at the code and try to spot the anomaly:
      
stop()	         -> call(stop). 
allocate()	 -> call(allocate).
deallocate(Freq) -> call({deallocate, Freq}).

call(Message) ->
    frequency ! {request, self(), Message},
    receive
        {reply, Reply} -> Reply
    end.

reply(Pid, Reply) ->
    Pid ! {reply, Reply}. 
We are sending a message
      to a registered process frequency.
      This name will change from one server implementation to the next.
      However, everything else in the call is generic. The function
      reply/2, called by the server process, is also completely
      generic. So what remains specific in the client functions are the client
      functions themselves, their message content to the server, and the name
      of the server: 
stop()	         -> call(stop).
allocate()	 -> call(allocate).
deallocate(Freq) -> call({deallocate, Freq}).

call(Message) ->
    frequency ! {request, self(), Message},
    receive
        {reply, Reply} -> Reply
    end.

reply(Pid, Reply) ->
    Pid ! {reply, Reply}.
By hiding the message protocol in a
      functional interface and abstracting it, we are able to change it
      without affecting the code outside of the frequency module, client calls included. We
      show how this comes in handy later in the chapter, when we start dealing
      with some of the common error patterns that occur when working with
      concurrent programming.

The Server Loop
Server processes iterate in a receive-evaluate loop. They wait for client
      requests, handle them, return a result, and loop again, waiting for the
      next message to arrive. With every iteration, they may update their
      process state and might generate side effects: 
loop(Frequencies) ->
    receive
        {request, Pid, allocate} ->
            {NewFrequencies, Reply} = allocate(Frequencies, Pid),
            reply(Pid, Reply),
            loop(NewFrequencies);
        {request, Pid , {deallocate, Freq}} ->
            NewFrequencies = deallocate(Frequencies, Freq),
            reply(Pid, ok),
            loop(NewFrequencies);
        {request, Pid, stop} ->
            reply(Pid, ok)
    end.
In our frequency server example the
      loop/1 function receives the allocate,
      {deallocate, Frequency}, and stop commands.
      Allocating a frequency is done through the helper function
      allocate/2, which, given the loop data and the pid of the
      client, moves a frequency from the available list to the allocated list.
      Deallocating a frequency invokes the deallocate/2 call to
      do the opposite, moving the frequency from the list of allocated
      frequencies to the available list.
Both calls return the pair of updated frequency lists that make up
      the process state; this new state is bound to the variable
      NewFrequencies and passed to the tail-recursive
      loop/1 call. In both cases, a reply is sent back to the
      clients. When allocating a frequency, the contents of the variable
      Reply are either {error, no_frequency} or
      {ok, Frequency}. When deallocating a frequency, the server
      sends back the atom ok.
When stopping the server, we acknowledge having received the
      message through the ok response, and by the lack of a call
      to loop/1 we make the process terminate normally, as
      opposed to an abnormal termination that results from a runtime error. In
      this example, there is nothing to clean up, so we don’t do anything
      other than acknowledge the stop message. Had this server
      handled some resource such as a key-value store, we could have ensured
      that the data was safely backed up on a persistent medium. Or in the
      case of a window server, we’d close the window and release any allocated
      objects associated with it.
With all of this in mind, what functionality do you think is
      generic?
For starters, looping is generic. The protocol used to send and receive messages is
      generic, but the messages and replies themselves aren’t. Finally,
      stopping the server is generic, as is acknowledging the stop
      message. The generic parts of the code are highlighted here:
loop(Frequencies) ->
    receive
        {request, Pid, allocate} ->
            {NewFrequencies, Reply} = allocate(Frequencies, Pid),
            reply(Pid, Reply),
            loop(NewFrequencies);
        {request, Pid, {deallocate, Freq}} ->
            NewFrequencies = deallocate(Frequencies, Freq),
            reply(Pid, ok),
            loop(NewFrequencies);
        {request, Pid, stop} ->
            reply(Pid, ok)
    end.
We have not highlighted the variables
      Frequencies and NewFrequencies used to store
      the process state. Although storing the process state is generic, the
      state itself is specific. That is, the type of the state and the
      particular value that this variable has are specific, but not the
      generic task of storing the variable itself.
With the generic contents out of the way, the specifics include
      the loop data, the client messages, how we handle the messages, and the
      responses we send back as a result: 
loop(Frequencies) ->
    receive
        {request, Pid, allocate} ->
            {NewFrequencies, Reply} = allocate(Frequencies, Pid),
            reply(Pid, Reply),
            loop(NewFrequencies);
        {request, Pid, {deallocate, Freq}} ->
            NewFrequencies = deallocate(Frequencies, Freq),
            reply(Pid, ok),
            loop(NewFrequencies);
        {request, Pid, stop} ->
            reply(Pid, ok)
    end.
Had there been specific code to be executed when
      stopping the server, it would also have been marked as specific. This
      code is usually placed in a function called terminate,
      which, given the reason for termination and the loop data, handles all
      of the cleaning up.

Functions Internal to the Server
The functions that actually perform the work of allocating or
      deallocating a frequency within the server are not “visible” outside the
      server module itself, and so we call them
      internal to the server. The
      allocate/1 call returns a tuple with the new frequencies
      and the reply to send back to the client. If there are no available
      frequencies, the first function clause will pattern match because the
      list is empty. The frequencies are not changed, and {error,
      no_frequency} is returned to the client. If there is at least one
      frequency, the second function clause will match.
The available frequency list is split into a head and a tail,
      where the head contains the available frequency, and the tail (a
      possibly empty list) contains the remaining available frequencies. The
      frequency with the client pid is added to the allocated list, and the
      response {ok, Freq} is sent back to the client.
When deallocating a frequency in the deallocate/2
      function, we delete it from the allocated list and add it to the
      available one. Have a look at the functions and try to figure out what
      is generic and what is specific:2 
allocate({[], Allocated}, _Pid) ->
    {{[], Allocated}, {error, no_frequency}};
allocate({[Freq|Free], Allocated}, Pid) ->
    {{Free, [{Freq, Pid}|Allocated]}, {ok, Freq}}.

deallocate({Free, Allocated}, Freq) ->
    NewAllocated = lists:keydelete(Freq, 1, Allocated),
    {[Freq|Free], NewAllocated}.
This should have been an easy question
      to answer, as these internal functions are all specific to our frequency
      server. When did you last allocate and deallocate frequencies when
      working with a key-value store or a window manager?


The Generic Server
Now that we’ve gone through this example and distinguished the generic from
    the specific code, let’s get to the core of this chapter, namely the
    separation of the code into two separate modules. Figure 3-7 shows we can now put all of
    the generic code into the server module
    and all of the specific code into frequency. Despite these changes, we maintain
    the same functionality and interface. Calling the frequency
    module in our new implementation should be no different from the trial run
    we did in “Extracting Generic Behaviors”.
[image: Splitting the generic and specific code bases into
          modules]Figure 3-7. The frequency and server modules

The server module is in control,
    managing the process activities. Whenever it has to handle specific
    functionality it does not know how to execute, it hands over to the
    callback functions in the frequency module. Let’s start with
    the generic code in the server module that starts and
    initializes the server:
-module(server).                         % server.erl
-export([start/2, stop/1, call/2]).
-export([init/2]).

start(Name, Args) ->
    register(Name, spawn(server, init, [Name, Args])).

init(Mod, Args) ->
    State = Mod:init(Args),
    loop(Mod, State).
Spawning a process, registering it, and
    calling the init function are all
    generic, whereas the alias with which we register the process, the name of
    the callback module, and the arguments we pass to the init function are all specific. We pass this
    specific information as parameters to the server:start/2
    function, using them where needed. Name is used both as the
    registered name of the frequency process and as the name of the callback
    module. Args is passed to the init function and is used to initialize the
    process state.
We keep the client functions in the frequency module,
    using it as a wrapper around the server. By doing so, we are hiding
    implementation details, including the very use of the server
    module. Just like in our previous example, we start the server using
    frequency:start/0, resulting in a call to
    server:start/2. The newly spawned server, through the
    Mod:init/1 call, invokes the init/1 callback
    function in the frequency module, initializing the process
    state by creating the tuple containing the available and allocated
    frequencies. Mod is bound to the callback module frequency and Args is bound to
    []. The frequency tuple gets bound to the State
    variable, which along with Mod is passed as an argument to
    the loop in the server module: 
-module(frequency).                      % frequency.erl
-export([start/0, stop/0, allocate/0, deallocate/1]).
-export([init/1, terminate/1, handle/2]).

start() -> server:start(frequency, []).

init(_Args) ->
    {get_frequencies(), []}.

get_frequencies() -> [10,11,12,13,14,15].
The init/1 callback is required to return the initial
    process state, stored and used in the server receive-evaluate loop. In the
    init/1 callback function, note that we are not using the
    value of the _Args parameter. Because init/1 is
    a callback function, we have to follow the required protocol and
    functional interface for that callback API. In the general case,
    init/1 requires an argument because there might be server
    implementations that need data at startup. This particular example
    doesn’t, so we pass the empty list and ignore it.
Let’s jump back to the server
    module. When a client process wants to send a request to the server, it
    does so by calling server:call(frequency, Msg). The server,
    when responding, does so using the reply/2 call. We are, in
    effect, hiding all of the message passing behind a functional
    interface.
Another generic function is server:stop/1. We
    distinguish this function from call/2 because we want to fix its meaning
    and therefore differentiate it from server:call(frequency, {stop,
    self()}), which could be treated by the developer as a specific
    call rather than as a generic server control message. Instead, by calling
    stop, we invoke the terminate/1 callback
    function, which is given the process state and will contain all of the
    specific code executed when shutting down the server. In our case, we have
    kept the example to a minimum. Note, however, that we could have chosen to
    terminate all of the client processes that had been allocated a frequency:
    
stop(Name) ->                            % server.erl
    Name ! {stop, self()},
    receive {reply, Reply} -> Reply end.

call(Name, Msg) ->
    Name ! {request, self(), Msg},
    receive {reply, Reply} -> Reply end.

reply(To, Reply) ->
    To ! {reply, Reply}.
To ensure that we maintain the same
    interface, we export exactly the same functions in our new implementation
    of the frequency module: 

stop()           -> server:stop(frequency).              % frequency.erl
allocate()       -> server:call(frequency, {allocate, self()}).
deallocate(Freq) -> server:call(frequency, {deallocate, Freq}).
These
    functions send requests and stop messages to the server. When the process
    receives the messages, the relevant callback functions in the frequency module are invoked. In the case of the
    stop message, it is the function terminate/1. It takes the
    process state as an argument and its return value is sent back to the
    client, becoming the return value of the stop/1 call:
    
loop(Mod, State) ->                      % server.erl
    receive
        {request, From, Msg} ->
            {NewState, Reply} = Mod:handle(Msg, State),
            reply(From, Reply),
            loop(Mod, NewState);
        {stop, From}  ->
            Reply = Mod:terminate(State),
            reply(From, Reply)
    end.
In the case of a call request, the
    handle/2 callback is invoked. The call takes two arguments,
    the first being the message bound to the variable Msg and the
    second the process state bound to the variable State. Pattern
    matching on the Msg picks the function clause that handles
    the message. The callback has to return a tuple in the format
    {NewState, Reply}, where NewState contains the
    updated frequencies and Reply is the reply sent back to the
    client. Have a look at the implementation of allocate/2. It
    returns exactly that: a tuple where the first element is the updated
    process state and the second element either {ok, Frequency}
    or {error, no_frequency}.
The first clause of the receive
    in loop/2 takes the return value from handle/2,
    sends back a reply to the client using reply/2, and loops
    with the new state, awaiting the next request: 
terminate(_Frequencies) ->               % frequency.erl
    ok.

handle({allocate, Pid}, Frequencies) ->
    allocate(Frequencies, Pid);
handle({deallocate, Freq}, Frequencies) ->
    {deallocate(Frequencies, Freq), ok}.

allocate({[], Allocated}, _Pid) ->
    {{[], Allocated}, {error, no_frequency}};
allocate({[Freq|Free], Allocated}, Pid) ->
    {{Free, [{Freq, Pid}|Allocated]}, {ok, Freq}}.

deallocate({Free, Allocated}, Freq) ->
    NewAllocated = lists:keydelete(Freq, 1, Allocated),
    {[Freq|Free], NewAllocated}.
The same applies to the deallocate request. The frequency is
    deallocated, the handle/2 call
    returns a tuple with the new state returned by the
    deallocate/2 call, and the response, the atom
    ok, is sent back to the client.
So what we now have is our frequency example split up into a generic
    library module we call server and a
    specific callback module we call frequency. This is all there is to understanding
    Erlang behaviors. It is all about splitting up the code into generic and
    specific parts, and packaging the generic parts into reusable libraries to
    hide as much of the complexity as possible from the developers. We’ve kept
    this example simple to show our point, and barely scratched the surface of
    the corner cases that are handled behind the scenes in the proper behavior
    libraries. We cover these details in the next section, and introduce them
    as we talk about the individual behavior library modules.

Message Passing: Under the Hood
Concurrent programming is not easy. You need to deal with race
    conditions, deadlocks, and critical sections as well as many corner cases.
    Despite this, you rarely hear Erlang developers complain, let alone
    discuss these problems. The reason is simple: most of these issues become
    nonissues as a result of the OTP framework. In this chapter, we extracted
    the generic code from a particular client-server system, but in doing so
    we kept our example as simple as possible. There are many error conditions
    in a scenario like this that are handled behind the scenes by the behavior
    library modules we cover in the next chapter. Just to emphasize the point,
    they are handled without the programmer having to be aware of them. Race
    conditions, especially with multicore architectures, have become more
    common, but they should be picked up with appropriate modeling and testing
    tools such as Concuerror, McErlang, PULSE, and QuickCheck.
Having said that, let’s look at an example of how behavior libraries
    help us hide a lot of the tricky cases an inexperienced developer might
    not think of when first implementing a concurrent system. We use the
    call/2 function from the previous example, expanding it as we
    go along:
call(Name, Message) ->
    Name ! {request, self(), Message},
    receive
        {reply, Reply} -> Reply
    end.

reply(Pid, Reply) ->
    Pid ! {reply, Reply}.
We send a message to the server of the format {request, Pid,
    Message} and wait for a response of the format {reply,
    Reply}. When we receive the reply, as shown in Figure 3-8, how can we be confident that the reply is
    actually a reply from the server, and not a message sent by another
    process but also complying with the protocol?
[image: Ensuring the Uniqueness of a Response]Figure 3-8. Message race conditions

Given this implementation, we can’t. The solution to this problem is
    to use references. By creating a unique reference with the make_ref() BIF, adding it to the message,
    and including it in the reply, we will be guaranteed that the response is
    actually the reply to our request, and not just a message that happens to
    comply with our protocol. Adding references, our code looks like
    this:3
call(Name, Msg) ->
    Ref = make_ref(),
    Name ! {request, {Ref, self()}, Msg},
    receive {reply, Ref, Reply} -> Reply end.

reply({Ref, To}, Reply) ->
    To ! {reply, Ref, Reply}.
Note how Ref is already bound when entering the receive
    clause, ensuring replies are the result of the original message. This
    solves the problem, but is this enough? What happens if the server crashes
    before we send a request? If Name is an alias, we are covered
    because the client process will terminate when trying to send a message to
    a nonexistent registered process. But if Name is a pid, the
    message will be lost and the client will hang in the receive clause of the call function. Or
    similarly, what happens if the server crashes between receiving the
    message and sending the reply? This could be as a result of our request,
    or as the result of another client request it might be handling. Having a
    registered process will not cover this case either, as the process is
    alive when the message is sent.
The solution is to monitor the server. In doing so, let’s use the
    monitor BIF instead of a link, because
    links are bidirectional and might cause side effects on the server if the
    child process were to be killed during the request. While the client wants
    to monitor termination of the server, terminating the client should not
    affect the server. The monitor BIF returns a unique reference, so we can drop the
    make_ref() BIF and use the monitor reference to tag our
    messages:
call(Name, Msg) ->
    Ref = erlang:monitor(process, Name),
    Name ! {request, {Ref, self()}, Msg},
    receive
        {reply, Ref, Reply} ->
            erlang:demonitor(Ref),
            Reply;
        {'DOWN', Ref, process, _Name, _Reason} ->
            {error, no_proc}
    end.
Have we covered everything that can go wrong? No, not really. By
    monitoring the process, we are now exposing ourselves to another race
    condition. Consider the following sequence of events:
	The client monitors the server.

	The client sends a request to the server.

	The server receives the request and handles it.

	The server sends back a response to the client.

	The server crashes as the result of another request.

	The client receives a DOWN message as a result of
        the monitor.

	The client extracts the server response from its mailbox.

	The client demonitors the (now defunct) server.


We are stuck with a DOWN message in the client mailbox
    containing a reference that will never match. Now, what are the chances of that
    happening? Do you really think someone would think of that particular test
    case where the server terminates right after it sends the client its reply,
    but before the client executes the erlang:demonitor/2 call?
    While this is an extreme corner case, we still need to handle the
    DOWN message as it might cause a memory leak. We do this by
    passing the [flush] option to the
    second argument in the demonitor/2 call, ensuring that any
    DOWN messages belonging to that monitor are not left
    lingering in the process mailbox.
Are we there yet? No, not really: what if Name is not
    an alias of a registered process? We need a catch to trap any
    exception raised as a result of the client sending a message to a
    nonexistent registered process. We don’t really care about the result of
    the catch—if we did, we would have used
    try-catch instead—because if the server does not exist,
    monitor/1 will send a DOWN message. Our new code
    now looks like this:
call(Name, Msg) ->
    Ref = erlang:monitor(process, Name),
    catch Name ! {request, {Ref, self()}, Msg},
    receive
        {reply, Ref, Reply} ->
            erlang:demonitor(Ref, [flush]),
            Reply;
        {'DOWN', Ref, process, _Name, _Reason} ->
            {error, no_proc}
    end.
Unfortunately, though, these changes are still not enough. What
    happens if process A does a synchronous call to B at the same time as
    process B calls A? By “synchronous call,” we mean an Erlang message exchange
    where the sending process expects a response, and the message and response
    are each sent as asynchronous messages. Process A enters the receive clause right
    after sending its request matching on a unique reference sent with the
    request, and B does the same. Back to answering our original question, if
    two processes synchronously call each other using this code, we get a
    deadlock. While deadlocks are a result of a design flaw, they might happen
    in live systems, and a recovery mechanism (preferably a generic one) needs
    to be put in place. The easiest way to resolve deadlocks is through a
    timeout in your receive statement, terminating the process. We go into
    more detail on deadlocks and timeouts and show you how OTP solves this
    problem in the next chapter.

Summing Up
In this chapter, we’ve covered the principles behind concurrency
    design patterns, introducing the concept of behavior libraries. We hope we
    have made our point about the importance and power of behavior libraries,
    as understanding them is fundamental to understanding the underlying
    principles of OTP. Decades of experience in process-oriented programming
    are reflected in them, removing the burden from the developers, reducing
    their code bases, and ensuring that corner cases are handled in a
    consistent, efficient, and correct manner. Be honest: how many of the
    corner cases discussed in this example would you have handled in a first
    iteration? What about your colleagues? Imagine testing and maintaining a
    system where everyone has reinvented the wheel with their own
    representation of these concurrent conditions and corner cases! The bottom
    line is that standard OTP behaviors handle all of these issues; that is
    why you should use them.
If you have the time, pick a simple client-server example you might
    have written when learning Erlang. It could be a key-value store, a chat
    server, or any other process that receives and handles requests. If you do
    not have any examples at hand, use the mobile subscriber database example
    from the ETS and DETS chapter of the Erlang
    Programming book. You can download the code from the authors’
    GitHub repositories.
Another useful exercise is to extend the call function with an
    after clause, making the process exit with reason
    timeout. Create a new function:
call(Name, Message, Timeout)
which,
    given a Timeout integer value in milliseconds or the atom
    infinity, allows users to set their
    own timeouts. Keep the call/2 call, setting the default to 5
    seconds. If the server does not respond within the given timeout value,
    make the client process terminate abnormally with the reason
    timeout. Don’t forget to clean up before exiting, as the exit
    signal might be caught in a try-catch expression in the code using the
    server library.

What’s Next?
In the next chapters, we introduce the library modules that together
    give us the OTP behaviors. We start with the gen_server library, and then later use a similar
    approach to introduce FSMs, event handlers, supervisors, and applications.
    We have not yet covered deadlocks, timeouts, and error cases that can
    arise when dealing with distribution or messages that never match. These
    are all topics we discuss when covering the individual behavior
    libraries.

1 Bug-free systems exist only in the dreams of the bureaucrats.
          When using Erlang/OTP, equal focus should be placed on correctness
          and error recovery, as the bugs will manifest themselves in
          production systems whether you like it or not.
2 Warning, this is a trick question.
3 Minor changes are also needed to the code in order to get the
        stop call to work. We skip them in this example.


Chapter 4. Generic Servers
Having broken up the radio frequency allocator into generic and
  specific modules and investigated some of the corner cases that can occur
  when dealing with concurrency, you will have figured out there is no need to
  go through this process every time you have to implement a client-server
  behavior. In this chapter, we introduce the gen_server OTP behavior, a library module that
  contains all of the generic client-server functionality while handling a
  large number of corner cases. Generic servers are the most commonly used
  behavior pattern, setting the foundations for other behaviors, all of which
  can be (and in the early days of OTP were) implemented using this
  module.
Generic Servers
The gen_server module implements the client-server behavior we extracted in the
    previous chapter. It is part of the standard library application and
    available as part of the Erlang/OTP distribution. It contains the generic
    code that interfaces with the callback module through a set of callback functions. The
    callback module, in our example containing the code specific to the frequency server, is
    implemented by the programmer. The callback module has to export a series
    of functions that follow naming and typing conventions, so that their
    inputs and return values conform to the protocol required by the
    behavior.
As seen in Figure 4-1, the functions of
    both the behavior and callback module execute within the scope the same
    server process. In other words, a process loops in the generic server
    module, invoking the callback functions in the callback module as
    needed.
[image: The frequency server callback and gen_server behaviour
          modules.]Figure 4-1. The callback and behavior modules

The gen_server library module provides functions to
    start and stop the server. You supply callback code to initialize the
    system, and in the case of either normal or abnormal process termination,
    it is possible to call a function from your callback module to clean up
    the state prior to termination. In particular, you no longer need to send
    messages to your process. Generic servers encapsulate all message passing
    in two functions—one for sending synchronous messages and one for sending
    asynchronous messages. These handle all of the borderline cases we
    discussed in the previous chapter, and many others we probably hadn’t even
    realized could be an issue or cause a race condition. There is also
    built-in functionality for software upgrades, where you are able to
    suspend your process and migrate data from one version of your system to
    the next. Generic servers also provide timeouts, both on the client side
    when sending requests, and on the server side when no messages are
    received in a predetermined time interval.
We now cover all of the callback functions required when using
    generic servers. They include: 
	The init/1 callback function initializes a server process created by the
          gen_server:start_link/4 call.

	The handle_call/3 callback function handles synchronous requests sent to the
          server by gen_server:call/2. When the request has been
          handled, call/2 returns a value computed by
          handle_call/3.

	Asynchronous requests are taken care of in the handle_cast/2 callback
          function. The requests originate in the
          gen_server:cast/2 call, which sends a message to a server process and
          immediately returns.

	Termination is handled when any of the server callback
          functions return a stop message, resulting in the terminate/2 callback function being
          called.


We look at these functions in more detail including all of their
    arguments, return values, and associated callbacks as soon as we’ve
    covered the module directives.

Behavior Directives
When we are implementing an OTP behavior, we need to include behavior
    directives in our module declarations.
-module(frequency).
-behavior(gen_server).

-export([start_link/1, init/1, ...]).

start_link(...) -> ...
The behavior directive is used by the compiler to issue warnings about callback
    functions that are not defined, not exported, or defined with the wrong
    arity. The dialyzer tool also uses these declarations for checking type
    discrepancies. An even more important use of the behavior directive is for
    the poor souls1 who have to support, maintain, and debug your code long
    after you’ve moved on to other exciting and stimulating projects. They
    will see these directives and immediately know you have been using the
    generic server patterns. If they want to see the initialization of the
    server, they go to the init/1 function. If they want to see how
    the server cleans up after itself, they jump to terminate/3. This is a great improvement
    over a situation in which every company, project, or developer reinvents
    their own, possibly buggy, client-server implementations. No time is
    wasted understanding this framework, allowing whoever is reading the code
    to concentrate on the specifics.
Behavior Versus Behaviour
You might have noticed that we are using the American spelling
      when adding the behavior directive in the callback module. British chums, don’t despair. When
      defining your behavior directives, both the American “behavior” and
      British “behaviour” spellings are honored:
-behavior(tcp_wrapper).
-behaviour(tcp_wrapper).
The same applies when defining your behavior_info/1
      callback function. Many moons ago, if you did not stick to the British
      spelling, swallowing your pride and forcing yourself to type in that
      extra letter, you would get an unknown behavior warning when compiling
      your callback module. Many have been caught out and spent endless hours
      trying to figure out the problem and resolve it.

In our example code, compiler warnings come as a result of the -behavior(gen_server). directive because we
    omit the code_change/3 function, a callback we cover
    in Chapter 12 when discussing release upgrades.
    In addition to this directive, we sometimes use a second, optional
    directive, -vsn(Version), to keep track of
    module versions during code upgrade (and downgrade). We cover versions in
    more detail in Chapter 12.

Starting a Server
With the knowledge of our module directives, let’s start a server. Generic servers
    and other OTP behaviors are started not with the spawn BIFs, but with
    dedicated functions that do more behind the scenes than just spawn a
    process:
gen_server:start_link({local,Name},Mod,Args,Opts) ->
    {ok, Pid} | ignore | {error, Reason}
The start_link/4 function takes four arguments. The first tells the gen_server
    module to register the process locally with the alias Name.
    Mod is the name of the callback module, where the
    server-specific code and the callback functions will be found.
    Args is an Erlang term passed to the callback function that
    initializes the server state. Opts is a list of process and
    debugging options we cover in Chapter 5. For the time being, let’s
    keep it simple and pass the empty list for Opts. If a process
    is already registered with the Name alias, {error,
    {already_started, Pid}} is returned. Keep a vigilant eye on which
    process executes which functions. You can note them in Figure 4-2, where the server bound to the process
    Pid is started by the supervisor. The supervisor is denoted
    by a double ring as it is trapping exits.
[image: Starting a gen_server using start_link/4.]Figure 4-2. Starting a generic server

When the gen_server process has been spawned, it is
    registered with the alias Name, subsequently calling the
    init/1 function in the callback module Mod. The
    init/1 function takes Args, the third parameter
    to the start_link call, as an argument, irrespective of
    whether it is needed. If no arguments are needed, the init/1
    function can ignore it with the don’t care variable. Keep in mind that
    Args can be any valid Erlang term; you are not bound to using
    lists.
Note
If Args is a (possibly empty) list, the list will
        be passed to init/1 as a list, and not result in an
        init of a different arity being called. For example, if
        you pass [foo, bar], init([foo,bar]) will be
        called, not init(foo, bar). This is a common mistake
        developers make when transitioning from Erlang to OTP, as they confuse
        the properties of spawn and spawn_link with
        those of the behavior start and start_link
        functions.

The init/1 callback function is responsible for
    initializing the server state. In our example, this entails creating the
    variable containing the lists of available and allocated
    frequencies:
start() ->                                                       % frequency.erl
    gen_server:start_link({local, frequency}, frequency, [], []).

init(_Args) ->
    Frequencies = {get_frequencies(), []},
    {ok, Frequencies}.

get_frequencies() -> [10,11,12,13,14,15].
If successful, init/1 callback function returns
    {ok, LoopData}. If the startup fails but you do not want to
    affect other processes started by the same supervisor, return ignore. If you want to affect other processes,
    return {stop, Reason}. We cover ignore in Chapter 8
    and stop in “Termination”.
In our example, start_link/4 passes the empty list
    [] to init/1, which in turn uses the
    _Args don’t care variable to ignore it. We could have passed
    any other Erlang term, as long as we make it clear to anyone reading the
    code that no arguments are needed. The atom undefined or the
    empty tuple {} are other favorites.
By passing {timeout, Ms} as an option in the
    Opts list, we allow our generic server Ms
    milliseconds to start up. If it takes longer, start_link/4
    returns the tuple {error, timeout} and the behavior process
    is not started. No exception is raised. We cover options in more detail in
    Chapter 5.
Starting a generic server behavior process is a synchronous
    operation. Only when init/1 callback function returns {ok,
    LoopData} to the server loop does the
    gen_server:start_link/4 function return {ok,
    Pid}. It’s important to understand the synchronous nature of
    start_link and its importance to a repeatable startup
    sequence. The ability to deterministically reproduce an error is important
    when troubleshooting issues that occur at startup. You could
    asynchronously start all of the processes, checking each afterward to make
    sure they all started correctly. But as a result of changing scheduler
    implementations and configuration values running on multi-core
    architectures, deploying to different hardware or operating systems, or
    even the state of the network connectivity, the processes would not
    necessarily always initialize their state and complete the startup
    sequence in the same order. If all goes well, you won’t have an issue with
    the variability inherent in an asynchronous startup approach, but if race
    conditions manifest themselves, trying to figure out what went wrong and
    when, especially in production environments, is not for the faint of
    heart. The synchronous startup approach implemented in
    start_link clearly ensures through its simplicity that each
    process has started correctly before moving on to the next one, providing
    determinism and reproducible startup errors on a single node. If startup
    errors are influenced by external factors such as networks, external
    databases, or the state of the underlying hardware or OS, try to contain
    them. In the cases where determinism does not help, a controlled startup
    procedure removes any element of doubt as to where the issue might be.

Message Passing
Having started our generic server and initialized its loop data, we
    now look at how communication works. As you might have understood from the
    previous chapter, sending messages using the ! operator is
    out of fashion. OTP uses functional interfaces that provide a higher level
    of abstraction. The gen_server module exports functions that
    allow us to send both synchronous and asynchronous messages, hiding the
    complexity of concurrent programming and error handling from the
    programmer.
Synchronous Message Passing
While Erlang has asynchronous message passing built in as part of the language, there is
      nothing stopping us from implementing synchronous calls using existing
      primitives. This is what the gen_server:call/2 function does. It sends
      a synchronous Message to the server and waits for a
      Reply while the server handles the request in a callback
      function. The Reply is passed as the return value to the
      call. The message and reply follow a specific protocol and contain a
      unique tag (or reference), matching the message and the response. Let’s
      have a look at the gen_server:call/2 function in more
      detail:
gen_server:call(Name, Message) -> Reply
Name is either the server pid or the registered name
      of the server process. The Message is an Erlang term that
      gets forwarded as part of the request to the server. Requests are
      received as Erlang messages, stored in the mailbox, and handled
      sequentially. Upon receiving a synchronous request, the handle_call(Message, _From,
      LoopData) callback function is invoked in the callback module.
      The first argument is the Message passed to
      gen_server:call/2. The second argument, _From,
      contains a unique request identifier and information about the client.
      We will ignore it for the time being, binding it to a don’t care
      variable. The third argument is the LoopData originally
      returned by the init/1 callback function. You should be
      able to follow the call flow in Figure 4-3.
[image: Sending a synchronous gen_server message using
            call/2.]Figure 4-3. Synchronous message passing

The handle_call/3 callback function contains all the
      code required to handle the request. It is good practice to have a
      separate handle_call/3 clause for every request and to use
      pattern matching to pick the right one, instead of using a
      case statement to single out the individual messages. In
      the function clause, we would execute all of the code for that
      particular request and, when done, return a tuple of the format
      {reply, Reply, NewLoopData}. A callback module uses the
      atom reply to tell the gen_server that the
      second element, Reply, has to be sent back to the client
      process, becoming the return value of the gen_server:call/2
      request. The third element, NewLoopData, is the callback
      module’s new state, which the gen_server passes into the
      next iteration of its tail-recursive receive-evaluate loop. If
      LoopData does not change in the body of the function, we
      just return the original value in the reply tuple. The
      gen_server merely stores it without inspecting it or
      manipulating its contents. Once it sends the reply tuple back to the
      client, the server is then ready to handle the next request. If no
      messages are queued up in the process mailbox, the server is suspended
      waiting for a new request to arrive.
In our frequency server example, allocating a frequency needs a synchronous
      call because the reply to the call must contain the allocated frequency.
      To handle the request, we call the internal function
      allocate/2, which you might recall returns
      {NewFrequencies, Reply}. NewFrequencies is the
      tuple containing the lists of allocated and available frequencies, while
      the Reply is the tuple {ok, Frequency} or
      {error, no_frequency}:
allocate() ->                                                    % frequency.erl
    gen_server:call(frequency, {allocate, self()}).

handle_call({allocate, Pid}, _From, Frequencies) ->
    {NewFrequencies, Reply} = allocate(Frequencies, Pid),
    {reply, Reply, NewFrequencies}.
Once completed, the allocate/0 function called by the
      client process returns {ok, Frequency} or {error,
      no_frequency}. The updated loop data containing available and
      allocated frequencies is stored in the generic server receive-evaluate
      loop awaiting the next request.

Asynchronous Message Passing
If the client needs to send a message to the server but does not expect a reply, it can
      use asynchronous requests. This is done using the gen_server:cast/2 library
      function:
gen_server:cast(Name, Message) -> ok
Name is the pid or the locally registered alias of
      the server process. Message is the term the client wants to
      send to the server. As soon as the cast/2 call has sent its
      request, it returns the atom ok. On the server side, the
      request is stored in the process mailbox and handled sequentially. When
      it is received, the Message is passed on to the handle_cast/2 callback function,
      implemented by the developer in the callback module.
The handle_cast/2 callback function takes two
      arguments. The first is the Message sent by the client,
      while the second is the LoopData previously returned by the
      init/1, handle_call/3, or
      handle_cast/2 callbacks. This can be seen in Figure 4-4.
[image: Sending an asynchronous gen_server message using
            cast/2]Figure 4-4. Asynchronous message passing

The handle_cast/2 callback function has to return a
      tuple of the format {noreply, NewLoopData}. The
      NewLoopData will be passed as an argument to the next call
      or cast request.
In some applications, client functions return a hardcoded value,
      often the atom ok, relying on side effects executed in the
      callback module. Such functions could be implemented as asynchronous
      calls. In our frequency example, did you notice that
      frequency:deallocate(Freq) always returns the atom
      ok? We don’t really care if handling the request is delayed
      because the server is busy with other calls, making it a perfect
      candidate for an example using a generic server cast:
deallocate(Frequency) ->                                         % frequency.erl
    gen_server:cast(frequency, {deallocate, Frequency}).

handle_cast({deallocate, Freq}, Frequencies) ->
    NewFrequencies = deallocate(Frequencies, Freq),
    {noreply, NewFrequencies};
The client function deallocate/1 sends an
      asynchronous request to the generic server and immediately returns the
      atom ok. This request is picked up by the
      handle_cast/2 function, which pattern matches the
      {deallocate, Frequency} message in the first argument and
      binds the loop data to Frequencies in the second. In the
      function body, it calls the helper function deallocate/2,
      moving Frequency from the list of allocated frequencies to
      the list of available ones. The return value of
      deallocate/2 is bound to the variable
      NewFrequencies, returned as the new loop data in the
      noreply control tuple.
Note that we said that only in some applications do client
      functions ignore return values from server functions with side effects.
      Pinging a server to make sure it is alive, for example, would rely on
      gen_server:call/2 raising an exception if the server had
      terminated or if there were a delay, possibly as a result of heavy load,
      in handling the request and sending the response. Another example where
      synchronous calls are used is when there is a need to throttle requests
      and control the rate at which messages are sent to the server. We
      discuss the need to throttle messages in Chapter 15.
As with pure Erlang, calls and casts should be abstracted in a
      functional API if used from outside the module. This gives you greater
      flexibility to change your protocol and hide private
      implementation-related information from the caller of the function.
      Place the client functions in the same module as the process, as this
      makes it easier to follow the message flow without jumping between
      modules.

Other Messages
OTP behaviors are implemented as Erlang processes. So while communication
      should ideally occur through the protocols defined in the
      gen_server:call/2 and gen_server:cast/2
      functions, that is not always the case. As long as the pid or registered
      name is known, there is nothing stopping a user from sending a message
      using the Name ! Message construct. In some cases, Erlang
      messages are the only way to get information across to the generic
      server. For example, if the server is linked to other processes or ports
      but has called the process_flag(trap_exit, true) BIF to
      trap exits from those processes or ports, it might receive
      EXIT signal messages. Also, communication between processes and ports
      or sockets is based on message passing. And finally, what if we are
      using a process monitor, monitoring distributed nodes or communicating
      with legacy, non-OTP-compliant code?
These examples all result in our server receiving Erlang messages
      that do not comply with the internal OTP messaging protocol of the
      server. Compliant or not, if you are using features that can generate
      messages to your server, then your server code has to be capable of
      handling them. Generic servers provide a callback function that takes
      care of all of these messages. It is the handle_info(_Msg,
      LoopData) callback. When called, it has to return either the
      tuple {noreply, NewLoopData} or, when stopping,
      {stop, Reason, NewLoopData}:
handle_info(_Msg, LoopData) ->                                   % frequency.erl
    {noreply, LoopData}.
It is common practice, even if you are not expecting any messages,
      to include this callback function. Not doing so and sending the server a
      non-OTP-compliant message (they arrive when you least expect them!)
      would result in a runtime error and the server terminating, as the
      handle_info/2 function would be called in the callback
      module, resulting in an undefined function error.
We’ve kept our frequency server example simple. We ignore any
      message coming in, returning the unchanged LoopData in the
      noreply tuple. If you are certain you should not be
      receiving non-OTP messages, you could log such messages as errors. If we
      wanted to print an error message every time a process the server was
      linked to terminated abnormally, the code would look like this (we are
      assuming that the server in question is trapping exits):
handle_info({'EXIT', _Pid, normal}, LoopData) ->
    {noreply, LoopData};
handle_info({'EXIT', Pid, Reason}, LoopData) ->
    io:format("Process: ~p exited with reason: ~p~n",[Pid, Reason]),
    {noreply, LoopData};
handle_info(_Msg, LoopData) ->
    {noreply, LoopData}.
Warning
One of the downsides of OTP is the overhead resulting from the
        layering of the various behavior modules and the data overhead
        required by the communication protocol. Both will affect performance.
        In an attempt to shave a few microseconds from their calls, developers
        have been known to bypass the gen_server:cast function
        and use the Pid ! Msg construct instead, or, even worse,
        embed receive statements in their callback functions to
        receive these messages. Don’t do this! You will make your code hard to
        debug, support, and maintain, lose many of the advantages OTP brings
        to the table, and get the authors of this book to stop liking you. If
        you need to shave off microseconds, optimize only when you know from
        actual performance measurements that your program is not fast
        enough.


Unhandled Messages
Erlang uses selective receives when retrieving messages from the process
      mailbox. But allowing us to extract certain messages while leaving
      others unhandled comes with the risk of memory leakages. What happens if
      a message type is never read? Using Erlang without OTP, the message
      queue would get longer and longer, increasing the number of messages to
      be traversed before one is successfully pattern matched. This message
      queue growth will manifest itself in the Erlang VM through high CPU
      usage as a result of the traversal of the mailbox, and by the VM
      eventually running out of memory and possibly being restarted through heart, which we cover in
      Chapter 11.
All of this is valid if we are using pure Erlang, but OTP
      behaviors take a different approach. Messages are handled in the same
      order in which they are received. Start your frequency server, and try
      sending yourself a message you are not handling:
1> frequency:start().
{ok,<0.33.0>}
2> gen_server:call(frequency, foobar).

=ERROR REPORT==== 29-Nov-2015::18:27:45 ===
** Generic server frequency terminating 
** Last message in was foobar
** When Server state == {data,[{"State",
                                {{available,[10,11,12,13,14,15]},
                                 {allocated,[]}}}]}
** Reason for termination == 
** {function_clause,[{frequency,handle_call,
                                [foobar,
                                 {<0.44.0>,#Ref<0.0.4.112>},
                                 {[10,11,12,13,14,15],[]}],
                                [{file,"frequency.erl"},{line,63}]},
                     {gen_server,try_handle_call,4,
                                 [{file,"gen_server.erl"},{line,629}]},
                     {gen_server,handle_msg,5,
                                 [{file,"gen_server.erl"},{line,661}]},
                     {proc_lib,init_p_do_apply,3,
                               [{file,"proc_lib.erl"},{line,240}]}]}
This is probably not what you were expecting. The frequency server terminated with a
      function_clause runtime error, printing an error
      report.2 When you call a function, one of the clauses always has to
      match. Failure to do so results in a runtime error. When doing a
      gen_server call or cast, the message is always retrieved
      from the mailbox in the generic server loop, and the
      handle_call/3 or handle_cast/2 callback
      function is invoked. In our example, handle_call(foobar, _From,
      LoopData) doesn’t match any of the clauses, causing the function
      clause error we’ve just viewed. The same would happen with a
      cast.
How do we avoid such errors? One option is to have a catch-all,
      where unknown messages are pattern matched to a don’t care variable and
      ignored. This is specific to the application, and may or may not be the
      answer. A catch-all might be the norm with the
      handle_info/2 callback when dealing with ports, sockets,
      links, monitors, and monitoring of distributed nodes where there is a
      risk of forgetting to handle a particular message not needed by the
      application. When dealing with calls and casts, however, all requests
      should originate from the behavior callback module and any unknown
      messages should be caught in the early stages of testing.
If in doubt, don’t be defensive, and instead make your server
      terminate when receiving unknown messages. Treat these terminations as
      bugs, and either handle the messages or correct them at the source. If
      you do decide to ignore unknown messages, don’t forget to log them.

Synchronizing Clients
What happens in a situation where two clients each send a synchronous
      request to a server, but instead of immediately responding to each
      individually, the server has to wait for both requests before responding
      to the first? We demonstrate this in Figure 4-5. This
      could be done for synchronization purposes or because the server needs
      the data from both requests.
[image: Waiting for a second message before responding to a client
            request.]Figure 4-5. Rendezvous with generic servers

The solution to this problem is simple. Do you remember the
      From field in the handle_call(Message, From, State)
      callback function? Instead of returning a reply back to the behavior
      loop, we return {noreply, NewState}. We then use the
      From attribute and the function:
gen_server:reply(From, Reply)
to later send back the reply to the client when it suits us. In
      the case of having to synchronize two clients, it could be in the second
      handle_call/3 callback, where the From value
      for the first client is stored between the calls either as part of the
      NewState or in a table or database.
You can also use reply/2 if a synchronous request
      triggers a time-consuming computation and the only response the client
      is interested in is an acknowledgment that the request has been received
      and is in the process of being fulfilled, without having to wait for the
      whole computation to be completed. To send an immediate acknowledgment,
      the gen_server:reply/2 call can be used in
      the callback itself:
handle_call({add, Data}, From, Sum) -> 
    gen_server:reply(From, ok), 
    timer:sleep(1000),
    NewSum = add(Data, Sum),
    io:format("From:~p, Sum:~p~n",[From, NewSum]),
    {noreply, NewSum}.
Let’s run this code, assuming it is a generic server implemented
      in the from callback module. The call
      timer:sleep/1 will suspend the process, allowing the shell process to handle
      the response from gen_server:reply/2 before the io:format/2 call:
1> gen_server:start({local, from}, from, 0, []).
{ok,<0.53.0>}
2> gen_server:call(from, {add, 10}).
ok
From:{<0.55.0>,#Ref<0.0.3.248>}, Sum:10
Note the value and format of the From argument we are
      printing in the shell. It is a tuple containing the client pid and a
      unique reference. This reference is used in a tag with the reply sent
      back to the client, ensuring that it is in fact the intended reply, and
      not a message conforming to the protocol sent from another process.
      Always use From as an opaque data type; don’t assume it is
      a tuple, as its representation might change in future releases.


Termination
What if we want to stop a generic server? So far, we’ve seen the callback
    functions init/1, handle_call/3, and
    handle_cast/2 return {ok, LoopData},
    {reply, Reply, LoopData}, and {noreply,
    LoopData}, respectively. Stopping the server requires the callbacks
    to return different tuples: 
	init/1 can return {stop,
          Reason}

	handle_call/3 can return {stop, Reason,
          Reply, LoopData}

	handle_cast/2 can return {stop, Reason,
          LoopData}

	handle_info/2 can return {stop, Reason,
          LoopData}


These return values terminate with the same behavior as
    if exit(Reason) were called. In the case of calls and casts,
    before exiting, the callback function terminate(Reason, LoopData) is called.
    It allows the server to clean up after itself before being shut down. Any
    value returned by terminate/2 is ignored. In the case of
    init, stop should be
    returned if something fails when initializing the state. As a result,
    terminate/2 will not be called. If we return {stop,
    Reason} in the init/1 callback, the
    start_link function returns {error,
    Reason}.
In our frequency server example, the stop/0 client
    function sends an asynchronous message to the server. Upon receiving it,
    the handle_cast/2 callback returns the tuple with the
    stop control atom, which in turn results in the
    terminate/2 call being invoked. Have a look at the
    code:
stop() -> gen_server:cast(frequency, stop).                      % frequency.erl

handle_cast(stop, LoopData) ->
    {stop, normal, LoopData}.

terminate(_Reason, _LoopData) ->
    ok.
To keep the example simple, we’ve left terminate empty.
    In an ideal world, we would probably have killed all of the client
    processes that were allocated a frequency, thereby terminating their tasks
    using those frequencies and ensuring that upon a restart, all frequencies
    are available.
Look at the message gen_server:cast/2 sends to the
    frequency server. You’ll notice it is the atom stop, pattern
    matched in the first argument of the handle_cast/2 call. The
    message has no meaning other than the one we give to it in our code. We
    could have sent any atom, like gen_server:cast(frequency,
    donald_duck). Pattern matching donald_duck in the
    handle_cast/2 would have given us the same result. The only
    stop that has special meaning is the one that occurs in the
    first element of the tuple returned by handle_cast/2, as it
    is interpreted in the receive-evaluate loop of the generic server.
If you are shutting down your server as part of your normal workflow
    (e.g., the socket it is handling has been closed, or the hardware it
    controls and monitors is shutting down), it is good practice to set your
    Reason to normal. A non-normal
    reason, while perfectly acceptable, will result in error reports being
    logged by the SASL logger. These entries might overshadow those of real
    crashes. (The SASL logger is another freebie you get when using OTP. We
    cover it in Chapter 9.)
Although servers can be stopped normally by returning the
    stop tuple, there might be cases when they terminate as the
    result of a runtime error. In these cases, if the generic server is
    trapping exits (by having called the process_flag(trap_exit,
    true) BIF), terminate/2 will also be called, as shown
    in Figure 4-6. If you are not
    trapping exits, the process will just terminate without calling terminate/2.
[image: An abnormal gen_server termination when trapping
          exits.]Figure 4-6. Abnormal server termination

If you want the terminate/2 function to execute after
    abnormal terminations, you have to set the trap_exit flag. If it is not set, a supervisor
    or linked process might bring the server down without allowing it to clean
    up.
Having said this, always check the context for termination. If a
    runtime error has occurred, clean up the server state with extreme care,
    as you might end up corrupting your data and so set your system up for
    more runtime errors after the server restarts. When restarting, you should
    aim to recreate the server state from correct (and unique) sources of
    data, not a copy you stored right before the crash, as it might have been
    corrupted by the same fault that caused the crash.

Call Timeouts
When sending synchronous messages to your server using a gen_server call, you should expect a response
    within milliseconds. But what if there is a delay in sending the response?
    Your server might be extremely busy handling thousands of requests, or
    there might be bottlenecks in external dependencies such as databases,
    authentication servers, IP networks, or any other resource or API taking
    its time to respond. OTP behaviors have a built-in timeout of 5 seconds in
    their synchronous gen_server:call APIs. This should be enough
    to cater to most queries in any soft real-time system, but there are
    borderline cases that need to be handled differently. If you are sending a
    synchronous request using OTP behaviors and have not received a response
    within 5 seconds, the client process will raise an exception. Let’s try it
    out in the shell with the following callback module:
-module(timeout).
-behavior(gen_server).

-export([init/1, handle_call/3]).

init(_Args) ->
    {ok, undefined}.

handle_call({sleep, Ms}, _From, LoopData) ->
    timer:sleep(Ms),
    {reply, ok, LoopData}.
In the gen_server:call/2 function, we send a message of
    the format {sleep, Ms}, where Ms is a value used
    in the timer:sleep/1 call executed in the
    handle_call/3 callback. Sending a value larger than 5,000 milliseconds should cause
    the gen_server:call/2 function to raise an exception, as such
    a value exceeds the default timeout. Let’s try it out in the shell. We
    assume that the timeout module is already compiled, so as to avoid the
    compiler warnings from the callback functions we have omitted:
1> gen_server:start_link({local, timeout}, timeout, [], []).
{ok,<0.66.0>}
2> gen_server:call(timeout, {sleep, 1000}).
ok
3> catch gen_server:call(timeout, {sleep, 5001}).
{'EXIT',{timeout,{gen_server,call,[timeout,{sleep,5001}]}}}
4> flush().
Shell got {#Ref<0.0.0.300>,ok}
5> gen_server:call(timeout, {sleep, 5001}).
** exception exit: {timeout,{gen_server,call,[timeout,{sleep,5001}]}}
     in function  gen_server:call/2
6> catch gen_server:call(timeout, {sleep, 1000}).
{'EXIT',{noproc,{gen_server,call,[timeout,{sleep,1000}]}}}
We start the server, and in shell command 2, we send a synchronous
    message telling the server to sleep for 1,000 milliseconds before replying
    with the atom ok. As this is within the 5-second default
    timeout, we get our response back. But in shell command 3, we raise the
    timeout to 5,001 milliseconds, causing the gen_server:call/2
    function to raise an exception. In our example, shell command 3 catches
    the exception, allowing the client function to handle any special cases
    that might arise as a result of the timeout.
If you decide to catch exceptions arising as the result of a
    timeout, be warned: if the server is alive but busy, it will send back a
    response after the timeout exception has been raised. This response has to
    be handled. If the client is itself an OTP behavior, the exception will
    result in the handle_info/2 call being invoked. If this call
    has not been implemented, the client process will crash.
If the call is from a pure Erlang client, the exception will be
    stored in the client mailbox and never handled. Having unread messages in
    your mailbox will consume memory and slow down the process when new
    messages are received, as the littering messages need to be traversed
    before new ones will be pattern matched. Not only that, but sending a
    message to a process with a large number of unread messages will slow down
    the sender, because the send operation will consume more reductions. This
    will have a knock-on effect, potentially triggering more timeouts and
    further growing the number of littering messages in the client
    mailbox.
The performance penalty when sending messages to a process with a
    long message queue does not apply to behaviors synchronously responding to
    the process where the request originated. If the client process has a long
    message queue, thanks to compiler and virtual machine optimizations, the
    receive clause will match the reply without having to
    traverse the whole message queue.
We see the proof of this memory leak in shell command 4, where
    unread messages are flushed. Had we not flushed the message, it would have
    remained in the shell’s mailbox. Throughout this book, we keep reminding
    you not to handle corner cases and unexpected errors in your code, as you
    run the risk of introducing more bugs and errors than you actually solve.
    This is a typical example where side effects resulting from these timeouts
    will probably manifest themselves only under extreme load in a live
    system.
Now have a look at shell command 5 and Figure 4-7. We have a call that causes the client
    process to crash, because it is executed outside the scope of a
    try-catch statement. In a majority of cases, if your server
    is not responding for any (possibly unknown) reason, making the client
    process terminate and letting the supervisor deal with it is probably the
    best approach. In this example, the shell process terminates and is
    immediately restarted. The timeout server sends a response to the old
    client (and shell) pid after 5,001 milliseconds. As this process does not
    exist anymore, the message is discarded. So why does shell command 6 fail
    with reason noproc? Have a look at the sequence of shell
    commands and see if you can figure it out before reading on.
[image: An internal gen_server timeout when sending synchronous
          requests.]Figure 4-7. Server timeouts

When we started the server, we linked it to the shell, making the
    shell process act as both the client and the parent. The timeout server
    terminated after we executed a gen_server:call/2 call outside
    of the scope of a try-catch in shell command 5. Because the
    server is not trapping exits, when the shell terminated, the
    EXIT signal propagated to the server, causing it to also
    terminate. In normal circumstances, the client and the parent of the
    server that links to it would not be the same process, so this would not
    occur. These issues tend to show up when testing behaviors from the shell,
    so keep them in mind when working on your exercises.
So, how do we supply something other than the 5-second default
    timeout value in behaviors? Easy: we set our own timeout. In generic
    servers, we do this using the following function call:
gen_server:call(Server, Message, TimeOut) -> Reply
where TimeOut is either the desired value in
    milliseconds or the atom infinity.
A client call will often consist of a chain of synchronous requests
    to several, potentially distributed, behavior processes. They might in
    turn send requests to external resources. More often than not, choosing
    timeout values becomes tricky, as these processes are accessing services
    and APIs provided by third parties completely out of your control. Systems
    that have been known to respond in milliseconds to the majority of the
    requests can take seconds or even minutes under extreme loads. The
    throughput of your system counted in operations per second might still be
    the same, but when there is a higher load—possibly many orders of
    magnitude higher—going through it, the latency of the individual requests
    will be higher.
The only way to answer the question of what TimeOut you
    should set is to start with your external requirements. If a client
    specifies a 30-second timeout, start with it and work your way through the
    chain of requests. What are the guaranteed response times of your external
    dependencies? How will disk access and I/O respond under extreme load?
    What about network latency? Spend lots of time stress testing your system
    on the target hardware and fine-tune your values accordingly. When you’re
    unsure, start with the 5,000-millisecond default value. Use the value
    infinity with extreme care, avoiding it altogether unless
    there’s no other alternative.
Deadlocks
Picture two generic servers in a badly designed system.
      server1 does a synchronous call to server2.
      server2 receives the request, and through a series of calls
      in other modules ends up (possibly unknowingly) executing a synchronous
      callback to server1. Observing Figure 4-8, this problem is resolved not through
      complex deadlock prevention algorithms, but through timeouts.
[image: Resolving deadlocks with gen_server:call
            timeouts.]Figure 4-8. Generic server deadlocks

If server1 has not received a response within 5,000
      milliseconds, it terminates, causing server2 to terminate
      as well. Depending on what gets there first, the termination is
      triggered either through the monitor signal or through a timeout of its
      own. If more processes are involved in the deadlock, the termination
      will propagate to them as well. The supervisor will receive the
      EXIT signals and restart the servers accordingly. The
      termination is stored in a log file where it is hopefully detected,
      resulting in the bug leading to the deadlock being fixed.
Strategies for Avoiding Deadlocks
Despite the ease of creating deadlocks, they are extremely rare,
        no matter how complex the program might be. This has to do with how
        the systems are architected, the concurrency is modeled, and
        dependencies among processes and applications are handled. The lack of
        shared memory and critical sections helps remove the danger of
        deadlocks. Experienced Erlang programmers will by default ensure that
        their programs are designed to avoid deadlocks, often without having
        to think about it. Newbies, however, need to find a suitable strategy
        in the initial design phase of the system and stick to it. A standard
        practice when dealing with static processes that are not started and
        terminated dynamically is to allow synchronous calls to be made only
        to processes that were started before the process making the call.
        Calls from older processes to younger ones may only be asynchronous.
        If a reply is required from the younger process, it sends it back
        through a (possibly asynchronous) callback function. The start order
        of static processes is defined in supervision trees, which also
        happens to be the order used with dynamic processes. This will become
        clear when we cover supervision trees and restart orders in Chapter 8. You need to keep it in mind when
        processes are grouped into supervision trees, when supervision trees
        are grouped into applications, and when application start orders are
        defined.

In 17 years of working with Erlang, I’ve come across only one
      deadlock.3 Process A synchronously called process
      B, which in turn did a remote procedure call to another
      node that resulted in a synchronous call to process C.
      Process C synchronously called process D,
      which did another remote procedure call back to the first node. This
      call resulted in a synchronous callback to process A, which
      was still waiting for a response back from B. We discovered
      this deadlock when integrating the two nodes for the first time, and it
      took us 5 minutes to solve. Process A should have called
      B asynchronously, and process B should have
      responded back to A with an asynchronous callback. So while
      there is a risk of deadlocks, if you approach the problem right, it is
      minimal, as the largest cause of deadlocks occurs when controlling
      execution and failure in critical sections—something for which the
      shared-nothing approach in Erlang provides plenty of alternatives.


Generic Server Timeouts
Picture a generic server whose task is to monitor and communicate with a
    particular hardware device. If the server has not received a message from
    the device within a predefined timeout, it should send a ping request to
    ensure the device is alive. These ping requests can be triggered by
    internal timeouts, created by adding a timeout value in the control tuples
    sent back as a result of the behavior callback functions:
init/1        -> {ok, LoopData, Timeout}
handle_call/3 -> {reply, Reply, LoopData, Timeout}
handle_cast/2 -> {noreply, LoopData, Timeout}
handle_info/2 -> {noreply, LoopData, Timeout}
The value Timeout is either an integer in milliseconds
    or the atom infinity. If the server does not receive a
    message in Timeout milliseconds, it receives a
    timeout message in its handle_info/2 callback
    function. Returning infinity is the same as not setting a
    timeout value. Let’s try it with a simple example where every 5,000
    milliseconds, we generate a timeout that retrieves the current time and
    prints the seconds. We can pause the timer and restart it by sending the
    synchronous messages start and pause:
-module(ping).   
-behavior(gen_server).

-export([init/1, handle_call/3, handle_info/2]).
-define(TIMEOUT, 5000).

init(_Args) ->
    {ok, undefined, ?TIMEOUT}.

handle_call(start, _From, LoopData) ->
    {reply, started, LoopData, ?TIMEOUT};
handle_call(pause, _From, LoopData) ->
    {reply, paused, LoopData}.

handle_info(timeout, LoopData) ->
    {_Hour,_Min,Sec} = time(), 
    io:format("~2.w~n",[Sec]),
    {noreply, LoopData, ?TIMEOUT}.
Assuming the ping module is compiled, we start it and generate a
    timeout every 5 seconds. We can suspend the timeout by sending it the
    pause message, which when handled in the second clause of the
    handle_call/3 function does not include a timeout in its
    return tuple. We turn it back on with the start
    message:
1> gen_server:start({local, ping}, ping, [], []).
{ok,<0.38.0>}
22
27
2> gen_server:call(ping, pause).
paused
3> gen_server:call(ping, start).
started
51
56
4> gen_server:call(ping, start).
started
4
Because we set a relatively high timeout, we do not generate a
    timeout message at 5,000-millisecond intervals. We send a timeout message
    only if a message has not been received
    by the behavior. If a message is received, as is happening with shell
    command 4 in our example, the timer is reset.
If you need timers that may not be reset or have to run at regular
    intervals irrespective of incoming messages, use functions such as erlang:send_after/3 or those provided by the
    timer module, including apply_after/3,
    send_after/2, apply_interval/4, and
    send_interval/2.
Hibernating Behaviors
If instead of a timeout value or the atom infinity we return
      the atom hibernate, the server will reduce its memory
      footprint and enter a wait state. You will want to use
      hibernate when servers that receive intermittent,
      memory-intensive requests are causing the system to run low on memory.
      Using hibernate will discard the call stack and run a
      full-sweep garbage collection, placing everything in one continuous
      heap. The allocated memory is then shrunk to the size of the data on the
      heap. The server will remain in this state until it receives a new
      message.
Warning
There is a cost associated with hibernating processes, as it
        involves a full-sweep garbage collection prior to hibernating and one
        soon after the process wakes up. Use hibernation only if you do not
        expect the behavior to receive any messages in the foreseeable future
        and need to economize on memory, not for servers receiving frequent
        bursts of messages. Using it as a preemptive measure is dangerous,
        especially if your process is busy, as it might (and probably will)
        cost more to hibernate the process than to just leave it as is. The
        only way to know for sure is to benchmark your system under stress and
        demonstrate a gain in performance along with a substantial reduction
        in memory usage. Add it as an afterthought only if you know what you
        are doing. If in doubt, don’t do it!



Going Global
Behavior processes can be registered locally or globally. In our examples, they
    have all been registered locally using a tuple of the format {local,
    ServerName}, where ServerName is an atom denoting the
    alias. This is equivalent to registering the process using the register(ServerName, Pid) BIF. But
    what if we want location transparency in a distributed cluster?
Globally registered processes piggyback on the global name server,
    which makes them transparently accessible in a cluster of (possibly
    partitioned) distributed nodes. The name server stores local replicas of
    the names on every node and monitors node health and changes in
    connectivity, ensuring there is no central point of failure. You register
    a server globally by using the {global, Name} tuple as an
    argument to the server name field. It is equivalent to registering the
    process using the function global:register_name(Name, Pid).
    Use the same tuple in your synchronous and asynchronous
    calls:
gen_server:start_link({global,Name},Mod,Args,Opts) ->
    {ok, Pid} | ignore | {error, Reason}
gen_server:call({global, Name}, Message) -> Reply
gen_server:cast({global, Name}, Message) -> ok
There is an API that allows you to replace the global process
    registry with one you have implemented yourself. You can create your own
    when the functionality provided by the global module is not enough, or when you
    want a different behavior that caters for different network topologies.
    You need to provide a callback module—say, Module—that exports the same functions and
    return values defined in the global module, namely register_name/2,
    unregister_name/1, whereis_name/1, and
    send/2. Name registration then uses the tuple {via,
    Module, Name}, and starting your process using {via, global,
    Name} is the same as registering it globally using {global,
    Name}. For globally registered processes, the Name
    does not have to be an atom; rather, any Erlang term is valid. Once you
    have your callback module, you can start your process and send messages
    using:
gen_server:start_link({via, Module, Name},Mod,Args,Opts) -> {ok, Pid}
gen_server:call({via, Module, Name}, Message) -> Reply
gen_server:cast({via, Module, Name}, Message) -> ok
In the remainder of the book, we aggregate {via, Module,
    Name}, {local, Name}, and {global, Name}
    using NameScope. Most servers are registered locally, but
    depending on the complexity of the system and clustering strategies,
    global and via are used as well.
When communicating with behaviors, you can use their pids instead of
    their registered aliases. Registering behaviors is not mandatory; not
    registering allows multiple instances of the same behavior to run in
    parallel. When starting the behaviors, just omit the name field:
gen_server:start_link(Mod, Args, Opts) ->
    {ok, Pid} | ignore | {error, Reason}
If you broadcast a request to all servers within a cluster of nodes,
    you can use the generic server multi_call/3 call if you need
    results back and abcast/3 if you don’t:
gen_server:multi_call(Nodes, Name, Request [, Timeout]) ->
    {[{Node,Reply}], BadNodes}
gen_server:abcast(Nodes, Name, Request) -> abcast
On the servers of the individual nodes, requests are handled in the
    handle_call/3 and handle_cast/2 callbacks,
    respectively. When broadcasting asynchronously with abcast,
    no checks are made to see whether or not the nodes are connected and still
    alive. Requests to nodes that cannot be reached are simply thrown
    away.

Linking Behaviors
When you start behaviors in the shell, you link the shell process to them.
    If the shell process terminates abnormally, its EXIT signal will propagate to the behaviors it started and cause them to
    terminate. Generic servers can be started without linking them to their
    parent by calling gen_server:start/3 or
    gen_server:start/4. Use these functions with care, and
    preferably only for development and testing purposes, because behaviors
    should always be linked to their parent:
gen_server:start(NameScope,Mod,Args,Opts)
gen_server:start(Mod,Args,Opts) ->
    {ok, Pid} | {error, {already_started, Pid}}
Erlang systems will operate for years in the absence of rebooting
    the computers they run on. They can continue even during software upgrades
    for bug fixes, feature enhancements, and new functionality, and through
    behaviors terminating abnormally and being restarted. When shutting down a
    subsystem, you need to be 100% certain that all processes associated with
    that subsystem are terminated, and avoid leaving any orphan processes
    lingering. The only way to do so with certainty is using links. We go into
    more detail when we cover supervisor behaviors in Chapter 8.

Summing Up
In this chapter, we have introduced the most important concepts and
    functionality in the generic server behavior, the behavior behind all
    behaviors. You should by now have a good understanding of the advantages
    of using the gen_server behavior instead of rolling your own.
    We have covered the majority of functions and associated callbacks needed
    when using this behavior. Although you do not need to understand
    everything that goes on behind the scenes, we hope you now have an idea
    and appreciation that there is more than meets the eye. The most important
    functions we have covered are listed in Table 4-1.
Table 4-1. gen_server callbacks	gen_server function or action	gen_server callback function
	gen_server:start/3,
              gen_server:start/4,
              gen_server:start_link/3,
              gen_server:start_link/4	Module:init/1
	gen_server:call/2,
              gen_server:call/3,
              gen_server:multi_call/2,
              gen_server:multi_call/3	Module:handle_call/3
	gen_server:cast/2,
              gen_server:abcast/2,
              gen_server:abcast/3	Module:handle_cast/2
	Pid ! Msg, monitors, exit messages, messages
              from ports and sockets, node monitors, and other non-OTP
              messages	Module:handle_info/2
	Triggered by returning {stop, ...} or when
              terminating abnormally while trapping exits	Module:terminate/2

When compiling behavior modules, you will have seen a warning about
    the missing code_change/3 callback. We cover it in Chapter 11 when looking at release handling and
    software upgrades. In the next chapter, while using the generic server
    behavior as an example, we look at advanced topics and behavior-specific
    functionality that comes with OTP.
At this point, you will want to make sure you review the manual
    pages for the gen_server module. If you are feeling brave,
    read the code in the gen_server.erl
    source file, and the source for the gen helper module. Having
    read this and the previous chapter and understood the corner cases, you
    will discover the code is not as cryptic as it might first appear.

What’s Next?
The next chapter contains odds and ends that allow you to dig deeper
    into behaviors. We start investigating the built-in tracing and logging
    functionality we get from using them. We also introduce you to the
    Opts flags in the start functions. The flags allow you to
    fine-tune performance and memory usage, as well as start your behavior
    with trace flags enabled. So read on, as interesting things are in store
    in the next chapter.

1 At the risk of sounding repetitious, be nice to them, as it
        might be you someday.
2 If you run this example in the shell, you will also get an
          error report from the shell itself terminating as a result of the
          exit signal propagating through the link.
3 I’m the author who in the previous book caused the nationwide
          data outage in a mobile network.


Chapter 5. Controlling OTP Behaviors
We have in the previous chapters covered the highlights of the
  gen_server behavior. You should by now have implemented your
  first client-server application and started to build an idea of how OTP
  behaviors help you to reduce your code base by allowing you to focus on the
  specifics of what your system has to do. This chapter digs deeper into
  behaviors, exploring some of the advanced topics intermixed with built-in
  functionality. While we are focusing on generic servers, most of what we
  write will apply to many of the other behaviors, including those you could
  implement yourself. Read with care, as we reference this chapter often in
  the remainder of this book.
The sys Module
We’ve mentioned many times the built-in functionality you get as a result of
    using OTP behaviors and the ease with which you can add your own features.
    Most of what we cover is accessed through the sys module,
    allowing you to generate trace events, inspect and manipulate behavior
    state, as well as send and receive system messages. All of this
    functionality works on the standard OTP behaviors, but also, as we show in
    Chapter 10, you can reuse it when defining your
    own behaviors.
Tracing and Logging
Let’s find out how built-in tracing works by running a little example. Start
      your frequency server in the shell and, using the sys module, try the
      following:
1> frequency:start().
{ok,<0.35.0>}
2> sys:trace(frequency, true).
ok
3> frequency:allocate().
*DBG* frequency got call {allocate,<0.33.0>} from <0.33.0>
*DBG* frequency sent {ok,10} to <0.33.0>,
      new state {[11,12,13,14,15],[{10,<0.33.0>}]}
{ok,10}
4> frequency:deallocate(10).
*DBG* frequency got cast {deallocate,10}
ok
*DBG* frequency new state {[10,11,12,13,14,15],[]}
5> sys:trace(frequency, false).
ok
By turning on the trace flags for our frequency allocator, we are able to generate
      printouts of system events, including messages and state changes. Our
      example pipes the messages out to the shell. If we instead use
      the sys:log/2 call, we store them in the
      server loop. They can be displayed using the print flag or can be retrieved as an
      Erlang data structure through the get flag:
6> sys:log(frequency, true).
ok
7> {ok, Freq} = frequency:allocate(), frequency:deallocate(Freq).
ok
8> sys:log(frequency, print).
*DBG* frequency got call {allocate,<0.33.0>} from <0.33.0>
*DBG* frequency sent {ok,10} to <0.33.0>, 
      new state {[11,12,13,14,15],[{10,<0.33.0>}]}
*DBG* frequency got cast {deallocate,10}
*DBG* frequency new state {[10,11,12,13,14,15],[]}
ok
9> sys:log(frequency, get).
{ok,[{{in,{'$gen_call',{<0.33.0>,#Ref<0.0.4.59>},
                       {allocate,<0.33.0>}}},
      frequency,#Fun<gen_server.0.40920150>},
     {{out,{ok,10},<0.33.0>,{[11,12,13,14,15],[{10,<0.33.0>}]}},
      frequency,#Fun<gen_server.6.40920150>},
     {{in,{'$gen_cast',{deallocate,10}}},
      frequency,#Fun<gen_server.0.40920150>},
     {{noreply,{[10,11,12,13,14,15],[]}},
      frequency,#Fun<gen_server.4.40920150>}]}
10> sys:log(frequency, false).
ok
When you use the sys:log/2 call to store trace events
      in the server loop, the default number of events stored is 10. You can
      override this number by passing the {true, Int} flag when
      enabling logging. Int is an integer denoting the new
      default number of events you want to store. When you plan to deal with
      large volumes of debug messages, or leave debugging turned on for a long
      time, use sys:log_to_file/2 to pipe the messages to a text file.

System Messages
Have a look at the return value of shell command 9 in the previous example. If we
      pass the get flag to sys:log/2, we get back a
      list of system events. The forms of the events in the log depend
      on the processes producing them, but generally each event contains a
      system message with one the following forms:
	{in, Msg}
	This system message is triggered when a message (including a
            timeout) is sent to the gen_server. Msg
            includes any construct that is part of the OTP message protocol,
            e.g., {'$gen_cast', Msg} for casts and
            {'$gen_call',{Pid, Ref}, Msg} for calls. For any
            regular Erlang term sent as a message to a gen_server process,
            Msg will simply be that term.

	{out, Msg, To, State}
	This system message is generated when replying to the client
            using the {reply, Reply, NewState} control tuple, but
            is not generated for replies sent via gen_server:reply/2.
            Msg is the reply sent to the client, and
            To is the pid of the client. State is
            the same as NewState specified in the
            reply tuple.

	term()
	System messages of any format are allowed. For example, the
            return value of shell command 9 includes the message
            {noreply,{[10,11,12,13,14,15],[]}}, which is the
            result of handle_cast/2 after handling the
            deallocate cast. The second element of the
            noreply tuple is the new state of the
            gen_server.


Note that the documentation at the time of writing (up to and
      including Erlang 18) for the sys module also specifies
      {in, Msg, From} and {out, Msg, To} as valid
      system messages, but these are not used by any standard
      behaviors.

Your Own Trace Functions
You can implement your own trace functions by implementing your own fun that
      gets triggered in conjunction with a system event. You can pattern match
      on the events, taking any course of action you like. Trace functions can
      be used to generate your own debug printouts, turn on low-level traces
      using dbg or the trace BIFs, enable logging of
      particular information, run diagnostic functions, or execute any other
      code you might need (or none at all).
The following example keeps a counter for every time a client is
      refused a frequency and prints a warning message.1 Note how we achieve this without touching the original
      frequency code:
11> F = fun(Count,{out, {error, no_frequency}, Pid, _LoopData}, ProcData) ->
              io:format("*DBG* Warning, Client ~p refused frequency! Count:~w~n",
              [Pid, Count]), Count + 1;
              (Count,  _, _) ->
                Count
         end.
#Fun<erl_eval.18.54118792>
12> sys:install(frequency, {F, 1}).
ok
13> frequency:allocate(), frequency:allocate(), frequency:allocate(),
    frequency:allocate(), frequency:allocate(), frequency:allocate().
{ok,15}
14> frequency:allocate().
*DBG* Warning, Client <0.33.0> refused frequency! Count:1
{error,no_frequency}
15> frequency:allocate().
*DBG* Warning, Client <0.33.0> refused frequency! Count:2
{error,no_frequency}
16> sys:remove(frequency, F).
false
17> frequency:allocate().
{error,no_frequency}
Let’s look at this example in more detail. We create a fun
      F that takes three arguments. The first,
      Count, is the state of the debug function, passed between
      calls. Count, in this example, acts like a state variable,
      as we’ve chosen to count the number of times the first function clause
      is matched. Other trace functions might use more complicated states. The
      second argument is the system message, in which we pattern match on
      outbound messages of the format {error, no_frequency}. The
      third argument, ProcData, is specific to the behavior being
      traced; for example, for a gen_server it’s either the
      registered name of the process or its pid, whereas for a
      gen_fsm it is a tuple of the process name or pid and the
      current state name of the FSM (we cover the gen_fsm
      behavior in Chapter 6). All other system messages
      are ignored due to the second clause of the F function. We
      set the state of the debug function Count to the integer 1
      in the second element of the tuple of the sys:install/2 call in shell command 12.
      In this command, we also pass the fun F to the frequency
      server, enabling the debug printout. We continue by calling
      frequency:allocate/0 enough times to run out of
      frequencies, triggering the debug printout twice and increasing the
      counter. Every time it is executed, F returns the
      Count state variable, incremented by 1 if the first clause
      pattern matches or unchanged if the second clause matches. Returning the
      atom done in the debug function is equivalent to disabling
      the function by calling sys:remove/2, as shown in command
      line 16.

Statistics, Status, and State
The sys module also lets you collect general statistics on behaviors as
      well as retrieve information about their internal state, including loop
      data, without having to reinvent the wheel or implement anything
      new:
18> sys:statistics(frequency, true).
ok
19> frequency:allocate().
{error,no_frequency}
20> sys:statistics(frequency,get).
{ok,[{start_time,{{2015,11,29},{20,10,54}}},
     {current_time,{{2015,11,29},{20,12,9}}},
     {reductions,33},
     {messages_in,1},
     {messages_out,0}]}
21> sys:statistics(frequency, false).
ok
22> sys:get_status(frequency).
{status,<0.35.0>,
        {module,gen_server},
        [[{'$ancestors',[<0.33.0>]},
          {'$initial_call',{frequency,init,1}}],
         running,<0.33.0>,[],
         [{header,"Status for generic server frequency"},
          {data,[{"Status",running},
                 {"Parent",<0.33.0>},
                 {"Logged events",[]}]},
          {data,[{"State",
                  {{available,[]},
                   {allocated,[{15,<0.33.0>},
                               {14,<0.33.0>},
                               {13,<0.33.0>},
                               {12,<0.33.0>},
                               {11,<0.33.0>},
                               {10,<0.33.0>}]}}}]}]]}
While sys:statistics/2 returns a list of self-explanatory tagged values, the tuple
      returned by sys:get_status/1 is not as obvious. It
      returns a tuple of the format: 
{status, Pid, {module,Mod}, [ProcessDictionary, SysState, Parent, Dbg, Misc]}
where
      Pid and Mod are the behavior’s process
      identifier and callback module, respectively. The
      ProcessDictionary is a list of key-value tuples. Note that
      while we do not use the process dictionary in our frequency server
      example, the gen_server library module and other behaviors
      we have yet to cover all do.
SysState tells us whether the behavior’s state is
      running or suspended. By calling sys:suspend/1 and
      sys:resume/1, we can stop the behavior from handling normal messages, in
      which case only system messages are handled. Usually you suspend a
      process when upgrading software using the OTP-specified upgrade
      capabilities or when testing edge conditions. You might also suspend a
      process when defining your own behaviors, but most probably not when
      using standard behaviors. The only way you should suspend Erlang
      processes in the business logic of your programs is by using
      receive clauses when none of the messages in the mailbox
      match. Using the sys:suspend/1 call in your code is a
      no-no!
Parent is the parent pid, needed by behavior
      processes that trap exits. If the parent terminates, the behavior
      processes have to terminate as well. In this example,
      Parent is the shell process ID. DbgFlag holds
      the trace and statistics flags, which at the time we retrieved the
      status had all been turned off (hence the empty list).
Finally, Misc is a list of tagged tuples that contain
      behavior-specific information. The contained items vary among behaviors,
      and you are able to override them yourself by providing an optional
      callback function in your behavior callback module. When working with
      generic servers, the most important information in Misc is
      the loop data. You can influence the contents of the Misc
      value yourself by providing an optional callback function in your
      behavior callback module, using the function to format the {data,
      [{"State", ...}]} field to a value the end user might find
      simpler, more meaningful, or more helpful:
...
-export([format_status/2]).
...

format_status(Opt, [ProcDict, {Available, Allocated}]) ->
    {data, [{"State", {{available, Available}, {allocated, Allocated}}}]}.
If Opt is the atom normal, it tells us
      the status is being retrieved as a result of the
      sys:get_status/1 call. If the behavior is terminating
      abnormally and the status is being retrieved to incorporate it in an
      error report, Opt is set to terminate.
ProcDict is a list of key-value tuples containing the
      process dictionary. In the earlier example, the new state would be:
      
{data,[{"State", {{available, []},{allocated, [{15,<0.33.0>}, {14,<0.33.0>}, 
                                               {13,<0.33.0>}, {12,<0.33.0>},
                                               {11,<0.33.0>}, {10,<0.33.0>}]}}}]}
While
      it is not mandatory to return a tuple of the format {data,
      [{"State", State}]}, it is recommended in order to stay
      consistent with what is currently in use.
To examine just the loop data stored in the behavior process by the callback
      module, use sys:get_state/1:
23> {Free, Alloc} = sys:get_state(frequency).
{[],
 [{15,<0.33.0>}, {14,<0.33.0>}, {13,<0.33.0>}, {12,<0.33.0>},
  {11,<0.33.0>}, {10,<0.33.0>}]}
This handy method allows you to avoid having to extract the loop
      data from the results of sys:get_status/1, something that’s
      often difficult to do while debugging interactively in the shell. The
      sys:get_state/1 call is intended only for debugging, in
      fact, as is the corresponding function sys:replace_state/2,
      which allows you to replace the loop state of a running behavior
      process. For example, imagine you are debugging in the shell and you
      want to quickly add a few frequencies. You could do it by recompiling
      the code and restarting the server—something that’s simple to do when
      there are only a few frequencies available, as in our example, but much
      more difficult if you are in the middle of a test with thousands of
      allocated frequencies and need to retain the state:
24> sys:replace_state(frequency, fun(_) -> {[16,17], Alloc} end).
{[16,17],
 [{15,<0.33.0>}, {14,<0.33.0>}, {13,<0.33.0>}, {12,<0.33.0>},
  {11,<0.33.0>}, {10,<0.33.0>}]}
25> frequency:allocate().
{ok,16}
Replacing the loop data requires passing a function that receives
      the current value of the loop data and returns a new value. This allows
      you to easily modify only the necessary portions of a complex loop data
      value. In this example, we replace the empty list of available
      frequencies with a list of two new frequencies while keeping the list of
      allocated frequencies. The sys:replace_state/2 function
      returns the new loop data. Since the new value in our example adds
      available frequencies, the next call to
      frequency:allocate/0, which previously was returning
      {error, no_frequency}, now returns {ok,16}.

The sys Module Recap
To sum up, let’s take another look at the functions in the
      sys module we have seen. Note the notation we are using for
      [,Timeout] in our function descriptions. It means an
      optional argument to the call, defining functions of arity 2 and 3.
      Because these functions are nothing other than synchronous calls to our
      behavior, using Timeout allows us to override the 5-second
      default timeout time with a value more suited for our application. The
      functions we’ve covered are:
sys:trace(Name,TraceFlag [,Timeout]) -> ok

sys:log(Name,LogFlag [,Timeout]) -> ok | {ok, EventList}
sys:log_to_file(Name,FileFlag [,Timeout]) -> ok | {error, open_file}

sys:install(Name,{Func,FuncState} [,Timeout]) -> ok
sys:remove(Name,Func [,Timeout])

sys:statistics(Name,Flag [,Timeout]) -> ok | {ok, Statistics}.

sys:get_status(Name [,Timeout]) -> {status, Pid, {module, Mod}, Status}

sys:get_state(Name [,Timeout]) -> State

sys:replace_state(Name,ReplaceFun [,Timeout]) -> State

sys:suspend(Name [,Timeout]) -> ok
sys:resume(Name [,Timeout]) -> ok
To print trace events to the shell, use trace/2. When logging the events for
      later retrieval, use log/2. Turn logging on and off by setting
      LogFlag to true or false. By
      default, the last 10 events are stored; you can override this value by
      turning on logging using {true, Int}, where
      Int is a non-negative integer.
Events can be retrieved using the print and get flags. When
      using log_to_file/2, events are stored in
      textual format. The FileFlag is a string denoting the
      absolute or relative filename, or the atom false to turn it
      off. Use sys:install/2 to write your own triggers
      and trace functions in conjunction with system events and sys:remove/2 to recall
      them.
When using statistics/2, turn the gathering of
      statistics on and off by setting Flag to true
      or false, respectively. Use get_state/1 to examine loop data
      and replace_state/2 to replace it. And
      finally, get_status/1 returns all the
      available data relative to the internal behavior state. The
      get_state/1, replace_state/2, and
      get_status/1 functions are incredibly helpful when
      debugging and troubleshooting live systems.
Remember the Opts parameter passed as the last
      argument to the gen_server start functions? We used the
      empty list as a placeholder. You can enable tracing, logging, and
      statistics when starting your behavior by using the Opts
      field. If you pass [{debug, DbgList}], where
      DbgList contains one or more of the entries trace, log,
      statistics, and {log_to_file, FileName}, these
      flags are enabled as soon as the behavior process is started.


Spawn Options
When starting a behavior, you can change the default memory and garbage
    collector settings to address performance and memory utilization. The
    settings you pass are the same ones taken by the spawn_opt/4
    BIF, but passed as an argument of the format [{spawn_opts,
    OptsList}] along with the debug options in the behavior
    Opts field.
Use your spawn options with care! The only way to be sure you have
    performance issues and bottlenecks related to memory management is by
    profiling and benchmarking your systems. In doing so, you need to
    understand how the underlying heaps, memory allocation, and garbage
    collection mechanisms work. Premature optimization is the root of all evil
    (after shared memory and mutable state). If you do not believe us, you
    will soon learn that attempts to optimize memory management often have the
    opposite effect and make your programs slower. The vast majority of cases
    do not call for performance tuning, but those that do will greatly benefit
    being spawned with a larger heap or more (or less) frequent garbage
    collection cycles.
Memory Management and Garbage Collection
If you suspect that your performance issues can be addressed through memory
      management, benchmark your system while manipulating the heap and the
      garbage collector settings. Memory-related options that can be changed
      include:
	min_heap_size
	Sets the size the process heap will grow to before the
            garbage collector (gc) is triggered. This name is misleading,
            though, as it is in fact the maximum size the
            heap is allowed to grow to before triggering the gc.

	min_bin_vheap_size
	Sets the initial and minimal value of the space this process
            is allowed to use in the shared binary heap before triggering a
            garbage collection on the binaries.

	fullsweep_after
	Determines the number of generational garbage collections
            that have to be executed before a complete garbage collection
            pass.


How BEAM’s Garbage Collection Works
Erlang’s garbage collection can be described, in technical terms, as a
        per-process generational semispace copying
        collector that uses Cheney’s copy collection algorithm together with a
        global large object space. Using less fancy words, whenever
        a process has used up all the memory allocated in its heap, the BEAM
        virtual machine triggers a garbage collection that copies all of the
        live data (data still in use) to a new heap, freeing up all of the
        previously held space.
The garbage collector is called
        generational because live data in the heap that
        survives two sweeps is copied from an area called the young heap to an area called the
        old heap. Data is moved to the old heap under the
        assumption that, having survived two garbage collections, it will most
        likely survive future ones. The garbage collector always starts by
        traversing data on the young heap, copying live data that has survived
        a previous garbage collection to the old heap, and creating a new
        young heap to hold the rest. All the memory in the original young heap
        gets freed. If the garbage collection of the young heap has been
        unable to free enough memory (or there is not enough memory to copy
        the data from the young heap), a full-sweep garbage
        collection is triggered. This will inspect and free all data no longer referenced
        in the old heap as well as the young one.
If there still is not enough memory after the full sweep, the
        heap size is increased by allocating memory chunks based on a
        Fibonacci recurrence series with a starting base of 12 words and 38
        words. Each successive increase is the sum of 1 and the previous two
        word counts, so the next size would be 38+12+1, or 51 words. This
        continues to a size of 833,026 words, after which it is increased by
        20% of its current size.
A full-sweep collection is also triggered after a predefined
        number of generational garbage collections. Because of periods of
        little activity and a large allocated heap, long-lived processes might
        be holding on to data that is no longer needed. This can be addressed
        by configuring the number of generational garbage collections that
        trigger a full sweep or by hibernating the process (see “Hibernating Behaviors”).
Not all process data and state is stored in the respective
        process heaps. Binaries larger than 64 bytes are stored in a shared
        binary heap used by all processes. They are accessed by a reference,
        which, through message passing, can be shared among processes. Using a
        reference makes message passing of large binaries efficient, because
        they do not have to be copied. A reference counter increments for
        every reference pointing to the binary, and decrements when the
        reference is removed. When this counter reaches 0, the binary can be
        garbage collected.
A virtual binary heap is
        local to every process, and is not shared globally. Garbage
        collection is triggered when any process exceeds its virtual binary
        heap size and needs to free up more space. Binaries smaller than 64
        bytes are stored on the normal heap and are copied to the virtual heap
        when sent as a part of a message to other processes or during garbage
        collection. Garbage collection of the process and virtual binary heaps
        is done on a per-process basis, reducing the disruption created by
        memory management while retaining the soft real-time properties of the
        system.

In the following example, we start the frequency server and trace
      events related to the garbage collector. We use the
      dbg tracer to measure how many microseconds the
      process spends garbage collecting. When allocating five frequencies, the
      total was 9 microseconds (911,345–911,336):
1> dbg:tracer().
{ok,<0.35.0>}
2> {ok, Pid} = frequency:start().
{ok,<0.38.0>}
3> dbg:p(Pid, [garbage_collection, timestamp]).
{ok,[{matched,nonode@nohost,1}]}
4> frequency:allocate(), frequency:allocate(), frequency:allocate(),
   frequency:allocate(), frequency:allocate().
{ok,14}
(<0.38.0>) gc_start [{old_heap_block_size,0},
 {heap_block_size,233},
 {mbuf_size,0},
 {recent_size,0},
 {stack_size,12},
 {old_heap_size,0},
 {heap_size,213},
 {bin_vheap_size,0},
 {bin_vheap_block_size,46422},
 {bin_old_vheap_size,0},
 {bin_old_vheap_block_size,46422}] (Timestamp: {1448,829619,911336})
(<0.38.0>) gc_end [{old_heap_block_size,0},
 {heap_block_size,233},
 {mbuf_size,0},
 {recent_size,44},
 {stack_size,12},
 {old_heap_size,0},
 {heap_size,44},
 {bin_vheap_size,0},
 {bin_vheap_block_size,46422},
 {bin_old_vheap_size,0},
 {bin_old_vheap_block_size,46422}] (Timestamp: {1448,829619,911345})
If we now spawn the frequency server, setting the minimum heap
      size to 1,024 words (a smaller size would have been enough), we have
      enough memory to allocate the frequencies without triggering the garbage
      collector:
1> dbg:tracer().
{ok,<0.35.0>}
2> {ok, Pid} = gen_server:start_link({local, frequency}, frequency, [],
                                      [{spawn_opt, [{min_heap_size, 1024}]}]).
{ok,<0.38.0>}
3> dbg:p(Pid, [garbage_collection, timestamp]).
{ok,[{matched,nonode@nohost,1}]}
4> frequency:allocate(), frequency:allocate(), frequency:allocate(),
   frequency:allocate(), frequency:allocate().
{ok,14}
Process heap
By increasing the {min_heap_size, Size} to
        an appropriate value in a short-lived process, you can
        allow the process to execute without triggering the garbage collector
        or having to allocate more memory to further increase the heap size.
        This is ideal if a process is created and has a burst of memory- and
        CPU-intensive activity, after which it terminates. Upon termination,
        all the memory is efficiently released in one operation. Use this
        option with care, though, as picking too large a size will increase
        memory consumption and might slow down your program.
Size is measured in words, a
        unit size of data used by a particular processor architecture. In a
        32-bit architecture, a word is 4 bytes (32 bits), and in a 64-bit
        architecture, 8 bytes (64 bits). You could set the minimum heap size
        for all processes using the +hms flag when you start the
        Erlang runtime system using erl.
        Using the +hms flag is advisable only if you have
        relatively few processes running in your system and, of course, only
        if benchmarks show an increase in performance. As a rule of thumb, it
        is always better to set the minimum heap size on a per-process basis,
        and only if benchmarks show benefits. Because heap size increases are
        based on the Fibonacci series, the minimum heap size set will be the
        next value in the sequence larger than or equal to
        Size.

Virtual binary heap
One spawn option related to garbage collection and useful for
        performance tuning is {min_bin_vheap_size, VSize}, used
        to configure the minimum binary virtual heap size. The virtual binary
        heap size is the space a process is allowed to use before triggering
        the garbage collector and freeing the space taken up by binaries that
        are no longer referenced. This size refers to binaries larger than 64
        bytes in size. These are accessed through binary references, which can
        be used by all processes. You can set the virtual binary heap size for
        all processes using the +hmbs flag when you start your
        system with erl, but just like with
        the regular heap, use this option with restraint, and preferably only
        on specific processes, not on all of them.

Full sweep of the heap
By setting the {fullsweep_after, Number} spawn
        option, you can specify the number of generational garbage collections
        that take place before executing a full sweep. Setting
        Number to 0 disables the generational
        garbage collection mechanism, freeing all unused data in both the
        young heap and the old heap every time it is triggered. This will help
        in environments with little RAM where memory has to be strictly
        managed. The zero setting may also be useful when a lot of large
        binaries that are no longer referenced collect in the old heap and you
        want to remove them frequently. Setting a small value will be suitable
        if your data is short-lived and benchmarks demonstrate that it is
        cluttering up your heap. The Erlang documentation suggests a value of
        10 or 20, but you should pick your own based on the properties
        displayed by your system. The default value is much larger!
A full-sweep garbage collection is also triggered every time you
        hibernate your process. This might help reduce the memory footprint
        when working with processes that have memory-intensive computations
        but little overall activity. You can set the full-sweep value globally
        for all processes using the erlang:system_flag/2 call,
        but we recommend you don’t. You can use the
        process_info/2 BIF to get information on the settings you
        change:
5> process_info(Pid, garbage_collection).
{garbage_collection,[{min_bin_vheap_size,46422},
                     {min_heap_size,1598},
                     {fullsweep_after,65535},
                     {minor_gcs,0}]}
Note the default setting of fullsweep_after, a
        value much higher than you might expect. We had set the
        min_heap_size to 1024, but in shell prompt
        5, it appears to be 1598. We requested 1,024 words, but
        1,598 is the first value greater than 1,024 in the Fibonacci
        recurrence sequence of heap sizes the VM uses, so that value is
        selected instead of 1,024.
Warning
If you start playing with the heap size and garbage collection
          settings, keep in mind that memory is freed only when the garbage
          collector is triggered. There might be cases where the process heap
          contains binary references to potentially large binaries in the
          shared heap. Each reference to a binary is relatively small, so even
          if the process does not refer to these binaries anymore, potentially
          huge amounts of memory can be consumed without the garbage collector
          being triggered, because there is still plenty of space on the
          process heap. That is why the per-process virtual binary heap is
          there, calculating the total amount of memory used up by the
          binaries in the shared heap and helping ensure they get garbage
          collected more promptly. Under these circumstances, hibernating the
          process or triggering garbage collection using the
          erlang:garbage_collect() BIF might prove more
          useful.
Another potential risk is running out of memory. As an
          example, having a large min_heap_size and using the
          dangerously high default fullsweep_after value of
          65535 might result in the old heap growing because
          garbage collections are far apart, resulting in your system running
          out of memory before the first full sweeps are triggered. Always
          stress test your systems, and let soak test runs span days, if not
          weeks.



Spawn Options to Avoid
The following options should be avoided because they either do not
      work with behaviors or are considered to be bad programming practice.
      Although monitor can be passed as an option when using the
      spawn_opt/3 BIF, it is disallowed in generic servers and
      will result in the process terminating with a badarg. While
      you are allowed to use link as an option, starting the
      behaviors with start_link is preferred.
Process priorities should never be set using the {priority,
      Level} option, where Level is the atom
      low, normal, or high. Changing
      process priorities is even more dangerous than meddling with memory and
      garbage collection, as it can upset the VM’s balance and have serious
      repercussions on the soft real-time properties of your system. Changing
      priorities can cause the VM’s schedulers to behave strangely and
      unfairly; processes with a higher priority have been known to starve
      when the ratio between them and those with a lower priority reached
      certain limits. Furthermore, processes with a lower priority have caused
      the runtime system to run out of memory when, under heavy load, messages
      were not consumed as fast as they were produced. You obviously never
      notice these issues when testing your system; rather, they tend to come
      back and bite you when the live system comes under heavy load. Let the
      runtime system decide on your behalf, especially when dealing with
      hundreds of thousands of processes. You have been warned!

Timeouts
If you want to limit the time a behavior spends in its init function,
      include the option {timeout,Timeout}. If after
      Timeout milliseconds the init callback
      function is still executing, the process is terminated and the start
      function returns {error,timeout}. This option is useful in
      very specific circumstances, often in a running system with dynamic
      children responsible for a particular transient resource. We don’t
      recommend using it when starting your system, though; we instead suggest
      that you try to minimize the amount of work executed in the
      init function so as to not slow down the startup procedure.


Summing Up
There are many options to control and monitor your behaviors. Start with built-in tracing and
    logging functionality. You can then dynamically add generic trace and
    debug triggers or change your process state using funs and the
    sys module, during runtime and without the need to recompile
    your code. This is a priceless feature, as you can use it on systems you
    have never seen that have been running for years on end without the need
    to restart them. You can read more about this in the sys
    module’s reference manual page.
Optimizing processes through the use of the memory flags in their
    options is trickier, as it requires you to benchmark your system and base
    your optimizations on the information you extract as a result of your
    tests. It is rare that you will have to manipulate the default garbage
    collector settings or play with your heap sizes. But if and when you are
    having performance problems, you will be grateful you have read this far
    in this chapter. If you need more information, look at the documentation
    of the spawn_opt BIF in the erlang module’s
    manual page.

What’s Next?
We park online tracing for now, until we implement our own behaviors
    (learning how it all works behind the scenes) in Chapter 10, and ignore performance tuning until we
    reach Chapter 13. In the next chapters, we
    focus on the remaining behaviors, starting with FSMs, followed by event
    managers, supervisors, and applications. Remember that they are all built
    on the same foundations, so the sys module and all of the
    spawn and debug options we have discussed in this chapter will be
    valid.

1 The io:format/2 executed in the fun attaches itself to the group leader of the
          traced behavior, causing warnings to be printed in the local shell.
          If you connect from a remote shell, you will not be able to see
          them.


Chapter 6. Finite State Machines
Now that we’ve become experts at writing generic servers, the time has
  come to master our next behavior. When prototyping systems with what
  eventually became Erlang, language inventors Joe Armstrong, Mike Williams, and Robert Virding were
  implementing a soft telephony switch allowing them to phone each other and
  say hello.1 Each phone accessing the switch was prototyped as a process
  acting as an FSM. At any one time, the function would represent the state
  the phone was in (on hook, off hook, dialing, ringing, etc.) and receive
  events associated with that state (incoming call, dial, off hook, on hook,
  etc.).
One of the outcomes of this prototyping activity was to ensure that
  Erlang became a language suited for and optimized for building nontrivial
  and scalable FSMs, a key component in many complex systems. Developers use
  FSMs to program protocol stacks, connectors, proxies,
  workflow systems, gaming engines, and simulations, to mention but a few
  examples. So it was no surprise that when OTP behaviors came along, they
  included generic FSMs.
In this chapter, we introduce FSMs implemented in pure Erlang. We
  break an example up into generic and specific code, migrating it to the
  gen_fsm behavior. The good news is that all
  the borderline cases relating to concurrency and error handling that apply
  to generic servers also apply to FSMs. So while we might mention some of
  them, there will be no need for us to go into the same level of detail.
  After all, an FSM implementation is essentially a special variant of a
  generic server.
Finite State Machines the Erlang Way
Before diving into our examples, let’s get a bit of automata theory out of the way.
    An FSM is an abstract model consisting of a finite number of states and
    incoming events. When the program is in each state, it can receive certain
    events from the environment—and only those events. When an event arrives
    and the FSM is in a certain state, the program executes some predetermined
    actions associated with that state and transitions to a new state. The FSM
    then waits for a new event, in the new state.
For instance, in the FSM shown in Figure 6-1, the state day can handle events eclipse and sunset. eclipse keeps the FSM in its current state, while
    event sunset causes a transition to
    state night. In state night, event sunrise causes a transition back to state
    day. Any other events coming out of
    sequence (such as sunrise when in state
    day) are handled only after a
    transition to a state where they can be dealt with.
[image: The state and event transitions in the FSM process]Figure 6-1. Erlang FSM

In Erlang, each state is represented within a tail-recursive function and events are represented as
    messages. So for Figure 6-1, the code for state
    day would look as follows:
day() ->
    receive
        eclipse -> day();
        sunset  -> night()
    end.
Upon receiving an incoming event, the FSM executes one or more
    actions before transitioning to its next state. The state transition is
    achieved by calling the next function, determined by the combination of
    the current state and inbound event. In the following example, the
    combination of the event sunrise in
    state night will result in the action
    defined in the function make_roosters_crow/0, followed by a
    transition to state day. Note how we
    are not allowing solar eclipses to take place at night. If the FSM
    receives an eclipse event, it remains
    in the process mailbox until the FSM transitions to a state that can
    handle it:

night() ->
    receive
        sunrise ->
            make_roosters_crow(),
            day()
    end.
When you start an FSM, you need to give it a starting state and
    initialize it. As in the next code example, we could initialize the FSM by
    spawning the init/0 function and create the Earth
    there2 before moving on to state day:
start() ->
    spawn(?MODULE, init, []).

init() ->
    create_earth(),
    day().
This is how we do FSMs in Erlang. The keys to keeping FSMs simple
    are selective receives, tail-recursive functions, and the ability to
    initialize the FSM when spawning the process.
You should completely design your FSM, perhaps by drawing out a
    diagram like the ones in this chapter, before you start coding. You want
    to know what your states, events, actions, and state transitions are. If
    they get complex, see whether your FSM can be split up into smaller FSMs
    that, during execution, pass the flow between each other. They will be
    easier to both implement and maintain.
FSMs Versus Generic Servers
Beware of the common beginner error where instead of using a generic
      FSM, you use a generic server and unknowingly store the FSM state in the
      loop data. Ask yourself when designing the system whether you need an
      FSM or a client-server behavior. The answer is usually obvious if you
      consider the question in the design phase of the project.


Coffee FSM
To keep our Java aficionados happy, let’s use a coffee vending machine
    as an FSM example. It will be an embedded application interfacing the
    hardware through a specific hardware module. The implementation we are
    about to study has three states: 
	Selection, allowing the
          customer to select the desired coffee brew

	Payment, allowing the
          customer to insert coins and pay for the selected item

	Remove, a state where the
          FSM waits for the user to remove the drink from the machine


These states are linked by four events that trigger actions and
    transitions to next states. Events triggered by the customer
    include:
	Making a coffee selection

	Dropping a coin of any value in the slot to pay for the selection

	Pressing the cancel
        button

	Successful removal of the cup
        of coffee from the machine


Note that most of these events can be triggered in most states. If
    the FSM is in the payment state, there is nothing stopping a user from
    pressing the coffee selection buttons, or if we are in state selection,
    the user can always insert a coin. If the events can be triggered, they
    have to be managed regardless of the state. When events are received in a
    particular state, actions can be executed before transitioning to the next
    state. The actions in our example include:
	Display text in the coffee
        machine’s LED display

	Return change or inserted
        coins to the client

	Drop the cup in the machine

	Prepare the selected
        drink

	Reboot the coffee machine
        (not user-initiated)


A simplified version of the FSM can be seen in Figure 6-2. Note that it does not depict a complete set of
    events and actions. Coins can be inserted in states other than payment,
    the cancel button can be pressed in the selection or remove states, or the
    hardware could be reset when starting the FSM. The figure does, however,
    provide an overview of all the state transitions and events that trigger
    them. The figure annotates each transition with the actions that are
    executed when that transition is taken. Actions appear in brackets
    (<>) and events are in bold.
[image: Implementing a coffee machine as a finite state
          machine]Figure 6-2. Coffee machine FSM

With this model in mind, let’s start by stepping through a pure
    Erlang implementation of the FSM. After that, we migrate the
    implementation to the generic FSM behavior module.
The Hardware Stub
Embedded systems that require sensors and hardware interactions
      include device drivers written in C interfacing to the Erlang code. To
      keep the example simple, we have stubbed this interaction in the
      hw.erl module. We use this module
      in both the Erlang implementation and the generic FSM behavior
      implementation:
-module(hw).
-compile(export_all).

display(Str, Arg)      -> io:format("Display:" ++ Str ++ "~n", Arg).
return_change(Payment) -> io:format("Machine:Returned ~w in change~n",[Payment]).
drop_cup()             -> io:format("Machine:Dropped Cup.~n").
prepare(Type)          -> io:format("Machine:Preparing ~p.~n",[Type]).
reboot()               -> io:format("Machine:Rebooted Hardware~n").
You will see calls to this module in the FSM implementations.
      Functions being called as a result of the sensors in the coffee machine
      call the client functions in the coffee.erl module directly. For testing
      purposes, we instead call them from the shell. With this out of the way,
      let’s start looking at the implementation itself.

The Erlang Coffee Machine
In this section we create the Erlang part of the application,
      keeping in mind throughout how the FSM in this example can be
      generalized and made into a reusable behavior in OTP.
Starting
We start the FSM using the start_link/0 function.
        It spawns a new process that starts executing in the
        init/0 function and registers itself using the name
        coffee, the same name as the
        module. Here, we use the ?MODULE preprocessor construct
        to refer to the module name rather than using the module name
        explicitly, which we did for clarity in previous chapters. The
        init/0 function reboots the coffee machine and shows
        Make Your Selection in the display.
        We then enter into our first state by calling the tail-recursive
        function selection/0. Have a look at it and try to split
        it up into generic and specific code:
-module(coffee).
-export([tea/0, espresso/0, americano/0, cappuccino/0,
         pay/1, cup_removed/0, cancel/0]).
-export([start_link/0, init/0]).

start_link() ->
    {ok, spawn_link(?MODULE, init, [])}.

init() ->
    register(?MODULE, self()),
    hw:reboot(),
    hw:display("Make Your Selection", []),
    selection().
The generic code, highlighted in this example, includes
        spawning the process that runs in the init/0 function,
        registering it, and transitioning to the first state. The code specific
        to the coffee machine is the process name, the callback module, and
        the hardware-specific operations executed in init/0,
        along with any arguments we pass on to that call. The first state is
        also specific, as is any loop data we might pass on to that state. In
        our example, there is no state needed at startup.

The events
Two sets of client functions generate events that are passed on to
        the coffee FSM as asynchronous calls. The first four functions inform the FSM of
        the drink selection the user made, together with the price. The
        cup_removed event is triggered by hardware
        sensors when a cup is removed. If a coin is inserted,
        pay/1 is called, with the value of the coin passed as an
        argument. Finally, cancel is called when the
        cancel button is pressed. As we mentioned earlier, these events can be triggered in any
        state. There is nothing stopping a user from pressing the cancel
        button when the drink is being prepared, or inserting a coin without
        having made a selection. The client functions are as follows:
%% Client Functions for Drink Selections

tea()        -> ?MODULE ! {selection, tea,       100}.
espresso()   -> ?MODULE ! {selection, espresso,  150}.
americano()  -> ?MODULE ! {selection, americano, 100}.
cappuccino() -> ?MODULE ! {selection, cappuccino,150}.

%% Client Functions for Actions

cup_removed() -> ?MODULE ! cup_removed.
pay(Coin)     -> ?MODULE ! {pay, Coin}.
cancel()      -> ?MODULE ! cancel.
In these client functions, the tags and any data (such as the
        price) associated with the events are specific. What is generic are
        the sending of the events to the FSM and the possibility of having
        synchronous and asynchronous calls. In our example, the calls are all
        asynchronous. Had some of them been synchronous, the return value
        would also have been specific, but the protocol and the receive statement
        receiving the reply would have been generic.

The selection state
In the init/0 function, after having initialized
        the coffee machine, we make the transition to our first state. This is
        the selection state, where the customer picks a drink. Upon
        receiving the event {selection, Type, Price}, we display
        the price of the drink and move to the next state, payment. In this
        state, we pass the arguments Type, Price,
        and amount Paid, initially set to 0. These three
        arguments are the loop data needed in the payment state.
If a customer inserts a coin without having made a selection, we
        have to return it. If the customer presses the cancel button, we need to remove
        the event from the process mailbox, ensuring that it is not
        accidentally received in a later state:
%% State: drink selection 
selection() ->
    receive
        {selection, Type, Price} ->
            hw:display("Please pay:~w",[Price]),
            payment(Type, Price, 0);
        {pay, Coin} ->
            hw:return_change(Coin),
            selection();
        _Other ->   % cancel
            selection()
    end.
Every combination of state and event will result in a specific
        set of actions and a transition to the next state. The generic code
        consists of the sections receiving events, handling state transitions, and
        storing the loop data. The specific code relates to handling the
        events, namely updating the display, returning the coins, and deciding
        on the next state.

The payment state
When the customer has picked a drink, it is time to either
        pay for it or cancel the selection. Every coin inserted will result in
        the event {pay, Coin} being generated, where
        Coin is the amount that has been inserted. This amount is
        added to the total. If the total is greater than or equal to the price
        of the drink, the code will trigger actions terminating with the
        transition to the remove state. If not enough money has been inserted,
        the remaining amount to be paid is updated and the FSM remains in the
        payment state. If the cancel button is pressed, any payment made is
        returned to the user and the FSM returns to the selection state. Any
        other event—more specifically, pressing any of the selection
        buttons—is ignored. The way we ignore an event is to reinvoke the
        current state:
%% State: payment

payment(Type, Price, Paid) ->
    receive
        {pay, Coin} ->
            if 
                Coin + Paid >= Price ->
                    hw:display("Preparing Drink.",[]),
                    hw:return_change(Coin + Paid - Price),
                    hw:drop_cup(), hw:prepare(Type),
                    hw:display("Remove Drink.", []),
                    remove();
                true ->
                    ToPay = Price - (Coin + Paid),
                    hw:display("Please pay:~w",[ToPay]),
                    payment(Type, Price, Coin + Paid)
            end;
        cancel ->
            hw:display("Make Your Selection", []),
            hw:return_change(Paid),
            selection();
        _Other -> %selection
            payment(Type, Price, Paid)
    end.
As in the selection state, the generic code includes receiving
        events, state transitions, and storing the loop data. Specific code
        includes the events themselves, the actions executed as a result, and
        the next state. Storing the loop data could have been done in one
        variable containing a record, but as different states need a different
        number of arguments, this solution is cleaner for this particular
        example.

The remove state
The FSM enters the remove state when the coffee is paid for and
        has been brewed. It is a state of its own because the machine cannot
        be used to brew other beverages until the user removes the cup. When
        that happens, sensors will trigger the cup_removed event
        and reset the display. This allows us to transition to the selection
        state, where the activity can start all over again. There is nothing
        stopping the customer from inserting coins, and if this happens, they have
        to be returned. The same applies to the customer pressing the cancel
        or selection buttons, events that have to be ignored:
%% State: remove cup 
remove() ->
    receive
        cup_removed ->
            hw:display("Make Your Selection", []),
            selection();
        {pay, Coin} ->
            hw:return_change(Coin),
            remove();
        _Other ->   % cancel/selection
            remove()
    end.
Before starting the next section about the FSM behavior,
        download the code and stub modules and try it out. When doing so, take
        a moment to think of other possible implementations of an Erlang-based
        FSM. What parts of them are specific and what parts are generic? Of
        the generic parts, how would you package the generics into a
        callback-based library module?



Generic FSMs
To separate the generic from the specific functionality in an FSM, we’ll take
    the same course we took with generic servers. Table 6-1 lists the major generic and
    specific parts of the FSM.
Table 6-1. FSM generic and specific code	Generic	Specific
		Spawning the FSM

	Storing the loop data

	Sending events to the FSM

	Sending synchronous requests

	Receiving replies

	Timeouts

	Stopping the FSM


		Initializing the FSM state

	The loop data

	The events

	Handling events/requests

	The FSM states

	State transitions

	Cleaning up




Spawning the FSM, ensuring it has started correctly, and registering
    it do not change from one implementation to another. What do change are
    the local or global registered name of the process (if registered at all),
    debugging options, and arguments needed for the initialization.
    Initializing the FSM is specific, including determining the initial state
    and binding the loop data. Both are returned to the generic FSM
    receive-evaluate loop, which generically stores the data and state.
Sending both synchronous and asynchronous events and requests to the
    FSM is generic, as is receiving replies. What is specific are the contents
    of the events and requests and how they are handled based on the FSM
    state.
The states are all specific, as are the actions that have to be
    executed, choosing the next state to transition the FSM to, and
    updating loop data. Handling of timeouts, within both the client and the
    FSM itself, is generic. What happens when the timeout is triggered, on the
    other hand, is specific. Finally, stopping the FSM is generic, while
    cleaning up prior to termination is specific.
We can view the FSM as an extension of the generic server, with
    state handling added on top. Messages become events and callback functions
    that receive the messages become states. All of the generic code is placed
    in a library module called gen_fsm,
    while all of the specifics are placed in a callback module. The architecture is illustrated in Figure 6-3, which you can compare to Figure 4-1.
[image: Splitting the code into a generic library module and a
          callback module.]Figure 6-3. The FSM callback module


A Behavior Example
Using the coffee machine example, let’s have a look at all the library APIs
    and associated callback functions of the gen_fsm behavior module. We explore starting and stopping the generic FSM, as
    well as synchronous and asynchronous events. When stepping through the
    code, compare the gen_fsm behavior with
    gen_server. If you want to take
    it for a practice run, download the code from the book’s repository.
Starting the FSM
Every behavior callback module starts with module, behavior, and
      export directives. It also contains all of the state
      callback functions. While not mandatory, it is good practice to also
      include all of the client functions that generate the events in one
      place. Our coffee_fsm module looks like this:
-module(coffee_fsm).
-behavior(gen_fsm).

-export([start_link/0, stop/0]).
-export([init/1, terminate/3, handle_event/3]).        % Callback functions
-export([selection/2, payment/2, remove/2]).           % States
-export([americano/0, cappuccino/0, tea/0, espresso/0, % Client functions
         pay/1, cancel/0, cup_removed/0]).
The -behavior directive specifies the atom
      gen_fsm, used for compile-time warnings if callback
      functions are not implemented or exported. Exported functions include
      the start and stop functions with their
      respective callbacks, the client functions, and state callback
      functions.
The coffee machine is started using the gen_fsm:start_link/4 call, which spawns
      the FSM and links it to the parent. It returns the tuple {ok,
      Pid}, where Pid identifies the spawned process, or
      {error, Reason} if something goes wrong. We cover possible
      error reasons later; for now, let’s focus on the example.
As with all OTP behaviors, we prefer to wrap the
      start_link/4 call in a client function, located in the
      callback module. In our example, we’ve called this function
      coffee_fsm:start_link/0, but it could take on any name you
      like. What is important is that it eventually calls
      gen_fsm:start_link and returns whatever this call returns:
      most commonly {ok, Pid} or {error, Reason}, as
      seen in Figure 6-4, or the atom ignore. These values become relevant when we
      look at supervisors in Chapter 8.
[image: Starting a generic finite state machine
            behaviour.]Figure 6-4. Starting a gen_fsm

As soon as the generic FSM process has been spawned, the
      init/1 function in the callback module is invoked. Just as with generic
      servers, this function contains all the specific initialization code. In
      our example, it will reboot the hardware, reset the display, and return
      a tuple of the format {ok, StartState, LoopData}, where
      StartState denotes the state the FSM will be in when it
      receives its first event. LoopData contains the data passed
      to the state callback functions. We are also trapping exits in this
      example, for reasons that will become obvious when we look at
      termination:
start_link() ->
    gen_fsm:start_link({local, ?MODULE}, ?MODULE, [], []).

init([]) ->
    hw:reboot(),
    hw:display("Make Your Selection", []),
    process_flag(trap_exit, true),
    {ok, selection, []}.
In our example, the StartState is
      selection and the LoopData is not used, so we
      simply return the empty list value, []. When
      the init/1 callback returns control to the generic module, the
      synchronous gen_fsm:start_link call returns.
We register the process locally and set the callback module using
      the ?MODULE macro, which at compile time is replaced with
      the atom coffee_fsm. We pass [] as an argument
      to the init/1 callback function and set no options.
The following functions, identical to the ones exported by the
      generic server module, start an FSM:
gen_fsm:start_link(NameScope,Mod,Args,Opts)
gen_fsm:start(NameScope,Mod,Args,Opts)
gen_fsm:start_link(Mod, Args, Opts)
gen_fsm:start(Mod, Args, Opts) -> {ok, Pid}
                                  {error, Error}
                                  ignore

Mod:init/1 -> {ok, NextState, LoopData}
              {stop, Reason}
              ignore
NameScope defines how we register our behavior. Just
      as with generic servers, it can be set to {local, Name},
      {global, Name}, or {via, Module, ViaName},
      where the via tuple points to a user-defined process
      registry exporting the same API as the global module,
      all previously covered in “Going Global”. We can use
      the start functions to avoid linking the FSM process to its
      parent, and we can also decide not to register it. Opts
      (covered in Chapter 5) can also be
      passed. They include timeout, debug, and spawn options. Here, we just
      pass an empty list for Opts.
If something goes wrong in the init/1 callback, you
      can either terminate abnormally or
      return the tuple {stop, Reason}. It will propagate the
      error to the parent process calling the gen_fsm start
      function (typically via one of the callback module’s start functions),
      causing it to terminate as well. If the parent process happens to be a
      supervisor, it will in turn terminate all of its children and abort the
      startup procedure. Although things can go wrong when the system is
      running, by default, the system cannot recover from a fault in the
      init/1 callback function.
The most common failure reason you will encounter when testing
      your FSM from the shell is {error, {already_started, Pid}}.
      It occurs if another process with the same registered name already
      exists:
1> coffee_fsm:start_link().
Machine:Rebooted Hardware
Display:Make Your Selection
{ok,<0.38.0>}
2> coffee_fsm:start_link().
{error,{already_started,<0.38.0>}}
If you want to let the supervisor continue to start workers when
      init/1 fails, return the atom ignore. Instead
      of aborting the startup procedure, the supervisor will store the child
      specification and continue starting other behaviors. We cover the
      ignore and stop options in more detail in
      Chapter 8 when we look at
      supervisors.
Until then, the following example should give you an overview of
      the different behaviors. Pay particular attention to what causes the
      process calling the start and start_link
      functions to terminate. We’ve omitted the module headers from this
      example. If you want to view them, download the test_fsm.erl module from the book’s code
      repository:
start_link(TimerMs, Options) ->
    gen_fsm:start_link(?MODULE, TimerMs, Options).
start(TimerMs, Options) ->
    gen_fsm:start(?MODULE, TimerMs, Options).

init(0) ->
    {stop, stopped};
init(1) ->
    {next_state, selection, []};
init(TimerMs) ->
    timer:sleep(TimerMs),
    ignore.
Let’s run the code. In the first set of tests, we stop the FSM by
      returning {stop, Reason}:
1> test_fsm:start_link(0, []).
** exception exit: stopped
2> test_fsm:start(0, []).
{error,stopped}
Note the difference when the shell is linked to the behavior and
      when it is not.
In shell commands 3 and 4, we initialize the FSM with the
      test_fsm:init(1) call, which accidentally specifies
      next_state instead of ok as the first element
      of the return tuple in the callback function. This results in an invalid
      return value not recognized by the FSM back-end module, a mistake the authors have
      made many times:
3> test_fsm:start_link(1, []).
** exception exit: {bad_return_value,{next_state,selection,{}}}
4> test_fsm:start(1, []).
{error,{bad_return_value,{next_state,selection,{}}}}
A behavior module will terminate with the reason
      bad_return_value whenever you return a control tuple that
      does not follow the predefined protocol.
When reading through this example, make sure you understand the
      effect of the EXIT signal propagation when the shell
      process is linked to the FSM and when it is not. In shell command 5, we
      pass a 1,000-millisecond argument to init/1 to cause it to
      sleep for that long, but set the timeout option to 100 milliseconds; this
      triggers a timeout in the startup process that results in the
      {error, timeout} tuple. This will be returned whether or
      not the process is linked to the shell process:
5> test_fsm:start_link(1000, [{timeout, 100}]).
{error,timeout}
In our last set of tests, in shell commands 6 and 7, our
      init/1 function returns ignore. This does not
      result in the behavior terminating abnormally, and as a result, does not
      propagate further:
6> test_fsm:start_link(2, []).
ignore
7> test_fsm:start(2, []).
ignore
Although these examples specifically use the gen_fsm
      behavior, they are valid for all OTP workers.
Enough on starting and initializing our FSMs. Let’s move on to
      important things in life and figure out how to get this coffee
      brewed.

Sending Events
Having started our coffee FSM, we need to be able to define the states and
      send both synchronous and
      asynchronous events. When handled, they trigger
      state transitions. Events are usually sent in client functions defined
      in the callback module. Let’s start looking at asynchronous events in
      our FSM and see how they are handled in the different states.
Asynchronous events
Asynchronous events are sent using the gen_fsm:send_event(Name, Event)
        library function. This sends the Event to the FSM, which
        handles it in the callback function State(Event,
        LoopData) in the callback module. After handling the request,
        the State/2 function returns the new loop data with the
        next_state or the stop reason (Figure 6-5).
[image: Sending asynchronous events to the generic finite state
              machine.]Figure 6-5. Sending events

Our FSM event functions are split into two categories. The first
        are customer drink selections. These send events of the format
        {selection, Type, Price}, where Type is one
        of the atoms tea, espresso,
        americano,3 or cappuccino. Price is either
        100 or 150 units:
tea()       -> gen_fsm:send_event(?MODULE,{selection,tea,100}).
espresso()  -> gen_fsm:send_event(?MODULE,{selection,espresso,100}).
americano() -> gen_fsm:send_event(?MODULE,{selection,americano,150}).
cappuccino()-> gen_fsm:send_event(?MODULE,{selection,cappuccino,150}).
The second set of events include actions where the user inserts
        a coin, presses the cancel button, or removes a cup. There are no
        rules stating that events must comprise only static values. Note how
        in the pay/1 function we pass a variable as part of our
        event—the value of the inserted coin is bound to Coin
        and passed through the event {pay, Coin}:
pay(Coin)     -> gen_fsm:send_event(?MODULE,{pay, Coin}).
cancel()      -> gen_fsm:send_event(?MODULE,cancel).
cup_removed() -> gen_fsm:send_event(?MODULE,cup_removed).

Defining states
States in FSMs are defined in callback functions, where the name of the function is
        the name of the state, Event is the first argument, and
        LoopData is the second one. Remember that state
        callback functions are defined in the callback module and have to be
        exported. The first state we look at is
        selection, where the customer is prompted to
        choose a drink. It was the start state returned by the
        init/1 function when we started the FSM: 
selection({selection,Type,Price}, _LoopData) ->
    hw:display("Please pay:~w",[Price]),
    {next_state, payment, {Type, Price, 0}};
selection({pay, Coin}, LoopData) ->
    hw:return_change(Coin),
    {next_state, selection, LoopData};
selection(_Other, LoopData) ->
    {next_state, selection, LoopData}.
Upon choosing a drink,
        one of the functions tea/0, espresso/0,
        americano/0, or cappuccino/0 is called. This
        sends an asynchronous event of the format {selection, Type,
        Price} to the FSM. Regardless of which drink the
        customer chooses or its price, the selection gets handled generically. This event
        is pattern matched in the first clause of the state callback function,
        displaying the price the customer has to pay. By returning the tuple
        {next_state, NextState, NewLoopData}, we return the
        control to the gen_fsm module and
        wait for the next event. In this case, NextState is bound
        to the payment state and 
        LoopData to a tuple denoting the selection
        (Type), the price, and the amount paid so far, which is
        initially set to 0. Note how we ignore the incoming loop data, set to
        the empty list in the init/1 callback function, but
        create it for the next state.
What happens if a customer walks up to the coffee machine when it is in
        the selection state and inserts a coin? In our example, we programmed
        the FSM to return the coin using the hw:return_change/1
        call, remaining in the selection state and not changing the loop data
        (which is set to the empty list anyhow). If you prefer to keep the
        coin, just delete that line of code. Or, if you are implementing a
        deluxe variant of a coffee machine, add functionality to block the
        coin insert facility until the selection has been entered.
When in the selection state, clients can generate events that do
        not require any actions or state changes. They include pressing the
        cancel button or setting off the cup removed sensors, events that need
        to be handled but can be ignored in the sense that they change neither
        the current state nor the loop data. Had we not included the third
        function, a customer pressing the cancel button would have triggered
        a call to selection(cancel, []), causing a runtime error,
        because none of the function clauses would have matched.
If the customer selects an Americano coffee, the FSM displays the amount
        owed and moves to the state payment, eagerly
        awaiting the next event: 
payment({pay, Coin}, {Type,Price,Paid}) when Coin+Paid < Price ->
    NewPaid = Coin + Paid,
    hw:display("Please pay:~w",[Price - NewPaid]),
    {next_state, payment, {Type, Price, NewPaid}};
payment({pay, Coin}, {Type,Price,Paid}) when Coin+Paid >= Price ->
    NewPaid = Coin + Paid,
    hw:display("Preparing Drink.",[]),
    hw:return_change(NewPaid - Price),
    hw:drop_cup(), hw:prepare(Type),
    hw:display("Remove Drink.", []),
    {next_state, remove, null};
payment(cancel, {_Type, _Price, Paid}) ->
    hw:display("Make Your Selection", []),
    hw:return_change(Paid),
    {next_state, selection, null};
payment(_Other, LoopData) ->
    {next_state, payment, LoopData}.
The customer now has to
        pay for the coffee. Every time a coin is inserted, the {pay,
        Coin} event is generated. We add the value in Coin
        to the amount Paid, and, if the sum is less than the
        price of the drink, we display the remaining amount to pay. By
        returning payment as the next state, we keep the FSM in
        that state, changing the loop data to reflect the amount paid so
        far.
If the customer has inserted enough change to pay for the drink,
        we trigger a chain of actions that start by changing the display, indicating we are preparing the drink. We return any change and drop
        the cup. We brew the drink, returning from the synchronous
        hw:prepare(Type) call only when the drink is finished. At
        this point, we tell the customer to remove the drink and return the
        control to the gen_fsm control loop, indicating that the
        next state is remove.
While paying for their coffee, customers could change their
        minds and press the cancel button. If they do, we change the display to
        “Make Your Selection,” return any coins they might have paid, and
        indicate that the next state is selection. Finally, if a customer triggers
        the cup removed sensors or presses any of the drink selection buttons,
        we ignore the event and remain in the state
        payment.
Let’s assume the customer has paid for a drink and received the appropriate change, and the drink has been brewed. The FSM would at this
        stage be in the state remove:
        
remove(cup_removed, LoopData) ->
    hw:display("Make Your Selection", []),
    {next_state, selection, LoopData};
remove({pay, Coin}, LoopData) ->
    hw:return_change(Coin),
    {next_state, remove, LoopData};
remove(_Other, LoopData) ->
    {next_state, remove, LoopData}.
Sensors in the coffee
        machine will be triggered when the customer removes the cup. This will
        trigger the coffee_fsm:cup_removed() call, resulting in
        the cup_removed event being handled in the first clause.
        The coffee machine updates its display to “Make Your Selection” and
        the function returns, setting the next state to selection. In the remove
        state, customers can also insert coins, which we return in the second
        function clause, or they can press the cancel or drink selection
        buttons, which we ignore in the third clause.
The moment of truth has arrived. Will we get our coffee? Let’s
        test our program and see if it works. When compiling your behavior, as
        we saw in “Generic Servers”, you get a warning over
        the missing code_change/3 callback when compiling the
        code in this chapter. We cover this in Chapter 12 when looking at software
        upgrades.
To better understand what is going on, we’ll use the debug
        options built into OTP and described in “Tracing and Logging”. We start the FSM, select tea, change
        our mind to an Americano coffee, and insert two 100-unit coins. We get our change,
        and while waiting to remove the cup, we insert a 50-unit coin just for
        the sake of testing out the FSM. As you step through the example, you
        can distinguish the code you input by the prompts (such as
        1>), and debugger printouts by the *DBG*
        prefix. Output from io:format/2 in the hw.erl module starts with a hint of what
        parts of the system it represents (Display: or
        Machine:), and the rest of the output is actual return
        values from the function calls:
1> {ok, Pid} = coffee_fsm:start_link().
Display:Make Your Selection
{ok,<0.68.0>}
2> sys:trace(Pid, true).
ok
3> coffee_fsm:cancel().
*DBG* coffee_fsm got event cancel in state selection
ok
*DBG* coffee_fsm switched to state selection
4> coffee_fsm:tea().
*DBG* coffee_fsm got event {selection,tea,100} in state selection
ok
Display:Please pay:100
*DBG* coffee_fsm switched to state payment
5> coffee_fsm:cancel().
*DBG* coffee_fsm got event cancel in state payment
ok
Display:Make Your Selection
Machine:Returned 0 in change
*DBG* coffee_fsm switched to state selection
6> coffee_fsm:americano().
*DBG* coffee_fsm got event {selection,americano,150} in state selection
ok
Display:Please pay:150
*DBG* coffee_fsm switched to state payment
7> coffee_fsm:pay(100).
*DBG* coffee_fsm got event {pay,100} in state payment
ok
Display:Please pay:50
*DBG* coffee_fsm switched to state payment
8> coffee_fsm:pay(100).
*DBG* coffee_fsm got event {pay,100} in state payment
ok
Display:Preparing Drink.
Machine:Returned 50 in change
Machine:Dropped Cup.
Machine:Preparing americano.
Display:Remove Drink.
*DBG* coffee_fsm switched to state remove
9> coffee_fsm:pay(50).
*DBG* coffee_fsm got event {pay,50} in state remove
ok
Machine:Returned 50 in change
*DBG* coffee_fsm switched to state remove
10> coffee_fsm:cup_removed().
*DBG* coffee_fsm got event cup_removed in state remove
ok
Display:Make Your Selection
*DBG* coffee_fsm switched to state selection
11> sys:trace(Pid, false).
ok
It seems to work; time for a break!

Timeouts
We are not sure if this has ever happened to you, but imagine you’re standing
        patiently in line to buy your coffee. While doing so, you decide what
        you want and prepare the exact change, and are ready to go. But the
        person in front of you is apparently not in the same rush. After
        spending ages reading through all the options, they make their
        selection and get shown the price. Only then do they dip into their
        purse or pocket and start looking not just for change, but for the exact
        change. They insert a penny and go back in looking for another one,
        until they find no more. After which they start looking for nickels
        and dimes. It can be aggravating, and not only for impatient authors.
        Luckily, we control the coffee machine now, so we can take advantage
        of that to implement punishment and revenge to discourage this type of
        behavior.
Timeouts can be specified within the FSM as an integer in
        milliseconds or as the atom infinity. We can include them
        in the init/1 and State callback functions.
        When a timeout is triggered, the event is sent to the state the FSM is
        currently in. As we are controlling the code for the coffee machine,
        let’s put a bit of stress into the lives of those who do not have any
        by triggering a timeout if a user waits more than 10 seconds between
        one coin insertion and another. First, let’s refactor the payment state by adding a timeout:
-define(TIMEOUT, 10000).
...

selection({selection,Type,Price}, _LoopData) ->
    ...
    {next_state, payment, {Type, Price, 0}, ?TIMEOUT};

payment({pay, Coin}, {Type,Price,Paid}) when Coin+Paid >= Price ->
    ...
    {next_state, remove, []};
payment({pay, Coin}, {Type,Price,Paid})
  when Coin+Paid < Price ->
    ...
    {next_state, payment, {Type, Price, NewPaid}, ?TIMEOUT};
payment(timeout, {Type, Price, Paid}) ->
    hw:display("Make Your Selection", []),
    hw:return_change(Paid),
    {next_state, selection, []};
payment(_Other, LoopData) ->
    {next_state, payment, LoopData, ?TIMEOUT}.
Customers inserting coins will now have to hurry. If they take
        longer than 10 seconds to insert a coin, their selections will be
        canceled and their money returned. There is a risk that they’ll figure
        that out that by pressing one of the drink selection buttons they will
        get an extra 10 seconds, but let’s assume for now that they are too
        wrapped up looking for their next penny to work this out.
In place of a timeout value, we can alternatively return
        hibernate if we want to reduce the generic FSM’s memory
        footprint. Use hibernate only if you are not expecting
        the FSM to receive events for a while, with benchmarks showing you
        have memory issues. We can also stop the FSM, something we cover later
        in this chapter:
gen_fsm:send_event(NameScope ,Event) -> ok

Mod:State/2 -> {next_state, NextState,NewLoopData}
               {next_state ,NextState,NewLoopData, Timeout}
               {next_state, NextState,NewLoopData, hibernate}
               {stop, Reason, NewLoopData}

Asynchronous events to all states
If you want to send an asynchronous event but are not concerned about
        the state in which it is received, you can use the
        send_all_state_event/2 call. This could be useful if you
        want to execute actions such as formatting and printing the loop data or
        stopping the FSM. Events are passed as the first argument to the
        handle_event/3 callback function, which executes the
        actions and then returns the {next_state, NextState,
        NewLoopData} tuple back to the gen_fsm control
        loop (Figure 6-6).
[image: Sending an event to all the states.]Figure 6-6. Sending events to all states

As with generic servers, the handle_info/3 callback
        function takes care of all non-OTP-compliant messages such as exit
        signals, monitors, and messages sent using the
        Pid!Msg construct. The handle_info/3
        callback returns the same range of control tuples as
        handle_event/3 and State/2:
gen_fsm:send_all_state_event(NameScope ,Event) -> ok

Mod:handle_info/3,
Mod:handle_event/3 -> {next_state, NextState,NewLoopData}
                      {next_state ,NextState,NewLoopData, Timeout}
                      {next_state, NextState,NewLoopData, hibernate}
                      {stop, Reason, NewLoopData}
Selective Receives
Selective receives are one thing the OTP gen_fsm behavior
          module does not provide. In complex FSMs running across unreliable
          distributed networks, events occasionally arrive out of sequence.
          Imagine receiving a sunset event when you are in state night! You
          can either buffer these events in your loop data and handle them
          when you reach a state that knows how to deal with them, or add an
          extra state, turning the out-of-sequence events into valid ones.
          Both solutions cause unnecessary complexity when compared to the
          simplicity of using a selective receive, leaving the events in the
          process mailbox until they are matched in a state that can actually
          handle them.
This lack of functionality arises from a conscious design
          decision in behaviors, where messages are handled in the order they
          arrive, ensuring no memory leaks occur as a result of any message
          not being matched. Events in the gen_fsm behavior are
          handled on a first-in, first-out (FIFO) basis, and are removed from the
          receiving process’s mailbox when read.
There are two approaches if you want to avoid the increase in
          complexity resulting from messages arriving out of sequence. You
          could implement your own selective FSM behavior, which we explain
          how to do in Chapter 10. Or you can use a
          selective FSM behavior someone else has already implemented. At the
          time of writing, the most commonly used implementation is plain_fsm by Ulf
          Wiger. It follows all OTP principles and can be included in
          supervision trees. The plain_fsm source
          code and examples are available on GitHub.


Synchronous events
Although all the events sent in our FSM examples were asynchronous,
        sometimes we want to ensure clients can’t generate a new event until
        their previous one is handled. For example, a diagnostic client might
        want to ask the FSM to set a particular value into a hardware register
        and take no further action until the FSM indicates the setting was
        successful. As illustrated in Figure 6-7, this is when we use the sync_send_event/2 (or
        sync_send_all_state_event/2) call.
[image: Sending synchronous events to the generic finite state
              machine.]Figure 6-7. Synchronous events

This call and its callback are a middle ground between using the
        call/2 and handle_call/3 functions in the
        generic server and using asynchronous events and event handling in
        FSMs. Events are handled in the State(Event, From,
        LoopData) callback, where From is a tuple denoting
        the client and the request reference. Instead of returning the
        next_state tuple, the callback returns a tuple of the
        format {reply, Reply, NextState, NewLoopData}.
        Reply is sent back to the client and becomes the return
        value of the gen_fsm:sync_send_event/2 call.
Just as with generic servers, we can use the From
        in a gen_fsm:reply(From, Reply) call to send
        Reply back to the original caller identified by
        From, returning {next_state, NextState,
        NewLoopData} in the State/3 callback function
        itself.
The gen_fsm:sync_send_all_state_event/2 function
        (Figure 6-8) sends synchronous requests
        to the FSM regardless of its current state. The event is handled in
        the handle_sync_event/4 callback function, which returns a Reply sent back
        to the original caller, either through the use of From or
        in the control tuple sent back to the gen_fsm
        module.
[image: Sending synchronous events to the generic finite state
              machine regardless of the state the FSM is in.]Figure 6-8. Synchronous all state events

gen_fsm:sync_send_event(NameScope, Event) -> Reply
gen_fsm:sync_send_event(NameScope, Event, Timeout) -> Reply

gen_fsm:sync_send_all_state_event(NameScope, Event) -> Reply
gen_fsm:sync_send_all_state_event(NameScope, Event, Timeout) -> Reply

Mod:State/3,
Mod:handle_sync_event/4 -> {reply,Reply,NextState,NewLoopData}
                           {reply,Reply,NextState,NewLoopData,Timeout}
                           {reply,Reply,NextState,NewLoopData,hibernate}
                           {next_state,NextState,NewLoopData}
                           {next_state,NextState,NewLoopData,Timeout}
                           {next_state,NextState,NewLoopData,hibernate}
                           {stop,Reason,Reply,NewLoopData}
                           {stop,Reason,NewLoopData}
Let’s use the sync_send_all_state_event/2 function
        to trigger the actions for normal termination of our coffee machine.
        After all, it doesn’t really matter what state it is in, as long as it stops.


Termination
Our coffee machine can terminate for two reasons. It is either
      stopped normally, or the process
      terminates abnormally if the exit
      BIFs are used or a runtime error occurs. For abnormal termination, if
      the FSM is trapping exits as a result of a process_flag(trap_exit,
      true) call, terminate/3 (Figure 6-9) is invoked in the callback module. If the FSM
      is not trapping exits, the FSM terminates and its exit signal propagates
      to other processes linked to it.
[image: Calling the terminate function after a normal and abnormal
            termination.]Figure 6-9. Termination

If a stop event is sent using
      sync_send_all_state_event/2, the event is handled in handle_sync_event/4. Note that
      unlike the stop atom returned in the tuple, the
      stop we pass through the
      sync_send_all_state_event/2 call has no meaning other than
      one given to it in the program. This also contrasts with the
      stop parameter in {stop, Reason, LoopData},
      which is interpreted and used by the gen_fsm module to
      terminate the FSM. This is exactly the same principle we discussed when
      we looked at generic server termination in “Termination”: 
stop() -> gen_fsm:sync_send_all_state_event(?MODULE, stop).

handle_sync_event(stop, _From, _State, LoopData) ->
    {stop, normal, LoopData}.

terminate(_Reason, payment, {_Type,_Price,Paid}) ->
    hw:return_change(Paid);
terminate(_Reason, _StateName, _LoopData) ->
    ok.
Note also how, in the terminate function,
      we handle the cleanup for the states individually. If customers have started paying for their drinks, they should receive a
      refund. By doing this in terminate/3, we are also able to
      refund users after an abnormal termination. Here’s an example of what happens:
1> {ok, Pid} = coffee_fsm:start_link().
Display:Make Your Selection
{ok,<0.35.0>}
2> coffee_fsm:americano().
Display:Please pay:150
ok
3> coffee_fsm:pay(100).
Display:Please pay:50
ok
4> exit(Pid, crash).
Display:Shutting Down
true
Machine:Returned 100 in change

=ERROR REPORT==== 3-Mar-2013::12:01:25 ===
** State machine coffee_fsm terminating
** Last message in was {'EXIT',<0.33.0>,crash}
** When State == payment
**      Data  == {americano,150,100}
** Reason for termination =
** crash
** exception exit: crash


Summing Up
We’ve now introduced the principles behind the generic FSM behavior.
    Although it might not be the most commonly used behavior, when it fits
    your application it will greatly simplify your task, making your code more
    readable and easier to maintain. Table 6-2 lists the most important functions we covered
    in this chapter.
Table 6-2. gen_server callbacks	gen_fsm function or action	gen_fsm callback function
	gen_fsm:start/3, gen_fsm:start/4, gen_fsm:start_link/3,
            gen_fsm:start_link/4	Module:init/1
	gen_fsm:send_event/2	Module:StateName/2
	gen_fsm:send_all_state_event/2	Module:handle_event/3
	gen_fsm:sync_send_event/2,
            gen_fsm:sync_send_event/3	Module:StateName/3
	gen_fsm:sync_send_all_state_event/2,
            gen_fsm:sync_send_all_state_event/3	Module:handle_sync_event/4
	Pid ! Msg, monitors, exit messages, messages from ports and
            socket, node monitors, and other non-OTP messages	Module:handle_info/2
	Triggered by returning {stop, ...} or when terminating
            abnormally while trapping exits	Module:terminate/3

Review the manual pages for the gen_fsm module. You can
    find the code implementing the behavior library in the gen_fsm.erl source file. If you previously
    looked at the gen_server.erl code,
    pay particular attention to how they both interact with the gen.erl helper module, since other behaviors
    use it as well.

Get Your Hands Dirty
Before moving on to the next chapter, why not have a go at implementing an
    FSM to get a feel for the process of designing, coding, and testing it? If
    you are not up to coding, download the code from the Chapter 8 examples, read through it, and take
    it for a trial run, since we use the controller in future examples. What
    makes this example interesting is that different instances of the
    behaviors, each representing a cell phone, will speak to each other. It is
    a typical example of a massively concurrent application where processes
    are used to represent and control resources or devices. The cell phones
    use the home location register, the database that maps users registered on
    the network to unique phone numbers that we implemented in “ETS: Erlang Term Storage” in the hlr module.
The Phone Controllers
In our cellular system, there is no central switch. Instead, for every phone
      attached to the network, we create a phone controller that interacts
      with other controllers. Each controller is a process implemented as an
      FSM holding the state of a single phone. All communication between the
      phone controllers must be asynchronous so as to prevent blocking of the
      system. Fulfill the following API to implement the phone controllers in
      the phone_fsm.erl module:
	start_link(PhoneNumber) -> {ok,
          FsmPid}.
	Starts a new phone controller FSM process for the phone
            number linked to the calling process. This should also attach the
            phone controller process to its phone number in the home location
            register (HLR).

	stop(FsmPid) ->
          ok.
	Stops a phone controller FSM at FsmPid. This
            should also detach it from its phone number in the HLR.

	connect(FsmPid) -> ok., disconnect(FsmPid) ->
          ok.
	Called by a phone to attach itself to a phone
            controller FSM process. This must be done so that the phone
            controller knows where to send the phone replies that provide
            information about incoming and outgoing calls. The
            connect function call usually occurs when a phone is
            started, or when it is connecting to another
            FSM process. Note that we connect to an FSM process by its pid and
            not its number. The disconnect function detaches a phone from a phone controller FSM process.


	action(FsmPid, Action) ->
          ok.
	Sends an action from the phone to the phone controller at
            FsmPid. The legal actions are:
	{outbound,PhoneNumber}
	Try to connect to another phone.

	accept
	Accept a call request.

	reject
	Reject a call request.

	hangup
	Hang up an ongoing call.




The following calls send events between the phone controllers
      inside the switch:
	busy(FsmPid) ->
          ok.
	Sends a busy event to FsmPid, generally as a
            reply to an inbound request indicating that this phone is busy and
            can’t accept the call

	reject(FsmPid) ->
          ok.
	Sends a reject event to FsmPid, generally as a
            reply to an inbound request indicating that we refuse the
            call

	accept(FsmPid) ->
          ok.
	Sends an accept event to FsmPid, generally as a
            reply to an inbound request indicating that we accept the
            call

	hangup(FsmPid) ->
          ok.
	Sends a hangup event to FsmPid to terminate an
            ongoing call

	inbound(FsmPid) ->
          ok.
	Sends an inbound event to FsmPid requesting
            that a call be set up


Given this API, Figure 6-10 shows what the
      controller FSM might look like. Note that the FSM is not complete:
      events can come out of sequence as a result of race conditions or go
      missing in action as a result of network or software errors. Before
      coding, make sure you have reviewed it and added the missing events and
      state transitions. You’ll figure out what they are when reviewing the
      interfaces.
[image: ]Figure 6-10. Phone controller FSM


Let’s Test It
Each phone controller is connected to a mobile phone. You do not
      have to write the code for the phone. It is provided in the module
      phone.erl and has the following
      API:
	start_link(PhoneNumber) -> {ok,
          PhonePid}.
	Starts a new phone for number PhoneNumber,
            which is linked to the calling process.

	stop(PhonePid) ->
          ok.
	Stops the phone at PhonePid.

	action(PhonePid, Action) ->
          ok.
	Performs an action requested by the phone user for the phone
            at PhonePid. The legal actions are:
	{call,PhoneNumber}
	Start a call to PhoneNumber.

	accept
	Accept a call request.

	reject
	Reject a call request.

	hangup
	Hang up an ongoing call.


Calling an action will result in events being sent to the
            phone’s phone controller using the API for the phone
            controller that we defined in the previous section.

	reply(PhonePid, Reply) ->
          ok.
	Sends a reply event from the phone controller to the phone.
            The legal reply events are:
	{inbound,PhoneNumber}.
	An inbound call has arrived from
                  PhoneNumber.

	accept
	An outbound call has been accepted.

	invalid
	An outbound call was attempted to an invalid
                  number.

	reject
	An outbound call has been rejected.

	busy
	An outbound call was attempted to a busy phone.

	hangup
	An outbound call has hung up.


These reply events will result in the phone process printing
            information on the console of the format PhonePid:
            PhoneNumber: Event. For example:
<0,459,0>: 103618: hangup 


You should start your phones in a different node from those
      running the hlr and the phone
      controllers. The ultimate test is for a phone to call itself and return
      a busy signal. Here is a trial test run with three phones:
1> hlr:new().
{ok,<0.34.0>}
2> phone_fsm:start_link("123").
{ok,<0.36.0>}
3> phone_fsm:start_link("124").
{ok,<0.38.0>}
4> phone_fsm:start_link("125").
{ok,<0.40.0>}
5> {ok,P123}=phone:start_link("123").
{ok,<0.42.0>}
6> {ok,P124}=phone:start_link("124").
{ok,<0.44.0>}
7> {ok,P125}=phone:start_link("125"). 
{ok,<0.46.0>}
8> phone:action(P123, {call,"124"}).
<0.44.0>: 124: inbound call from 123
ok
9> phone:action(P124, accept). 
<0.42.0>: 123: call accepted
ok
10> phone:action(P125, {call,"123"}).
<0.46.0>: 125: busy
ok
11> phone:action(P125, {call,"124"}).
<0.46.0>: 125: busy
ok


What’s Next?
In the next chapter, we look at another worker behavior, the generic
    event manager. It is a slightly different from a generic server and an FSM in
    that a single instance of an event manager is allowed to have multiple
    callback modules. These callback modules are called
    handlers, and if implemented generically, they can be
    reused across multiple managers. We use them to add visibility into what
    is going on in our base station controller.

1 Movie fans will have seen this switch in the blockbuster
      production of Erlang the
      Movie. It was filmed when the language was still evolving, so
      observant fans will have noticed the old syntax in some of the examples.
      If you have not viewed it, look for it on YouTube. It is a must-see!
2 This would be an interesting function to benchmark.
3 An Americano coffee is an espresso topped up with water—it could not be
            omitted as it is our favorite.


Chapter 7. Event Handlers
The mobile frequency server your company produces hits the market and
  appears to be extremely popular. Having no visibility into its performance
  and uptime, you have been asked to implement monitoring software that not
  only collects statistics and logs important things that happen, but also
  warns you when things go wrong. And that is where the problem begins. When you are in the office, you want a widget to start flashing on
  your screen. When you leave your desk, you might want to keep the widget,
  but also have the system send you an email. And if you leave the office, you
  want an SMS or pager message but no emails. Your other colleagues on call
  might prefer a phone call, as an SMS or pager message would not wake them up
  in the middle of the night. So, the same event types must trigger different
  actions at different times, all dependent on external factors. This is where
  the event handler behavior comes to the rescue.
Events
An event represents a state change in the system. It could be a high CPU load, a
    hardware failure, or a trace event resulting from the activity in a port.
    An event manager is an
    Erlang process that receives a specific type of event, which could be
    alarms, warnings, equipment state changes, debug traces, or issues related
    to network connectivity. When generated, events are sent to the manager in
    the form of a message, as shown in Figure 7-1. For
    every event generated, the system might want to take a specific set of
    actions, as discussed earlier: generate SNMP traps; send emails, SMSs, or
    pager messages; collect statistics; print messages to a console; or log
    the event to a file. We call these processes that generate events
    producers and processes receiving and handling
    these events consumers.
[image: ]Figure 7-1. Event managers and handlers

Event handlers are behavior callback modules that handle these types of
    actions. They subscribe to events sent to a manager, allowing different
    handlers to subscribe to the same events. Different managers handling
    different event types can use the same event handler. If a handler allows
    you to log events to a file, another allows you to print them to a
    console, and a third collects statistics, they could be all be used both
    by the event manager dealing with debug traces and the event manager
    handling equipment state changes. Functionality to add, remove, query, and
    upgrade handlers during runtime is provided in the code implementing the
    event manager. If you were to implement the code managing events and
    handlers, what would be generic to all Erlang systems and what would be
    specific to your application? Table 7-1 shows the breakdown.
Table 7-1. Event handler and manager generic and specific code	Generic	Specific
		Starting/stopping the event manager

	Sending events

	Sending synchronous requests

	Forwarding events/requests to handlers

	Adding/deleting handlers

	Upgrading handlers


		The events

	The event handlers

	Initializing event handlers

	Event handler loop data

	Handling events/requests

	Cleaning up




Starting and stopping the event manager processes is generic, as is
    registering them with an alias. The process name and events sent to the
    manager are specific, but the producer sending them, the manager receiving
    them, and the act of calling a handler are generic. The event handlers
    themselves are specific, as well as what we do to initialize them, along
    with cleaning up when they are removed (or when the event manager is
    stopped). How the handlers deal with the events is specific, as is their
    loop data. And finally, upgrading the handlers is generic, but what the
    individual handlers have to do to hand over their state is
    specific.
Let’s have a look at the event behavior module. While the generic
    server still acts as its foundation, it is very different from the
    behaviors we’ve looked at so far.

Generic Event Managers and Handlers
Generic event handlers and managers are part of the standard library
    application, and like all other behaviors, are split up into generic and
    specific code. The gen_event module contains all of the generic code. The process running this
    code is often referred to as the event manager. The callback modules subscribing to the events and handling them
    through a set of callback functions are called the event handlers. Each handler solves a specific event-driven
    task and is part of the specific code. Unlike other behaviors, which allow
    only one callback module per instance, an event manager can take care of zero or more event handlers, as shown in Figure 7-2.
    But despite the possibility of there being multiple handlers, they will
    all be executed in a single event manager process.
[image: Generic event manager and handlers]Figure 7-2. Handler callback module

Starting and Stopping Event Managers
The gen_event:start_link(NameScope) function starts a new event manager.
      NameScope specifies the local or
      global process name or the via
      module, first explained in “Going Global”. Should you
      not want to register the process, use start_link/0 and communicate
      with it using its pid. Unlike with other behaviors, start_link/0
      accepts no callback modules, arguments, or options. Nor does it invoke
      any callback functions. All the manager does is set its handler list to
      the empty list:
gen_event:start()
gen_event:start(NameScope)
gen_event:start_link()
gen_event:start_link(NameScope) -> {ok,Pid}
                                   {error,{already_started,Pid}}
gen_event:stop(NameScope) -> ok
Because you are not calling an init/1 callback
      function that can return stop or
      ignore, or even generate a runtime
      error, not much can go wrong here unless an event manager or process
      with the same name is already registered.
Stop the event manager using the gen_event:stop/1 call.

Adding Event Handlers
Now that we can start and stop our manager, let’s implement a handler
      and add it. Event handlers are added to and removed from the event manager
      process dynamically, at runtime. They are considered more generic than
      other behaviors because you can implement an event handler that can
      not only handle different event types, but do so in different event
      managers.
In our logger example, we implement an event handler that logs
      events and unexpected messages to standard I/O or a file, depending on
      which parameters are provided when it is added to the manager. As with
      our other generic behaviors, we start with the behavior directive and export our callback
      functions:
-module(logger).
-behavior(gen_event).
-export([init/1, terminate/2, handle_event/2, handle_info/2]). 

init(standard_io)  -> 
    {ok, {standard_io, 1}};
init({file, File}) -> 
    {ok, Fd} = file:open(File, write),
    {ok, {Fd, 1}};
init(Args) ->
    {error, {args, Args}}.
If we call the gen_event:add_handler(Name, Mod, Args)
      function, the handler implemented in the Mod module is
      added to the event manager. The event manager calls the
      Mod:init(Args) callback function, returning {ok,
      LoopData}, where the LoopData refers to that
      particular handler. In our example, our loop data contains a tuple with
      either the file descriptor or the atom standard_io and the integer 1, a counter
      incremented every time we receive an event. If we pass the standard_io atom as an argument, all events
      will be printed to the shell. Passing {file,
      File}, where file is an
      atom and File is a string containing
      the filename, will log all events to that file.
To manage multiple events, the event manager stores its handlers
      and their loop data in a list. Figure 7-3 shows our
      handler instance and its loop data getting added to the list of other
      handlers stored by the event manager.
[image: Adding an event handler]Figure 7-3. Adding handlers

You can not only add many handlers to a manager, but also add the
      same handler many times, storing different instances of the loop data.
      In our case, we could add two logger handlers, one saving everything to a
      file and the other printing the events in the shell. Alternatively, the
      Mod parameter can be specified as {Module,
      Id}, where Id can be any Erlang term. If Id is
      unique, it allows client functions to differentiate between multiple
      handlers using the same callback module in a particular manager.
gen_event:add_handler(NameScope, Mod, Args) -> {'EXIT',Reason}
                                                 ok
                                                 Term

Mod:init/1 -> {ok, LoopData}
              {ok, LoopData, hibernate}
              Term
Adding a nonexistent event handler will result in the event
      manager failing to call Mod:init/1 and returning
      {'EXIT', Reason}, where Reason is the undef runtime error
      (the undefined function). Should the evaluation of any expression in the
      init/1 callback function fail, {'EXIT',
      Reason} will be returned. Keep in mind that {'EXIT',
      Reason} is the tuple caught within the scope of a try-catch
      expression, and not an exception.
If the init/1 callback returns a Term
      other than {ok, LoopData}, the Term itself is
      returned. This includes the case where the Term is the atom
      ok without the LoopData,
      a common beginner error. Whenever init/1 does not return
      {ok, LoopData}, the event handler is not added to the
      manager. This means just returning ok without
      LoopData will not work as you might at first think, as the
      handler is not added.
In our example, if the handler is started with arguments that fail
      pattern matching in the first two clauses, init/1 returns
      {error, {args, Args}} and the manager does not add it to
      its list of handlers. So, while init/1 can return any term,
      be careful and stick to return values of the format {ok,
      LoopData} and {error, Reason} to avoid
      confusion.
Just like other behaviors, you can make your event manager
      hibernate in between events. It is enough for one handler to return
      hibernate for this to happen. Use
      hibernation with care, and only if events will be intermittent.
      Hibernating your process will trigger a full-sweep garbage collection
      before you hibernate and right after waking up. This is not a behavior you
      want when receiving a large number of events at short intervals.

Deleting an Event Handler
Now that we have added a handler, let’s see what we need to do in order to
      delete it. The logger callback
      module exports the terminate(Args, LoopData) callback
      function. This function is invoked whenever
      gen_event:delete_handler(Name, Mod, Args) is called. Name identifies the specific event
      manager process where our handler is registered; it is either its pid,
      or its local Name if registered locally. But when using
      name servers, {global, Name} has to be passed, or if you
      are using your own name server, pass {via, Name, Module}.
      Mod specifies the handler you want to delete and
      Args is any valid Erlang term passed as the first argument
      to terminate/2. Args could be the reason for
      termination or just a parameter with instructions needed in the cleanup
      (Figure 7-4).
[image: Handler deletion and termination]Figure 7-4. Deleting handlers

In our example, if we were to remove the logger handler, we would
      have to cater for the cases where we are printing the logs to standard
      I/O or to a file:
terminate(_Reason, {standard_io, Count}) -> 
    {count, Count};
terminate(_Reason, {Fd, Count}) -> 
    file:close(Fd),
    {count, Count}.
When the terminate/2 function returns, the handler is
      deleted from the list of handlers in the specific event manager process
      identified by the Name argument to
      delete_handler/3. Other managers using the same handler are
      not affected. If multiple handlers are registered using the same
      Mod, such as one for logging to standard_io
      and another for logging to a file, they are deleted in the reverse order
      of their addition. If you stop the manager using gen_event:stop/1, all handlers are
      deleted with reason stop.
Note how terminate/2 returns Term. This
      becomes the return value of the delete_handler/3 call. In
      our example, we return the log counter, {count, Count},
      which lets the caller of delete_handler/3 know how many
      events came through the handlers before they were terminated. But if we
      were upgrading the handler, Term might be all of the loop
      data. We cover upgrades later in this chapter.
Attempting to delete a handler that isn’t registered results in a return value of
      {error, module_not_found}. Both adding and deleting a
      handler in a nonexistent event manager, irrespective of whether the
      manager is referenced using a pid or a registered alias, will result in
      the calling process terminating with reason noproc.
gen_event:delete_handler(NameScope, Mod, Args) -> {error,module_not_found}
                                                  {'EXIT',Reason}
                                                  Term

Mod:terminate/2 -> Term

Sending Synchronous and Asynchronous Events
Events can be sent to the manager and forwarded to the handlers synchronously or
      asynchronously depending on the need to control the rate at which
      producers generate events. Events are handled by the manager process,
      which invokes all added handlers sequentially, one at a time. If you
      send multiple events to the event manager and they need to be handled by
      several—potentially slow—event handlers, your message queue might grow
      and result in a reduction of throughput as described in “Synchronous versus asynchronous calls”, so make sure your handler does not
      become a bottleneck. We discuss techniques to handle large volumes of
      messages in “Balancing Your System”.
The gen_event:notify/2 function sends an asynchronous event to all handlers and
      immediately returns ok. The callback
      function Mod:handle_event/2 is called for every handler
      that has been added to the manager, one at a time. gen_event:sync_notify/2 also
      invokes the Mod:handle_event/2 callback function for
      all handlers. The difference from its asynchronous variant is that
      ok is returned only when all callbacks have been
      executed.
Let’s consider how we might implement the
      handle_event/2 callback function for our logger:
handle_event(Event, {Fd, Count}) -> 
    print(Fd, Count, Event, "Event"),
    {ok, {Fd, Count+1}}.

print(Fd, Count, Event, Tag) ->
    io:format(Fd, "Id:~w Time:~w Date:~w~n"++Tag++":~w~n",
              [Count,time(),date(),Event]).
The handle_event/2 callback, illustrated in Figure 7-5, receives an event
      together with either the atom standard_io or the file descriptor of the file
      opened in the init/1 callback. The print/4
      function invokes io:format/3 to output the counter value,
      the current date and time, and the Event tag value followed by the event
      itself.
[image: Synchronous and asynchronous events]Figure 7-5. Notifications

If our event handler receives any non-OTP-compliant events
      originating from links, trapping exits, process monitors, monitoring
      distributed Erlang nodes, or messages resulting from
      Pid!Msg, they are handled in the handle_info/2 callback function of the
      event handlers:
handle_info(Event, {Fd, Count}) ->
    print(Fd, Count, Event, "Unknown"),
    {ok, {Fd, Count+1}}.
The implementation of handle_info/2 for the logger is
      almost identical to handle_event/2, except that it passes
      the tag value "Unknown" to the print function
      to indicate that it doesn’t know the source of the event.
gen_event:notify(NameScope, Event)
gen_event:sync_notify(Name, Event) -> ok

Mod:handle_event(Event, Data)
Mod:handle_info(Event, Data) -> {ok, NewData}
                                {ok, NewData, hibernate}
                                remove_handler
                                {swap_handler,Args1,NewData,Handler2,Args2}
If a handler returns remove_handler from its
      handle_event/2 or handle_info/2 function,
      Mod:terminate(remove_handler, Data) is called and the handler is deleted. We look at swapping
      handlers later in this chapter. Until then, let’s make sure that the
      code in the event handler we have written so far works.
In shell command 1, we start the event manager without
      registering or linking it to its parent. Should the shell process crash,
      the event manager process will not be affected. We proceed by adding a
      handler and sending two notifications, one synchronous and one
      asynchronous:
1> {ok, P} = gen_event:start().
{ok,<0.35.0>}
2> gen_event:add_handler(P, logger, {file, "alarmlog"}).
ok
3> gen_event:notify(P, {set_alarm, {no_frequency, self()}}).
ok
4> gen_event:sync_notify(P, {clear_alarm, no_frequency}).
ok
Note how both calls return the atom ok. The semantic
      difference is that shell command 4 does not return ok until
      all the handlers have executed their handle calls.
In shell command 5, we add a second instance of the handler, this
      time directing events to standard I/O. In shell command 6, we send a
      non-OTP-compliant message that is logged and printed to the shell by the
      handle_info/2 callback function of our two event handler
      instances:
5> gen_event:add_handler(P, logger, standard_io).
ok
6> P ! sending_junk.
Id:1 Time:{18,59,25} Date:{2013,4,26}
Unknown:sending_junk
sending_junk
In shell commands 7 and 8, we read the binary contents of the
      alarmlog file and print them out in
      the shell. We see the first two events we sent asynchronously and
      synchronously, as well as the unknown message received by the
      handle_info/2 call:
7> {ok, Binary} = file:read_file("alarmlog").
{ok,<<"Id:1 Time:{18,59,10} Date:{2013,4,26}\nEvent:{set_alarm,{no_frequency,...
8> io:format(Binary).
Id:1 Time:{18,59,10} Date:{2013,4,26}
Event:{set_alarm,{no_frequency,<0.32.0>}}
Id:2 Time:{18,59,14} Date:{2013,4,26}
Event:{clear_alarm,no_frequency}
Id:3 Time:{18,59,25} Date:{2013,4,26}
Unknown:sending_junk
ok
9> gen_event:delete_handler(P, freq_overload, stop).
{error,module_not_found}
10> gen_event:stop(P).
ok
We wrap up this example by trying to delete
      freq_overload, an event handler that has not been added to
      this event manager. As expected, this returns the error module_not_found. Finally, we stop the
      event manager, by default terminating all of the event handlers.
Download the logger handler from the book’s code repository and
      take it for a spin. Test sending it synchronous and asynchronous
      messages when the event manager has been stopped (or has crashed), and
      start it using start_link and make the shell crash. Finally, try to figure out what happens if
      you provide an invalid filename when adding the handler.

Retrieving Data
Let’s implement another event handler, one that stores metrics. Every time
      we log an event, we also bump up a counter in an ETS table that tells us how many times this event has been
      logged. If it is the first occurrence of the event, we create a new
      entry in the table. Have a look at the code, and if necessary, refer to the
      manual pages of the ets module:
-module(counters).
-behavior(gen_event).
-export([init/1, terminate/2, handle_event/2, handle_info/2]).
-export([get_counters/1, handle_call/2]).

get_counters(Pid) ->
    gen_event:call(Pid, counters, get_counters).

init(_)  ->
    TableId = ets:new(counters, []),
    {ok, TableId}.

terminate(_Reason, TableId) ->
    Counters = ets:tab2list(TableId),
    ets:delete(TableId),
    {counters, Counters}.

handle_event(Event, TableId) ->
    try ets:update_counter(TableId, Event, 1) of
        _ok -> {ok, TableId}
    catch
        error:_ -> ets:insert(TableId, {Event, 1}),
                   {ok, TableId}
    end.

handle_call(get_counters, TableId) ->
    {ok, {counters, ets:tab2list(TableId)}, TableId}.

handle_info(_, TableId) ->
    {ok, TableId}.
Of interest in this example is how we retrieve the counters.
      Using gen_event:sync_event/2 would not have
      worked, as despite it being synchronous, it forwards the event to all
      handlers and returns ok. We need to
      specify the handler to which we want to send our synchronous message, and we do so using the
      gen_event:call(NameScope, Mod, Message) function.
As Figure 7-6 shows, the event handler synchronously receives the request in the Mod:handle_call/2 callback and returns a
      tuple of the format {ok, Reply, NewData}, where
      Reply is the return value of the request.
[image: Calling the handler]Figure 7-6. Calls

gen_event:call(NameScope, Mod, Request)
gen_event:call(NameScope, Mod, Request, Timeout)  -> Reply
                                                     {error, bad_module}
                                                     {error, {'EXIT', Reason}}
                                                     {error, Term}

Mod:handle_call(Event, Data) -> {ok, Reply, NewData}
                                Term
The default timeout in gen_event:call/3 is 
      5,000 milliseconds. It can be overridden by passing either a
      Timeout value as an integer in milliseconds or the atom
      infinity. If Mod is not
      an event handler that has been added to NameScope,
      {error, bad_module} is returned. If the callback function
      handle_call/2 terminates abnormally when handling the
      request, expect {error, {'EXIT', Reason}}. And finally, if
      handle_call/2 returns any term other than {ok, Reply,
      NewData}, the return value of gen_event:call will be
      {error, Term}. In both of these error cases, the handler is
      removed from the list managed by the event manager without affecting the other handlers.
1> {ok, P} = gen_event:start().
{ok,<0.35.0>}
2> gen_event:add_handler(P, counters, {}).
ok
3> gen_event:notify(P, {set_alarm, {no_frequency, self()}}).
ok
4> gen_event:notify(P, {event, {frequency_denied, self()}}).
ok
5> gen_event:notify(P, {event, {frequency_denied, self()}}).
ok
6> counters:get_counters(P).
{counters,[{{event,{frequency_denied,<0.33.0>}},2},
           {{set_alarm,{no_frequency,<0.33.0>}},1}]}

Handling Errors and Invalid Return Values
It is not just when its handle_call/2 terminates
      abnormally or returns an invalid reply that a handler gets
      deleted. An abnormal termination in any of its callbacks will also
      result in deletion. The event manager and other handlers are not
      affected. This differs from other behaviors in that the event handler is
      silently removed, without any notifications being sent to the event
      manager’s supervisor. What also differs from other behaviors is that
      the event manager will by default trap exits. The assumption is that
      event managers are added and removed dynamically and independently of
      each other, and as a result, a crash should not affect anything in its
      surrounding environment (see Figure 7-7). While fault isolation is a good property,
      failing silently isn’t.
[image: Removing Handlers automatically]Figure 7-7. Handler crash

To better understand how abnormal termination in event handlers
      works, let’s use the following code snippet as an example:
-module(crash_example).
-behavior(gen_event).
-export([init/1, terminate/2, handle_event/2]). 

init(normal) -> {ok, []};
init(return) -> error;
init(ok)     -> ok;
init(crash)  -> exit(crash).

terminate(_Reason, _LoopData) -> ok.

handle_event(crash,  _LoopData) -> 1/0;
handle_event(return, _LoopData) -> error.
Depending on what parameters we send to the event handler when
      adding it to the event manager and notifying it of an event, we can
      generate runtime errors and return invalid values. Step through the
      shell commands in the following example, mapping all requests to the error
      conditions that occur:
1> {ok,P}=gen_event:start().
{ok,<0.35.0>}
2> gen_event:which_handlers(P).
[]
3> gen_event:add_handler(P, crash_example, return).
error
4> gen_event:which_handlers(P).
[]
5> gen_event:add_handler(P, crash_example, normal).
ok
6> gen_event:which_handlers(P).
[crash_example]
7> gen_event:notify(P, crash).
ok
=ERROR REPORT==== 27-Apr-2013::09:27:49 ===
** gen_event handler crash_example crashed.
** Was installed in <0.35.0>
** Last event was: crash
** When handler state == []
** Reason == {badarith,
                 [{crash_example,handle_event,2,
                      [{file,"crash_example.erl"},{line,13}]},
                  ...]}
8> gen_event:which_handlers(P).
[]
9> gen_event:add_handler(P, crash_example, normal).
ok
10> gen_event:notify(P, return).
ok
=ERROR REPORT==== 27-Apr-2013::09:28:41 ===
** gen_event handler crash_example crashed.
** Was installed in <0.35.0>
** Last event was: return
** When handler state == []
** Reason == error
11> gen_event:which_handlers(P).
[]
While error reports are generated (these are covered in more detail in “The SASL Application”), no runtime errors occur, and as a
      result, no EXIT signals are generated. Sending
      notifications can fail silently, resulting in the handler being deleted
      without any processes or humans noticing.
You get around this problem by connecting a handler to the calling process using
      gen_event:add_sup_handler/3. It works in the same way as
      add_handler/3, with the side effect that the calling
      process is now monitoring the handler, and the calling process is being
      monitored by the newly added instance of the handler in the manager. If
      an exception occurs or an incorrect return value is returned in
      callbacks handling events, a message of the format
      {gen_event_EXIT, Mod, Reason} is sent to the process that
      added the handler. Reason can be one of the
      following:
	normal if a callback function
          returned remove_handler or the handler was removed
          using delete_handler/3

	shutdown if the event manager
          is being stopped, either by its supervisor or by the
          stop/1 call

	{'EXIT', Term}
          if a runtime error occurred

	Term if the
          callback returned anything other than {ok, LoopData} or
          {ok, Reply, LoopData}

	{swapped, NewMod,
          Pid}, where Pid has swapped the
          handler


We look into swapping handlers in the next section.
Monitoring goes two ways. If the process that added the handler
      terminates, the handler is removed with {stop, Reason} as
      an argument. This ensures that multiple instances of the handler are not
      included in the manager should the handler be added by a behavior stuck in a cyclic restart.
Fail Loudly!
If you are writing a system with requirements on high
        availability and fault tolerance, the last thing you want is a handler
        being silently deleted or failing in init/1 and not being
        added at all. Always check the return value of the
        add_handler/3 and add_sup_handler/3 calls.
        If you have to use add_handler, ensure that you execute
        any code that might fail as a result of a bug, external dependencies
        (such as a disk full error), or corrupt data within the scope of a
        try-catch expression. Where possible, use
        add_sup_handler/3, pattern matching on its return value
        to ensure that the handler has been properly added, and pay attention
        to all exception messages you receive as a result. You don’t
        want your alarm system to fail without raising any alarms!


Swapping Event Handlers
The event manager provides functionality to swap handlers during runtime. It
      allows a handler to pass its state to a new handler, ensuring that no
      events are lost in the process. The second parameter of the gen_event:swap_handler/3 call is a tuple
      containing the name of the handler callback module we want to replace,
      together with the arguments passed to its terminate
      function. The third parameter is a tuple containing the callback module of the
      new handler and the arguments passed to its init
      function. Figure 7-8 shows these parameters along with the steps that take place when swapping handlers.
[image: Swapping the handler during runtime]Figure 7-8. Swapping handlers

The terminate callback function in the old handler is
      first called. Its return value, Res, is passed in a tuple
      together with the arguments intended for the init function
      of the new handler. It couldn’t be simpler! If you want to swap the
      handler and start supervising the connection between the handler and the
      calling process, use gen_event:swap_sup_handler/3. The handler
      you are swapping does not have to be supervised.
An example is probably the best way to demonstrate swapping. Let’s
      extend our logger handler to be able to flip between logging to a file and
      printing to standard I/O. We extend our terminate function
      to handle the reason swap, returning
      Res, a tuple of the format {Type, Count}.
      Type is either the file descriptor or the atom standard_io, and Count is the
      unique ID for the next item to be logged. As we do not know what the
      logger we are swapping to wants to do with the events, we do not close
      the file and instead let the handler deal with it in its
      init/1 call.
In the init/1 call, we add two cases where we accept
      the same Args as when we are adding the handler, but also
      the results sent back from terminate. So, if we are logging to a file and
      want to swap to standard I/O, we close the file and return {ok,
      {standard_io, Count}}. If we are printing to standard I/O, we
      open the file and start writing events in it. In both cases, we retain
      whatever value Count is set to:
init({standard_io, {Fd, Count}}) when is_pid(Fd) ->
    file:close(Fd),
    {ok, {standard_io, Count}};
init({File, {standard_io, Count}}) when is_list(File) ->
    {ok, Fd} = file:open(File, write),
    {ok, {Fd, Count}};
...

terminate(swap, {Type, Count}) ->
    {Type, Count};
...
If we test our code, starting the manager, adding the logger
      handler, raising an alarm, swapping the handlers, and raising a second
      alarm, we get the following results:
1> {ok, P} = gen_event:start().
{ok,<0.35.0>}
2> gen_event:add_handler(P, logger, {file, "alarmlog"}).
ok
3> gen_event:notify(P, {set_alarm, {no_frequency, self()}}).
ok
4> gen_event:swap_handler(P, {logger, swap}, {logger, standard_io}).
ok
5> gen_event:notify(P, {set_alarm, {no_frequency, self()}}).
Id:2 Time:{10,1,16} Date:{2013,4,27}
Event:{set_alarm,{no_frequency,<0.33.0>}}
ok
6> {ok, Binary}=file:read_file("alarmlog"), io:format(Binary).
Id:1 Time:{10,1,16} Date:{2013,4,27}
Event:{set_alarm,{no_frequency,<0.33.0>}}
ok

Wrapping It All Up
Now that we have a handler, let’s wrap it in a module, hiding the
      event manager API in a more intuitive and application-specific set of
      functions. We do this in the freq_overload module, which is responsible
      for starting the manager along with providing an API for setting and
      clearing the no_frequency alarm and generating events when
      a client is denied a frequency. It also provides a wrapper around the
      functions used to add and delete handlers. We leave the handler-specific
      function calls, such as retrieving the counters or swapping from file to
      standard I/O, local to the handlers themselves:
-module(freq_overload).
-export([start_link/0, add/2, delete/2]).
-export([no_frequency/0, frequency_available/0, frequency_denied/0]).

start_link() -> 
    case gen_event:start_link({local, ?MODULE}) of
        {ok, Pid} -> 
            add(counters, {}),
            add(logger, {file, "log"}),
            {ok, Pid};
        Error ->
            Error
    end. 


no_frequency() ->
    gen_event:notify(?MODULE, {set_alarm, {no_frequency, self()}}).
frequency_available() ->
    gen_event:notify(?MODULE, {clear_alarm, no_frequency}).
frequency_denied() ->
    gen_event:notify(?MODULE, {event, {frequency_denied, self()}}).

add(M,A) -> gen_event:add_sup_handler(?MODULE, M, A).
delete(M,A) -> gen_event:delete_handler(?MODULE, M, A).
Note how we are adding the counters in our
      freq_overload:start_link/0 call. This ensures that if the
      event manager is restarted, the counters and logger handlers will also
      be added. The downside is that we are unable to supervise the handlers
      from the event manager process in case it crashes. If you want another
      process to monitor the handlers, use freq_overload:add/2, which uses
      gen_event:add_sup_handler/3.
When setting alarms and raising events, we are also including the
      pid of the frequency allocator. This allows us to differentiate among
      different allocators (called the alarm or event
      originators), allowing operational staff to determine which servers are
      overutilized and need to be allocated a larger frequency pool. We want
      to raise an alarm every time the allocator runs out of frequencies and
      clear it when a frequency becomes available. If a client allocates the
      last frequency, we call freq_overload:no_frequency/0,
      setting the no_frequency alarm. If a
      frequency is deallocated in a state where there were no frequencies
      available, we clear the alarm by calling
      freq_overload:frequency_available/0. We also raise an event
      every time a user is denied a frequency by calling the function
      freq_overload:frequency_denied/0. We handle this as a
      separate event, as we might be out of frequencies but do not reject
      requests. The code additions to frequency.erl are
      straightforward:
allocate({[], Allocated}, _Pid) ->
    freq_overload:frequency_denied(),
    {{[], Allocated}, {error, no_frequency}};
allocate({[Res|Resources], Allocated}, Pid) ->
    case Resources of
        [] -> freq_overload:no_frequency();
        _  -> ok
    end,
    {{Resources, [{Res, Pid}|Allocated]}, {ok, Res}}.

deallocate({Free, Allocated}, Res) ->
    case Free of
        [] -> freq_overload:frequency_available();
        _  -> ok
    end,
    NewAllocated = lists:keydelete(Res, 1, Allocated),
    {[Res|Free],  NewAllocated}.
Now that we have fixed other code in the frequency allocator and
      implemented our freq_overload event manager, let’s add the
      logger and counters handlers to the event manager and run
      them alongside each other, as seen in Figure 7-9. Along with raising alarms, we also log
      them.
[image: Logging frequency server events]Figure 7-9. Handler example

We start the frequency server and the event manager and add a second
      logger event handler, this one
      printing to the shell. In our example, the frequency allocator had six
      frequencies. In shell command 4, we allocate all of them, raising a
      no_frequency alarm. This happens
      despite the last request being successful and returning {ok,
      15}:
1> frequency:start_link().
{ok,<0.35.0>}
2> freq_overload:start_link().
{ok,<0.37.0>}
3> freq_overload:add(logger, standard_io).
ok
4> frequency:allocate(), frequency:allocate(), frequency:allocate(),
   frequency:allocate(), frequency:allocate(), frequency:allocate().
Id:1 Time:{10,41,25} Date:{2015,2,28}
Event:{set_alarm,{no_frequency,<0.35.0>}}
{ok,15}
5> frequency:allocate().
Id:2 Time:{10,41,46} Date:{2015,2,28}
Event:{event,{frequency_denied,<0.35.0>}}
{error,no_frequency}
6> frequency:allocate().
Id:3 Time:{10,42,0} Date:{2015,2,28}
Event:{event,{frequency_denied,<0.35.0>}}
{error,no_frequency}
7> frequency:deallocate(15).
Id:4 Time:{10,42,16} Date:{2015,2,28}
Event:{clear_alarm,no_frequency}
ok
8> counters:get_counters(freq_overload).
{counters,[{{set_alarm,{no_frequency,<0.35.0>}},1},
           {{clear_alarm,no_frequency},1},
           {{event,{frequency_denied,<0.35.0>}},2}]}
Having set the alarm, we then try to allocate two frequencies and fail
      both times. We clear the alarm when deallocating a frequency in shell
      command 7. When we retrieve the counters, we see that a frequency was
      denied twice and that the no_frequency alarm was set and cleared
      once.


The SASL Alarm Handler
We’ve been talking about alarm handlers in this chapter without giving a proper
    definition, but the time has come to set the record straight. An alarm
    handler is the part of the system that records ongoing issues and takes
    appropriate actions. If your system reaches a high memory mark or is
    running out of disk space (or frequencies), you will want to set (or
    raise) an alarm. When memory usage decreases or old log files are deleted,
    the respective alarms are cleared. At any point in time, it should be
    possible to inspect the list of active alarms and get a snapshot of
    ongoing issues.
The SASL alarm handler process is an event manager and handler that
    comes as part of the Erlang runtime system and provides this
    functionality. It is a very basic alarm handler you are encouraged to
    replace or complement in your own project when more functionality is
    required. The philosophy of developing Erlang systems is to start simple
    and add complexity as your system grows. That is exactly what has been
    done with the SASL alarm handler.
Depending on how you have installed Erlang on your computer, the
    SASL alarm handler might already have been started. Run whereis(alarm_handler). in your shell to
    find out. If you get back the atom undefined, start the alarm handler by typing
    application:start(sasl). in the shell. You might get some progress reports printed out in
    the shell, once again depending on how you installed Erlang. We cover the
    reports, alarming in general, and other useful tools and libraries in SASL
    in Chapter 9, Chapter 11, and Chapter 16.
    For now, don’t worry about the reports.
If whereis/1 returns a pid, the alarm handler is
    already running and you do not need to do anything other than try it
    out:
1> whereis(alarm_handler).
<0.41.0>
2> alarm_handler:set_alarm({103, fan_failure}).

=INFO REPORT==== 26-Apr-2013::08:23:27 ===
    alarm_handler: {set,{103,fan_failure}}
ok
3> alarm_handler:set_alarm({104, cabinet_door_open}).

=INFO REPORT==== 26-Apr-2013::08:23:43 ===
    alarm_handler: {set,{104,cabinet_door_open}}
ok
4> alarm_handler:clear_alarm(104).

=INFO REPORT==== 26-Apr-2013::08:24:04 ===
    alarm_handler: {clear,104}
ok
5> alarm_handler:get_alarms().
[{103,fan_failure}]
In our example, picture a rack in which the cooling fan fails. A
    system administrator goes to the rack, opens the cabinet door to inspect
    what is going on, closes it, and heads off to order a replacement fan.
    What we’ve done is raise two alarms with IDs 103 and 104. These IDs are
    used to clear the alarm, something that happens in shell command 4 when
    the cabinet door is closed. The wrapper around the SASL event manager and
    event handler exports the following functions:
alarm_handler:set_alarm({AlarmId, Description}) -> ok
alarm_handler:clear_alarm(AlarmId) -> ok
alarm_handler:get_alarms() -> [{AlarmId, Description}]
In a complex system, you might have hundreds of alarms of varying
    severities, where clearing one will by default clear half a dozen other
    ones dependent on it. You will want to keep accurate statistics, log
    everything, and in advanced systems run agents that take immediate
    action. In the case of the fan failure, for example, you would want to start
    shutting down all equipment in that cabinet to avoid overheating. The
    existing handler does none of this and will not scale. But to start off,
    it works and fits in with the iterative design, develop, and test cycles
    that are the norm when developing Erlang systems.
Replacing or complementing the existing handler is easy. You need to
    handle the events {set_alarm, {AlarmId, AlarmDescr}} and
    {clear_alarm, AlarmId}. If you want to swap the existing
    handler using swap_handler/3:
gen_event:swap_handler(alarm_handler, 
                       {alarm_handler, swap}, {NewHandler, Args})
the init function in your new handler should pattern
    match the argument {Args, {alarm_handler, Alarms}}, where
    Args is passed in the swap_handler/3 call and
    {alarm_handler, Alarms} is the term returned from the terminate/2 call of the old handler. Alarms is a list of {AlarmId, Description}
    tuples.

Summing Up
In this chapter, we introduced how events are handled by the event
    manager behavior. You should by now have a good understanding of the
    advantages of using the gen_event behavior instead of rolling
    your own or increasing the complexity of one of your subsystems by
    integrating this functionality in it. The biggest difference between the
    event manager and other OTP behaviors is the one-to-many relationship,
    where you can associate many event handlers with one event manager. The
    most important functions and callbacks we have covered are listed in Table 7-2.
Table 7-2. gen_event callbacks	gen_event function or action	gen_event callback function
	gen_event:start/0, gen_event:start/1,
            gen_event:start_link/0, gen_event:start_link/1	
	gen_event:add_handler/3,
            gen_event:add_sup_handler/3	Module:init/1
	gen_event:swap_handler/3,
            gen_event:swap_sup_handler/3	Module1:terminate/2, Module2:init/1
	gen_event:notify/2, gen_event:sync_notify/2	Module:handle_event/2
	gen_event:call/3, gen_event:call/4	Module:handle_call/2
	gen_event:delete_handler/3	Module:terminate/2
	gen_event:stop/1	Module:terminate/2
	Pid ! Msg, monitors, exit messages, messages from ports and
            socket, node monitors, and other non-OTP messages	Module:handle_info/2

Before reading on, make sure you review the manual pages for the
    gen_event module. An example that complements the
    ones in this chapter is the alarm_handler
    module. Read through the code and you will notice how the developers have integrated
    the client functions to start and stop the event manager as well as the
    handler functions themselves.

What’s Next?
The event manager is the last worker behavior we cover. Event
    managers, along with generic servers, FSMs, and behaviors you have written
    yourself, are started and monitored in supervision trees. The next
    chapter covers the supervisor behavior, responsible for starting, stopping, and monitoring other supervisors and workers. We show you how to write
    your own behaviors in Chapter 10. We go into
    more detail on the importance of alarms in ensuring the high availability and
    reliability of your systems when we cover monitoring and preemptive
    support in Chapter 16.


Chapter 8. Supervisors
Now that we are able to monitor and handle predictable errors, such as
  running out of frequencies, we need to tackle unexpected errors arising as
  the result of corrupt data or bugs in the code. The catch is that unlike the
  errors returned to the client by the frequency allocator or alarms raised by
  the event managers, we will not know what the unexpected errors are until
  they have occurred. We could speculate, guess, and try to add code that
  handles the unexpected and hope for the best. Using automated test
  generation tools based on property-based testing, such as QuickCheck or
  PropEr, can
  definitely help create failure scenarios you would never devise on your own.
  But unless you have supernatural powers, you will never be able to predict
  every possible unexpected error that might occur, let alone handle it before
  knowing what it is.
Too often, developers try to cater for bugs or corrupt data by
  implementing their own error-handling and recovery strategies in their code,
  with the result that they increase the complexity of the code along with
  the cost of maintaining it (and, yet handle only a fraction of the issues
  that can arise, and more often than not, end up inserting more bugs in the
  system than they solve). After all, how can you handle a bug if you don’t
  know what the bug is? Have you ever come across a C
  programmer who checks the return values of printf
  statements, but is unsure of what to do if an error actually occurs? If
  you’ve come to Erlang from another language that supports exception
  handling, such as Java or C++, how many times have you seen catch
  expressions that contain nothing more than TODO
  comments to remind the development team to fix the exception handlers at
  some point in the future—a point that unfortunately never arrives?
This is where the generic supervisor behavior makes its entrance. It takes over
  the responsibility for the unexpected-error-handling and recovery strategies
  from the developer. The behavior, in a deterministic and consistent manner,
  handles monitoring, restart strategies, race conditions, and borderline
  cases most developers would not think of. This results in simpler worker
  behaviors, as well as a well-considered error-recovery strategy. Let’s
  examine how the supervisor behavior works.
Supervision Trees
Supervisors are processes whose only task is to monitor and manage children.
    They spawn processes and link themselves to these processes. By
    trapping exits and receiving EXIT signals, the supervisors
    can take appropriate actions when something unexpected occurs. Actions
    vary from restarting a child to not restarting it, terminating some or
    all the children that are linked to the supervisor, or even terminating
    itself. Child processes can be both supervisors and workers.
Fault tolerance is achieved by creating supervision trees, where the
    supervisors are the nodes and the workers are the leaves (Figure 8-1). Supervisors on a
    particular level monitor and handle children in the subtrees they have
    started.
[image: ]Figure 8-1. Supervision trees

Figure 8-1 uses a double ring to denote processes
    that trap exits. Only supervisors are trapping exits in our example, but
    there is nothing stopping workers from doing the same.
Let’s start by writing our own simple supervisor. It will allow us
    to better appreciate what needs to happen behind the scenes before
    examining the OTP supervisor implementation. Given a list of child
    process specifications, our simple supervisor starts the children as
    specified and links itself to them. If any child terminates abnormally,
    the simple supervisor immediately restarts it. If the children instead
    terminate normally, they are removed from the supervision tree and no
    further action is taken. Stopping the supervisor results in all of the
    children being unconditionally terminated.
Here is the code that starts the supervisor and child processes:
-module(my_supervisor).
-export([start/2, init/1, stop/1]).

start(Name, ChildSpecList) -> 
    register(Name, Pid = spawn(?MODULE, init, [ChildSpecList])),
    {ok, Pid}.

stop(Name) -> Name ! stop.

init(ChildSpecList) ->
    process_flag(trap_exit, true),
    loop(start_children(ChildSpecList)).

start_children(ChildSpecList) ->
    [{element(2, apply(M,F,A)), {M,F,A}} || {M,F,A} <- ChildSpecList].
When starting my_supervisor, we
    provided the init/1 function with child specifications. This a list of {Module,
    Function, Arguments} tuples containing the functions that will
    spawn and link the child process to its parent. We assume that this
    function always returns {ok, Pid}, where Pid is
    the process ID of the newly spawned child. Any other return value is
    interpreted as a startup error.
We start each child in start_children/1 by calling
    apply(Module,Function,Args) within a list
    comprehension that processes the ChildSpecList. The result of
    the list comprehension is a list of tuples where the first element is the
    child pid, retrieved from the {ok, Pid} tuple returned from
    apply/3, and a tuple of the module, function, and arguments
    used to start the child. If Module does not
    exist, Function is not exported, and if
    Args contains the wrong number of arguments,
    the supervisor process terminates with a runtime exception. When the
    supervisor terminates, the runtime ensures that all
    processes linked to it receive an EXIT signal. If the linked
    child processes are not trapping exits, they will terminate.
    But if they are trapping exits, they need to handle the EXIT
    signal, most likely by terminating themselves, thereby propagating the
    EXIT signal to other processes in their link set.
It is a valid assumption that nothing abnormal should happen when
    starting your system. If a supervisor is unable to correctly start a
    child, it terminates all of its children and aborts the startup procedure.
    While we are all for a resilient system that tries to recover from errors,
    startup failures is where we draw the line.
loop(ChildList) ->
    receive
        {'EXIT', Pid, normal} ->
            loop(lists:keydelete(Pid,1,ChildList));
        {'EXIT', Pid, _Reason} ->
            NewChildList = restart_child(Pid, ChildList),
            loop(NewChildList);
        stop ->
            terminate(ChildList)
    end.

restart_child(Pid, ChildList) ->
    {Pid, {M,F,A}} = lists:keyfind(Pid, 1, ChildList),
    {ok, NewPid} = apply(M,F,A),
    lists:keyreplace(Pid,1,ChildList,{NewPid, {M,F,A}}).

terminate(ChildList) -> 
    lists:foreach(fun({Pid, _}) -> exit(Pid, kill) end, ChildList).
The supervisor loops with a tuple list of the format {Pid,
    {Module, Function, Argument}} returned from the
    start_children/1 call. This tuple list is the supervisor
    state. We use this information if a child terminates abnormally, mapping
    the pid to the function used to start it and needed to restart it. If we
    want to register supervisors with an alias, we pass it as an argument
    using the variable name. The reason for not hardcoding it in the module
    is that you will often have multiple instances of a supervisor in your
    Erlang node.
Having started all the children, the supervisor process enters the
    receive-evaluate loop. Notice how this is no different from the process
    skeleton described in “Process Skeletons”, and similar to
    the generic loop in servers, FSMs, and event handler processes. The only
    difference from the other behavior processes we have implemented in Erlang
    is that here we handle only EXIT messages and take specific
    actions when receiving the stop message.
In our supervisor, if a child process terminates with reason
    normal, it is deleted from the
    ChildSpecList and the supervisor continues monitoring other
    children. If it terminates with a reason other than normal, the child is restarted and its old pid is
    replaced with NewPid in the tuple {Pid, {Module,
    Function, Argument}} of the child specification list. If our
    supervisor receives the stop message,
    it traverses through its list of child processes, terminating each
    one.
Let’s try out my_supervisor
    with the Erlang implementation of the coffee FSM. If you do the same, don’t forget to compile
    coffee_fsm.erl and
    hw.erl. Actually, on second thought, don’t compile
    hw.erl. Start your coffee FSM from the supervisor and see
    what happens if the hw.erl stub module is not available. When
    all of the error reports are being printed out, compile or load hw.erl from the shell, making it accessible:
1> my_supervisor:start(coffee_sup, [{coffee_fsm, start_link, []}]).
{ok, <0.39.0>}

=ERROR REPORT==== 4-May-2013::08:26:51 ===
Error in process <0.468.0> with exit value:
{undef,[{hw,reboot,[],[]},{coffee,init,0,[....]}]}

...<snip>...

=ERROR REPORT==== 4-May-2013::08:26:58 ===
Error in process <0.474.0> with exit value:
{undef,[{hw,reboot,[],[]},{coffee,init,0,[....]}]}

2> c(hw).
Machine:Rebooted Hardware
Display:Make Your Selection
{ok,hw}
3> Pid = whereis(coffee_fsm).
<0.476.0>
4> exit(Pid, kill).
Machine:Rebooted Hardware
Display:Make Your Selection
true
5> whereis(coffee).
<0.479.0>
6> my_supervisor:stop(coffee_sup).
stop
7> whereis(coffee).
undefined
What is happening? The coffee FSM, in its init
    function, calls hw:reboot/0, causing an undef
    error because the module cannot be loaded. The supervisor receives the
    EXIT signal and restarts the FSM. The restart becomes cyclic,
    because restarting the FSM will not solve the issue; it will continue to
    crash until the module is loaded and becomes available. Compiling the
    hw.erl module in shell command 2 also
    loads the module, allowing the coffee FSM to initialize itself and start
    correctly. This puts an end to the cyclic restart.
Cyclic restarts happen when restarting a process after an abnormal termination does not
    solve the problem, resulting in the process crashing and restarting again.
    The supervisor behavior has mechanisms in place to escalate cyclic
    restarts. We cover them later in this chapter. Now, back to our
    example.
In shell command 3, we find the pid of the FSM and use it to send an
    exit signal, which causes the coffee FSM to terminate. It is immediately
    restarted, something visible from the printouts in the shell generated in
    the init/0 function. We stop the supervisor in shell command
    6, which, as a result, also terminates its workers.
Now comes the question we’ve been asking for every other behavior.
    Have a look at the code in my_supervisor.erl and, before looking at the
    answer in Table 8-1, ask
    yourself: what is generic and what is specific?1
Table 8-1. Supervisor generic and specific code	Generic	Specific
		Spawning the supervisor

	Starting the children

	Monitoring the children

	Restarting the children

	Stopping the supervisor

	Cleaning up


		What children to start

	Specific child handling:
	Start, restart

	Child dependencies



	Supervisor name

	Supervisor behaviors




Spawning the supervisor and registering it will be the same,
    irrespective of what children the supervisor starts or monitors.
    Monitoring the children and restarting them are also generic, as are
    stopping the supervisor and terminating all of the children. In other
    words, all of the code in my_supervisor.erl is generic. All of the
    specific functionality is passed as variables. It includes the child spec
    list, the order in which the children have to be started, and the
    supervisor alias.
Although my_supervisor will
    cater for some use cases, it barely scratches the surface of what a
    supervisor has to do. We decided to keep our example simple, but could
    have added more specific parameters. We’ve already seen that child startup
    failures cause endless retries. Supervisors should provide the ability to
    specify the maximum number of restarts within a time interval so that
    rather than trying endlessly, they can take further action if the child
    does not start properly. And what about dependencies? If a child
    terminates, shouldn’t the supervisor offer the option of terminating and
    restarting other children that depend on that child? These are some of the
    configuration parameters included in the OTP supervisor behavior library
    module, which we cover next.

OTP Supervisors
In OTP, we structure our programs with one or more supervision
    trees. We group together, under the same subtree, workers that are either
    similar in nature or have dependencies, starting them in order of
    dependency. When describing supervision trees, worker behaviors are
    usually represented as circles, while supervisors are represented as
    squares. Figure 8-2 shows what the supervision structure
    of the frequency allocator example we’ve been working on could look like.
[image: ]Figure 8-2. Supervision trees

Taking dependencies into consideration, the top supervisor first
    starts the event manager worker that handles alarms, because it is not
    dependent on any other worker. The top supervisor then starts the
    frequency allocator, because it sends alarms to the event manager. The
    last process on that level is a phone supervisor, which takes
    responsibility for starting and monitoring all of the FSMs representing
    the cell phones.
Note how we have grouped dependent processes together in one subset
    of the tree and related processes in another, starting them from left to
    right in order of dependency. This forms part of the supervision strategy
    of a system and in some situations is put in place not by the
    developer, who focuses only on what particular workers have to do, but by
    the architect, who has an overall view and understanding of the system and
    how the different components interact with each other.
The Supervisor Behavior
In OTP, the supervisor behavior is implemented in the supervisor
      library module. Like with all behaviors, the callback module is used for
      nongeneric code, including the behavior and version directives. The
      supervisor callback module needs to export a single callback function
      used at startup to configure and start the subset of the tree handled by
      that particular supervisor (Figure 8-3).
[image: ]Figure 8-3. Generic supervisors

You may have guessed that the single exported function is the
      init/1 function, containing all of the specific supervisor
      configuration. The callback module usually also provides the function
      used to start the supervisor itself. Let’s look at these calls more
      closely.

Starting the Supervisor
As a first step in getting our complete supervision tree in place, we create a supervisor
      that starts and monitors our frequency server and overload event
      manager. Because the frequency server calls the overload event manager,
      it has a dependency on the event manager. That means that the overload
      manager needs to be started before the frequency server, and if the
      overload manager terminates, we need to terminate the frequency server
      as well before restarting them both. Supervision tree diagrams, such as
      that in Figure 8-4, show not only the supervision
      hierarchy, but also dependencies and the order in which processes are
      started.
[image: ]Figure 8-4. Frequency server supervision tree

Let’s look at the code for the frequency supervisor callback
      module. Like with all other behaviors, you have to include the behavior directive.
      You start the supervisor using the start or
      start_link functions, passing the optional supervisor name, the callback module,
      and arguments passed to init/1. As with event managers, there is no Options argument
      allowing you to set tracing, logging, or memory fine-tuning options:
-module(frequency_sup).
-behavior(supervisor).

-export([start_link/0, init/1]).
-export([stop/0]).

start_link() ->
    supervisor:start_link({local,?MODULE},?MODULE, []).

stop() -> 
    exit(whereis(?MODULE), shutdown).

init(_) ->
    ChildSpecList = [child(freq_overload), child(frequency)],
    {ok,{{rest_for_one, 2, 3600}, ChildSpecList}}.

child(Module) ->
    {Module, {Module, start_link, []},
     permanent, 2000, worker, [Module]}.
In our example, the [] in the
      start_link/3 call denotes the arguments sent to the
      init/1 callback, not the Options. You cannot
      set sys options in supervisors at startup, but you can do
      so once the supervisor is started. Another difference from other
      behaviors is that supervisors do not expose built-in stop functionality
      to the developer. They are usually terminated by their supervisors or
      when the node itself is terminated. For those of you who do not want to
      write systems that never stop and insist on shutting down the supervisor
      from the shell, look at the stop/0 function we’ve included;
      it simulates the shutdown procedure from a higher-level
      supervisor.
Calling start_link/3 results in invocation of the
      init/1 callback function. This function returns a tuple of
      the format {ok, SupervisorSpec}, where
      SupervisorSpec is a tuple containing the supervisor
      configuration parameters and the child specification list (Figure 8-5). This specification is a bit more complicated
      than our pure Erlang example, because more is happening behind the
      scenes. The next section provides a complete overview of SupervisorSpec. For now, we informally introduce it by
      walking through the example.
[image: ]Figure 8-5. Generic supervisors

In our example, the first element of the
      SupervisorSpec configuration parameter tuple tells the
      supervisor that if a child terminates, we want to terminate all children
      that were started after it before restarting them all. In general this
      element is called the restart strategy, and to obtain the desired
      restart approach we need for this case, we specify the rest_for_one strategy. Following the restart
      strategy, the numbers 2 and 3600 in the tuple, called the intensity and
      period, respectively, tell the supervisor that it is allowed a maximum
      of two abnormal child terminations per hour (3,600 seconds). If this
      number is exceeded, the supervisor terminates itself and its children,
      and sends an exit signal to all the processes in its link set with
      reason shutdown. So, if this supervisor were part of a
      larger supervision tree, the supervisor monitoring it would receive the
      exit signal and take appropriate action.
The second element in the SupervisorSpec
      configuration parameter tuple is the child specification list. Each item
      in the list is a tuple specifying details for how to start and manage
      the static child processes. In our example, the first element in the
      tuple is a unique identifier within the supervisor in which it is
      started. Following that is the {Module,Function,Arguments}
      tuple indicating the function to start and link the worker to the
      supervisor, which is expected to return {ok,Pid}. Next, we
      find the restart directive; the atom permanent specifies
      that when the supervisor is restarting workers, this worker should
      always be restarted.
Following the restart directive is the shutdown directive,
      specified here as 2000. It tells the supervisor to wait
      2,000 milliseconds for the child to shut down (including the time spent in the
      terminate function) after sending the EXIT
      signal. There is no guarantee that terminate is called, as the child
      might be busy serving other requests and never reach the
      EXIT signal in its mailbox.
Following that, the worker atom indicates that the
      child is a worker as opposed to another supervisor, and finally the
      single-element list [Module] specifies the callback module
      implementing the worker.
supervisor:start_link(NameScope, Mod, Args)
supervisor:start_link(Mod, Args) -> {ok, Pid}
                                    {error, Error}
                                    ignore

Mod:init/1 -> {ok,{{RestartStrategy,MaxR,MaxT},[ChildSpec]}}
              ignore
Because it can be difficult to remember the purpose and order of
      all the fields of the SupervisorSpec, Erlang 18.0 and newer
      allow it to be specified instead as a map. Here are implementations of
      init/1 and child/1 that return our
      SupervisorSpec as a map rather than a tuple:
init(_) ->
    ChildSpecList = [child(overload), child(frequency)],
    SupFlags = #{strategy => rest_for_one,
                 intensity => 2, period => 3600},
    {ok, {SupFlags, ChildSpecList}}.

child(Module) ->
    #{id => Module,
      start => {Module, start_link, []},
      restart => permanent,
      shutdown => 2000,
      type => worker,
      modules => [Module]}.
As you can see, the SupervisorSpec map code is much
      easier to read because unlike in the tuple, all the fields are named. If
      you’re using Erlang 18.0 or newer, use maps for your supervisor
      specifications.
Supervisors, just like all other behaviors, can be registered or
      referenced using their pids. If registering the supervisor, valid values
      to NameScope include {local,Name} and
      {global,Name}. You can also use the name registry
      represented in the {via, Module, Name} tuple, where
      Module exports the same API defined in the global name
      registry.
The init/1 callback function normally returns the
      whole tuple comprising the restart tuple and a list of child
      specifications. But if it instead returns ignore, the supervisor terminates with reason
      normal. Note how supervisors do not export
      start/2,3 functions, forcing you to link to the parent. In
      the next section, we look at all the available options and restart
      strategies in more detail. We refer to these options and strategies
      as the supervisor
      specification.

The Supervisor Specification
The supervisor specification is a tuple containing two elements (Figure 8-6): 
	The nongeneric information about the restart strategy for
            that particular supervisor

	The child specifications relevant to all static workers the
            supervisor starts and manages


[image: ]Figure 8-6. Supervisor specification

Let’s look at these values in more detail, starting
      with the restart tuple.
The restart specification
The restart tuple, of the format: 
{RestartType, MaxRestart, MaxTime}
specifies
        what happens to the other children in its supervision tree if a child
        terminates abnormally. By “child” we mean either a worker or another
        supervisor. Starting with Erlang 18.0, you can also use a map. The map
        defining the restart specification has the following type definition:
        
#{strategy  => strategy(), 
  intensity => non_neg_integer(), 
  period    => pos_integer()}
There are four different restart types: one_for_one, one_for_all, rest_for_one, and simple_one_for_one. Under the one_for_one
        strategy (Figure 8-7), only the crashed process is
        restarted. This strategy is ideal if the workers don’t depend on each
        other and the termination of one will not affect the others. Imagine a
        supervisor monitoring the worker processes that control the instant
        messaging sessions of hundreds of thousands of users. If any of these
        processes crashes, it will affect only the user whose session is
        controlled by the crashed process. All other workers should continue
        running independently of each other.
[image: ]Figure 8-7. One for one

Under the one_for_all
        strategy shown in Figure 8-8, if a process
        terminates, all processes are terminated and restarted. This strategy
        is used if all or most of the processes depend on each other. Picture
        a very complex FSM handling a protocol stack. To simplify the design,
        the machine has been split into separate FSMs that communicate with
        each other asynchronously, and these workers all depend on each other.
        If one terminates, the others would have to be terminated as well. For
        these cases, pick the one_for_all
        strategy.
[image: ]Figure 8-8. One for all

Under the rest_for_one
        strategy (Figure 8-9), all processes started
        after the crashed process are terminated and
        restarted. Use this strategy if you start the processes in order of
        dependency. In our frequency_sup example, we first start
        the overload event manager, followed by the frequency allocator. The
        frequency allocator sends requests to the overload event
        manager whenever it runs out of frequencies. So if the overload
        manager has crashed and is being restarted, there is a risk the
        frequency server might send it requests that get lost. Under such
        circumstances, we want to first terminate the frequency allocator, and
        then restart the overload manager and the frequency allocator in that
        order.
[image: ]Figure 8-9. Rest for one

If losing the alarms sent to the frequency allocator did not
        matter (as the requests were asynchronous), we could have used the one_for_one strategy. Or we could have taken it a step further by
        making the raising and clearing of the alarms to the overload manager
        synchronous. In this case, if the overload manager had crashed and was
        being restarted, the frequency allocator would have also been
        terminated only when trying to make a synchronous call to it. Had the
        frequency allocator not run out of frequencies, thus not needing to
        raise or clear alarms, it could have continued functioning. As we have
        seen, there is no “one size fits all” solution; it all depends on the
        requirements you have and behavior you want to give your
        system.
There is one last restart strategy to cover: simple_one_for_one. It is used for children
        of the same type added dynamically at runtime, not at startup. An
        example of when we would use this strategy is in a supervisor handling
        the processes controlling mobile phones that are added to and removed
        from the supervision tree dynamically. We cover dynamic children and
        the simple_one_for_one restart strategy later in
        this chapter.
The last two elements in the restart tuple are
        MaxRestart and MaxTime.
        MaxRestart specifies the maximum number of restarts all
        child processes are allowed to do in MaxTime seconds. If
        the maximum number of restarts is reached in this number of seconds,
        the supervisor itself terminates with reason shutdown, escalating the termination to its
        higher-level supervisor. What is in effect happening is that we are
        giving the supervisor MaxRestart chances to solve the
        problem. If crashes still occur in MaxTime seconds, it
        means that a restart is not solving the problem, so the supervisor
        escalates the issue to its supervisor, which will hopefully be able to
        solve it.
Look at the supervision tree in Figure 8-2. What
        if the phone FSMs under the phone supervisor are crashing because of
        corrupt data in the frequency handler? No matter how many times we
        restart them, they will continue to crash, because the problem lies in
        the frequency allocator, a worker supervised outside of our
        supervision subtree. We solve cyclic restarts of this nature through
        escalation. If we allow the phone supervisor to terminate, the top
        supervisor will receive the exit signal and restart the frequency
        server and event manager workers before restarting the phone
        supervisor. Hopefully, the restart can clear the corrupt data,
        allowing the phone FSMs to function as expected.
The key to using supervisors is to ensure you have properly
        designed your start order and the restart strategy associated with it.
        Though you will never be able to fully predict what will cause your
        processes to terminate abnormally, you can nevertheless try to design
        your restart strategy to recreate the process state from known-good
        sources. Instead of storing the state persistently and assuming it is
        uncorrupted such that it reading it after a crash will correctly
        restore it, retrieve the various elements that created your state from
        their original sources.
For example, if the corrupted data causing your worker to crash
        was the result of a transient transmission error, rereading it might
        solve the problem. The supervisor would restart the worker, which in
        turn would successfully reread the transmission and continue
        operating. And since the system would have logged the crash, the
        developer could look into its cause, modify the code to handle it
        appropriately, and prepare and deploy a new release to ensure that
        future similar transmission errors do not negatively impact the
        system.
In other cases, recovery might not be as straightforward. More
        difficult transmission errors might cause repeated worker crashes, in
        turn causing the supervisor to restart the worker. But since the
        restarts do not correct the problem, the client supervisor eventually
        reaches the restart threshold and terminates itself. This in turn
        affects the top-level supervisor, which eventually reaches its own
        restart threshold, and by terminating itself it takes the entire
        virtual machine down with it. When the virtual machine terminates,
        heart, a monitoring mechanism we cover in Chapter 11, detects that the node is down and
        invokes a shell script. The recovery actions in this script could be
        as simple as restarting the Erlang VM or as drastic as rebooting the
        computer. Rebooting might reset the link to the hardware that is
        suffering from transmission problems and solve the problem. If it
        doesn’t, after a few reboot attempts the script might decide not to
        try again and instead alert an operator, requesting manual
        intervention.
Hopefully, a load balancer will already have kicked in to
        forward requests to redundant hardware, providing seamless service to
        end users. If not, this is when you receive a call in the middle of
        the night from a panicking first-line support engineer informing you
        there is an outage. In either case, the crash is logged, hopefully
        with enough data to allow you to investigate and solve the bug:
        namely, ensuring that data is checked before being introduced into
        your system so that data corrupted by transmission errors is not
        allowed in the first place. We look at distributed architectures and
        fault tolerance in Chapter 13. For now,
        let’s stay focused on recovery of a single node. Next in line are
        child specifications.

The child specification
The child specification contains all of the information the supervisor needs to
        start, stop, and delete its child processes. The specification is a tuple of the format:
{Name,StartFunction,RestartType,ShutdownTime,ProcessType,Modules}
or, in Erlang 18.0 or newer, a map with the following type
        specification: 
child_spec() = #{id => child_id(),       % mandatory
                 start => mfargs(),      % mandatory
                 restart => restart(),   % optional
                 shutdown => shutdown(), % optional
                 type => worker(),       % optional
                 modules => modules()}   % optional
The elements of the tuple are:
	Name
	Any valid Erlang term, used to identify the child. It
              has to be unique within a supervisor, but can be reused across
              supervisors within the same node.

	StartFunction
	A tuple of the format {Module, Function,
              Args}, which, directly or indirectly, calls one of the
              behavior start_link functions. Supervisors can
              start only OTP-compliant behaviors, and it is their
              responsibility to ensure that the behaviors can be linked to the
              supervisor process. You cannot link regular Erlang processes to
              a supervision tree, because they do not handle the system
              calls.

	RestartType
	Tells the supervisor how to react to a child’s termination.
              Setting it to permanent ensures that the child is
              always restarted, irrespective of whether its termination is
              normal or abnormal. Setting it to transient
              restarts a child only after abnormal termination. If you never
              want to restart a child after termination, set
              RestartType to temporary.

	ShutdownTime
	ShutdownTime is a positive integer denoting a time in
              milliseconds, or the atom infinity. It is the
              maximum time allowed to pass between the supervisor issuing the
              EXIT signal and the terminate callback
              function returning. If the child is overloaded and
              it takes longer, the supervisor steps in and unconditionally
              terminates the child process. Note that terminate
              will be called only if the child process is trapping exits. If
              you are feeling grumpy or do not need the behavior to clean up
              after itself, you can instead specify brutal_kill,
              allowing the supervisor to unconditionally terminate the child
              using exit(ChildPid, kill).
Choose your shutdown time with care, and never set it to
              infinity for a worker, because it might cause the
              worker to hang in its terminate callback function.
              Imagine that your worker is trying to communicate with a defunct
              piece of hardware, the very reason for your system needing to be
              rebooted. You will never get a response because that part of
              the system is down, and this will stop the system from restarting. If you
              have to, use an arbitrarily large number, which will eventually
              allow the supervisor to terminate the worker. For children that
              are supervisors themselves, on the other hand, it is common but
              not mandatory to select infinity, giving them the
              time they need to shut down their potentially large
              subtree.

	ProcessType and Modules
	These are used during a software upgrade to control how and which
              processes are being suspended during the upgrade.
              ProcessType is the atom worker or
              supervisor, while Modules is the list
              of modules implementing the behavior. In the case of the
              frequency server, we would include frequency, while for our coffee
              machine we would specify coffee_fsm. If your behavior includes
              library modules specific to the behavior, include them if you
              are concerned that an upgrade of the behavior module will be
              incompatible with one of library modules. For example, if you
              changed the API in the hw
              interface module as well as the coffee_fsm behavior calling it, you
              would have to atomically upgrade both modules at the same time
              to ensure that coffee_fsm
              does not call the old version of hw. By listing both of these modules,
              you would be covered. But if you did not list hw, as in our example, you would have
              to ensure that any upgrade would be backward-compatible and
              handle both the old and the new APIs. We cover software upgrades
              in more detail in Chapter 12.
What if you don’t know your Modules at compile
               time? Think of the event manager, which is started without any event
               handlers. When you do not know what will be running when you do a
               software upgrade, set Modules to the atom
               dynamic. When using dynamic modules, the supervisor will
               send a request to the behavior module and retrieve the module names
               when it needs them.


Before looking at the interface and callback details, let’s test
        our example with what we’ve learned. Looking at their child
        specifications, we see that both the overload event manager and the
        frequency server are permanent worker processes given 2 seconds to
        execute in their terminate functions. We start the supervisor and its
        children, and see immediately that they have started correctly.
        In shell command 4, we stop the frequency server, but because it has
        its RestartType set to permanent, the supervisor will immediately
        restart it. We verify the restart in shell command 5 by retrieving the
        pid for the new frequency server process and noting that it differs
        from the pid of the original server returned from shell command 2. In
        shell command 6 we explicitly kill the frequency server, and shell
        command 7 shows that, once again, it restarted:
1> frequency_sup:start_link().
{ok,<0.35.0>}
2> whereis(frequency).
<0.38.0>
3> whereis(freq_overload).
<0.36.0>
4> frequency:stop().
ok
5> whereis(frequency).
<0.42.0>
6> exit(whereis(frequency), kill).
true
7> whereis(frequency).
<0.45.0>
8> supervisor:which_children(frequency_sup).
[{frequency,<0.45.0>,worker,[frequency]},
 {freq_overload,<0.36.0>,worker,[freq_overload]}]
9> supervisor:count_children(frequency_sup).
[{specs,2},{active,2},{supervisors,0},{workers,2}]
In shell command 8, which_children/1 returns a tuple
        list containing the ChildId its pid,
        worker or supervisor to denote its role,
        and the Modules list. Be careful when using this function
        if your supervisor has lots of children, because it will consume lots
        of memory. If you are calling the function from the shell, remember
        that the result will be stored in the shell history and not be garbage
        collected until the history is cleared.
supervisor:which_children(SupRef) -> [{Id, Child, Type, Modules}]
supervisor:count_children(SupRef) -> [{specs, SpecCount},
                                      {active, ActiveProcessCount},
                                      {supervisors, ChildSupervisorCount},
                                      {workers, ChildWorkerCount}]
supervisor:check_childspecs(ChildSpecs) -> ok
                                           {error, Reason}
The function count_children/1 returns a
        property list covering the supervisor’s child specifications and
        managed processes. The elements are:
	specs
	The total number of children, both those that are active
              and those that are not

	active
	The number of actively running children

	workers and supervisors
	The number of children of the respective type


And finally, check_childspecs/1 is useful when
        developing and troubleshooting child specifications and startup
        issues. It validates a list of child specifications, returning an
        error if any are incorrect or the atom ok if it finds no
        problems.
Supervisor specifications are easy to write. And as a result,
        they are also easy to get wrong. Too often, programmers pick
        configuration values that do not reflect the reality and conditions
        under which the application is running, or copy specifications from
        other applications, or, even worse, use the default values from skeleton
        templates that different editors provide. You must take care to get
        your supervision structure right when designing your start and restart
        strategy, and must build in fault tolerance and redundancy. The tasks
        include starting your processes in order of dependency, and setting
        restart thresholds that will propagate problems to supervisors higher
        up in the hierarchy and allow them to take control if supervisors
        lower down in the supervision tree cannot solve the issue.


Dynamic Children
Having gone through the supervisor specification returned by the
      init/1 callback function, you must have come to the
      realization that the only child type we have dealt with so far is
      static children started along with the supervisor. But another approach
      is viable as well: dynamically creating the child specification list in
      our init/1 call when starting the supervisor. For instance,
      we could inspect the number of active mobile devices and start a worker
      for each of them. We have already handled the end of the worker’s
      lifecycle (by making the worker transient, so that if the phone is shut off,
      the worker is terminated), but we don’t yet have similar flexibility for
      the start of the lifecycle. What if a mobile device attaches itself to
      the network after we have started the supervisor? The solution to the problem is dynamic children, represented in
      Figure 8-10.
[image: ]Figure 8-10. Dynamic children

Let’s start an empty supervisor
      whose sole responsibility will be that of dynamically starting and
      monitoring the FSM processes controlling mobile devices. The FSM we’ll
      be using is the one described but left as an exercise in “The Phone Controllers”. If you
      have not already solved it, download the code from the book’s code
      repository. The code includes a phone simulator, phone.erl, which starts a specified number of
      mobile devices and lets them call each other. We’ll make the phone
      supervisor a child of the frequency supervision tree.  Let’s take a look at the code for the phone_sup module:
-module(phone_sup).
-behavior(supervisor).

-export([start_link/0, attach_phone/1, detach_phone/1]).
-export([init/1]).

start_link() ->
    supervisor:start_link({local, ?MODULE}, ?MODULE, []).

init([]) ->
    {ok, {{one_for_one, 10, 3600}, []}}.

attach_phone(Ms) ->
    case hlr:lookup_id(Ms) of
        {ok, _Pid}    ->
            {error, attached};
        _NotAttached ->
            ChildSpec = {Ms, {phone_fsm, start_link, [Ms]},
                         transient, 2000, worker, [phone_fsm]},
            supervisor:start_child(?MODULE, ChildSpec)
    end.

detach_phone(Ms) ->
    case hlr:lookup_id(Ms) of
        {ok, _Pid}    ->
            supervisor:terminate_child(?MODULE, Ms),
            supervisor:delete_child(?MODULE, Ms);
        _NotAttached ->
            {error, detached}
    end.
In the init/1 supervisor callback function we
      set the maximum number of restarts to 10 per hour, and because mobile
      devices run independently of each other, the one_for_one restart
      strategy will do. Note that since we intend to start all children
      dynamically, the return value from init/1 includes an empty
      list of child specifications. Further down in the module is the
      phone_sup:attach_phone/1 call, which, given a mobile device
      number Ms, checks whether the number is already registered
      on the network. If not, it creates a child specification and uses the
      supervisor:start_child/2 call to start it.
Let’s experiment with this code. In shell commands 1 through 3 in the following interaction, we
      start the supervisors and initialize the home location register
      database, hlr (covered in “ETS: Erlang Term Storage”). We start two phones in shell commands 4 and 5,
      providing simple phone numbers as arguments. In shell command 6, we make
      phone 2, controlled by process P2, start an outbound call to the phone
      with phone number 1. Debug printouts are turned on for both phone FSMs,
      allowing you to follow the interaction between the phone FSMs and the
      phone simulator, implemented in the phone module. Following the debug printouts,
      we can see that phone 2 starts an outbound call to phone 1. Phone 1
      receives the inbound call and rejects it, terminating the call and
      making both phones return to idle (as the simulator is based on random
      responses, you might get a different result when running the
      code):
1> frequency_sup:start_link().
{ok,<0.35.0>}
2> phone_sup:start_link().
{ok,<0.40.0>}
3> hlr:new().
ok
4> {ok, P1} = phone_sup:attach_phone(1).
{ok,<0.43.0>}
5> {ok, P2} = phone_sup:attach_phone(2).
{ok,<0.45.0>}
6> phone_fsm:action({outbound,1}, P2).
*DBG* <0.45.0> got {'$gen_sync_all_state_event',
                       {<0.33.0>,#Ref<0.0.4.55>},
                       {outbound,1}} in state idle
<0.45.0> dialing 1
*DBG* <0.45.0> sent ok to <0.33.0>
      and switched to state calling
*DBG* <0.43.0> got event {inbound,<0.45.0>} in state idle
*DBG* <0.43.0> switched to state receiving
ok
*DBG* <0.43.0> got event {action,reject} in state receiving
*DBG* <0.43.0> switched to state idle
*DBG* <0.45.0> got event {reject,<0.43.0>} in state calling
1 connecting to 2 failed:rejected
<0.45.0> cleared
*DBG* <0.45.0> switched to state idle
7> supervisor:which_children(phone_sup).
[{2,<0.45.0>,worker,[phone_fsm]},
 {1,<0.43.0>,worker,[phone_fsm]}]
8> supervisor:terminate_child(phone_sup, 2).
ok
9> supervisor:which_children(phone_sup).
[{2,undefined,worker,[phone_fsm]},
 {1,<0.43.0>,worker,[phone_fsm]}]
10> supervisor:restart_child(phone_sup, 2).
{ok,<0.53.0>}
11> supervisor:delete_child(phone_sup, 2).
{error,running}
12> supervisor:terminate_child(phone_sup, 2).
ok
13> supervisor:delete_child(phone_sup, 2).
ok
14> supervisor:which_children(phone_sup).
[{1,<0.43.0>,worker,[phone_fsm]}]
Have a look at the other shell commands in our example. You will
      find functions used to start, stop, restart, and delete children from
      the child specification list, some of which we use in our phone_sup module. Note how we get the list of
      workers when calling supervisor:which_children/1. We
      terminate the child in shell command 8, and note in the response to shell command 9 that
      it is still part of the child specification list but with the pid set to
      undefined. This means that the child
      specification still exists, but the process is not running. We can now
      restart the child using only the child Name in shell
      command 10.
Keep in mind that these function
      calls do not use pids, but only unique names identifying the child
      specifications. This is because children crash and are restarted, so
      their pids might change. Their unique names, however, will remain the
      same.
Once the supervisor has stored the child specification, we can
      restart it using its unique name. To remove it from the child
      specification list, we need to first terminate the child as shown in
      shell command 12, after which we call supervisor:delete_child/2 in
      shell command 13. Looking at the child specifications in shell command
      14, we see that the specification of phone 2 has been deleted.
Simple one for one
The simple_one_for_one restart strategy is used when there is only one child
        specification shared by all the processes under a single supervisor.
        Our phone supervisor example fits this description, so let’s rewrite
        it using this strategy. In doing so, we have added the
        detach_phone/1 function, which we explain later. Note how
        we have moved the hlr:new() call to the supervisor
        init function:
-module(simple_phone_sup).
-behavior(supervisor).

-export([start_link/0, attach_phone/1, detach_phone/1]).
-export([init/1]).

start_link() ->
    supervisor:start_link({local, ?MODULE}, ?MODULE, []).

init([]) ->
    hlr:new(),
    {ok, {{simple_one_for_one, 10, 3600},
          [{ms, {phone_fsm, start_link, []},
           transient, 2000, worker, [phone_fsm]}]}}.

attach_phone(Ms) ->
    case hlr:lookup_id(Ms) of
        {ok, _Pid}    ->
            {error, attached};
        _NotAttached ->
            supervisor:start_child(?MODULE, [Ms])
    end.

detach_phone(Ms) ->
    case hlr:lookup_id(Ms) of
        {ok, Pid}    ->
            supervisor:terminate_child(?MODULE, Pid);
        _NotAttached ->
            {error, detached}
    end.
If you have looked at the code in detail, you might have spotted
        a few differences between the simple_one_for_one restart strategy and the
        one we used earlier for dynamic children. The first change is the
        arguments passed when starting the children. In the supervisor
        init/1 callback function, the {phone_fsm,
        start_link, ChildSpecArgs} in the child specification specifies
        no arguments (ChildSpecArgs is []), whereas
        the function phone_fsm:start_link(Args) in the earlier
        example takes one, Ms. As the children are dynamic, they
        are started via the function supervisor:start_child(SupRef,
        StartArgs). This function takes its second parameter,
        which it expects to be a list of terms, appends that list to the list
        of arguments in the child specification, and calls apply(Module,
        Function, ChildSpecArgs ++ StartArgs).
For the phone FSM, ChildSpecArgs in the child
        specification is empty, so the result of passing [Ms] as
        the second argument (StartArgs) to
        supervisor:start_child/2 is that it calls
        phone_fsm:start_link(Ms). It is also worth noting that we
        are initializing the ETS tables using the hlr:new() call
        in the init/1 callback, making the supervisor the owner
        of the tables.
The second difference is that in the simple_one_for_one
        strategy you do not use the child’s name to reference it, you use its
        pid. If you study the detach_phone/1 function, you will
        notice this. You will also notice in the code that we are terminating
        the child without deleting it from the child specification list. We
        don’t have to, as it gets deleted automatically when terminated. Thus, the
        functions supervisor:restart_child/1 and
        supervisor:delete_child/1 are not allowed. Only supervisor:terminate_child/2 will
        work. Testing the supervisor reveals no surprises:
1> frequency_sup:start_link().
{ok,<0.35.0>}
3> simple_phone_sup:start_link().
{ok,<0.40.0>}
4> simple_phone_sup:attach_phone(1), simple_phone_sup:attach_phone(2).
{ok,<0.43.0>}
5> simple_phone_sup:attach_phone(3).
{ok,<0.45.0>}
6> simple_phone_sup:detach_phone(3).
ok
7> supervisor:which_children(simple_phone_sup).
[{undefined,<0.42.0>,worker,[phone_fsm]},
 {undefined,<0.43.0>,worker,[phone_fsm]}]
Once we’ve detached the phone, it does not appear among the
        supervisor children. This is specific to the simple_one_for_one
        strategy, because with the other strategies, you need to both
        terminate and delete the children. Another difference is during
        shutdown; as simple_one_for_one
        supervisors often grow to have many children running independently of
        each other (often a child per concurrent request), when shutting down,
        they terminate the children in no specific order, often concurrently.
        This is acceptable, as determinism in these cases is irrelevant, and
        most probably not needed. Finally, simple_one_for_one supervisors scale better
        with a large number of dynamic children, as they use a dict key-value dictionary library module to
        store child specifications, unlike other supervisor types, which use a
        list. While other supervisors might be faster for small numbers of
        children, performance deteriorates quickly if the frequency at which
        dynamic children are started and terminated is high.
Keeping ETS Tables Alive
You will recall that an ETS table is linked to the process that creates it. If that
          process terminates, normally or abnormally, the ETS table is
          deleted. You could use the heir option when creating
          the table or call the ets:give_away/3 function in your
          terminate function to transfer ownership instead when the owner terminates. An easier solution, however, is to
          place your ETS table not in its own process, but in a supervisor.
          Pick the supervisor that monitors the processes using the table, so
          if the supervisor is terminated, you are guaranteed that the
          processes using it have also terminated. This approach requires the
          table to have public access so that nonowning processes can both
          read and write to it. In our example, we have placed our ETS tables
          mapping pids to numbers and numbers to pids there. If the supervisor
          is terminated or shuts down, so will all of the processes accessing
          the table. The primary drawback to this approach is that if the data
          in the ETS table gets corrupted, you need to restart the supervisor
          to clear it. Keep this in mind if you use this approach.

This is quite a bit of information to absorb. Before going
        ahead, let’s review the functional API used to manage dynamic
        children. Keep in mind that terminate_child/2,
        restart_child/2, and delete_child/2 cannot
        be used with simple_one_for_one strategies:
supervisor:start_child(Name, ChildSpecOrArgs)  -> {ok, Pid}
                                                  {ok, Pid, Info}
                                                  {error, already_started | 
                                                          {already_present,Id} |
                                                          Reason}
supervisor:terminate_child(Name, Id)  -> ok
                                         {error, not_found | simple_one_for_one}
supervisor:restart_child(Name, Id)   -> {ok, Pid}
                                        {ok, Pid, Info}
                                        {error, running | restarting |
                                                not_found | simple_one_for_one}
supervisor:delete_child(Name, Id)  -> ok
                                      {error, running | restarting |
                                              not_found | simple_one_for_one |
                                              Reason}

Gluing it all together
Before wrapping up this example, let’s create the top-level
        supervisor, bsc_sup, which starts
        both the frequency_sup and the
        simple_phone_sup functions. We will test the system using the
        phone.erl phone test simulator,
        which lets us specify the number of phones and the number of calls
        each phone should attempt, and then makes random calls, replying to
        and rejecting calls. The code for the top-level supervisor is as follows:
-module(bsc_sup).
-export([start_link/0, init/1]).
-export([stop/0]).

start_link() ->
    supervisor:start_link({local,?MODULE}, ?MODULE, []).

stop() -> exit(whereis(?MODULE), shutdown).

init(_) ->
    ChildSpecList = [child(freq_overload, worker),
                     child(frequency, worker),
                     child(simple_phone_sup, supervisor)],
    {ok,{{rest_for_one, 2, 3600}, ChildSpecList}}.

child(Module, Type) ->
    {Module, {Module, start_link, []},
     permanent, 2000, Type, [Module]}.
We pick the rest_for_one strategy because if the phones or the
        phone supervisor terminates, we do not want to affect the frequency
        allocator and overload handler. But if the frequency allocator or the
        overload handler terminates, we want to restart all of the phone FSMs.
        We allow a maximum of two restarts per hour, after which we escalate
        the problem to whatever is responsible for the bsc_sup supervisor.
Suppose that corrupted data in the frequency server is causing
        the phone FSMs to crash. After the simple_phone_sup has terminated three times
        within an hour, thus surpassing its maximum restart threshold,
        bsc_sup will terminate all of its
        children, bringing the frequency server down with it. The restart will
        hopefully clear up the problem, allowing the phones to function
        normally. We show how this escalation is handled in the upcoming
        chapters. Until then, let’s use our phone.erl simulator and test our
        supervision structure and phone FSM by starting 150 phones, each
        attempting to make 500 calls:
1> bsc_sup:start_link().
{ok,<0.35.0>}
2> phone:start_test(150, 500).
*DBG* <0.107.0> got {'$gen_sync_all_state_event',
                        {<0.33.0>,#Ref<0.0.4.37>},
                        {outbound,109}} in state idle
<0.107.0> dialing 109

...<snip>...

*DBG* <0.92.0> switched to state idle
*DBG* <0.53.0> switched to state idle
3> counters:get_counters(freq_overload).
{counters,[{{event,{frequency_denied,<0.38.0>}},27},
           {{set_alarm,{no_frequency,<0.38.0>}},6},
           {{clear_alarm,no_frequency},6}]}
For the sake of brevity, we’ve cut out all but one of the debug
        printouts. Having run the test, we retrieve the counters and see that
        during the trial run, we ran out of available frequencies six times,
        raising and eventually clearing the alarm accordingly. During these
        six intervals, 27 phone calls could not be set up as a result.
        Examining the logs, we can get the timestamps when these calls were
        rejected. If a pattern emerges, we can use the information to improve
        the availability of frequencies at various hours.
Before moving on to the next section, if you ran the test just shown on your computer and still have the shell open, try killing the
        frequency server three times using exit(whereis(frequency),
        kill). You will cause the top-level supervisor to reach its
        maximum restart threshold and terminate. Note how, when the phone FSM
        detaches itself in the FSM terminate function, you get a badarg error as a result of the hlr ETS tables no longer being present. The
        error reports originate in the terminate function if the
        supervisor has terminated before the phone FSM, taking the ETS tables
        with it. These error reports might shadow more important errors, so it
        is always a good idea within a terminate function to
        embed calls that might fail within a try-catch and, by default, return
        the atom ok.


Non-OTP-Compliant Processes
Child processes linked to an OTP supervision tree have to be OTP
      behaviors, or follow the behavior principles, and be able to handle and
      react to OTP system messages. There are, however, times when we want to
      bypass behaviors and use pure processes, either because of performance
      reasons or simply as a result of legacy code. We get around this problem by
      using supervisor bridges, implementing our own behaviors, or having a
      worker spawn and link itself to regular Erlang processes.
Supervisor bridges
In the mid-1990s, when major projects for the next generation of telecom
        infrastructure of that time were started at Ericsson, OTP was being
        implemented. The first releases of these systems, while following many
        of the design principles, were not OTP-compliant because OTP did not
        exist. When OTP R1 was released, we ended up spending more time in
        meetings discussing whether we should migrate these systems to OTP
        than it would actually have taken to do the job. It is at times
        like these, when no progress is made, that the supervisor_bridge behavior comes in
        handy.
The supervisor bridge is a behavior that allows you to connect a
        non-OTP-compliant set of processes to a supervision tree. It behaves
        like a supervisor toward its supervisor, but interacts with its child
        processes using predefined start and stop functions. In Figure 8-11, the right-hand side of the supervision tree
        consists of OTP behaviors, while the left-hand side of the supervision
        tree connects the non-OTP-compliant processes.
[image: ]Figure 8-11. Supervisor bridges

Start a supervisor bridge using the supervisor_bridge:start_link/2,3
        call, passing the optional NameScope, the callback
        Mod, and the Args. This results in
        calling the init(Args) callback function,
        in which you start your Erlang process subtree, ensuring all processes
        are linked to each other. The init/1 callback, if
        successful, has to return {ok, Pid, State}. Save the
        State and pass it as a second argument to the
        terminate/2 callback.
If the Pid process terminates, the supervisor bridge will terminate with the
        same reason, causing the terminate/2 callback function to
        be invoked. In terminate/2, all calls required to shut down the non-OTP-compliant
        processes have to be made. At this point, the supervisor bridge’s
        supervisor takes over and manages the restart. If the supervisor
        bridge receives a shutdown message from its supervisor,
        terminate/2 is also called. While the supervisor bridge
        handles all of the debug options in the sys module, the processes it starts and
        is connected to have no code upgrade and debug functionality.
        Supervision will be limited to what has been implemented in the
        subtree.
supervisor_bridge:start_link(NameScope, Mod, Args) ->
    {ok, Pid} | ignore | {error, {already_started,Pid}}


Mod:init(Args)               -> {ok,Pid,State} | ignore | {error,Reason}
Mod:terminate(Reason, State) -> term()

Adding non-OTP-compliant processes
Remember that supervisors can accept only OTP-compliant
        processes as part of their supervision tree. They include workers,
        supervisors and supervisor bridges. There is one last group,
        however, that can be added: processes that follow a subset of the OTP
        design principles, the same ones standard behaviors follow. We call
        processes that follow OTP principles but are not part of the standard
        behaviors special processes. You
        can implement your own special processes by using the proc_lib module to start your processes and handle system messages in
        the sys module. With little effort, the sys, debug, and
        stats options can be added. Processes implemented following these
        principles can be connected to the supervision tree. We cover them in
        more detail in Chapter 10.


Scalability and Short-Lived Processes
Typical Erlang design creates one process for each truly concurrent activity in
      your system. If your system is a database, you will want to spawn a
      process for every query, insert, or delete operation. But don’t get
      carried away. Your concurrency model will depend on the resources in
      your system, as in practice, you could have only one connection to the
      database. This becomes your bottleneck, as it ends up serializing your
      requests. In this case, is sending this process a message easier than
      spawning a new one? If your system is an instant messaging server, you
      will want a process for every inbound and outbound message, status
      update, or login and logout operation. We are talking about tens or
      possibly hundreds of thousands of simultaneous processes that are
      short-lived and reside under the same supervisor. At the time of
      writing, supervisors that have a large number of dynamic children
      starting and terminating at very short continuous intervals will not
      scale well because the supervisor becomes the bottleneck. The
      implementation of the simple_one_for_one strategy scales better, as
      unlike other supervisor types that store their child specifications in
      lists, it uses the dict key-value library module. But
      despite this, it will also have its limits. Giving a rule-of-thumb
      measure of the rate at which dynamic children can be started and
      terminated is hard, because it depends on the underlying hardware, OS,
      and cores, as well as the behavior of the processes themselves (including
      the amount of data that needs to be copied when spawning a process).
      These issues are rare, but if a supervisor message queue starts growing
      to thousands of messages, you know you are affected. There are two
      approaches to the problem.
The clean approach, shown in Figure 8-12, is to
      create a pool of supervisors, ensuring that each does not need to cater
      for more children than it can handle. This is a recommended strategy if
      the children have to interact with other processes and are often long-lived. The process on the left is the dispatcher, which manages
      coordination among the supervisors and, if necessary, starts new ones.
      You can pick a supervisor in the pool using an algorithm that best suits
      your needs, such as round robin, consistent hashing, or random.
[image: ]Figure 8-12. Supervisor pools

The second approach taken by many is to have a worker, more often
      than not a generic server, that spawn_links a non-OTP-compliant process
      for every request (Figure 8-13). You will often find
      this strategy in messaging servers, web servers, and databases. This
      non-OTP-compliant process usually executes a sequential, synchronous set
      of operations and terminates as soon as it has completed its task. This
      solution potentially sacrifices OTP principles for speed and
      scalability, but it ensures that your process is linked to the behavior
      that spawned it; if the process tree shuts down, the linked processes
      will also terminate.
[image: ]Figure 8-13. Linking to a worker

Why link? Don’t forget that your system will run for years without
      being restarted. You can’t predict what upgrades, new functionality, or
      even abnormal terminations will occur. The last thing you want is a set
      of dangling processes you can’t control, left there after the last
      failed upgrade. Because you link the non-OTP-compliant children to their
      parent, if the parent terminates, so do the children.
Multiple Supervision Policies
Every child may be associated with one supervisor or parent. OTP
        supervision trees are not set up to handle cases where a behavior
        might belong to two process groups with different policies. If you
        come across such use cases where it might make sense to have multiple
        processes monitor the same behavior, use links and monitors, and
        ensure that only one of the behaviors is responsible for handling the
        restart strategy.


Synchronous Starts for Determinism
Remember that when you start behaviors with either the
      start or start_link calls, process creation
      and the execution of the init/1 function are synchronous.
      The functions return only when the init/1 callback function returns. The
      same applies to the supervisor behavior. A crash during the start of any
      behavior will cause the supervisor to fail, terminating all the children
      it has already started. Because starts are synchronous and if start and
      restart times are critical, try to minimize the amount of work done in
      the init/1 callback. You need to guarantee that the process
      has been restarted and is in a consistent state. If starting up involves
      setting up a connection toward a remote node or a database—a connection
      that can later fail as a result of a transient error—start setting up
      the connection in your init/1 function, but do not wait for
      the connection to come up.
A trick you can use to postpone your initialization is to set the
      timeout to 0 in your init/1 behavior callback function.
      Setting a timeout in this manner results in your callback module
      receiving a timeout message immediately after
      init/1 returns, allowing you to asynchronously continue
      initializing your behavior. This could involve waiting for node or
      database connections or any other noncritical parts over which your
      init/1 function does not provide guarantees. A more general
      alternative to a timeout is for init/1 to send a suitable
      asynchronous message to self(), which is handled after
      init/1 returns, in order to asynchronously proceed with
      initialization.
Repairing Mnesia Tables
Remember Mnesia, the distributed database introduced in the Erlang Programming book? An unexpected
        restart issue we had many times in live systems was for Mnesia to load
        and fix its tables during a restart, which can be caused after a node is
        shut down abnormally as the result of a VM crashing or it being
        killed, or after a power outage or hardware fault. Upon restarting,
        Mnesia loads its tables asynchronously, so as to not block other
        behaviors from starting. Fixing tables has been known to take a long
        time, as logs and backups are scanned. If you try to read a value from
        a table that has not been completely loaded, the call will raise an
        exception.
If a behavior is dependent on a set of tables, you can get
        around this problem by calling mnesia:wait_for_tables/2
        when initializing your behavior. This will work without any issues in
        a test environment when tables are small, but in production systems,
        the data being loaded can be substantial. In fact, data sets in test
        environments are usually so small that you will probably get away
        without calling wait_for_tables/2. But in the worse case,
        in a live system after a major outage, can your supervisor startup
        handle waiting a couple of minutes for an Mnesia table being repaired
        as the result of an abnormal termination? Will it cause unwanted
        message queue growth elsewhere, or result in a knock-on effect? These
        are issues you have to validate when testing your system.

Why are synchronous starts important? Imagine first spawning all
      your child processes asynchronously and then checking that they have all
      started correctly. If something goes wrong at startup, the issue might
      have been caused by the order in which processes were started or the
      order the expressions in their respective init callbacks
      were executed. Recreating the race condition that resulted in the
      startup error might not be trivial. Your other option is to start a
      process, allow it to initialize, and start the next one only when the
      init function returns. This will give you the ability to
      reproduce the sequence that led to a startup error without having to
      worry about race conditions. Incidentally, this is the way we do it when
      using OTP, where the combination of applications (covered in Chapter 9), supervisors, and the synchronous
      startup sequence together provide a “simple core” that guarantees a
      solid base for the rest your system.

Testing Your Supervision Strategy
In this chapter, we’ve explained how to architect your supervision tree,
      group and start processes based on dependencies, and ensure that you
      have picked the right restart strategy. These tasks should not be
      overlooked or underestimated. Although you are encouraged to avoid
      defensive programming and let your behavior terminate if something
      unexpected happens, you need to make sure that you have isolated the
      error and are able to recover from this exception. You might have missed
      dependencies, picked the wrong restart strategy, or set your allowed
      number of restarts too high (or low) in a possibly incorrect time
      interval. How to you test these scenarios and detect these design
      anomalies?
Abnormal or Normal Termination?
One of this book’s authors was involved in a project where each generic server managed by the supervisor
        owned a TCP connection. When the socket was closed as a result of a
        connectivity error, it would terminate the behavior abnormally, be
        restarted, and attempt to re-establish the connection. Each network
        connectivity error, although perfectly legitimate, would increment the
        counter for the number of abnormal terminations, occasionally
        resulting in shutting the node down. This was particularly evident
        when experiencing network connectivity issues as a result of a
        firewall misconfiguration, router and load balancer failures, or
        something as simple as a system administrator tripping over a network
        cable. On top of creating outages, other abnormal issues happening in
        the system were being lost in the sheer volume of error reports being
        generated. Because these actions can happen under normal operations,
        the socket closings that were not initiated by the program itself
        should have been handled as normal events and not resulted in abnormal
        termination.

All correctly written test specifications for Erlang systems will
      contain negative test cases where recovery scenarios and supervision
      strategies have to be validated by simulating abnormal terminations. You
      need to ensure that the system is not only able to start, but also to
      restart and self-heal when something unexpected happens.
In our first test system, exit(Pid, Reason) was used
      to kill specific processes and validate the recovery scenarios. In later
      years, we used Chaos Monkey, an
      open source tool that randomly kills processes, simulating abnormal
      errors. Try it while stress testing your system, complementing it with
      fault injections where hardware and network failures are being
      simulated. If your system comes out of it alive, it is on track to
      becoming production-ready.
Don’t Tell the World You Are Killing Children!
While working on the R1 release of OTP, a group of us left
        the office and took the commuter train into Stockholm. We were talking
        about the ease of killing children, children dying, and us not having
        to worry about it, as supervisors would trap exits and restart them.
        We were very excited and vocal about this, as it was at the time a
        novel approach to software development, and one we were learning about as
        we went along. We were all so engrossed in this conversation that we
        failed notice the expressions of horror on the faces of some elderly
        ladies sitting next to us. I have never seen an expression of alarm
        turn so quickly into an expression of relief as when we finally got off
        the train. Pro Tip: when in public, talk about behaviors, not
        children, and do not kill them—terminate them instead. It will help
        you make friends, and you won’t risk having to explain yourself to a
        law enforcement officer who probably has no sense of humor.



How Does This Compare?
How does the approach of nondefensive programming, letting
    supervisors handle errors, compare to conventional programming languages?
    The urban legend among us Erlang programmers boasted of less code and
    faster time to market. But the numbers we quoted were based on gut
    feelings or studies that were not public. The very first study, in fact,
    came from Ericsson, where a sizable number of features in the MD110
    corporate switch were rewritten from PLEX (a proprietary language used at
    the time) to Erlang. The result was a tenfold decrease in code volume.
    Worried that no one would believe this result, the official stance was that you
    could implement the same features with four times less code. Four was
    picked because it was big enough to be impressive, but small enough not to
    be challenged. We finally got a formal answer when Heriot-Watt University
    in Scotland ran a study focused on rewriting C++ production
    systems to Erlang/OTP. One of the systems was Motorola’s Data Mobility
    (DM), a system handling digital communication streams for two-way radio
    systems used by emergency services. The DM had been implemented in C++
    with fault tolerance and reliability in mind. It was rewritten in Erlang
    using different approaches, allowing the various versions to be compared
    and contrasted.
Many academic papers and talks have been written on this piece of
    research. One of the interesting discoveries was an 85% reduction in code
    in one of the Erlang implementations. This was in part explained by noting
    that 27% of the C++ code consisted of error handling and defensive
    programming. The counterpart in Erlang, if you assumed OTP to be part of
    the language libraries, was a mere 1%!
Just by using supervisors and the fault tolerance built into
    OTP behaviors, you get a code reduction of 26% compared to other
    conventional languages. Remove the 11% of the C++ code that consists of
    memory management, remove another 23% consisting of high-level
    communication—all features that are part of the Erlang semantics or part
    of OTP—and include declarative semantics and pattern matching, and you can
    easily understand how an 85% code reduction becomes possible. Read one or two of the
    papers2 and have a look at the recordings of the presentations
    available online if you want to learn more about this study.

Summing Up
Building on previous chapters that covered OTP worker processes,
    this chapter explained how to group them together in supervision trees. We
    have looked at dependencies and recovery strategies, and how they allow
    you to handle and isolate failures generically. The bottom line is for you
    not to try to handle software bugs or corrupt data in your code. Focus on
    the positive cases and, in the case of unexpected ones, let your process
    terminate and have someone else deal with the problem. This strategy is
    what we refer to as fail safe.
In Table 8-2 we list the
    functions exported by the supervisor and supervisor bridge behaviors, together with their
    respective callback functions. You can read more about them in their
    respective manual pages.
Table 8-2. Supervisor callbacks	Supervisor function or action	Supervisor callback function
	supervisor:start_link/2, supervisor:start_link/3	Module:init/1
	supervisor_bridge:start_link/2,
            supervisor_bridge:start_link/3	Module:init/1, Module:terminate/2

Before reading on, you should also read through the code of the
    examples provided in this chapter and look for examples of supervisor
    implementations online. Doing so will help you understand how to design
    your system while keeping fault tolerance and recovery in mind.

What’s Next?
In the next chapter, we cover how to package supervision trees into
    a behavior called an application. Applications contain supervision trees
    and provide operations to start and stop them. They are seen as the basic
    building blocks of Erlang systems. In Chapter 11, we look at how we group applications into a
    release, giving us an Erlang node.

1 If you are someone who reads footnotes, good for you, as you can
        now consider yourself warned that this is a trick question.
2 The most comprehensive being Nyström, J.
        H., Trinder, P. W., and King, D. J. (2008), “High-level
        distribution for the rapid production of robust telecoms software:
        Comparing C++ and ERLANG,” Concurrency
        Computat.: Pract. Exper, 20: 941–968. doi:
        10.1002/cpe.1223.


Chapter 9. Applications
In our previous chapters, we’ve looked at worker behaviors and how
  they can be grouped together to form a supervision tree. In this chapter, we
  explore the application behavior, which allows us to package together
  supervision trees, modules, and other resources into one semi-independent
  unit, providing the basic building blocks of large Erlang systems. An OTP
  application is a convenient way to package code and configuration files and
  distribute the result around the world for others to use.
An Erlang node typically consists of a number of loosely coupled OTP
  applications that interact with each other. OTP applications come from a variety of sources: 
	Some are available as part of the standard Ericsson
        distribution, including mnesia,
        sasl, and os_mon.

	Other generic applications that are not part of the Ericsson
        distribution but are necessary for the functionality of many Erlang
        systems can be obtained commercially or as open source. Examples of
        generic applications include elarm for
        alarming, folsom or
        exometer for metrics, and lager for logging.

	Each node also has one or more nongeneric applications that
        contain the system’s business logic. These are often developed
        specifically for the system, containing the core of the
        functionality.

	A final category of OTP applications are those that are full
        user applications themselves that, together with their dependencies,
        could run on a standalone basis in an Erlang node. The bundle of
        applications is referred to as a release.
        Examples include the Yaws web server, the Riak database, the RabbitMQ message broker, and the MongooseIM chat server. While not a common practice,
        inter-application throughput and overall performance can sometimes be
        improved by running business logic applications together on the same
        node with these types of full applications.


Regardless of their sources, though, OTP applications are generally
  structured the same way. We explore the details of this structure in the
  remainder of this chapter. In the rest of the book, we use the term
  “application” to refer specifically to an OTP application, and not an
  application in the broader sense of the word.
How Applications Run
One way to view an application is as a means of packaging resources
    into reusable components. Resources can consist of modules, processes,
    registered names, and configuration files. They could also include other
    non-Erlang source or executable code, such as bash scripts, graphics, or
    drivers. Though different OTP applications contain different resources and
    perform different functions or services, to the Erlang run-time system
    they all look the same; it doesn’t distinguish between them in terms of
    how it loads and runs them, allows them to be accessed and invoked from
    other applications, or terminates them. Figure 9-1
    shows how various components run together on the Erlang runtime.
[image: ]Figure 9-1. An Erlang release

Applications can be configured, started, and stopped as a whole.
    This allows a system to easily manage many supervision trees, running them
    independently of each other. One application can also depend on another
    one; for example, a server-side web application might depend on a web
    server application such as Yaws.
    Supporting application dependencies means the runtime has to handle
    starting and stopping applications in the proper order. This provides a
    basis for cleanly encapsulating functionality and encourages reusability
    in a way that goes far beyond that of modules.
There are two types of applications: normal
    applications and library
    applications. Normal applications start a top-level supervisor,
    which in turn starts its children, forming the supervision tree. Library
    applications contain library modules but do not start a supervisor or
    processes themselves; the function calls they export are invoked by
    workers or supervisors running in a different application. A typical
    example of a library application is stdlib, which contains all of the OTP standard libraries such as
    supervisor, gen_event, gen_server,
    and gen_fsm.
Behind the scenes in the Erlang VM a process called the application controller
    starts on every node. For every OTP application, the controller starts a pair of processes called the
    application master. It is the master that starts and monitors the top-level supervisor and takes
    action if it terminates (Figure 9-2).
[image: ]Figure 9-2. Application controller

When using releases (covered in Chapter 11), the Erlang runtime treats each application
    as a single unit; it can be loaded, started, stopped, and unloaded as a
    whole. When loading an application, the runtime system loads all modules
    and checks all its resources. If a module is missing or corrupt, startup fails and the node is
    shut down. When starting an application, the master spawns the top-level supervisor,
    which in turn starts the remainder of the supervision tree. If any of the
    behaviors in the supervision tree fail at startup, the node is also shut
    down. When stopped, the application master terminates the top-level
    supervisor, propagating the shutdown exit signal to all behavior processes
    in the supervision tree. Finally, when unloading an application, the
    runtime purges all modules for that application from the system.
Now that we have a high-level overview of how everything is glued
    together, let’s start looking at the details.

The Application Structure
Applications are packaged in a directory that follows a special structure and
    naming convention. Tools depend on this structure, as do the
    release-handling mechanisms. A typical application directory has the
    structure shown in Figure 9-3, containing the
    ebin, src, priv,
    and include directories.
[image: ]Figure 9-3. Application structure

The name of the application directory is the name of the application
    followed by its version number. This allows you to store different
    versions of the application in the same library directory, using the code
    search path to point to the one being used. Subdirectories of an
    application include:
	ebin
	Contains the beam files and the application configuration
            file, also known as the app file

	src
	Contains the Erlang source code files and include files that you
            do not want other applications to use

	priv
	Contains non-Erlang files needed by the application, such as
            images, drivers, scripts, or proprietary configuration
            files

	include
	Contains exported include files that can be used by other
            applications


Other nonstandard directories, such as doc for documentation, test for test cases, and examples, can also be part of your application.
    What sets nonstandard directories apart from the ones in the previous list
    is that the runtime system and tools allow you to access the standard
    directories by application name, without having to reference the version.
    For instance, when you load an application, the code search path for that
    application will point straight to the ebin directory of the version you are using.
    Or, if you want to include the .hrl
    file of another application, the include path in the makefiles will point
    to the correct version. This doesn’t happen with nonstandard directories,
    and as such, you or your tools have to figure out the path.
Let’s have a look at this structure in more detail by following an
    example in the OTP distribution. Remember that the directory structure of any OTP application in the Erlang distribution
    will be the same as those of the applications you are implementing in your
    system.
Go to the Erlang root directory, and from there, cd
    into the lib directory. If you are
    unsure where Erlang is installed, start a shell and determine the location
    of the lib directory by typing code:lib_dir().. The lib directory contains all of the applications included when installing
    Erlang. If you have upgraded your release or installed patches, you might
    find more than one version of some applications. The versions of the
    applications will differ from release to release, so what you see might
    differ from the examples in this chapter.
Let’s have a look at the contents of the lib
    directory and the latest version of the runtime tools application runtime_tools, which should be included in
    every release:
1> code:lib_dir().
"/usr/local/lib/erlang/lib"
2> halt().
$ cd /usr/local/lib/erlang/lib
$ ls
...<snip>...
appmon-2.1.14.2      erts-5.7.5     public_key-0.18
asn1-1.6.13          erts-5.8.1     public_key-0.5
asn1-1.6.14.1        et-1.4         public_key-0.8
asn1-2.0.1           et-1.4.1       reltool-0.5.3
common_test-1.4.7    et-1.4.4.3     reltool-0.5.4
common_test-1.5.1    eunit-2.1.5    reltool-0.6.3
common_test-1.7.1    eunit-2.2.4    runtime_tools-1.8.10
compiler-4.6.5       gs-1.5.11      runtime_tools-1.8.3
compiler-4.7.1       gs-1.5.13      runtime_tools-1.8.4.1
...<snip>...
$ cd runtime_tools-1.8.10/
$ ls
doc    examples    info    src
ebin   include     priv
The doc directory and info file are nonstandard, and as such have
    nothing to do with OTP (the Ericsson OTP team uses them for documentation
    purposes). Erlang developers often add other application-specific
    directories and files, such as test
    and examples. No guarantees exist
    that these nonstandard directories and files will be retained between
    releases. If you look at different versions of the
    runtime-tools application, for example, you will see
    that earlier versions have an info file that is no
    longer present in later versions.
Let’s focus on the OTP standard directories. If you cd
    into the ebin directory of the
    runtime_tools application and examine its contents,
    you will find .beam files, an
    .app file, and possibly an .appup file. The .beam files, as you likely already know, contain Erlang byte code. The .app file is a
    mandatory application resource file we explore in more detail in “Application Resource Files”. The .appup file might
    be there if you have at some point upgraded your application. We cover
    this file in more detail in Chapter 12 when
    looking at software upgrades.
The src directory contains the Erlang source code. If the modules in this
    directory use one or more .hrl files that are not
    exported to be used by other applications, put them here. The current
    working directory is by default always included in the include file search
    path, so when compiling, files you put here will be picked up. It is the
    responsibility of your build system to ensure that beam files resulting
    from compilation are moved from the src to the
    ebin directory. Makefiles and tools
    like rebar3 (covered in “Rebar3”) normally do this for you.
Macros and records defined in include files are often part of
    interface descriptions, requiring modules in other applications to have
    access to these definitions. The include directory is used in the build process to provide access to the
    .hrl files stored in it. Without having to know the
    location of the include file directory or the application version, you can
    use the following directive:
-include_lib("Application/include/File.hrl").
where Application is the application name
    without the version and
    File.hrl is the name of
    the include file. The compiler will know which version of the application
    you are working with, find the directory, and automatically include the
    file without you having to change the version numbers between releases.
    Even if include files do not require the .hrl
    extension, it is good practice to always use it. Version dependencies are
    handled in release files, covered in Chapter 12.
If you run grep ^-include_lib ssl*/src/*.erl from your
    Erlang lib directory to examine the
    src directories of all the versions
    of the ssl application installed on your system, you
    will notice that some of the modules include .hrl
    files from other applications, such as public_key and
    kernel. There will also be a few include files stored
    directly in the src directory, which
    are used only by the ssl application itself.
The priv directory contains non-Erlang-specific resources. They could be
    linked-in drivers, shared libraries for native implemented functions
    (NIFs), executables, graphics, HTML pages, JavaScript, or
    application-specific configuration files—basically, any source the
    application needs at runtime that is not directly Erlang-related resides
    here. In the case of the runtime_tools application,
    the priv directory includes source
    and object code of its trace drivers. Because the path of the priv directory will differ based on the version
    of the application you are running, use
    code:priv_dir(Application) in your code to generically find
    it.
The ebin and priv directories are usually the only ones
    shipped and deployed on target machines. This will probably answer your
    question as to why the mandatory application resource file is included in the
    ebin directory and not src. If you look at other applications shipped
    as part of the standard distribution, you will also notice that the
    priv directory is not mandatory if it
    is not used. The sasl application, for example, has
    no priv directory, and there are
    other such applications as well.
Although it is up to you whether you ship source code and
    documentation with your products, it is not a good idea to bundle them up
    with your release deployed on target machines, because once you’ve
    upgraded your beam files, no checks are made to ensure the source code is
    up to date. Once, when called in to resolve an outage, we were reading the
    code on the production machines until we realized it was the first release
    of the code, now woefully out of date as the sources had since been
    patched, rewritten, cleaned up, and redeployed. After all, those who
    deployed the new beam files knew the source code on the target machines
    was not up to date. They also knew that they were not always the ones
    supporting the system, but assumed we would be using the source code
    repository, or that we would just ask. Should you find yourself in a
    similar predicament, follow our words of wisdom and always start with the
    assumption that those supporting the systems you have written and deployed
    are antisocial axe murderers who know where you live. They will not speak
    to you in the middle of the night when called to deal with an outage
    caused by a bug in your code, but might come knocking on your door at dawn
    once the system is operational again.
And while we have your attention, please, never ever deploy the
    compiler application and your system source code with production systems.
    If you do, you are really asking for trouble, because you will end up
    changing and compiling the code on target machines in an attempt to
    resolve the issue. Assuming it is the correct version of the code (which
    it probably isn’t), and assuming it actually solves the problem (which it
    probably won’t), there is still the risk you will forget to commit the
    changes back to your actual source code repository. Don’t forget all of
    this is happening at 3 AM, and all you want is to return to sleep. Code
    should be taken from the repository and tested in a test environment
    before deploying it to a live system. No matter how urgent the fix, don’t
    cut corners, because you will risk paying the price later, irrespective of
    the time of day (or night).

The Callback Module
The application behavior is no different from other OTP behaviors. The
    module containing the generic code, application, is part of the
    kernel library, and a callback module contains all of the
    specific code (Figure 9-4).
[image: ]Figure 9-4. Application behavior

The behavior directive must be included in the callback module, along with the
    mandatory and optional callbacks. Of all behaviors, the application
    callback module is the simplest. Unless you are dealing with takeovers and
    failovers in distributed environments or complex startup strategies,
    expect your application callback module to require no more than a few
    simple lines of code.
Starting and Stopping Applications
The callback module is invoked when starting your application. You
      start it by calling application:start(Application), where
      Application is the application name. This call loads all of
      the modules that are bundled with the application and starts the master
      processes, one of which calls the Mod:start(StartType,
      StartArgs) callback function in the application callback module.
      The start/2 function has to return {ok, Pid},
      where Pid is the process identifier of the top-level
      supervisor. If the application is not already loaded, application:load(Application) is
      called prior to starting the master processes. Our application callback
      module looks something like this:
-module(bsc).

-behavior(application).

%% Application callbacks
-export([start/2, stop/1]).

start(_StartType, _StartArgs) ->
    bsc_sup:start_link().

stop(_Data) ->
    ok.
The first argument, _StartType, is ignored by most
      applications; it is usually the atom normal, but if we’re running distributed
      applications with automated failover and takeover, it could have the
      value {takeover, Node} or {failover, Node}. We
      look at these values later in the chapter. The second argument,
      _StartArgs, comes from the mod key of the
      application resource file, described in “Application Resource Files”.
Figure 9-5 shows how the application callback
      module starts the top-level supervisor. The application callback
      module’s start/2 function typically just calls the start_link function provided by the
      top-level supervisor. For example, the bsc:start/2 function
      shown earlier simply calls bsc_sup:start_link/0.
[image: ]Figure 9-5. Starting applications

In our case, bsc_sup:start_link/0 returns {ok,
      Pid}, which is also what bsc:start/2 returns.
      Another valid return value is {ok, Pid, Data}, where the
      contents of Data are stored and later passed to the
      stop/1 callback function (Figure 9-6).
      If you do not return any Data, just ignore the argument
      passed to stop/1 (in case you’re curious, it will be bound
      to [] in that case).
[image: ]Figure 9-6. Stopping applications

To stop an application, use application:stop(Application). This
      results in the callback function Mod:stop/1 being called
      after the supervision tree has been
      terminated, including all workers and supervisors.
      Mod:prep_stop/1 is an equally important but optional
      callback invoked before the processes are terminated. If you need to
      clean anything up before terminating your supervision tree,
      prep_stop/1 is where you trigger it.
Let’s try loading, starting, and stopping the
      sasl application from the standard OTP
      distribution. Depending on how you installed Erlang,
      sasl might or might not be started automatically
      when you start the shell. You can find out by typing application:which_applications().. In
      the following example, we do this in shell command 1, getting back a
      list of tuples. The first element is the application name, the second is
      a descriptive string,1 and the third is a string denoting the application
      version. When you start Erlang, its boot script determines which
      applications it starts. If the sasl application is
      in there, first stop it before attempting to run the example. In our
      installation of Erlang, it is not started:
Example 9-1. Loading an application
1> application:which_applications().
[{stdlib,"ERTS  CXC 138 10","2.0"},
 {kernel,"ERTS  CXC 138 10","3.0"}]
2> application:load(sasl).
ok
3> application:start(sasl).
ok
4>
=PROGRESS REPORT==== 17-Feb-2014::19:51:08 ===
          supervisor: {local,sasl_safe_sup}
             started: [{pid,<0.42.0>},
                       {name,alarm_handler},
                       {mfargs,{alarm_handler,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]
...<snip>...

4> application:stop(sasl).

=INFO REPORT==== 17-Feb-2014::19:51:23 ===
    application: sasl
    exited: stopped
    type: temporary
ok

The system architecture support libraries
      (sasl) application is a collection of tools for building, deploying, and
      upgrading Erlang releases. It is part of the minimal OTP release;
      together with the kernel and
      stdlib applications, it has to be included in all
      OTP-compliant releases. We cover all of this in more detail
      later.
In our example, we load sasl in shell command
      2 and start it in shell command 3. You will notice that when we start
      the application, a long list of progress reports is printed in the shell
      (we deleted all but the first one from our output).
      sasl starts its top-level supervisor, which in turn
      starts other supervisors and workers. These progress reports come from
      the supervisors and workers started as part of the main supervision
      tree. We stop the application in shell command 4. Before reading on,
      have a look at the source code of the sasl callback module,
      defined in the file sasl.erl. If
      you’re unsure where to find it, use the shell command m(sasl). It will tell you where the
      beam file is located. The source code is up a level, and then down again
      in a directory called src. The
      functions to look at in the source code are start/2 and
      stop/1.


Application Resource Files
Every application must be packaged with a resource file, often
    referred to as the app file. It
    contains a specification consisting of configuration data, resources, and
    information needed to start the application. The specification is a tagged
    tuple of the format {application, Application, Properties},
    where Application is an atom denoting the application name
    and Properties is a list of tagged tuples.
Let’s step through the sasl
    application resource file before putting one together ourselves for the
    mobile phone example. This is version 2.3.3 of the application; be aware
    the contents of your app file might differ based on the release you
    downloaded. Looking at it, you should immediately spot mod,
    which points out the application callback module and arguments passed to
    the start/2 callback function:
{application, sasl,
   [{description, "SASL  CXC 138 11"},
    {vsn, "2.3.3"},
    {modules, [sasl, alarm_handler, format_lib_supp, misc_supp, overload, rb,
               rb_format_supp, release_handler, release_handler_1, erlsrv,
               sasl_report, sasl_report_tty_h, sasl_report_file_h, si,
               si_sasl_supp, systools, systools_make, systools_rc,
               systools_relup, systools_lib]},
    {registered, [sasl_sup, alarm_handler, overload, release_handler]},
    {applications, [kernel, stdlib]},
    {env, [{sasl_error_logger, tty}, {errlog_type, all}]},
    {mod, {sasl, []}}]}.
Let’s step through the properties in order. The property list
    contains a set of standard items. All items are optional—if an item is not
    included in the list, a default value is set—but there are a few that
    almost all applications set. The list of standard items includes:
	{description, Description}
	where Description is a string of your choice. You
          will see the description string surface when you call application:which_applications() in
          the shell. The default value is an empty string.

	{vsn, Vsn}
	where Vsn is a string denoting the version of the
          application. It should mirror the name of the directory and in
          automated build systems is set by scripts, not by hand. If omitted,
          the default value is an empty string.

	{modules, Modules}
	where Modules is a list of modules defaulting to
          the empty list. The module list is used when creating your release
          and loading the application, with a one-to-one mapping between the
          modules listed here and the beam files included in the ebin
          directory. If your module beam file is in the ebin directory but is not listed here, it
          will not be loaded automatically.2 This list is also used to check the module namespace
          for clashes between applications, ensuring names are unique.
Each module is specified as an atom denoting the module name,
          as in the sasl example. Up to R15, it was also possible
          to specify the module version {Module, Vsn}, as it
          appeared in the -vsn(Vsn) directive in the module
          itself. This is no longer the case.

	{registered, Names}
	where Names contains a list of registered process
          names running in this application. Including this property ensures
          that there will be no name clashes with registered names in other
          applications. Missing a name will not stop the process from running,
          but could result in a runtime error later when another application
          tries to register the same name. If omitted, the default value is
          the empty list.

	{applications, AppList}
	where AppList is a list of application
          dependencies that must be started in order for this application to
          start. All applications are dependent on the kernel and stdlib applications, and many also depend
          on sasl. Dependencies are used
          when generating a release to determine the order in which
          applications are started. Sometimes, only an application such as
          sasl is provided, which in turn
          depends on kernel and stdlib. This will work, but it makes the
          system harder to maintain and understand. The default for this
          property is the empty list, but it is extremely unusual to omit it
          since doing so implies there are no dependencies on other
          applications.

	{env, EnvList}
	where EnvList is a list of {Key,
          Value} tuples that set environment variables for the
          application. Values can be retrieved using functions from the application module:
          get_env(Key) or get_all_env() by processes
          in the application, or get_env(Application, Key) and
          get_all_env(Application) for processes that are not
          part of the application. Environment variables can also be set
          through other means covered later in this chapter. This property
          defaults to the empty list.

	{mod, Start}
	where Start is a tuple of the format
          {Module, Args} containing the application callback
          module and arguments passed to its start function. Each tuple
          results in a call to Module:start(normal, Args) when
          the application starts. Omitting this property will result in the
          application being treated as a library application, started by a
          supervisor or worker in another application, and no supervision tree
          will be created at startup.


Here are some other properties that are not included in the
    sasl.app file example but that are
    useful and are often included in other app files:
	{id, Id}
	where Id is a string denoting the product
          identifier. This property is used by overzealous configuration
          management trolls but, as you can see, not by the OTP team. The
          default value is the empty string.

	{included_applications, Apps}
	where Apps is a list of applications included as
          subapplications to the main one. The difference with included
          applications is that their top-level supervisors have to be started
          by one of the other supervisors. We cover included applications in
          more depth later in this chapter. Omitting this property will
          default it to the empty list.

	{start_phases, Phases}
	where Phases is a list of tuples of
          the format {Phase, Args}: Phase is an atom
          and Args is a term. This allows the application to be
          started in phases, allowing it to synchronize with other parts of
          the system and start workers in the background. Before
          Module:start/2 returns,
          Module:start_phase(StartPhase, StartType, Args) will be
          called for every phase. StartType is the atom normal, or the tuples {takeover, Node} or {failover, Node}. We cover start phases in
          more detail later in this chapter.


The Base Station Controller Application File
Having looked at how app files are constructed, let’s create one we can use
      in the base station controller. Alongside the description
      and application vsn, we list all of the
      modules that form the application. We follow that with a
      list of the registered worker and supervisor process names,
      and state in the applications list that the bsc application is dependent on sasl, kernel, and stdlib. We do not set any env
      variables, but explicitly keep the list empty for readability reasons.
      And finally, the application callback module mod is set to
      bsc, passing [] as a dummy argument:
{application, bsc,
   [{description, "Base Station Controller"},
    {vsn, "1.0"},
    {modules, [bsc, bsc_sup, frequency, freq_overload, 
               logger, simple_phone_sup, phone_fsm]},
    {registered, [bsc_sup, frequency, frequency_sup,
                  overload, simple_phone_sup]},
    {applications, [kernel, stdlib, sasl]},
    {env, []},
    {mod, {bsc, []}}]}.
With the app file completed, all that remains is to place it in
      the ebin directory, compile the
      source code, and make sure the resulting beam files are placed in the ebin directory.


Starting an Application
When starting the Erlang emulator, include the path to your application ebin
    directory. This is a good habit when testing; bsc might be one of the many applications we have
    written and for which we need a load path, so starting Erlang directly
    from the ebin directory might not
    always be an option. Adding a path will no longer be a problem when
    implementing a release, but do it for now, as it is not set automatically.
    In our example, we add the path when starting Erlang using:
erl -pa bsc-1.0/ebin
but you could also use code:add_patha/1 to add the path within the
    Erlang shell.
Let’s try starting the bsc
    application. In shell prompt 1, we fail because sasl, one of the applications bsc depends on, has not been started. We could
    have avoided that by using application:ensure_all_started/1,
    which starts up an application’s dependencies and then starts the
    application itself, but here we simply resolve it by starting
    sasl in shell command 2 and then starting
    bsc again in shell command 3. For every child started
    by our top-level supervisor bsc_sup, we
    get a progress report from sasl. This is all
    happening behind the scenes as a result of using OTP behaviors:
1> application:start(bsc).
{error,{not_started,sasl}}
2> application:start(sasl).

...<snip>...

=PROGRESS REPORT==== 9-Jan-2016::18:47:09 ===
         application: sasl
          started_at: nonode@nohost
ok
3> application:start(bsc).

=PROGRESS REPORT==== 9-Jan-2016::18:47:40 ===
          supervisor: {local,bsc}
             started: [{pid,<0.51.0>},
                       {id,freq_overload},
                       {mfargs,{freq_overload,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

=PROGRESS REPORT==== 9-Jan-2016::18:47:40 ===
          supervisor: {local,bsc}
             started: [{pid,<0.53.0>},
                       {id,frequency},
                       {mfargs,{frequency,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

=PROGRESS REPORT==== 9-Jan-2016::18:47:40 ===
          supervisor: {local,bsc}
             started: [{pid,<0.54.0>},
                       {id,simple_phone_sup},
                       {mfargs,{simple_phone_sup,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

=PROGRESS REPORT==== 9-Jan-2016::18:47:40 ===
         application: bsc
          started_at: nonode@nohost
ok
4> l(phone), phone:start_test(150, 500).
*DBG* <0.123.0> got {'$gen_sync_all_state_event',
                        {<0.34.0>,#Ref<0.0.5.140>},
                        {outbound,109}} in state idle
<0.123.0> dialing 109
...<snip>...
After starting the base station, we took it for a test run by
    starting a few hundred phones that randomly call each other. Because the
    phone module is not part of the application, we load it
    before calling phone:start_test/2. In our case, not doing
    this would not make a difference, but it might if we were running in
    embedded mode in production, where modules are not loaded automatically.
    We cover different start modes when looking at release handling in Chapter 11.
If you have run this example, keep the Erlang shell open, type observer:start()., and
    read on.
The Observer Tool
The observer is a graphical tool that provides an overview of Erlang-based
      systems. It replaces and complements deprecated utilities that you might
      have come across in older versions of Erlang, including the process manager pman,
      the table visualizer tv,
      and appmon, the application monitor. To reduce performance overhead in
      live systems, you should start the observer tool in a separate hidden
      node, connecting to the cluster you want to observe through distributed
      Erlang. Because our bsc application
      is still in development mode, we can be lazy and get away with starting
      the observer locally.
The observer window opens up in the System tab, where you can view
      general information such as the hardware architecture, version of the
      runtime system, and operating system-specific data. You will also find
      details of the CPUs and schedulers, memory usage, and general runtime
      statistics. The Load Charts tab will plot memory usage, scheduler
      utilization, and I/O usage in real time. Although the observer will not
      replace proper metrics and monitoring or store historical data, it helps
      you understand the behavior of a system under development.
The Applications tab contains a list of applications sorted in
      alphabetical order (Figure 9-7). Click on any of
      the applications and you will see the respective supervision trees,
      showing how workers and supervisors are linked to each other. Narrow
      down on the bsc app. The first thing
      you should notice is the two application master processes. Note how one
      of them is linked to the bsc top-level supervisor,
      which in turn is linked to the other worker and supervisor processes it
      started.
[image: ]Figure 9-7. The observer

Click on any of the processes and you will get a window containing
      information on the process itself, the message queue, the dictionary,
      and the stack trace. You can view the same window from the Processes
      tab. The Table Viewer is a port of the table visualizer, allowing you to
      inspect Mnesia and ETS tables. Finally, the Trace Overview is a
      graphical interface to the trace BIFs and dbg. You
      can read more about all these options in the Observer User’s Guide and
      Reference Manual.


Environment Variables
Erlang uses environment variables mainly to obtain configuration
    parameters when initializing the application behaviors. You can set,
    inspect, and change these variables. Start an Erlang shell, make sure the
    sasl application is running, and type
    application:get_all_env(sasl).. Don’t worry about the meaning
    of the environment variables for now—we explain them later,
    when we cover sasl reports—but be aware
    that they are not the same as the environment variables supported by your
    operating system shells. For now, we focus just on how they are set and
    retrieved.
If you ran the get_all_env(sasl) call as we suggested,
    you saw that it returns the environment variables belonging to the
    sasl application. If you want a
    specific variable, say errlog_type, use
    application:get_env(sasl, errlog_type). If the process
    retrieving the environment variables is part of an application’s
    supervision tree, you can omit the application name and just call
    application:get_all_env() or
    application:get_env(Key).
Using functionality similar to that in the application:get_application() call, OTP
    uses the Erlang process group leader to determine the application to which
    the process belongs. In our examples we are using the shell, which is not
    part of the sasl application supervision tree, so we
    have to specify the application.
Where are these environment variables set? If you look at the
    sasl.app file, you will find them in
    the env attribute of the application resource file. The app
    file usually contains default values you might want to override on a
    case-by-case basis, depending on the system and use of the application.
    This is best done using the system configuration file. It is a plain-text
    file with the .config suffix
    containing an Erlang term of the format:
[{Application1, [{Key1, Value1}, {Key2, Value2}, ...]},
 {Application2, [{Key2, Value2}|...}].
Tell the application controller which configuration file to read
    when starting the Erlang VM by using:
erl -config filename
where filename is the name of the system
    configuration file, with or without the .config suffix.
If prototyping, testing, or troubleshooting, you can override values
    set in the app and config files at startup in the command-line prompt
    using:
erl -application key value
Although convenient, this approach should not be used to set values
    in production systems. For the sake of clarity, stick to app and config
    files, as they will be the first point of call for anyone debugging or
    maintaining the system.
With this knowledge at hand, let’s write our own bsc.config file containing the frequencies for
    our frequency allocator example and override some of the sasl environment variables:
[{sasl, [{errlog_type, error}, {sasl_error_logger, tty}]},
 {bsc, [{frequencies, [1,2,3,4,5,6]}]}].
This file overrides the errlog_type and sasl_error_logger environment variables set in
    the app file. To test the configuration parameters from the shell, start the
    Erlang node and provide it with the name of the configuration file, placed
    in the same directory where you start Erlang. In production systems,
    config files are placed in specific release directories. We look at them
    in more detail in Chapter 11.
In the following command starting the erl shell, we take configuration a step further
    and override sasl_error_logger, setting
    its value to false. We do this in the
    remainder of our examples to suppress the progress reports:
    
$ erl -config bsc.config -sasl sasl_error_logger false -pa bsc-1.0/ebin
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> application:start(sasl).
ok
2> application:get_all_env(sasl).
[{included_applications,[]},
 {errlog_type,error},
 {sasl_error_logger,false}]
3> application:start(bsc).
ok
4> application:get_env(bsc, frequencies).
{ok,[1,2,3,4,5,6]}
5> application:set_env(bsc, frequencies, [1,2,3,4,5,6,7,8,9]).
ok
6> application:get_env(bsc, frequencies).
{ok,[1,2,3,4,5,6,7,8,9]}
In shell command 1, we start sasl, retrieving
    all of its environment variables in shell command 2. Note the final values
    of the environment variables: 
	errlog_type is set in the
          bsc.config file, overriding the
          value set in the app file.

	included_applications comes
          from the app file. Not originally an environment variable, it is
          converted into one by the application controller.

	sasl_error_logger is set in
          the app file, overridden in the config file, and overridden again on
          the Unix prompt level when starting Erlang.


The frequencies environment variable can be
    used in the get_frequencies() call of the frequency server to
    retrieve the frequencies. Note how we do not have to specify the
    application name in the code, because the runtime can determine the
    application from the group leader of the process making the call. In
    earlier versions of the frequency module, the
    get_frequencies/0 function had a hardcoded list of
    frequencies. In this example, the code will work with or without the
    bsc.config file:
get_frequencies() ->
    case application:get_env(frequencies) of
        {ok, FreqList} -> FreqList;
        undefined      -> [10,11,12,13,14,15]
    end.
In shell command 5 in our example interaction, we set environment
    variables directly in the Erlang shell, retrieving them in shell command
    6. The application name is optional; if not provided, the environment
    variables set and retrieved will be those of the application belonging to
    the process executing the call. In our example, we provided the
    application because the shell process is not part of the bsc
    application.
Warning
Although there is nothing stopping you from setting environment
      variables in the shell using the application:set_env functions, it is
      advisable to do so only for applications you have written yourself or
      know well. For third-party applications, including those that are part
      of the Erlang distribution, changing environment variables once the
      application has been started is dangerous. As you do not know when and
      where the application reads these environment variables, changing them
      may cause it to enter an inconsistent state and behave unexpectedly. You
      are also not guaranteed your changes will survive a restart. Do this at
      your own risk, and only if you know how the values are read and
      refreshed by the applications using them.


Application Types and Termination Strategies
When we stopped the sasl application in Example 9-1, we got the following info
    report:
=INFO REPORT==== 17-Feb-2014::19:51:23 ===
    application: sasl
    exited: stopped
    type: temporary
Did you notice that the application type was set to
    temporary? The type determines what happens to the virtual
    machine and to other applications within it when your application
    terminates. The temporary type is the default assigned when
    you start an application using application:start(Name). Three
    application types exist:
	temporary
	When an application of this type terminates, no matter what
          the reason, it does not affect other running applications or the
          virtual machine.

	transient
	If an application of this type terminates with reason
          normal, other applications are not affected. For
          abnormal terminations, other applications are terminated, together
          with the virtual machine. This option is relevant only when writing
          your own supervisor behavior (see Chapter 10), because supervisors use reason
          shutdown to terminate.

	permanent
	If a permanent application terminates for whatever reason, normal or
          abnormal, all other running applications are also terminated
          together with the virtual machine.


These options become relevant when creating our own releases, as
    they can be set in the start scripts. In proper OTP releases, all
    applications tend to be permanent. Top-level supervisors in an application
    should never terminate. When they do, they assume that your restart
    strategy failed, so the whole node is taken down. Stopping an application with application:stop/1, however,
    has no effect on other applications, irrespective of type.

Distributed Applications
OTP comes with a convenient distribution mechanism for migrating applications
    across nodes. It can handle the majority of cases where you need an
    instance of an application running in your cluster, and can act as a
    stopgap measure until a more complex solution can be put in place. The
    majority of cases assume reliable networks, so use with care and make sure
    you have covered your edge cases should a network partition occur.
Distributed applications are managed by a process called the distributed application
    controller, implemented in the dist_ac module and
    registered with the same name. You will find an instance of this process
    in the kernel supervision tree running on every distributed node.
To run your distributed application, all you need to do is configure
    a few environment variables in the kernel application, ensure that requests are transparently forwarded to the node
    where the applications are running, and then test, test, and test again.
    You have to specify the precedence order for the nodes where you want the
    application to run. If the node on which an application is running fails,
    the application will fail over to the
    next node in the precedence list. If a newly started or connected node
    with higher precedence appears in the cluster, the application will be
    migrated to that node in what OTP calls a takeover.
Let’s assume our system consists of a cluster of four nodes,
    n1@localhost, n2@localhost,
    n3@localhost, and n4@localhost.
    Let’s create a configuration file, dist.config, setting the kernel environment
    variables distributing our bsc
    application across them:

 [{kernel, [{distributed, [{bsc, 1000, [n1@localhost,{n2@localhost,n3@localhost},
                                        n4@localhost]}]},
                {sync_nodes_mandatory, [n1@localhost]},
                {sync_nodes_optional, [n2@localhost,n3@localhost,n4@localhost]},
                {sync_nodes_timeout, 15000}]},
  {bsc,  [{frequencies, [1,2,3,4,5,6]}]}].
Note that if you intend to run the distributed
    bsc example, you may need to replace all occurrences
    of the string “localhost” in the dist.config file
    with your own computer’s host name.
Of the environment variables in the kernel
    application, the first we need to set is distributed. It consists of a list of tuples
    containing the application we want to distribute, a timeout value, and the
    distributed list of nodes and node tuples, which defines the order of
    precedence of nodes on which we want the application to run. So, this
    list: 
[{bsc, 1000, [n1@localhost,{n2@localhost,n3@localhost},n4@localhost]}]
specifies
    bsc as the application, 1000 (measured in
    milliseconds) as the time to wait for the node to come back up, and the
    following node precedence: 
[n1@localhost,{n2@localhost,n3@localhost},n4@localhost]
The
    precedence specifies that the application will start on n1.
    Should that node fail or be shut down, the distributed application
    controller will wait 1 second and then fail the application over to either
    n2 or n3. They have been given the same
    precedence by being grouped into the same tuple. If both n2
    and n3 fail, the controller will check to see whether
    n1 has come back up and, if it is still down, will fail the
    application over to n4. If one of the other nodes comes back
    up, the application is later moved via a takeover to the node with the
    highest precedence.
The sync_nodes_mandatory and
    sync_nodes_optional environment variables specify the nodes
    to be connected into the distributed system. When starting the system, the
    distributed application controller tries to connect the specified nodes,
    waiting for the number of milliseconds specified in the
    {sync_nodes_timeout, Timeout} environment variable. If you
    omit the timeout when defining the nodes in your kernel environment
    variables, the timeout defaults to 0.
The {sync_nodes_mandatory, NodeList} environment
    variable defines the nodes with which the distributed application
    controller must synchronize; the system
    will start only if all of these nodes are started and connected to each
    other within Timeout milliseconds.
The environment variable {sync_nodes_optional,
    NodeList} specifies nodes that can also be connected at system
    startup, but unlike mandatory nodes, the failure of any of these nodes to
    join the cluster within the specified Timeout does not
    prevent the system from starting up.
The best way to understand the environment variable settings is to
    play with the dist.config
    configuration file. Let’s first start node n2 on its own:
$ erl -sname n2@localhost -config dist -pa bsc-1.0/ebin
This node will wait the 15 seconds set in the
    sync_nodes_timeout value for n1 to come up. If
    the node fails to connect to n1 within that time frame, it
    will terminate, regurgitating a long and to the untrained eye
    incomprehensible error message. Nodes n3 and n4
    are optional, so assuming n1 comes up within the timeout
    period, n2 will also wait for these two nodes within the same
    period, after which it starts normally whether or not n3 and
    n4 have connected.
Let’s try again, but this time, before starting n2,
    start n1 and n3:
$ erl -sname n1@localhost -config dist -pa bsc-1.0/ebin
$ erl -sname n3@localhost -config dist -pa bsc-1.0/ebin
The nodes will wait 15 seconds for the optional nodes to come up. If
    they don’t, the nodes will start regardless. You can try deleting
    n4 from the config file (or decide to start it), avoiding the
    timeout if the other nodes are up.
When all nodes are up, let’s start the sasl and
    bsc applications on all nodes, starting with
    n3, followed by n2 and n1. Type the
    following in all three Erlang shells and pay attention to when the shell
    command returns:
application:start(sasl), application:start(bsc).
You will notice that the shell will hang in n2 and
    n3, returning only when the bsc
    application is started in n1, as it is the node running with
    the highest priority. If you start the observer and inspect the
    Applications tab on the different nodes, you will notice that the
    supervision tree is started only on n1. Looking at the
    progress reports for n2 and n3, you will notice
    that the bsc application is also
    started, but without its supervision tree.
Keeping an eye on nodes n2 and n3, shut
    down node n1 using the halt() shell command.
The application controller will wait 1,000 milliseconds for
    n1 to restart. If it doesn’t, you will see the progress
    reports for the bsc app being started
    on either n2 and n3. In our config file, because
    both n2 and n3 have the same precedence, either
    one will be chosen nondeterministically. In Figure 9-8, we assume that the chosen node is
    n2.
[image: ]Figure 9-8. Failing over with different precedence

Now that n1 is down, let’s shut
    down n2 (or n3 if the bsc
    application was started on it instead). You will see that application fail
    over to the remaining node (Figure 9-9). Use the
    observer to check that the supervision tree has started correctly (Figure 9-7). Restart the node you just shut down and
    observe what happens. You will notice that it hangs for 15 seconds,
    waiting for n1 to restart. Because
    n1 is mandatory and has not restarted, the node fails
    to restart.
[image: ]Figure 9-9. Failing over with the same precedence

Restart both n1 and n2 (or n3 if
    it was the node that shut down) within 15 seconds of each other. Both will
    wait 15 seconds for the nonmandatory node n4 to start. After the timeout, start both
    sasl and bsc on n2
    using application:start/1. Just as the first time you started the cluster, the application
    hangs waiting for bsc to start on
    n1 so that the nodes can coordinate
    among each other. When you start bsc on
    n1, there will be a takeover from
    n3, where the behaviors are terminated
    and the supervision tree is taken down (Figure 9-10).
[image: ]Figure 9-10. Application takeover

This is a limited approach that might cover some use cases and not
    others. The moral of the story if you go down this route is to pick your
    mandatory nodes with care. When designing your system with no single point
    of failure, you should not assume or require any of the nodes to be up at
    any one time. If there are services you require for a failover or a
    takeover to be successful, do the checks in start phases when starting the
    applications or in the worker processes themselves. While this layer can
    be thin and consist of only a couple hundred lines of code, it is
    application dependent. Make sure you’ve thought through your design. We
    look at other approaches to distributed architectures when discussing
    clusters in Chapter 13.

Start Phases
Some systems are so complex that it is not enough to start each
    application one at a time. In such systems, applications need to be
    started in phases and synchronized with each other. Imagine a node that is
    part of a cluster handling instant messaging:
	In a first phase, as a background task, you might want to start
        loading all of the Mnesia tables containing routing and configuration
        data. This could take time, as some of the tables might have to be
        restored because of an abrupt shutdown or node crash.

	Once the tables load, the next phase gets your system to a state
        where you are ready to start accepting configuration requests. We
        refer to this as enabling the administration
        state. This might include checking links toward other
        clusters in the federation that users might want to connect to,
        configuring hardware, and waiting for all of the other parts of the
        system, such as the authentication server or logging facility, to
        start correctly.

	When this phase completes, you will be able to inspect and
        configure the system, but not allow any users to initiate sessions.
        Your final start phase might be to provide the go-ahead and start
        allowing users to log on and traffic to run through this node. We
        refer to this phase as enabling the operational
        state.


If we add the following parameter in our bsc.app file, we allow three start
    phases:
 {start_phases, [{init, []}, {admin, []}, {oper, []}]}
In our application callback module source file, bsc.erl, we need to export and define the
    callback function start_phase(StartPhase, StartType, Args).
    This function will be called for every phase defined in the app file,
    after the supervision tree has been started but before
    application:start(Application) returns. The
    StartPhase argument reflects which phase is currently being
    processed. So, in our example, if we added: 
start_phase(StartPhase, StartType, Args) ->
     io:format("bsc:start_phase(~p,~p,~p).~n", [StartPhase, StartType, Args]).

    to our application callback module bsc.erl and ran it with the updated bsc.app file, we would get the following
    sequence of events when starting the application. Both these files are in
    the start_phases directory of the
    code repository:
$ erl -pz bsc-1.0/ebin/ -pa start_phases/ -sasl sasl_error_logger false
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> application:start(sasl), application:start(bsc).
bsc:start_phase(init,normal,[]).
bsc:start_phase(admin,normal,[]).
bsc:start_phase(oper,normal,[]).
ok
Here, the StartType argument is always the atom
    normal, indicating this is a normal
    startup. Each phase invokes a synchronous or asynchronous call that
    triggers certain operations, as well as setting the internal state that
    allows or disallows requests to be handled by the node.
When shutting down the system, we can disable the operational state,
    stopping new requests from executing but allowing all existing requests to
    execute to completion. This could make the system reject user login
    attempts while allowing existing sessions to expire. When there are no
    more requests going through the node, the operational state can be
    disabled and the node shut down. This could happen when all the users have
    logged out, or after a timeout, where the system times out the remaining
    sessions and disables the operational state. To shut down the node,
    disable the operational state. A simple example using start phases appears
    in the next section.

Included Applications
In your app resource file, you have the option of specifying the parameter included_applications. The directory structure
    of included applications should be placed in the lib directory, alongside all other applications
    in that release. When the main application is started, all included
    applications are loaded but not started. It is up to the top-level
    supervisor of the main application to start the included applications’
    supervision trees. You could start them as dynamic children or as static
    ones by returning the child specification in the supervisor
    init/1 callback function.
When starting your application, you can either call the
    start/2 function in the application callback module, assuming
    it returns {ok, Pid} (and not {ok, Pid, Data},
    since it is not possible for us to pass that data to the callback
    module’s prep_stop/1 callback function as it
    expects when it is stopped), or directly call the start_link
    function of the top-level supervisor. There is no more to it; it’s as
    simple as that!
In every node, included applications may be included only once by
    other applications. This restriction avoids clashes in the application
    namespace, ensuring that each module and registered process (local or
    global) is unique. If you need to start several identical supervision
    trees in the same node, place the code in a standalone library
    application. Do not include this application anywhere else other than by
    dependency and ensure that there are no name clashes with the locally and
    globally registered processes.
You might be asking yourself, why go through the hassle of included
    applications when we can instead have a flat application structure,
    starting the applications individually? The answer lies in start
    phases.
Start Phases in Included Applications
You can use start phases to synchronize
      your included applications at startup. As the included
      application supervision trees are started by the main application, you
      need to follow a few steps to invoke the start_phase/3
      callback function in the application callback module.
First, in your included application app files, make sure you have
      included the mod and start_phases parameters.
      The callback module is used to determine where the
      start_phase/3 call is made. The arguments are ignored,
      because the ones in the start_phases item are used.
Finally, in your top-level application, alongside your start
      phases, you need to change your mod parameter to:
      
{mod, {application_starter,[Mod,Args]}}
passing
      the application callback module Mod and Args
      as arguments. The OTP application_starter module provides the logic
      to start your top-level application and coordinate the start phases of
      the included applications.
The process is straightforward. The top-level application’s
      supervision tree starts the included applications. The first
      start_phase/3 function is called in the callback module of
      the top-level application, after which all included applications are
      traversed in the order they are defined. If one or more of the included
      applications have the same phase defined as the one in the top-level
      application, start_phase/3 is called for each of these
      included applications.
The next start phase in the top-level application is recursively
      triggered. Start phases defined in the included applications but not in
      the top-level application are never triggered.
All of what we’ve described is best shown in an example. We create
      a top-level application, top_app,
      that includes the bsc application.
      The top_app callback module is responsible for starting the
      supervision tree of the included bsc
      application:
-module(top_app).
-behavior(application).
-export([start/2, start_phase/3, stop/1]).

start(_Type, _Args) ->
    {ok, _Pid} = bsc_sup:start_link().

start_phase(StartPhase, StartType, Args) ->
    io:format("top_app:start_phase(~p,~p,~p).~n", [StartPhase, StartType, Args]).

stop(_Data) ->
    ok.
In our top application’s top_app.app file, we define the
      start, admin, and stop phases.
      They are different from the start phases in bsc,
      which in “Start Phases”, our previous example, were set
      to init, admin, and oper. Note
      also the included_applications and the value we give the
      mod attribute:
{application, top_app,
   [{description, "Included Application Example"},
    {vsn, "1.0"},
    {modules, [top_app]},
    {applications, [kernel, stdlib, sasl]},
    {included_applications, [bsc]},
    {start_phases, [{start, []}, {admin, []}, {stop, []}]},
    {mod, {application_starter, [top_app, []]}}
   ]
}.
The start phases work as follows. The top application is started,
      which in turn starts the bsc
      supervision tree. Once that is successful, the first start phase in
      top_app, start, is
      triggered. If any of the included applications, in the order they appear
      in the included_applications list, also has this phase, it
      is also called. If you are trying this on your computer, do not forget
      to compile the contents of the top_app directory, and use the bsc.app file in the start_phases directory of this chapter’s code
      repository:
$ erl -pz bsc-1.0/ebin/ -pa start_phases/ \
      -pa top_app/  -sasl sasl_error_logger false
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> application:start(sasl), application:start(top_app).
top_app:start_phase(start,normal,[]).
top_app:start_phase(admin,normal,[]).
bsc:start_phase(admin,normal,[]).
top_app:start_phase(stop,normal,[]).
ok
We have kept the example simple so as to demonstrate the
      principles without getting lost in the business logic. In our example,
      we call all of the start phases in the top application, but only
      admin in the included one, as it is the only phase they
      both have in common.


Combining Supervisors and Applications
Some supervisor callback modules contain only a few lines of code. And if your
    application does not have to deal with complex initialization procedures,
    start phases, and distribution, but needs only to start the top-level
    supervisor, it will be just as compact. A common practice is to combine
    the two callback modules, as their callback function names do not overlap.
    While some people will strongly disagree with this practice, you are bound
    to come across it when reading other people’s code—even code that is part
    of the standard Ericsson distribution.
For example, cd into the sasl directory of your OTP installation and
    have a look at the sasl.erl file. At
    the time of writing, version 2.6.1 of the sasl application combined the supervisor
    init/1 callback function in its application
    module together with the application start/2 and
    stop/1 callback functions. In this example, the developers
    included only the -behavior(application). directive, but
    there is nothing stopping you from including the
    -behavior(supervisor). directive as well. The only side
    effect is a compiler warning telling you about two behavior directives in
    the same callback module. We recommend including both directives, because
    it facilitates the understanding of the purpose of the callback module.
    Here is a simple example of what combining the supervisor and
    application callback modules would look like in our bsc example:
-module(bsc).
-behavior(application).
-behavior(supervisor).

-export([start/2, start_phase/3, stop/1, init/1]).

start(_Type, _Args) ->
    {ok, Pid} = supervisor:start_link({local,?MODULE},?MODULE, []).

start_phase(Phase, Type, Args) ->
    io:format("bsc:start_phase(~p,~p,~p).",[Phase, Type, Args]).

stop(_Data) ->
    ok.

%% Supervisor callbacks

init(_) ->
    ChildSpecList = [child(freq_overload),
                     child(frequency),
                     child(simple_phone_sup)],
    {ok,{{rest_for_one, 2, 3600}, ChildSpecList}}.

child(Module) ->
    {Module, {Module, start_link, []},
     permanent, 2000, worker, [Module]}.

The SASL Application
Throughout this chapter, we’ve been telling you to look at the SASL callback module,
    app file, directory structure, and supervision tree, but we have yet to
    tell you what SASL actually does.
SASL stands for system architecture support libraries. The SASL
    application (sasl) is a container for useful items
    needed in large-scale software design. It is one of the mandatory
    applications (along with kernel and
    stdlib) required in a minimal OTP
    release. It is mandatory because it contains all of the common library
    modules used for release handling and software upgrades.
We cover releases in Chapter 11 and
    software upgrades in Chapter 12. SASL doesn’t
    stop, however, at handling releases and software upgrades. In “The SASL Alarm Handler”, we looked at the alarm handler, a simple alarm
    manager and handler that is started by default when you start any
    OTP-based system. SASL also has a very basic way, through its
    overload library module, to regulate CPU load in the system.
    We cover load regulation in more detail in Chapter 13, when we discuss the architecture of a
    typical Erlang node. Have patience.
What we concentrate on in this chapter are the SASL reports used to
    monitor the activity in supervision trees when processes are started,
    terminated, and restarted. You will have come across SASL reports in the
    previous chapters of this book. They are the printouts you see in the
    shell when starting applications, supervisors, and worker processes. You
    might have noticed that they appeared only when the SASL application was
    started and the sasl_error_logger
    environment variable was not set to false.
SASL starts an event handler that receives the following
    reports:
	Supervisor reports
	Issued by a supervisor when one of its children terminates
          abnormally.

	Progress reports
	Issued by a supervisor when starting or restarting a child or
          by the application master when starting the application.

	Error reports
	Issued by behaviors upon abnormal termination.

	Crash reports
	Issued by processes started with the proc_lib
          library, which by default include behaviors. We cover
          proc_lib in the next chapter.


Default settings print reports to standard I/O. You can override
    this by setting environment variables, which allow you to send the reports
    to wraparound binary logs as well as to limit which reports are forwarded.
    The formats of the reports vary depending on the version of the OTP
    release you are running. Let’s have a look at the SASL environment
    variables that allow you to control the reports:
	sasl_error_logger
	Defaults to tty and
            installs the sasl_report_tty_h handler module, which
            prints the reports to standard output. If you instead specify
            {file,FileName}, where
            FileName is a string containing the relative or
            absolute path of a file, the sasl_report_file_h
            handler is installed, storing all reports in
            FileName. If this environment variable is set to
            false, no handlers are installed, and as a result, no
            SASL reports are generated.

	errlog_type
	Can take the values error, progress, or all, the default if you omit the
            variable. Use this variable to restrict the types of error or
            progress reports printed or logged to file by the installed
            handler.

	utc_log
	An optional environment variable that, if set to
            true, will convert all timestamps in the reports to
            Universal Coordinated Time (UTC).


The following configuration file stores all the SASL reports in a
    text file called SASLlogs. We do this
    by setting the sasl_error_logger environment variable to
    {file, "SASLlogs"}. We also enable UTC time with the
    utc_log environment variable:

[{sasl, [{sasl_error_logger, {file, "SASLlogs"}},
         {utc_log, true}]},
 {bsc,  [{frequencies, [1,2,3,4,5,6]}]}].
If you start the sasl and
    bsc applications in a local,
    nondistributed node, you will find all of the logs stored as plain text in
    the running directory. In our example, we show just the first and last
    reports. Note how the UTC tag is appended to the timestamp:
$ erl -pa bsc-1.0/ebin/ -config logtofile.config 
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> application:start(sasl), application:start(bsc).
ok
2> halt().
$ cat SASLlogs

=PROGRESS REPORT==== 9-Jan-2016::10:09:25 UTC ===
          supervisor: {local,sasl_safe_sup}
             started: [{pid,<0.40.0>},
                       {name,alarm_handler},
                       {mfargs,{alarm_handler,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

...<snip>...

=PROGRESS REPORT==== 9-Jan-2016::10:09:33 UTC ===
         application: bsc
          started_at: nonode@nohost
Text files might be good during your development phase, but when
    moving to production, it is best to move to wraparound logs that store
    events in a searchable binary format. Because text and binary formats are
    implemented by different handlers, they can be added and run alongside
    each other. To install the binary log handler,
    error_logger_mf_h, you have to set three environment
    variables. If any of these are disabled, the handler will not be added.
    The environment variables needed are:
	error_logger_mf_dir
	A string specifying the directory that stores the binary logs.
          The default is a period ("."),
          which specifies the current working directory. If this environment
          variable is set to false, the
          handler is not installed.

	error_logger_mf_maxbytes
	An integer defining the maximum size in bytes of each log
          file.

	error_logger_mf_maxfiles
	An integer between 1 and 256 specifying the maximum number of
          wraparound log files that are generated.


Sticking to our bsc example, let’s try storing
    the SASL logs in a binary file using the rb.config configuration file found in the
    book’s code repository. Note how we are explicitly turning off the events
    sent to the shell by setting the sasl_error_logger
    environment variable to false and the
    frequencies to the atom crash, rather
    than a list of integers, ensuring that the process fails when we try to
    allocate a frequency:
[{sasl, [{sasl_error_logger, false},
         {error_logger_mf_dir, "."},
         {error_logger_mf_maxbytes, 20000},
         {error_logger_mf_maxfiles, 5}]},
 {bsc,  [{frequencies, crash}]}].
We start the bsc application in shell command
    1, and cause a crash of the frequency server in shell command 2 when we
    try to pattern match the atom crash
    into a head and a tail in the allocate/2 function of the
    frequency module:
$ erl -pa bsc-1.0/ebin -config rb.config
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> application:start(sasl), application:start(bsc).
ok
2> frequency:allocate().

=ERROR REPORT==== 9-Jan-2016::19:24:30 ===
** Generic server frequency terminating
** Last message in was {allocate,<0.34.0>}
** When Server state == {data,[{"State",{{available,crash},{allocated,[]}}}]}
** Reason for termination ==
** {function_clause,[{frequency,allocate,
                                [{crash,[]},<0.34.0>],
                                [{file,"bsc-1.0/src/frequency.erl"},
                                 {line,99}]},
...<snip>...

3> rb:start().
rb: reading report...done.
{ok,<0.56.0>}
4> rb:list().
  No                Type    Process       Date     Time
  ==                ====    =======       ====     ====
  14            progress   <0.37.0> 2016-01-09 19:24:26
  13            progress   <0.37.0> 2016-01-09 19:24:26
  12            progress   <0.37.0> 2016-01-09 19:24:26
  11            progress   <0.37.0> 2016-01-09 19:24:26
  10            progress   <0.24.0> 2016-01-09 19:24:26
   9            progress   <0.46.0> 2016-01-09 19:24:26
   8            progress   <0.46.0> 2016-01-09 19:24:26
   7            progress   <0.46.0> 2016-01-09 19:24:26
   6            progress   <0.24.0> 2016-01-09 19:24:26
   5               error   <0.46.0> 2016-01-09 19:24:30
   4        crash_report  frequency 2016-01-09 19:24:30
   3   supervisor_report   <0.46.0> 2016-01-09 19:24:30
   2            progress   <0.46.0> 2016-01-09 19:24:30
   1            progress   <0.46.0> 2016-01-09 19:24:30
ok
Try it out yourself in the shell, as it will help you understand how
    applications and supervision trees work. The first thing you will notice
    is that, even though we set sasl_error_logger to false, we still get an error report. This is
    because all the environment variable controls are supervisor, crash, and progress reports. Error reports are printed out irrespective of
    configuration file settings. We’ve reduced the size of this particular
    error report in the trial run, because our focus is on the report
    browser.
Having caused a crash, we start the report browser using
    rb:start() in shell command 3. After it reads in all of the
    reports, we list them in shell command 4 with rb:list(). If
    at any time you do not recall the report browser commands,
    rb:help() will list them. The progress reports 14–6 (they are
    listed in reverse order, with the oldest having the highest number) are
    the ones starting the application and its supervision tree. Let’s start by
    inspecting reports 1–5: 
	The frequency server generates reports 4 and 5 as a result of
          its abnormal termination. The reports contain complementary
          information needed for postmortem debugging and
          troubleshooting.

	The supervisor generates report 3 as a result of the
          termination. It contains the information stored by the supervisor of
          that particular child.

	Reports 1 and 2 are issued by the children being restarted. In
          our case, it is the frequency server that crashed and the
          simple_phone_sup supervisor that was terminated and
          restarted as a result of the rest_for_all strategy of the top-level bsc_sup
          supervisor.


Progress Reports
Progress reports are issued by a supervisor when starting a child, worker
      or supervisor alike. These reports include the name of the supervisor
      and the child specification of the child being started. They are also
      issued by the application master when starting or restarting an
      application. In this case, the report shows the application name and the
      node on which it is started. Here’s an example:
5> rb:show(6).

PROGRESS REPORT  <0.7.0>                                    2016-01-09 19:24:26
===============================================================================
application                                                                 bsc
started_at                                                        nonode@nohost

ok
The progress report in our example is the one telling us that the
      bsc application was started
      correctly. Note how we are using rb:show/1 to view
      individual reports.

Error Reports
Error reports are raised by behaviors upon abnormal termination. In our
      case, the frequency server generates the report when terminating
      abnormally. You can generate your own error reports using the
      error_logger:error_msg(String, Args) call, but we advise
      against this. Use this command sparingly and only for unexpected errors,
      as too many user-generated reports will hide serious issues and clutter
      the logs, making it harder to find important details when you are
      looking for crash reports and other real errors. Here’s the error report
      from our example:
6> rb:show(5).

ERROR REPORT  <0.51.0>                                      2016-01-09 19:24:30
===============================================================================

** Generic server frequency terminating
** Last message in was {allocate,<0.34.0>}
** When Server state == {data,[{"State",{{available,crash},{allocated,[]}}}]}
** Reason for termination ==
** {function_clause,[{frequency,allocate,
                                [{crash,[]},<0.34.0>],
                                [{file,"bsc-1.0/src/frequency.erl"},
                                 {line,99}]},
                     {frequency,handle_call,3,
                                [{file,"bsc-1.0/src/frequency.erl"},
                                 {line,66}]},
                     {gen_server,try_handle_call,4,
                                 [{file,"gen_server.erl"},{line,629}]},
                     {gen_server,handle_msg,5,
                                 [{file,"gen_server.erl"},{line,661}]},
                     {proc_lib,init_p_do_apply,3,
                               [{file,"proc_lib.erl"},{line,240}]}]}
ok
7> error_logger:error_msg("Error in ~w. Division by zero!~n", [self()]).
ok

=ERROR REPORT==== 9-Jan-2016::19:28:19 ===
Error in <0.57.0>. Division by zero!

Crash Reports
Crash reports are issued by processes started with the proc_lib
      library. If you look at the exit reason in our example, you will realize
      that this applies to all behaviors, which are started from that library.
      A try-catch in the main behavior loop will trap abnormal
      terminations and generate a crash report. No reports are generated if
      the behavior or process terminates with reason normal or when the supervisor terminates the
      behavior with reason shutdown. A
      crash report contains information on the crashed process, including exit
      reason, initial function, and message queue, as well as other process
      information typically found using the process_info BIFs.
      The crash report from our example looks like this:
8> rb:show(4).

CRASH REPORT  <0.51.0>                                      2016-01-09 19:24:30
===============================================================================
Crashing process
   initial_call                                {frequency,init,['Argument__1']}
   pid                                                                 <0.51.0>
   registered_name                                                    frequency
   error_info
         {exit,
            {function_clause,
                [{frequency,allocate,
                     [{crash,[]},<0.34.0>],
                     [{file,"bsc-1.0/src/frequency.erl"},{line,99}]},
                 {frequency,handle_call,3,
                     [{file,"bsc-1.0/src/frequency.erl"},{line,66}]},
                 {gen_server,try_handle_call,4,
                     [{file,"gen_server.erl"},{line,629}]},
                 {gen_server,handle_msg,5,
                     [{file,"gen_server.erl"},{line,661}]},
                 {proc_lib,init_p_do_apply,3,
                     [{file,"proc_lib.erl"},{line,240}]}]},
            [{gen_server,terminate,7,[{file,"gen_server.erl"},{line,826}]},
             {proc_lib,init_p_do_apply,3,
                 [{file,"proc_lib.erl"},{line,240}]}]}
   ancestors                                                     [bsc,<0.47.0>]
   messages                                                                  []
   links                                                             [<0.48.0>]
   dictionary                                                                []
   trap_exit                                                              false
   status                                                               running
   heap_size                                                                987
   stack_size                                                                27
   reductions                                                               412

ok

Supervisor Reports
Supervisor reports are issued by supervisors upon abnormal child termination.
      They usually follow the error reports issued by the children themselves.
      The supervisor report contains the name of the reporting supervisor and
      the phase of the child in which the error occurred:
9> rb:show(3).

SUPERVISOR REPORT  <0.48.0>                                 2016-01-09 19:24:30
===============================================================================
Reporting supervisor                                                {local,bsc}

Child process
   errorContext                                               child_terminated
   reason
         {function_clause,
            [{frequency,allocate,
                 [{crash,[]},<0.34.0>],
                 [{file,"bsc-1.0/src/frequency.erl"},{line,99}]},
             {frequency,handle_call,3,
                 [{file,"bsc-1.0/src/frequency.erl"},{line,66}]},
             {gen_server,try_handle_call,4,
                 [{file,"gen_server.erl"},{line,629}]},
             {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,661}]},
             {proc_lib,init_p_do_apply,3,
                 [{file,"proc_lib.erl"},{line,240}]}]}
   pid                                                                 <0.51.0>
   id                                                                 frequency
   mfargs                                             {frequency,start_link,[]}
   restart_type                                                       permanent
   shutdown                                                                2000
   child_type                                                            worker

ok
If you look close to the top of the example output, you will find
      the report phase of the child when the error occurred: one of start_error, child_terminated, or shutdown_error. In our case, the
      termination happened because of a runtime error, resulting in the report
      phase being child_terminated. It is
      followed with the reason for termination and the child
      specification.
You can look at the last two progress reports on your own. They
      are the progress reports generated when the frequency server and phone
      supervisor are restarted. Use rb:help(), and spend some
      time experimenting with the commands in the report browser, especially
      the filters and regular expressions.
The SASL Logs Will Bail You Out
The SASL logs should by default be enabled on all nodes in production, as they
        will be your first point of call when investigating a node crash or
        trying to restart a node. In the majority of cases, the error, crash,
        and supervisor reports will contain enough information to figure out
        what happened. Always have a separate start script that allows you to
        start Erlang (and sasl) on its own, using the
        command rb:start([{report_dir, Dir}]) to
        load the logs, because there is a good chance the Erlang node with
        your release will not be able to restart. Do not rely on the Erlang
        node you are investigating to read them, as it most likely will not
        start. If you have an external alarm and monitoring system, it is
        always a good idea to generate notifications when you receive error,
        crash, and supervisor reports to ensure you investigate them. With
        many nodes in production—potentially thousands—aggregating these
        notifications in one place will make life much easier for you. You can
        easily forward them to third-party tools by writing your own event
        handler and hooking it into the SASL event manager.



Summing Up
In this chapter, we covered the behavior that allows us to package
    code, resources, configuration files, and supervision trees into what we
    call an application. Applications are the reusable building blocks of your
    systems; they are loaded, started, and stopped as a single unit. They
    provide functionality such as start phases, synchronization, and failover
    in distributed clusters, as well as basic monitoring and logging
    services.
Table 9-1 lists the major
    functions used to control applications.
Table 9-1. Application callbacks	Application function or action	Application callback function
	application:start/1,
            application:start/2	Module:start/2,
            Module:start_phase/3
	application:stop/1	Module:prep_stop/1,
            Module:stop/2

You can read more about applications in the application manual pages,
    and about resource files in the app manual
    page. The OTP Design Principles User’s Guide, which comes with the
    standard Erlang documentation, has sections covering general, included,
    and distributed applications. To learn more about the tools we’ve covered,
    consult the manual pages for the report browser, rb, as well as the observer. Read through the
    code of the examples provided in this chapter and see how applications in
    the Erlang distribution are packaged and configured.

What’s Next?
Now that we know how to create our applications, the basic building
    blocks for Erlang systems, next we look at how to group them together in a
    release and start our systems using boot files. But first, we look at some
    of the libraries used to implement special processes, and using that
    knowledge to define our own behaviors. What are special processes, I hear
    you say? They are processes that, despite not being OTP behaviors that
    come as part of the stdlib application, can be added
    to OTP supervision trees. Read on to find out more.

1 In case you are wondering, CXC is an internal Ericsson product-numbering scheme.
          It is rumored that a copy of every product with a CXC number is
          stored in a nuclear-proof bunker at a secret location somewhere in
          the Swedish woods.
2 The code server might load it later when you try to call
              it.


Chapter 10. Special Processes and Your Own Behaviors
OTP behaviors, in the vast majority of cases, provide you with the
  concurrency design patterns you need in your projects. There might, however,
  be occasions where you want to create an OTP-compliant application while
  attaching processes that are not standard behaviors to your supervision
  tree. For instance, existing behaviors might have performance impacts caused
  by the overhead of the layers added as a result of abstracting out the
  generic parts and error handling. You may want to write new behaviors after
  separating your code into generic and specific modules. Or you might want to do 
  something as simple as adding pure Erlang processes to a supervision tree,
  making your release OTP compliant beyond the capabilities provided by
  supervision bridges. For instance, you might have to preserve that proof of
  concept you wrote when you first started exploring Erlang that, against your
  better judgment, wound up in production.1
We refer to a process that can be added to an OTP supervision tree and
  packaged in an application as a special process. This
  chapter explains how to write your own special processes,
  providing you with the flexibility of pure Erlang while retaining all of the
  advantages of OTP. We also explain how you can take your special processes a
  step further, turning them into OTP behaviors by splitting the code into
  generic and specific modules that interface with each other through
  predefined callback functions. If you are not planning on implementing your
  own behaviors or are uninterested in how they work behind the scenes, feel
  free to jump to the next chapter (or go to the pub) without a bad
  conscience. You can always come back and read this chapter when you need
  to. If, on the other hand, we’ve piqued your curiosity, keep on
  reading.
Special Processes
In order for a process to be considered a special process, and as such be part of an
    OTP supervision tree, it must: 
	Be started using the proc_lib module and link to its parent

	Be able to handle system messages, system events, and shutdown
          requests

	Return the module list if running dynamic modules, as we did
          with event managers when defining their child specs


While optional, it is useful if the process is also capable of handling
    debug flags and generating trace messages.
We show you how to implement special processes by walking through an
    example where we implement a mutex, serializing access to critical
    resources.
The Mutex
Mutex stands for mutual exclusion. It ensures only one process is allowed
      to execute the code in the critical section at any one time. A critical
      resource could be a printer, shared memory, or any other device for
      which requests must be serialized because it can handle only one client
      at a time. A process executing code that accesses this resource is said
      to be in the critical section. It needs to finish
      executing all the code in the critical section and exit it before a new
      process is allowed to enter.
In Erlang, programmers can implement a mutex as an FSM, serializing
      client requests through a process and managing the request queue using
      the mailboxes and selective receives. Because we are implementing an FSM,
      you must be asking yourself why we are not using the
      gen_fsm behavior module. The reason is that the
      gen_fsm behavior, and any of the other standard OTP behaviors, for that
      matter, does not allow us to selectively receive messages through pattern
      matching. Instead, the standard behaviors force us to handle events in the order in which
      they arrive. In contrast, by using the process mailbox and selective
      receives to manage the queue of client processes waiting for the mutex,
      we simplify our code because we have to handle only one client request
      at a time, without having to worry about the others waiting in the
      queue.
Mutexes are FSMs with two states, free and
      busy. A client wanting to enter the
      critical section does so by calling the client function
      mutex:wait(Name), where Name is the variable
      bound to the registered name associated with the mutex. The
      wait call is synchronous, returning only when the calling
      process is allowed to enter the critical section. When that occurs, the
      FSM transitions to state busy.
Requests are stored in the mailbox and handled on a first in,
      first out basis. If the mutex is being blocked by another process in
      state busy, the request is left in
      the mailbox and handled when the mutex returns to state free. When the busy process is ready to leave
      the critical section, it calls mutex:signal(Name), an
      asynchronous call that releases the mutex. When that occurs, the FSM
      transitions back to state free, ready
      to handle the next request. Figure 10-1 shows the
      state transitions of a mutex.
[image: ]Figure 10-1. State transitions in a mutex

Let’s have a look at the mutex module, starting with
      the client functions (other exported functions will be defined
      shortly):
-module(mutex).
-export([start_link/1, start_link/2, init/3, stop/1]).
-export([wait/1, signal/1]).

wait(Name) ->
    Name ! {wait,self()},
    Mutex = whereis(Name),
    receive
        {Mutex,ok} -> ok
    end.

signal(Name) ->
    Name ! {signal,self()},
    ok.
Lots of borderline cases are handled gracefully in standard OTP
      behaviors and are often taken for granted by the programmer. You might
      have seen them yourself when looking at the code in the
      gen_server or gen_fsm modules. When
      implementing special processes, however, you need to decide which
      borderline cases to handle and take care of them yourself. In our
      example, we’ve opted for simplicity and do not cover any of them. But to
      give you an idea of what we are talking about, have a look at the
      wait/1 function, where we do not check if Name
      exists. We do not monitor whether the mutex terminates while the client
      process is suspended in its receive clause. Nor are we
      handling the case where the mutex terminates right before
      whereis/1 and is restarted and reregistered immediately,
      leaving wait/1 in a receive clause waiting for a message
      from a live process it will never receive. Nor have we implemented any
      timeouts if the mutex process is deadlocked or hanging.

Starting Special Processes
When starting special processes, use the start and spawn
      functions defined in the proc_lib
      library module instead of Erlang’s standard spawn and
      spawn_link BIFs. The proc_lib functions store the process’s name,
      identity, parent, ancestors, and initial function call in the process
      dictionary. If the process terminates abnormally, SASL crash reports are
      generated and forwarded to the error logger. They contain all the
      process info stored at startup, together with the reason for
      termination. And like with other behaviors, there is functionality allowing
      for a synchronous startup with an init phase.
A common error is to attach a process that doesn’t implement a
      behavior to the supervision tree. There are no warnings at compile time
      or runtime for this, as the only check made by the supervisor is to
      ensure the tuple {ok, Pid} is returned. No checks are made
      on Pid either. You will notice things going wrong only
      after a crash, restart, or upgrade. And because these processes do not
      follow standard behaviors, unless you’ve tested your restart strategy,
      hunting down the issue will resemble more of a wild goose chase than a
      routine and civilized troubleshooting session. For non-OTP-compliant
      processes, use supervisor bridges, covered in “Supervisor bridges”. This chapter shows you how to create an
      OTP-compliant process.
Basic template for starting a special process
The recommended approach to starting a special process is to use
        the proc_lib:start_link(Mod, Fun, Args) call instead of the spawn_link/3 BIF. Given a
        module, a function, and a list of arguments, it synchronously spawns a
        process and waits for this process to notify that it has correctly
        started through the proc_lib:init_ack(Value) call.
        Value is sent back to the parent process, becoming the
        return value of the start_link/3 call. Note how we are
        passing optional DbgOpts debug option parameters in our
        start_link call. We covered them in Chapter 5. For now, assume
        DbgOpts is an empty list. Note also how we are passing
        the Parent process ID to the init/3
        function; we need it in our main loop. It is the result of the self() BIF in the
        start_link/2 call.
start_link(Name) ->
    start_link(Name, []).

start_link(Name, DbgOpts) ->
    proc_lib:start_link(?MODULE, init, [self(), Name, DbgOpts]).

stop(Name) -> Name ! stop.

init(Parent, Name, DbgOpts) ->
    register(Name, self()),
    process_flag(trap_exit, true),
    Debug = sys:debug_options(DbgOpts),
    proc_lib:init_ack({ok,self()}),
    free(Name, Parent, Debug).
When initializing the process state, we first register the mutex
        with the alias Name. We set the trap_exit flag so we can receive exit signals from processes in our
        linked set (we use links instead of monitors to notify or terminate
        the caller if the mutex fails). And finally, we initialize the debug
        trace flags using the sys:debug_options(DbgOpts) call. The
        return value of debug_options/1 is passed as loop data
        and stored in the process state. It will be needed whenever the
        special process has to generate a trace message or receives a system
        message requesting it to update its trace flags.
As illustrated in Figure 10-2, once the state is
        initialized, we call proc_lib:init_ack(Value) to inform
        the parent that the special process has started correctly.
        Value is sent back and becomes the return value of the
        proc_lib:start_link/3 call. Although it isn’t mandatory,
        it is common practice to return {ok, self()} because
        supervisors expect their children’s start functions to return
        {ok, Pid}. If any part of the initialization fails before
        calling init_ack/1, proc_lib:start_link/3
        terminates with the same reason. Have a look at the last line of the
        init/3 function and differentiate between the function
        call free, which points to the FSM’s first state, and
        Name, Parent, and Debug, which
        is the process state.
[image: ]Figure 10-2. Starting special processes

The calls you can use to synchronously start a special process
        are:
	proc_lib:start(Module, Function, Args)
	proc_lib:start(Module, Function, Args,
          Time)
	proc_lib:start(Module, Function, Args, Time,
          SpawnOpts) -> Ret
	proc_lib:start_link(Module, Function,
          Args)
	proc_lib:start_link(Module, Function, Args,
          Time)
	proc_lib:start_link(Module, Function, Args, Time,
          SpawnOpts) -> Ret
	proc_lib:init_ack(Ret)
	proc_lib:init_ack(Parent, Ret) ->
          ok

The Ret return value of the
        start/3,4,5 and start_link/3,4,5 functions comes from
        the init_ack/1,2 call. As with other behaviors,
        SpawnOpts is a list containing all options the spawn BIFs
        accept, monitor excluded. If within
        Time milliseconds init_ack is not called,
        the start function returns {error, timeout}. If you use
        spawn or spawn_opt, do not forget to link
        the child to the parent process, either through the
        link/1 BIF or by passing the link option in
        SpawnOpts.

Asynchronously starting a special process
The following variations on the standard spawn and spawn_link
        functions are used in situations where you need asynchronous starts,
        such as the simultaneous launch of hundreds of new processes. They
        spawn the child process and immediately return its pid:
	proc_lib:spawn(Fun)
	proc_lib:spawn_link(Fun)
	proc_lib:spawn_opt(Fun, SpawnOpts) ->
          Pid
	proc_lib:spawn(Module, Function, Args)
	proc_lib:spawn_link(Module, Function,
          Args)
	proc_lib:spawn_opt(Node, Function, SpawnOpts) ->
          Pid

Other options to synchronously start special servers include
        spawning a process using a fun and spawning a process with the spawn
        options SpawnOpts.
Use asynchronous spawning with care, because the functions might
        cause multiple processes to run in parallel, resulting in race
        conditions that make your program nondeterministic. The same arguments
        we put forward in “Starting a Server” when discussing
        generic servers are valid here. A startup error might be hard to
        reproduce if it is dependent on a certain number of concurrent events
        happening in a specific order, an issue that is becoming more evident
        with multicore architectures. To be able to deterministically
        reproduce a startup error, create your process synchronously.
Regardless of how you start your special processes, they always have to
        be linked to their parent (by default, the supervisor). This
        happens automatically if you use start_link,
        spawn_link, or pass the link option in SpawnOpts. However, no
        checks are made to ensure that the process is actually linked to the
        supervisor, so even here, omissions of this type can be difficult to
        troubleshoot and detect.


The Mutex States
As we saw, a mutex has two states, free and busy, that are implemented as tail-recursive functions. The synchronous wait and asynchronous signal
      events are sent as messages together with the client pid. The
      combination of state and event dictates the actions and state
      transitions. Note how when in the free state, we accept only the
      wait event, informing the client
      through the message {self(), ok} that it is allowed to
      enter the critical section. The mutex will then transition to the busy
      state, where the only event that will pattern match is signal, sent by Pid. You should
      have noticed that Pid was bound in the function head to the
      client holding the mutex. Upon receiving the signal event, the mutex transitions back to the
      free state:
free(Name, Parent, Debug) ->
    receive
        {wait,Pid} ->
            Pid ! {self(),ok},
            busy(Pid, Name, Parent, Debug);
        stop ->
            ok
    end.

busy(Pid, Name, Parent, Debug) ->
    receive
        {signal,Pid} ->
            free(Name, Parent, Debug)
    end.
Note how we accept the stop
      message only if the mutex is in the free state. If you stop the mutex in
      the busy state, you’ll leave the client executing the code in its
      critical section in an unknown and possibly corrupt state, because the
      mutex might have been restarted and blocked by other client processes.
      By stopping the mutex only in the free state, you can guarantee a clean
      shutdown.
So far, so good. We are going back to Erlang 101 with the basics
      of FSMs. Let’s now start expanding the states to handle the system
      messages required by special processes.

Handling Exits
If the parent of your special process terminates, your process must
      terminate as well. If your process does not trap exit signals, the
      runtime will take care of this for you because you should be linked to
      your parent. Non-normal exit signals propagate to all processes in the
      link set, terminating them with the same reason that terminated the
      original process. An exit with reason normal doesn’t propagate, but in OTP, the
      supervisor guarantees that a parent will never terminate with that
      reason, so you don’t have to worry about it.
Special processes that trap exits have to monitor their parents, as they
      might receive messages of the format: 
{'EXIT', Parent, Reason}
where
      Parent is the parent pid and Reason is the
      reason for termination. If they do, they should clean up after
      themselves, possibly in their terminate or cleanup function, followed
      by a call to the exit(Reason) BIF.
In our previous example, the mutex is trapping exits, so we have
      to monitor parent termination. Let’s expand the state functions,
      handling the EXIT messages from the parent process by
      calling terminate/2. We also call terminate/2
      when receiving the stop message. If
      the parent terminates in state busy, we terminate the process holding
      the mutex before calling terminate/2:
free(Name, Parent, Debug) ->
    receive
        {wait,Pid} ->
            link(Pid),
            Pid ! {self(),ok},
            busy(Pid, Name, Parent, Debug);
        stop ->
            terminate(shutdown, Name);
        {'EXIT',Parent,Reason} ->
            terminate(Reason, Name)
    end.

busy(Pid, Name, Parent, Debug) ->
    receive
        {signal,Pid} ->
            free(Name, Parent, Debug);
        {'EXIT',Parent,Reason} ->
            exit(Pid, Reason),
            terminate(Reason, Name)
    end.

terminate(Reason, Name) ->
    unregister(Name),
    terminate(Reason).
terminate(Reason) ->
    receive
        {wait,Pid} ->
            exit(Pid, Reason),
            terminate(Reason)
    after 0 ->
            exit(Reason)
    end.
The first thing terminate/2 does is unregister the
      mutex, ensuring that any processes that try to send it requests
      terminate with reason badarg. The
      mutex goes on to terminate all processes in the queue by traversing its
      mailbox and extracting wait requests. When done, it knows no client
      processes are kept hanging and terminates itself with reason Reason.

System Messages
In addition to monitoring parents, special processes need to manage system messages
      of the format:
{system, From, Msg}
where From is the request originator and
      Msg is the system message itself. They could be messages
      originating from the supervisor used to suspend and resume processes
      during software upgrades or from a client manipulating or retrieving
      trace outputs using the sys module. What
      they are, however, is irrelevant to you as a developer, as you handle
      them as opaque data types and just pass them on.
No matter what the request is, these calls are handled behind the
      scenes in the sys:handle_system_message(Msg, From, Parent, Mod,
      Dbg, Data) function, as seen in Figure 10-3. The arguments to the
      sys:handle_system_message/6 call, although numerous, are
      straightforward:
	Msg and From are provided by the
            system message.

	Parent is the parent pid, passed when spawning
            the special process.

	Mod is the name of the module implementing the
            special process.

	Dbg is the debug data, initially returned by the sys:debug_options/1
            call.

	Data is used to store the loop data of the
            process.


[image: ]Figure 10-3. Handling system messages

The functions in the special process module that
      executes the call must be tail recursive as they never return. Not
      making them tail recursive will cause a memory leak every time a system
      message is received. Control is handed back to the special process in
      the Mod module by calling one of the following callback
      functions:
Mod:system_continue(Parent, Debug, Data)
Mod:system_terminate(Reason, Parent, Debug, Data)
If control is returned through the system_continue/3 callback function, your
      special process needs to return to its main loop. If system_terminate/4 is instead
      called, probably as a result of the parent ordering a shutdown, the
      special process needs to clean up after itself and terminate with reason
      Reason. We show you all of this in the mutex example, but
      first, let’s understand how debug printouts work.

Trace and Log Events
When we covered the start functions earlier in this chapter, we discussed the
      SpawnOpts argument, which among other options allows us to
      pass debug flags to special processes. In our
      mutex:start_link/2 call, we can pass these debug options in
      the second argument, binding them to the DbgOpts variable.
      DbgOpts contains zero or more of the trace,
      log, statistics, and {log_to_file,
      FileName} flags described in Chapter 5. This list is passed by the
      special process to the sys:debug_options(DbgOpts) call,
      which initiates the debug routines. Unrecognized or unsupported debug
      options are ignored. The return value of the call, stored in the
      variable Debug in our example, is kept in the special
      process loop data passed to all system calls. Remember the example in
      “Tracing and Logging” where we turned the trace and logs
      on or off during runtime, printing them in the shell and diverting them
      to a file? If everything is initialized correctly, you can generate
      similar trace logs with your special processes, turning the options on
      and off at runtime. All requests originating from calls such as sys:trace/3 or sys:log/2
      are received and handled as system messages. What might change in
      between calls are the contents of the Debug list, returned
      as part of the system_continue/3 callback function.
Generating trace events is a straightforward operation done by calling this function:
sys:handle_debug(Debug, DbgFun, Extra, Event)
where:
	Debug is the initialized debug options.

	DbgFun is a fun of arity 3 that formats the trace
          event.

	Extra is data that can be used when formatting
          the event, usually the process name or the loop data.

	Event is the trace event you want to print
          out.


DbgFun is a fun that formats the event, sometimes by
      calling another function to do so. The arguments passed to it by the
      sys module include the I/O device
      you are writing to, which can be either the standard_io or standard_error atom or the pid returned by the
      file:open call. Extra and Event
      come from the arguments to the handle_debug/4 call:
fun(Dev, Extra, Event) ->
    io:format(Dev, "mutex ~w: ~w~n", [Extra,Event])
end
You can also add your own trace functions at runtime using the sys:install/2 call, using pattern
      matching in the fun head to examine events and decide on the flow of
      execution. With system messages and trace outputs in place, let’s see
      how it all fits together by adding them to our mutex example.

Putting It Together
For your convenience, we’ve put the whole mutex example in one place. Note how we’ve
      expanded the free and busy states to include trace messages and
      system messages. Let’s focus on this functionality, starting with trace
      messages.
When we receive the wait and
      signal events, we call sys:handle_debug(Debug, fun debug/3, Name,
      Event), where Event is either {wait,
      Pid} or {signal, Pid}. This call hands control over
      to the sys module, which eventually
      calls the debug fun. In our case, it is the local function
      debug/3. Have a look at it, paying special attention as to
      how the I/O device, extra arguments, and events passed to it are used.
      handle_debug/4 returns NewDebug, which is
      passed as an argument to the next state. When reviewing the example,
      remember the mutex process does not implement the services it protects.
      It just implements the semaphore that gives other processes access to
      these services. The complete mutex example looks like this:
-module(mutex).

-export([start_link/1, start_link/2, init/3, stop/1]).
-export([wait/1, signal/1]).
-export([system_continue/3, system_terminate/4]).

wait(Name) ->
    Name ! {wait,self()},
    Mutex = whereis(Name),
    receive
        {Mutex,ok} -> ok
    end.

signal(Name) ->
    Name ! {signal,self()},
    ok.

start_link(Name) ->
    start_link(Name, []).

start_link(Name, DbgOpts) ->
    proc_lib:start_link(?MODULE, init, [self(), Name, DbgOpts]).

stop(Name) -> Name ! stop.

init(Parent, Name, DbgOpts) ->
    register(Name, self()),
    process_flag(trap_exit, true),
    Debug = sys:debug_options(DbgOpts),
    proc_lib:init_ack({ok,self()}),
    NewDebug = sys:handle_debug(Debug, fun debug/3, Name, init),
    free(Name, Parent, NewDebug).

free(Name, Parent, Debug) ->
    receive
        {wait,Pid} ->		%% The user requests.
            NewDebug = sys:handle_debug(Debug, fun debug/3, Name, {wait,Pid}),
            Pid ! {self(),ok},
            busy(Pid, Name, Parent, NewDebug);
        {system,From,Msg} ->	%% The system messages.
            sys:handle_system_msg(Msg, From, Parent,
                                  ?MODULE, Debug, {free, Name});
        stop ->
            terminate(stopped, Name, Debug);
        {'EXIT',Parent,Reason} ->
            terminate(Reason, Name, Debug)
    end.

busy(Pid, Name, Parent, Debug) ->
    receive
        {signal,Pid} ->
            NewDebug = sys:handle_debug(Debug, fun debug/3, Name, {signal,Pid}),
            free(Name, Parent, NewDebug);
        {system,From,Msg} ->   	%% The system messages.
            sys:handle_system_msg(Msg, From, Parent, 
                                  ?MODULE, Debug, {busy,Name,Pid});
        {'EXIT',Parent,Reason} ->
            exit(Pid, Reason),
            terminate(Reason, Name, Debug)
    end.

debug(Dev, Event, Name) ->
    io:format(Dev, "mutex ~w: ~w~n", [Name,Event]).

system_continue(Parent, Debug, {busy,Name,Pid}) ->
    busy(Pid, Name, Parent, Debug);
system_continue(Parent, Debug, {free,Name}) ->
    free(Name, Parent, Debug).

system_terminate(Reason, _Parent, Debug, {busy,Name,Pid}) ->
    exit(Pid, Reason),
    terminate(Reason, Name, Debug);
system_terminate(Reason, _Parent, Debug, {free,Name}) ->
    terminate(Reason, Name, Debug).

terminate(Reason, Name, Debug) ->
    unregister(Name),
    sys:handle_debug(Debug, fun debug/3, Name, {terminate, Reason}),
    terminate(Reason).
terminate(Reason) ->
    receive
        {wait,Pid} ->
            exit(Pid, Reason),
            terminate(Reason)
    after 0 ->
            exit(Reason)
    end.
When the free and busy functions receive
      {system, From, Msg}, they tail recursively invoke
      sys:handle_system_msg(Msg, From, Parent, ?MODULE, Debug, {State,
      LoopData}), handing control over to the sys module. The system message is handled
      behing the scenes, after which the function returns by calling
      either system_continue/3 or system_terminate/4 in the
      mutex module. If the function is
      not tail recursive, there will be, as we mentioned earlier, a memory
      leak for every system message received.
In our example, if system_continue is called,
      we just return to the state we were in, determined by the
      Name loop data in state free and the {Name, Pid} loop data
      in busy, where we wait for the next
      event or system call. In the case of system_terminate, if
      in state busy, we
      terminate the process that held the mutex (potentially leaving the
      system in an inconsistent state), followed by calling terminate/2.
      If in state free, we just call
      terminate/2. In both cases, we employ pattern matching on
      the final argument to ensure we take the correct actions for
      continuation and termination.
System messages and debug options are straightforward to handle in
      your own special processes. All you need to do is reuse the code from
      this example, ensuring that when you get handed back the control, you go
      back into your loop or state with a tail-recursive function. Before
      looking at the trial run of the mutex, read through the code one more
      time and make sure you understand the what, why, and hows of special
      processes.
In our trial run, we create a child specification for our special
      process, starting it as a dynamic child in a supervisor
      mutex_sup. We’ve not included the supervisor code in this
      example, as it is boilerplate code. All init/1 does is
      return the supervisor specification with a restart tuple with a
      one_for_one strategy allowing a maximum of five restarts
      per hour and an empty child list. You can find the source code in the
      book’s GitHub repository.
Note how in the mutex:start_link/2 arguments of the
      child specification, we turn on the trace flag. This leads to the trace
      printout when the mutex is started as a result of shell command 3. We
      turn on other debug options using the sys module in shell
      commands 4 and 5:
1> ChildSpec = {mutex, {mutex, start_link, [printer, [trace]]},
                   transient, 5000, worker, [mutex]}.
{mutex,{mutex,start_link,[printer,[trace]]},
       transient,5000,worker,
       [mutex]}
2> mutex_sup:start_link().
{ok,<0.35.0>}
3> supervisor:start_child(mutex_sup, ChildSpec).
mutex printer: init
{ok,<0.37.0>}
4> sys:log(printer, {true,10}).
ok
5> sys:statistics(printer, true).
ok
6> mutex:wait(printer), mutex:signal(printer).
mutex printer: {wait,<0.32.0>}
mutex printer: {signal,<0.32.0>}
ok
7> sys:log(printer, get).
{ok,[{{wait,<0.32.0>},printer,#Fun<mutex.1.94496536>},
     {{signal,<0.32.0>},printer,#Fun<mutex.2.94496536>}]}
8> sys:log(printer, print).
mutex printer: {wait,<0.32.0>}
mutex printer: {signal,<0.32.0>}
ok
9> sys:get_status(printer).
{status,<0.37.0>,
        {module,mutex},
        [[{'$ancestors',[mutex_sup,<0.32.0>]},
          {'$initial_call',{mutex,init,3}}],
         running,<0.35.0>,
         [{statistics,{{{2014,1,6},{8,50,36}},{reductions,66},0,0}},
          {log,{10,
                [{{signal,<0.32.0>},printer,#Fun<mutex.2.94496536>},
                 {{wait,<0.32.0>},printer,#Fun<mutex.1.94496536>}]}},
          {trace,true}],
         {free,printer}]}
10> exit(whereis(printer), kill).
mutex printer: init
true
11> exit(whereis(mutex_sup), shutdown).
mutex printer: {terminate,shutdown}
** exception exit: shutdown
In shell command 6, we wait for the mutex and then signal for it
      to be released, and each request generates a trace event. In shell
      commands 7, 8, and 9, we retrieve some of the trace and status
      information through the sys module, followed by some tests
      with termination and restarts in shell commands 10 and 11.
Do some tests of your own, experimenting with multiple clients,
      the SASL report browser, and other sys commands such as
      suspending and restarting the modules.

Dynamic Modules and Hibernating
You might recall from Chapter 8 that we need
      to provide the list of modules implementing the behavior in the child
      specification. They are used to determine which processes to suspend
      during software upgrades. There are occasions, as is the case with event
      managers and handlers, where the modules are not known at compile time.
      In the supervisor child specification module list, these behaviors were
      tagged with the atom dynamic. Special
      processes can also have dynamic modules.
[image: ]Figure 10-4. Retrieving dynamic modules

If your special process modules are tagged as dynamic in the child specification, then as
      Figure 10-4 illustrates, you need to handle the
      system message {get_modules, From}. From is the pid of the supervisor, used to
      return the list of modules in the From ! {modules,
      ModuleList} expression.
If you need to hibernate your special processes, instead of the BIF, use:
proc_lib:hibernate(Mod, Fun, Args)
It hibernates the process just like the BIF and the standard OTP
      behavior return values, but as an added feature, it also ensures that
      logging and debugging still function when the process wakes up.


Your Own Behaviors
Now that you understand special processes, let’s take the concept further
    by splitting the code into generic and specific parts to implement our own
    behaviors. You will want to implement your own behaviors when several processes follow a
    pattern that cannot be expressed using existing OTP behaviors. Generic
    servers, FSMs, and event managers cater to most programmers’ needs, so
    don’t get caught up in the excitement and start writing new behaviors in
    every project. Chances are you are overengineering a solution that could
    easily be abstracted in a simple library module.
Having said that, there will be times when there are good reasons to
    implement your own behaviors. Patterns can be abstracted in generic and
    specific modules, when the generic part is substantial enough to make it
    worthwhile. If you go down this route, chances are good that your behavior
    (or library) can be built on top of generic servers. If not, or if you
    prefer to avoid generic servers because of the performance overhead, make
    sure your behavior follows the design rules required by special processes
    using the sys and proc_lib modules.
Note
If you are into software archeology and have an interest in the
      evolution of software, try to get your hands on the source code of the
      early versions of Erlang/OTP. Skim through the old behavior code and you
      will find that most of the behaviors were built on top of generic
      servers. Current OTP behaviors, generic servers included, are built
      using a module called gen. It is a
      wrapper on top of the sys and
      proc_lib modules, handling a lot of
      the tricky and borderline cases associated with concurrent and
      distributed programming we’ve discussed in previous chapters. Look for
      it in the source directory of your stdlib application and
      look through the code. If you are implementing your own behaviors and do
      not want to get caught out, you might want to use gen
      instead of rolling your own. Be warned, however, as it is undocumented,
      and it might change in between releases with little or no notice.

Rules for Creating Behaviors
The steps to creating your own behavior are straightforward, requiring you to
      break up your code into generic and specific modules and define the
      callback functions and their return values. When doing so, you need to
      follow these simple rules:
	The name of the generic module has to be the same as the
            behavior name.

	You need to list the callback functions in the behavior
            module.

	In your callback module, include the
            -behavior(BehaviorName). directive.


Once you’ve compiled your generic behavior code,
      compiling your callback modules with the behavior directives will result
      in warnings should you omit any callbacks.

An Example Handling TCP Streams
Let’s have a look at some parts of an example in which we implement our own
      behavior, focusing on the code specific to our behavior’s
      implementation. We’ve omitted functions not relevant to the example,
      marking them with ... in the code. If you want to look at
      the whole module, you can find it in the code repository with the book’s
      examples. There is no need, however, to view the full example if you are
      interested only in understanding the specifics of implementing your own
      behavior.
Our example is a wrapper that encapsulates activities associated
      with TCP streams, including connections, configuration, and error
      handling, exposing only the stream of data being received. Upon
      receiving a socket accept request, the behavior spawns a new process
      that is kept alive for as long as the socket is open. The behavior
      receives the packets, forwarding them to the callback module as they
      arrive. The socket can be closed by the callback module through a return
      value of a callback function, or indirectly when the TCP client closes
      its side of the connection.
The callback functions in the callback module consist of an
      initialization function called once when the socket is opened, a data
      handling call invoked for every packet received, and a termination
      function called when the socket is closed:
-module(tcp_print).
-export([init_request/0, get_request/2, stop_request/2]).
-behavior(tcp_wrapper).


init_request() ->
    io:format("Receiving Data~n."), 
    {ok,[]}.
get_request(Data, Buffer)->
    io:format("."),
    {ok, [Data|Buffer]}.
stop_request(_Reason, Buffer) ->
    io:format("~n"),
    io:format(lists:reverse(Buffer)),
    io:format("~n").
The callback function init_request/0 returns {ok,
      LoopData}. The get_request/2 function receives the
      TCP packet bound to the variable Data and the
      LoopData, returning either {ok, NewLoopData}
      or {stop, Reason, NewLoopData}. In this example,
      LoopData is a buffer of received TCP packets bound to the
      variable Buffer. Upon closing the socket,
      stop_request/2 is given the Reason for
      termination and the LoopData, and has to return the atom
      ok.
Note how we have included the -behavior(tcp_wrapper).
      directive in the code. This points to the tcp_wrapper module, where the behavior is
      implemented.
When starting the tcp_wrapper
      behavior, we pass the callback module Mod and the
      Port number. We spawn a process that initializes the
      behavior state, opens a listener socket, and eventually makes its way to
      the accept/4 function. For every concurrent stream, we
      accept a connection on the listener socket, spawn a new process that
      starts executing in the init_request/2 function, and handle
      the stream through the callback module. In the accept call,
      we specify a timeout to keep from blocking infinitely so we can yield
      control back to the main loop (not shown in the example) every second,
      ensuring we can handle system messages and the EXIT signal
      from the parent process. We also export the cast/3 call,
      which allows us to create a connection and send a request asynchronously
      to the server:2
-module(tcp_wrapper).
-export([start_link/2, cast/3]).
-export([init/3, system_continue/3, system_terminate/4, init_request/2]).

-callback init_request() -> {'ok', Reply :: term()}.
-callback get_request(Data :: term(),
                      LoopData :: term()) ->
    {'ok', Reply :: term()} | 
    {'stop', Reason :: atom(), LoopData :: term()}.
-callback stop_request(Reason :: term(), LoopData :: term()) -> term().

start_link(Mod, Port) ->
    proc_lib:start_link(?MODULE, init, [Mod, Port, self()]).

cast(Host, Port, Data) ->
    {ok, Socket} = gen_tcp:connect(Host, Port, [binary, {active, false}, 
                                               {reuseaddr, true}]),
    send(Socket, Data),
    ok = gen_tcp:close(Socket).

send(Socket, <<Chunk:1/binary,Rest/binary>>) ->
    gen_tcp:send(Socket, [Chunk]),
    send(Socket, Rest);
send(Socket, <<Rest/binary>>) ->
    gen_tcp:send(Socket, Rest).

init(Mod, Port, Parent) ->
    {ok, Listener} = gen_tcp:listen(Port, [{active, false}]),
    proc_lib:init_ack({ok, self()}),
    loop(Mod, Listener, Parent, sys:debug_options([])).

loop(Mod, Listener, Parent, Debug) ->
    receive
        {system,From,Msg} ->
            sys:handle_system_msg(Msg, From, Parent, 
                                  ?MODULE, Debug, {Listener, Mod});
        {'EXIT', Parent, Reason} ->
            terminate(Reason, Listener, Debug);
        {'EXIT', Child, _Reason} ->
            NewDebug = sys:handle_debug(Debug, fun debug/3,
                                                   stop_request, Child),
            loop(Mod, Listener, Parent, NewDebug)
    after 0 ->
            accept(Mod, Listener, Parent, Debug)
    end.

accept(Mod, Listener, Parent, Debug) ->
    case gen_tcp:accept(Listener, 1000) of
        {ok, Socket} ->
            Pid = proc_lib:spawn_link(?MODULE, init_request, [Mod, Socket]),
            gen_tcp:controlling_process(Socket, Pid),
            NewDebug = sys:handle_debug(Debug, fun debug/3, init_request, Pid),
            loop(Mod, Listener, Parent, NewDebug);
        {error, timeout} ->
            loop(Mod, Listener, Parent, Debug);
        {error, Reason} ->
            NewDebug = sys:handle_debug(Debug, fun debug/3, error, Reason),
            terminate(Reason, Listener, NewDebug)
    end.

system_continue(Parent, Debug, {Listener, Mod}) ->
    loop(Mod, Listener, Parent, Debug).

system_terminate(Reason, _Parent, Debug, {Listener, _Mod}) ->
    terminate(Reason, Listener, Debug).

terminate(Reason, Listener, Debug) ->
    sys:handle_debug(Debug, fun debug/3, terminating, Reason),
    gen_tcp:close(Listener),
    exit(Reason).

debug(Dev, Event, Data) ->
    io:format(Dev, "Listener ~w:~w~n", [Event,Data]).

init_request(Mod, Socket) ->
    {ok, LoopData} = Mod:init_request(),
    get_request(Mod, Socket, LoopData).

get_request(Mod, Socket, LoopData) ->
    case gen_tcp:recv(Socket, 0) of
        {ok, Data} ->
            case Mod:get_request(Data, LoopData) of
                {ok, NewLoopData} ->
                    get_request(Mod, Socket, NewLoopData);
                {stop, Reason, NewLoopData} ->
                    gen_tcp:close(Socket),
                    stop_request(Mod, Reason, NewLoopData)
            end;
        {error, Reason} ->
            stop_request(Mod, Reason, LoopData)
    end.

stop_request(Mod, Reason, LoopData) ->
    Mod:stop_request(Reason, LoopData).
The generic code handling the TCP stream is straightforward. It is
      a process loop that initializes the stream state, receives the packets,
      and terminates when the callback module returns a stop
      tuple, or when the TCP client decides to close its side of the
      connection. For initialization, receiving packets, and termination,
      appropriate callback functions in the Mod callback module
      are called.
One item that stands out in our behavior implementation—probably
      the most important one alongside the calling of the callback
      functions—is the callback specification. It lists the callback functions
      that need to be exported in the callback module, following the
      directives set out in the Erlang type and function specifications. The
      callback specifications are mapped to the
      behavior_info(callbacks) function, which returns a list of
      the form {Function, Arity}. You can bypass the callback
      specifications altogether, directly implementing and exporting the
      behavior_info/1 call in your generic behavior module (which
      is how behaviors were required to be implemented with older releases of
      Erlang/OTP prior to R15B). Compare the callback specifications to the
      callback functions in the tcp_print module. Do they
      match?
-module(tcp_wrapper).
...
-export([behavior_info/1]).

behavior_info(callbacks) ->
    [{init_request, 0}, {get_request, 2}, {stop_request, 2}].
...
The advantages of using callback specifications over the
      behavior_info/1 function is that the dialyzer tool will
      find discrepancies between your callback modules and the specs, a
      welcome addition to the undefined callback function compiler warnings.
      The dialyzer enables behavior callback warnings by default. Remember to
      compile your generic behavior module and make it available in the code
      search path before compiling your callback module, or else you will
      get an undefined
      behavior warning.


Summing Up
In this chapter, we’ve introduced you to the ins and outs of
    implementing special processes, making them OTP compliant and including
    them as part of OTP supervision trees. We’ve also taken special processes a
    step further, allowing you to split the code into generic and specific
    modules and turning them into behaviors complete with callback modules,
    behavior directives, and associated compiler warnings.
When starting and hibernating special processes, instead of the
    standard BIFs, you must use the functions in the proc_lib
    module, listed in Table 10-1.
Table 10-1. Starting special process with the proc_lib module	Function call	Callback function or action
	proc_lib:spawn_link/1,2,3,4	None
	proc_lib:spawn_opt/2,3,4,5	None
	proc_lib:start/3,4,5	proc_lib:init_ack(Parent, Reply),
            proc_lib:init_ack(Reply)
	proc_lib:start_link/3,4,5	proc_lib:init_ack(Parent, Reply),
            proc_lib:init_ack(Reply)
	proc_lib:hibernate/3	None

The system message calls in Table 10-2 and their respective
    callbacks need to be managed by your process, either by responding
    directly to the process sending the request or by using the
    sys module.
Table 10-2. System requests and messages	Message	Callback function or action
	{system, From, Request}	Mod:system_continue(Parent, Debug, LoopData),
            Mod:system_terminate(Reason, Parent, Debug, LoopData)
	{'EXIT', Parent, Reason}	exit(Reason)
	{get_modules, From}	From ! {modules, ModuleList}

You can read more about the sys and
    proc_lib modules in their respective manual pages. There is
    an example covering special processes and user-defined behaviors in the
    “sys and proc_lib” section of the OTP Design Principles User’s Guide. And
    finally, you can find more information on type and function specifications
    used in defining your own callback definitions in the Erlang Reference
    Manual and User’s Guide.
If you feel like coding, we suggest you download the mutex example
    from the book’s code repository and implement some of the edge cases that
    can occur in concurrent applications. In your client function, when
    requesting the mutex, add references guaranteeing the validity of your
    reply together with optional timeouts. You will also want to monitor the
    mutex in case it terminates abnormally while you are executing in the
    critical section.

What’s Next?
Special processes and user-defined behaviors are the foundations
    used to build existing and new behaviors, allowing us to glue them together
    in a supervision tree and package them in an application. In the next
    chapter, on release handling and system principles, we group applications
    in a release and see how we can configure, start, and stop an Erlang node
    as a whole.

1 For those of you working in large companies, we’re referring to
      the projects where we’ve spent more time in meetings discussing and
      trying to get approval for a migration to OTP than it would have
      actually taken to refactor the code.
2 An alternative to this timeout approach is to use the
          prim_inet:async_accept/2 function, which sends the
          calling process a message when a new connection is accepted, but
          that function is intended to be private to Erlang/OTP and so is not
          part of its documented and supported set of API functions.


Chapter 11. System Principles and Release Handling
Now that we know how to implement and use existing OTP behaviors,
  organize them in supervision trees with special processes, and package them
  in applications, the time has come to group these applications together into
  an Erlang node that can be started up as one unit. In many programming
  languages, packaging is a problem handled by the operating system. In
  Erlang, this is handled in OTP by creating a release,
  where a system consists of one or more possibly different releases. Each
  node runs a release, either on a single host or in a distributed
  environment. Standard releases allow your system to follow a generic
  structure that not only is target independent, but can be managed and
  upgraded with tools independent of the underlying operating system. So,
  while Erlang’s release process might appear complicated, it is as easy to
  create a release (if not easier) as it would be to create a non-Erlang
  package. If we think of the packaging hierarchy in Erlang, we start with a
  function, followed by a module bundled in an application. An Erlang node consists of a set of
  loosely coupled applications, grouped together in a release.
You might not have realized it, but when you installed Erlang on your
  computer, you installed the standard release. What differs between a
  standard release and the ones you create yourself are the applications that
  are loaded and started together, along with their configuration parameters.
  The underlying Erlang runtime system does not differentiate between
  user-defined applications and applications that come as part as the
  Erlang/OTP distribution, but rather treats them in the same manner. Releases
  have the same directory structure, their own copy of the virtual machine,
  and manage release and configuration files in a similar way. Because of
  this, it should not come as a surprise that Erlang releases you start with
  the erl command are created with the same
  underlying tools, structure, and principles you use when defining your own
  releases.
In this chapter, we walk you through the steps needed to build a
  target release, explaining how it all hangs together. We cover the different
  release types, from simple and interactive target systems, which give you
  the flexibility of loading modules and easily starting applications at
  runtime, to embedded target systems, where applications are loaded and
  started at startup under strict version control. To create target systems,
  we cover systools, an Erlang library used when integrating the
  creation of releases in an existing tool chain or build process, and the use
  of rebar3 for greenfield projects or when
  dependency management becomes complicated.
System Principles
An Erlang release is defined as a standalone node consisting of:
	A set of OTP applications written or reused as part of the
        project, typically containing the system’s business logic. The
        applications can be proprietary, open source, or a combination
        thereof.

	The OTP applications from the standard distribution that the
        aforementioned applications depend on.

	A set of configuration and boot files, together with a start
        script.

	The Erlang runtime system, including a copy of the virtual
        machine.


There are tools that help you create and package a standalone node,
    but before introducing them, we cover all the components in detail and
    step you through a build manually. This will help you better understand
    how a release is structured and how it works, along with what options you
    have available.
The simplest way to start an Erlang node is using the
    erl command. You can start your program from the Erlang shell
    itself by typing in the module and function name or by passing the -s flag to erl:
$ erl -s module function arg1 arg2 ...
The function and arguments are optional.
    If only the module is listed, the command will invoke
    module:start(). If the module and
    function are listed, the command will invoke
    module:function().
    We refer to this method of starting your node as a basic target system, where you
    create a Unix shell script that initializes your state and calls the
    erl -s command. This approach should be used only when
    coding, for basic proofs of concepts, or for quick hacks. Using basic
    target systems in production is not recommended, as you lose a lot of the
    benefits that come with OTP. There are better alternatives.
Warning
Do not ship basic target systems unless they are proofs of
      concepts or quick hacks. If your program is started by a script that
      invokes erl -s myprojectsup -noshell, you lose all of the
      benefits gained by OTP applications and their startup, supervision, and
      upgrade procedures. You have everything to gain from using boot files
      and shipping your systems as embedded target systems.

The next way of starting your node is as a simple target system. It makes use
    of a boot script and tools shipped with the sasl
    application, facilitating controlled software upgrades at runtime. To
    understand how simple target systems work, let’s start by examining your
    Erlang installation and investigating its directory structure and all the
    files and scripts associated with it. You need to create some of these
    files yourself when generating the release, using tools such as
    systools, reltool, or
    relx, while you can just copy other files from a
    repository or the installation in your target environment.
Start by finding the top-level directory, often called the
    Erlang root directory. It is the location where you
    (or the scripts you used) installed Erlang. If you don’t know that
    location, start an Erlang node and call code:root_dir().:
$ erl
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> code:root_dir().
"/usr/local/lib/erlang"
2> q().
ok
$ cd /usr/local/lib/erlang
$ ls
Install   erts-6.4     erts-7.1   misc
bin       erts-6.3     erts-7.2   releases
erts-6.2  erts-7.0     lib        usr
The contents of the directory are the output of creating a release.
    They vary depending on how (and from where) you installed Erlang, the
    number of upgrades you’ve done throughout the years, and the
    customizations made by those who built the release. There is, however, a
    set of basic files and directories that are required and will always be
    there, appearing with your first installation.
Release Directory Structure
In this section we explore the files needed for a release. Your own releases
      will have the same directories and file structures as the Erlang root,
      so we spend some time looking at that. The only differences between the
      root and your own releases are the applications that are loaded and
      started, their versions, and the version of the runtime system. This
      becomes evident in the next few sections, where we create our own base
      station controller release that follows these very principles.
Four directories are mandatory in every OTP release, as shown in
      Figure 11-1. We have already looked at lib, which
      contains all of the applications with their version numbers appended to
      their directory names. You rummaged through it in “The Application Structure” when reading about applications and
      their directory structures. After upgrades, you could end up with
      multiple versions of a single application, differentiated by a version
      number in the application directory name. With multiple instances, the
      code search path defined when creating the release usually points to the
      ebin directory of the latest version of the application.
[image: ]Figure 11-1. Release directory structure

The erts directory contains binaries for the Erlang runtime system. Even
      here, if you have at some point upgraded your installation, you might
      find multiple instances of the directory, distinguished by the erts version number appended to the directory
      name. In erts the most interesting
      subdirectory is bin. It contains executables and
      shell scripts related not only to the virtual machine, but also to all
      the tools that can be invoked from the shell. Look around in the
      directory and you will find the following:
	erl
	A script or program (depending on the target environment) that
            starts the runtime system and provides an interactive
            shell.

	erlexec
	The binary executable called by the erl script.

	erlc
	A common way to run Erlang-specific compilers. The compiler
            chosen depends on the extension of the file you are trying to
            compile.

	epmd
	The Erlang port mapper daemon. It acts as a name server
            in distributed Erlang environments, mapping Erlang nodes to IP
            addresses and port numbers.

	escript
	Allows you to execute short Erlang programs as if they were
            scripts, without having to compile them.

	start
	Starts an embedded Erlang target system in Unix environments.
            This kind of release runs as a daemon job without a shell window.
            We look at embedded target systems in “Creating a Release Package”.

	run_erl
	The binary called by start
            to start Unix-based embedded systems, where I/O is streamed to
            pipes.

	to_erl
	Connects to the Erlang I/O streams with nodes started by
            run_erl in an embedded target
            system.

	werl
	Starts the runtime system in Windows environments, in a
            separate window from the console.

	start_erl
	Part of the chain of commands to start embedded target systems,
            setting the boot and config files in Unix systems. In Windows
            environments, this is similar to the Unix start command previously
            described.

	erlsrv
	Similar to run_erl but
            for Windows environments, allowing Erlang to be started without
            the need for the user to log in.

	heart
	Monitors the heartbeat of the Erlang runtime system and calls a
            script if the heartbeat is not acknowledged.

	dialyzer
	A static analysis tool for beam files and Erlang source code. It
            finds, among other things, type discrepancies and dead or
            unreachable code. The dialyzer should be part
            of everyone’s build process.

	typer
	Infers variable types in Erlang programs based on how the
            variables are used. It adds type specifications derived from your
            source code and provides input data to the dialyzer.


Programmers use several of the executables listed in the
      bin directory when creating and starting an Erlang
      release. The ones we list are the most important and most relevant to
      what we cover in more detail later in this chapter. But the list is
      nowhere near complete, as the full contents depend on the Erlang/OTP
      version and operating system you are running.
These contents of the erts-version/bin
      directory are similar to those of bin
      in the Erlang root directory. The version-specific directory contains
      links and copies to the scripts and executables of the bin directory of the Erlang runtime version
      you start by default. This directory is needed because you might have
      several versions of a release installed and running at any one time.
      Although typing erl would point to the script in the
      bin directory, environment variables
      would redirect it to the erts-version/bin
      version you are using. Let’s have a look at the contents of the erl script. With release 18.2 on a Mac running
      OS X Yosemite, it looks like this:
#!/bin/sh
#
# %CopyrightBegin%
#
# Copyright Ericsson AB 1996-2012. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# %CopyrightEnd%
#
ROOTDIR="/usr/local/lib/erlang"
BINDIR=$ROOTDIR/erts-7.2/bin
EMU=beam
PROGNAME=`echo $0 | sed 's/.*\///'`
export EMU
export ROOTDIR
export BINDIR
export PROGNAME
exec "$BINDIR/erlexec" ${1+"$@"}
ROOTDIR and BINDIR, along with other environment variables, are set when installing
      or upgrading Erlang. Note how BINDIR points to the
      $ROOTDIR/erts-7.2/bin directory we
      inspected at the beginning of this section and ends up executing
      erlexec. Look in the erts-7.2/bin directory for erl.src and you will find the source file
      used to create the erl script.
      Similar source files exist for start_erl and start. We cover .src files in “Creating a Release”.
If you enter the releases
      directory, also located in the Erlang root directory, you will find a
      subdirectory for every release you’ve installed on your machine. There
      should be a one-to-one mapping to the erts
      directories, because most new releases come with a new version of the
      runtime system. Inspect the contents of any of the start_erl.data files and you will see two
      numbers, the first referring to the emulator version used in the current
      installation of Erlang and the second referring to the directory of the
      OTP release being used:
$ cd releases
$ ls
17	18	RELEASES	RELEASES.src	start_erl.data
$ cat start_erl.data
7.2 18
$ ls 18
OTP_VERSION                     start.boot              start_sasl.boot
installed_application_versions  start.script            start_sasl.rel
no_dot_erlang.boot              start_all_example.rel   start_sasl.script
no_dot_erlang.rel               start_clean.boot
no_dot_erlang.script            start_clean.rel
If you list the contents of the directory specified in start_erl.data—we’ve picked version 18 in our
      example—you will find files with .rel, .script, and .boot extensions. Files with the .rel suffix list the versions of
      the applications and runtime system for a particular release. The
      .boot file is a binary representation of the
      .script file, which contains commands to load and
      start applications when the system is first started. Enter the
      subdirectory of the latest release and look at any of the .rel and .script files to get a feel for what they might
      do. We create our own scripts in an upcoming section.
You can override the default location of the
      releases directory by setting the
      sasl application configuration variable releases_dir or the OS environment variable RELDIR. The Erlang runtime system must have
      write permissions to this directory for upgrades to work, as it updates
      the RELEASES file in conjunction
      with upgrades.

Release Resource Files
All your project’s OTP applications, including those that come as
      part of the standard distribution, and proprietary as well as open
      source applications, are bundled up in a release specification
      containing their versions. This specification also includes the system
      release version and name, together with the version of the runtime
      system. The build system uses this information to do sanity checks,
      create the boot files, and create the target directory structure.
The minimal (and default) release consists of the kernel and
      stdlib applications, but most
      releases also include and start sasl because it
      contains all of the tools required for a software upgrade. You might not
      think about upgrades when creating your first release, but you’ll
      probably need to do so at a later date. You are given the option of
      including sasl by default when installing Erlang
      from source, but if you are using third-party binaries, this choice will
      have already been made for you.
Let’s look at the rel files more closely. If, from the Erlang root directory, you
      enter into the releases directory
      and from there move into any of the subdirectories, you will find at
      least one file with the .rel
      suffix. As an example, we’ve picked the releases/18/start_sasl.rel file, stripping
      out the comments:
{release, {"Erlang/OTP","18"}, {erts, "7.2"},
 [{kernel,"4.1.1"},
  {stdlib,"2.7"},
  {sasl, "2.6.1"}]}.
As we can see, this release will run emulator version 7.2,
      starting kernel version 4.1.1,
      stdlib version 2.7, and sasl version 2.6.1. The name of the release
      is “Erlang/OTP” and its version is “18.” Other examples and versions of
      the rel files and corresponding boot and script files in the directory
      specify how other systems are grouped together.
What Applications Do You Include in a Standard Release?
In our base station release file, we kept it simple and included only the
        bsc application. Production systems often include
        monitoring, logging, and debugging applications that will not affect
        the code of your base applications, but provide insight and visibility
        when you are troubleshooting a live system. We have already seen a
        basic form of logging and alarming in the sasl application. The os_mon application provides the ability to inspect the underlying operating
        system, including disk and memory supervision along with CPU load and
        utilization.
The runtime_tools application
        is often overlooked and omitted. It includes the dbg debugger and
        the system_information module, as well as
        other tools needed for real-time profiling of the virtual machine. You
        never know when these tools and the visibility they bring with them
        will come in handy (especially dbg), so we recommend you include
        them.

Let’s create a release file named basestation.rel to use in our base station
      controller example. The release name is “basestation” and we’ve given it
      version “1.0.” Along with the standard included applications, we’ll
      include version 1.0 of bsc. The file is fairly
      straightforward and differs very little from the previous
      example:
{release,
 {"basestation","1.0"},
 {erts, "7.2"},
 [{kernel, "4.1.1"},
  {stdlib, "2.7"},
  {sasl, "2.6.1"},
  {bsc, "1.0"}]}.
The resource file is by convention named
      ReleaseName.rel.
      Following this convention is not mandatory, but doing so makes life
      easier for those supporting and maintaining your code. The resource file
      contains a tuple with four elements: the release atom, a
      tuple of the format {ReleaseName, RelVersion}, a tuple of
      the format {erts, ErtsVersion}, and a list of tuples
      containing information about the applications and their versions. The
      application tuples we’ve seen so far were of the format
      {Application, AppVersion}, but as the following shows,
      other formats exist as well:
{release,
 {ReleaseName, RelVersion},
 {erts, ErtsVersion},
 [{Application, AppVersion},
  {Application, AppVersion, Type},
  {Application, AppVersion, IncludedAppList},
  {Application, AppVersion, Type, IncludedAppList}]
}.
All of the version fields for the various elements in the tuple
      are strings. In your application tuple, you can also add an application
      Type. You can include the types we covered in “Application Types and Termination Strategies”, as well as load and
      none:
	load
	Loads the application but does not start it.

	none
	Loads the modules in the application, but not the application
            itself.

	permanent
	Shuts down the node when the top-level supervisor terminates. When the
            application terminates, all other applications are cleanly taken
            down with it. This is the default chosen if no restart type is
            specified.

	transient
	Shuts down the node when the top-level supervisor terminates
            with a non-normal reason. This is useful only for
            library applications that do not start their own supervision
            trees, because top-level supervisors will always terminate with
            the non-normal reason shutdown, yielding the same outcome as a
            permanent application.

	temporary
	Applications that terminate, normally or abnormally, are reported
            in the SASL logs, but do not affect other applications in the
            release.


Finally, you can specify a list of included applications in
      IncludedAppList. The list must be a subset of the
      applications specified in the application app file.
Release and Application Versions
An OTP version is a set of specific application versions listed in the rel
        file that have been tested together with an emulator version. But this
        does not mean you cannot swap and change application and emulator
        versions; all it says is that they have not been tested together. As
        the test cases for OTP releases are part of its source repository,
        there is nothing stopping you from running them yourself with your
        proprietary applications as part of your development process. An
        application version is a set of module versions and resources, listed
        in the app file or contained in the priv directory.   
Starting with OTP 17, application and OTP versions share the
        same numbering scheme.  They consist of three integers of the format
        <Major>.<Minor>.<Patch>,
        where major releases include substantial, possibly
        non–backwards-compatible changes, minor releases are incremented when
        new functionality is added, and the patch number is incremented as a
        result of bug fixes. Incrementing the version of a major release will
        set the minor and patch levels to 0, while incrementing a minor
        release will reset the patch level to 0. Trailing 0s are usually
        removed from the version number, so a version 17.1.0 is equivalent to
        version 17.1.  
Higher versions, starting with major releases, include features
        and bug fixes from minor and patch releases. Aside from
        backward-incompatible changes and features that might have been
        removed, you can assume that higher versions contain all of the bug
        fixes and enhancements of the lower versions.
Versions can have more than three parts. This allows one to
        specify branches of a particular release created in order to deliver
        compatible patches in older releases. There is no limit to how many
        branched versions you can have. As an example, fixes in application or
        release version 17.1.3.1 are not guaranteed to be included in 17.2, as
        17.2 might have been released before 17.1.3.1. Prereleases, also known
        as release candidates, will have the
        –rcVsn suffix, e.g.,
        17-rc1.
If you are not sure what OTP release you are using, you can find out by using the
        erlang:system_info(otp_release) BIF.  In the
        releases directory for the release you are
        running, you will find the OTP_VERSION file that contains the OTP
        version number. You will find this file only in your development
        environment. If you look for it in your target installation, you will
        not find it unless you have put it there yourself.    


Creating a Release
Having defined what is included in our release, the time has come to create it
      in a few simple steps, as shown in Figure 11-2:
	Start by creating a binary boot file, which contains the commands required
          to load modules and start applications.

	With your boot file in place, create a directory structure
          that includes all application directories, release directories, and,
          if required, the emulator. This package is target independent, but
          could be OS and hardware specific. Your directory structure must
          follow the directives described in “Release Directory Structure”, making it compatible with
          the boot file you created.

	Create a start script defining your configurations, system
          limits, code search paths, and other system-specific environment
          variables, including a pointer to the boot file. Your script will be
          based on the .src files you saw
          in the bin directory of the
          emulator. The script will depend on the directory structure you have
          created and how you want your target system to behave.

	With the start script in place, create a deployment package
          specific to your target environment. It could be a tar file, a
          Debian or Solaris package, a container, or any other instance that
          you can configure and deploy with tools of your choice or the hype
          of the moment.


[image: ]Figure 11-2. Creating an OTP release

In our example, we keep it simple by creating and deploying a tar
      file using the systools library that comes as part of
      the SASL application in the OTP distribution. The typical target
      directory structure includes all of the applications listed in the
      release file and, in the majority of cases, the Erlang runtime system.
      Once we’ve created our tar file, we will want to untar it and fix
      scripts, configuration files, and other target-specific environment
      variables before creating the final package. This step could be done
      manually or as part of your automated build process. It could be done
      locally on your computer or in your target environment. How you do it
      depends on the development and target environments as well as the tools
      you pick. There never has been, and never will be, a “one size fits all”
      approach.

Creating the Boot File
Let’s start by creating our boot file. To do this, we need the systools:make_script/2 library function. This function creates a binary boot file used by
      a start script to boot Erlang and your system. To get the
      start_script/2 function to work, we need to copy the
      bsc application example, ensuring it
      follows the directory structure we covered in “The Application Structure”. The structure is available in this
      chapter’s directory of the GitHub repository. If you download it and
      recreate the example on your computer, don’t forget to compile the
      Erlang files and place them into the ebin
      directory.
The script starts off by looking for the application versions
      specified in the basestation.rel
      file. It does so using the code search path, and any other paths you
      might have included in your {path, PathList} environment
      variable. In our example, assuming we started Erlang in the same
      directory as the bsc directory, we would use the
      [{path, ["bsc/ebin"]}] option or start Erlang using
      erl -pa bsc/ebin. Remember, PathList is a list
      of lists, so even if you have only one directory, the directory must be
      defined in a list: [Dir]. Let’s try it out:
$ erl -pa bsc/ebin/
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> systools:make_script("basestation", [{path, ["bsc/ebin"]}]).
Duplicated register names:
        overload registered in sasl and bsc
error
ok
Oops, systools detected a
      problem when building the script. Remember how, in your app file, you
      specified a list of registered processes? Apparently, there is another
      process defined in the sasl app file with the name
      overload. We actually introduced
      freq_overload in Chapter 7, and before changing it, had it
      registered with the name overload in
      Chapter 8. When creating the first app
      file, we ended up using the wrong name.
If you are running the script on your laptop, you might get errors
      informing you that the script was unable to find a certain version of
      the app file, an error that is easily reproducible if you change any of
      the versions in basestation.rel.
      This is where version control becomes important. You need to know
      exactly which module, application, and release versions you are running
      in production, because your system may be running for years on end and
      is likely to be managed by other people. Should you get called in to
      support someone else’s mess, at least you’ll know what version of the
      mess you have to deal with.
When creating your boot file, sanity checks are run to:
	Check the consistency and dependencies of all applications
          defined in the rel files. Do all the applications exist, and are
          there no circular dependencies? Ensure that the versions defined in
          the app files match those specified in the rel files.

	Ensure that the kernel and
          stdlib applications of type
          permanent are part of the release. Warnings will be
          raised if sasl is not part of the release, but
          the script and boot file generation will not fail. You can suppress
          these warnings by passing no_warn_sasl as one of the
          options when creating the boot file.

	Detect clashes in the registered process names defined in the
          application app files, ensuring that no two processes are registered
          with the same name.

	Ensure that all modules defined in the app files have
          corresponding beam files in the ebin directory. While doing so, the
          sanity check detects any module name clashes, where the same module
          (or module name) is included in more than one application. If you
          want to ensure that the beam files match the latest version of the
          source code, include src_tests in
          the options.


As we look at our release, we see that the registered process name
      clash arises as an error in our app file. Changing overload to freq_overload in the registered process names
      of the bsc.app file fixes the
      problem.
When viewing the resulting contents of the directory as shown in
      the following example, we discover two new files, basestation.script and basestation.boot. Before investigating them
      further, let’s use the boot file to start the base station
      release:
1> systools:make_script("basestation", [{path, ["bsc/ebin"]}]).
ok
2> q().
ok
$ ls
basestation.boot	basestation.rel		basestation.script	bsc
$ erl -pa bsc/ebin -boot basestation
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]


=PROGRESS REPORT==== 25-Dec-2015::20:37:46 ===
          supervisor: {local,sasl_safe_sup}
             started: [{pid,<0.35.0>},
                       {id,alarm_handler},
                       {mfargs,{alarm_handler,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]


...<snip>...

=PROGRESS REPORT==== 25-Dec-2015::20:37:46 ===
          supervisor: {local,bsc}
             started: [{pid,<0.43.0>},
                       {id,freq_overload},
                       {mfargs,{freq_overload,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

=PROGRESS REPORT==== 25-Dec-2015::20:37:46 ===
          supervisor: {local,bsc}
             started: [{pid,<0.44.0>},
                       {id,frequency},
                       {mfargs,{frequency,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

=PROGRESS REPORT==== 25-Dec-2015::20:37:46 ===
          supervisor: {local,bsc}
             started: [{pid,<0.45.0>},
                       {id,simple_phone_sup},
                       {mfargs,{simple_phone_sup,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

=PROGRESS REPORT==== 25-Dec-2015::20:37:46 ===
         application: bsc
          started_at: nonode@nohost
Eshell V7.2  (abort with ^G)
1> observer:start().
ok
Because the bsc application was not placed in
      the lib directory, we have to
      provide the code search path to the .app and .beam files using the -pa
      directive to the erl command. Note all the progress reports
      that start appearing as soon as sasl is started
      (we’ve removed a few in our example). Just to be completely sure that
      the supervision tree has started, start the
      observer tool, select the Applications tab (Figure 11-3), and have a look at the
      bsc supervision tree.
[image: ]Figure 11-3. The observer Applications tab

This is how we start OTP-compliant simple target systems. Simple
      target systems are used by several popular open source projects, are
      more robust than basic target systems, and represent a step in the right
      direction. But we can (and will) do better! Before discovering how,
      let’s review in more detail the contents of the files we’ve generated
      and the parameters we can pass to systools:make_script/2.
Script files
Figure 11-4 shows the basic relationships between files used to build a
        release. The basestation.boot
        file is a binary file containing all of the commands executed by the
        Erlang runtime system and needed to start the release. Unlike other
        files we look at, the boot file has to be a binary because it contains
        the commands that load the modules that allow the runtime system to
        parse and interpret text files. You can find the textual
        representation of the boot file’s commands in basestation.script. And even better, for
        those of you who like to tinker, you can edit the file or write your
        own. (Do this while sparing a thought for those using OTP R1 back in
        1996, when make_script/2 had not yet been
        written.)
[image: ]Figure 11-4. Creating boot and release files

Have a look at the contents of a script file. It is a file
        containing an Erlang term of the format {script, {ReleaseName,
        ReleaseVsn}, Actions}:
{script,
    {"basestation","1.0"},
    [{preLoaded,
         [erl_prim_loader,erlang,erts_internal,init,otp_ring0,prim_eval,
          prim_file,prim_inet,prim_zip,zlib]},
     {progress,preloaded},
     {path,["$ROOT/lib/kernel-4.1.1/ebin","$ROOT/lib/stdlib-2.7/ebin"]},
     {primLoad,[error_handler]},
     {kernel_load_completed},
     {progress,kernel_load_completed},
     {path,["$ROOT/lib/kernel-4.1.1/ebin"]},
     {primLoad, KernelModuleList},  %%
     {path,["$ROOT/lib/stdlib-2.7/ebin"]},
     {primLoad, StdLibModuleList},
     {path,["$ROOT/lib/sasl-2.6.1/ebin"]},
     {primLoad, SASLModuleList},
     {path,["$ROOT/lib/bsc-1.0/ebin"]},
     {primLoad, BscModuleList},
     {progress,modules_loaded},
     {path,
         ["$ROOT/lib/kernel-4.1.1/ebin","$ROOT/lib/stdlib-2.7/ebin",
          "$ROOT/lib/sasl-2.6.1/ebin","$ROOT/lib/bsc-1.0/ebin"]},
     {kernelProcess,heart,{heart,start,[]}},
     {kernelProcess,error_logger,{error_logger,start_link,[]}},
     {kernelProcess,application_controller,
         {application_controller,start, KernelAppFile}}
     {progress,init_kernel_started},
     {apply, {application,load, StdLibAppFile}},
     {apply, {application,load, SASLAppFile}},
     {apply, {application,load, BscAppFile}},
     {progress,applications_loaded},
     {apply,{application,start_boot,[kernel,permanent]}},
     {apply,{application,start_boot,[stdlib,permanent]}},
     {apply,{application,start_boot,[sasl,permanent]}},
     {apply,{application,start_boot,[bsc,permanent]}},
     {apply,{c,erlangrc,[]}},
     {progress,started}]}.
We replaced the kernel,
        stdlib, sasl, and bsc applications’ module lists and app file
        contents with variables shown in italics to make the file more
        book-friendly and readable. The script file starts off by defining any
        modules that have to be preloaded before any processes are spawned.
        Let’s step through these commands one at a time. Although you need not
        understand what they all mean if all you need to do is get a system up
        and running, having knowledge of the various steps helps when you have
        to dive into the internals of the kernel or need to troubleshoot why
        your system is not starting (or even more worrisome, not
        restarting):
	preLoaded
	Contains the list of Erlang modules that have to be loaded before any
              processes are allowed to start. You can find them in the
              erts application located in
              the lib directory. Of
              relevance to this section are the init module, which contains the code that interprets your boot file,
              and the erl_prim_loader
              module, which contains information on how to fetch and
              load the modules.

	progress
	Lets you report the progress state of your initialization
              program. The progress state can be retrieved at any time by
              calling the function
              init:get_status/0. The function returns a tuple of
              the format {InternalState, ProgressState}, where
              InternalState is starting, started, or stopping. ProgressState
              is set to the last value executed by the script. In our example,
              the only progress state that matters to the startup procedure is
              the last one, {progress, started}, which changes
              InternalState from starting to started. All other phases have no use
              other than for debugging purposes.

	kernel_load_completed
	Indicates a successful load of all the modules that are required before
              starting any processes. This variable is ignored in embedded mode, where loading of the
              modules happens before starting the system. We discuss the
              embedded and interactive modes in more detail later
              in this chapter.

	path
	A list of directories, represented as strings. They can be
              absolute paths or start with the $ROOT environment variable. These
              directories are added to the code search path (together with
              directories supplied as command-line arguments using
              -pa, -pz, and -path) and
              used to load modules defined in primLoad entries.
              Note how the generated paths—specifically, the one in the
              bsc application—assume that
              the beam files of the target environment are located in
              $ROOT/lib/bsc-1.0/ebin and
              not bsc/ebin. Note also how
              the application version numbers in the start scripts have been
              added to the path, assuming a standard OTP directory
              structure.

	primLoad
	Provides a list of modules loaded by calling the erl_prim_loader:get_file/1 function.
              If loading a module fails, the start script terminates and the
              node is not started. Modules may fail to be loaded when the beam
              files are missing, are corrupt, or were compiled by a wrong
              version of the compiler, or when the code search path is
              incorrect (e.g., if you forgot to add your application to the
              lib directory or have
              omitted the directory version number). In various places
              throughout this chapter we explain how to troubleshoot startup
              errors.

	{kernelProcess, Name, {M, F, A}}
	Starts a kernel process by calling apply(M, F,
              A). In our file, kernelProcess is used for
              three modules: heart,
              error_logger, and
              application_controller. You already know what the
              error logger and the application controller do. We look at
              heart in more detail in “Heart”. Once started, the kernel process is
              monitored, and if anything abnormal happens to it the node is
              shut down.

	{apply, {M, F, A}}
	Causes the process initializing the system to execute
              the apply(M, F, A) BIF, where the
              first argument is the module, the second is the function, and
              the third is a list of arguments for the function. If this
              function exits abnormally, the startup procedure is aborted and
              the system terminates. A function started in this manner may not
              hang and has to return, because starting the node is a
              synchronous procedure. If an apply does not return,
              the next command will not be executed.


Now that we are enlightened about each line of the script file,
        we can follow what is happening in our start script:
	We start off by preloading all of the modules in the
            erts application, together with
            the error_handler in the kernel application. Once they load, we inform the script interpreter
            with {kernel_load_completed} and issue a progress
            report.

	For all applications listed in the release file, we add the
            path to the end of the code search path and use
            primLoad to load all of the modules listed in the
            respective application app files. We then issue a
            modules_loaded progress report.

	We start all of the kernel processes, starting with
            heart, the error_logger, and the
            application_controller (you already know about the
            latter two). We issue an init_kernel_started progress
            report.

	We call application:load(AppFile) to load all
            the applications that are part of this release. This loads the
            four applications listed in our rel file: kernel, stdlib, sasl, and bsc. When complete, we issue an
            applications_loaded progress report.

	Now that we’ve started the kernel processes and loaded all
            of the applications, it is time to start them. Note how, instead
            of calling application:start/1 in the {apply,
            {M, F, A}} tuple, we are calling application:start_boot/2. This
            is an undocumented function that, unlike
            application:start/2, assumes that the application has
            already been loaded and asks the application controller to start
            it.

	Before issuing the final started progress
            report, we call c:erlangrc(). This function is not
            documented, but reads and executes the .erlang file in your home or Erlang
            root directory. This is a useful place to set code paths and
            execute other functions.


Be very careful of the code search paths in your target
        environment. The only reason our example can start the bsc application is that we provide the path
        to the beam files using -pa in the command-line prompt
        when starting Erlang. Our base station script expects them to be in
        $ROOT/lib/bsc-1.0/ebin. When
        generating the start script for the target environment, all
        applications are assumed to be in the directory
        AppName-version
        within the root directory $ROOT/lib/. This will become evident when
        we generate the target directory structure and files.

The make_script parameters
Let’s look in more detail at all the options we can pass to the
        make_script/2 call. We already know that Name is the name of
        the release file:
systools:make_script(Name, OptionsList).
Options include:
	src_tests
	By default, systools assumes that the beam
              files are up to date and represent the latest version of the
              source code. This flag causes it to instead verify that the beam
              files are newer than their corresponding source files and that
              no source files are missing, and issue warnings
              otherwise.

	{path,DirList}
	Adds paths listed in DirList to the code
              search path. This option can be used along with passing the
              -pa and -pz parameters when starting
              the Erlang VM that executes the systools functions.
              You can include wildcards in your path, so
              "lib/*/ebin" expands to contain all of the
              subdirectories in lib
              containing an ebin
              directory.

	local
	Places local paths instead of absolute paths in the start
              script. This flag is ideal for testing boot scripts using your
              code and the Erlang runtime system on your local machine.

	{variables,[{Prefix, Var}]}
	Replaces path prefixes with variables. This allows you to
              specify alternative target paths for some or all of your
              applications. Defining a prefix such as {"$BSC",
              "/usr/basestation/"} results in the path $BSC/lib/bsc-1.0/ebin, if the app and
              beam files are found in /usr/basestation/lib/bsc/ebin.
              Similarly, it results in the path $BSC/ernie/lib/bsc-1.0/ebin if the
              local path is /usr/basestation/ernie/lib/bsc/ebin.

	{outdir, Dir}
	Puts the boot and script files in Dir.

	exref and {exref, AppList}
	Tests the release with the Xref cross-reference tool, which looks
              for calls to undefined and deprecated functions.

	silent
	Returns a tuple of the format {ok, ReleaseScript,
              Module, Warnings} or {error, Module, Error}
              instead of printing results to I/O. Use this option when calling
              systools functions from scripts or integrating the
              call in your build process where you need to handle
              errors.

	no_dot_erlang
	Removes the instructions that load and execute the
              expressions in the .erlang
              file.

	no_warn_sasl
	Can be used if you are not including sasl as one of your default
              applications and are not interested in the warnings that are
              generated.

	warnings_as_errors
	Treats warnings as errors and refuses to generate the
              script and boot files if warnings occur.


Alternative Boot Files
If you look in the releases directory of the
          standard Erlang/OTP distribution you are currently running, you will
          find four boot files and three rel files. They start and load
          different applications. They include:
	start_clean.boot
	Starts the kernel
                and stdlib applications as
                defined in the start_clean.rel file.

	start_sasl.boot
	Starts the kernel,
                stdlib, and sasl applications as defined in the start_sasl.rel file.

	no_dot_erlang.boot
	Starts the kernel
                and stdlib applications but
                does not execute commands in the .erlang file. This is useful when
                determinism is important, because it does not allow the code
                search paths to be manipulated and other user preferences to
                be modified.


The fourth file, start.boot, is a copy of whichever of the preceding files was selected
          as the default when installing Erlang. You can rename any of the
          three files in the list to start.boot yourself
          in the releases directory,
          should you wish to try them out.

You can write your own script files, generate them with
        systools:make_script/2, or change existing ones. If you
        need to generate a release boot file from a script file, use the systools:script2boot(File)
        function.
Changing script files was a necessity in the good old days when
        debugging startup issues. In order to pinpoint exactly where the
        problems occurred, we had to add progress reports after every
        operation. When working with projects with thousands of modules, if
        one of the beam files installed on the target machine got corrupted
        during the build or transfer process, the only way to find it was by
        adding progress reports after every primLoad command in
        the boot file. It told us in which application directory we had a
        problem, after which we loaded all of the modules individually,
        finding the culprit.
Today, you can turn on the startup trace functionality by
        passing the -init_debug flag to the erl
        command. It makes the startup phases much more visible. When users are
        unaware of this option, debugging startup errors can end up being
        worse than looking for a needle in a haystack. But there are still
        reasons for manipulating and writing your own release files: to reduce
        startup times by loading only specific modules and starting specific
        applications, or to change their start order.


Creating a Release Package
Now that we know the ins and outs of creating and starting a simple target
      system and have a boot file at hand, let’s have a look at how the
      experts package, deploy, and start their releases. The most solid and
      flexible way of deploying an Erlang node is as an embedded target system.
      Unfortunately Erlang/OTP uses the term “embedded” in several contexts,
      which we explain in this chapter, so please don’t assume it means the
      same thing each time we use it. Here, by embedded
      we mean our target system becomes part of a larger package running on
      the underlying operating system and hardware. It is capable of executing
      as a daemon job in the background, without the need to start an
      interactive shell or keep it open all the time, and it typically starts
      when the operating system is booted. To communicate without a shell, an
      embedded target system streams all I/O through pipes.
Because target environments differ based on design and operational
      choices, there is no “one size fits all” solution. The basic steps when
      creating a release package are as follows, but in practice you will
      often find the need to tweak them based on the details of what you are
      trying to achieve:
	Create a target directory and release file.

	Create the lib directory
          with the application versions specified in the rel file.

	Create the release directory with the boot scripts and the
          application configuration file.

	Copy the erts executable
          and binaries to the target directory.

	Create a bin directory
          and copy the configuration files and the start scripts to it.


These steps are, at least in part, usually integrated in an
      automated build system and the install scripts executed on the target
      machine or run by one of the many available tools. Because OTP
      originally did not ship with tools to create target releases, and
      eventually included a complex tool focused on batch handling, the
      boundary for what is done by the build environment and what is done by
      the installation scripts on the target host varies among users. What
      also vary are the manual versus the automated steps. If you are doing
      your build on the same hardware and operating system as your target
      environment, you might be better off getting everything ready in one
      place. If you do not have this luxury, do not know where (or on what
      target machine) your deployment will be running, or need other
      target-specific configuration files created on the fly, parts of the
      procedure may have to be performed on the target environment.
Now we make our way through the steps required to manually create
      a target system, assuming that our development and target environments
      are the same. Based on how you are used to building, deploying, and
      configuring your target systems, it should be straightforward to
      understand where you should be drawing the boundary between what you do
      in your build process and what you do on the target host. We also cover
      some tools that can be used to automate this process.
We start off by creating the target directory, which we are going
      to call ernie,1 and adding the releases and lib directories to it. Along with standard
      Unix commands, we use the systools:make_tar/2 library
      function. We start in the same directory as the
      bsc application directory. The
      make_tar call also expects the system release and boot
      files to be located here, alongside a config file.
The configuration file is optional at this stage. You might want
      to generate target-specific values at install time, overriding those
      specified in the app files. If you
      choose to omit it at this stage, you must not forget to add it when
      installing the system, as otherwise your system will not start. The
      configuration file must be named sys.config, although you can change the name by
      tweaking the arguments you pass to the emulator when starting it.
We create our ernie target
      directory, rename the configuration file
      sys.config, and place it in the same directory as
      the bsc application and the rel and boot files.
      When done, we can create our tar file:
$ mkdir ernie
$ cp bsc.config sys.config
$ erl
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> systools:make_tar("basestation",
                      [{erts, "/usr/local/lib/erlang/"},
                       {path, ["bsc/ebin"]}, {outdir, "ernie"}]).
ok
2> q().
ok
3>
$ cd ernie
$ ls
basestation.tar.gz
$ tar xf basestation.tar.gz
$ ls
basestation.tar.gz      lib
erts-7.2                releases
$ ls lib/
bsc-1.0         kernel-4.1.1    sasl-2.6.1      stdlib-2.7
$ ls releases/
1.0             basestation.rel
$ ls releases/1.0/
basestation.rel start.boot      sys.config
$ ls erts-7.2/bin/
beam          dialyzer    erl.src     heart           start.src
beam.smp      dyn_erl     erlc        inet_gethost    start_erl.src
child_setup   epmd        erlexec     run_erl         to_erl
ct_run        erl         escript     start           typer
$ rm basestation.tar.gz
Our call to systools:make_tar(Name, OptionsList)
      generates the basestation.tar.gz package.
      Name is the name of the release and
      OptionsList accepts all of the options
      make_script takes, together with the {erts,
      Dir} directive. We give this directive if we wish to include the
      runtime system binaries, resulting in the erts-7.2
      directory. That is not always the case, because the runtime system
      binaries might already be installed on the target machine, or a single
      version of Erlang might be used to run multiple nodes. Also note that
      the sys.config file is included in the releases/1.0 directory. If it is in a
      different directory from the rel file, you have to copy it in a later
      stage of the installation.
You could deploy basestation.tar.gz to your
      target machine and run your local configuration scripts when you install
      the node, or do it in your build environment and create a single tar
      file for all deployments of this particular node. Keep in mind that your
      node might run in tens of thousands of independent installations—one for
      every base station controller your company sells—or, if hosted, in
      multiple occurrences of the node, all in a single installation. Your
      configuration parameters will depend on your needs and the type of
      installation; they might be the same across all tens of thousands of
      deployments, or may have to be individually customized when installing
      the software on each target environment. Often, it is a combination of
      both. Configuration scripts could be proprietary to your system and be
      included in the tar file, or be managed by third-party deployment and
      configuration tools such as Chef, Puppet, or Capistrano.
In our example, we untar the
      basestation.tar.gz file manually. The remaining
      steps could run either on the target or in our build environment. When
      untarring the file, we find three new directories: the lib directory containing all of the
      application directories (including their version numbers), the releases directory, and the erts directory. The erts directory is there because we included
      the {erts, Dir} directive in the
      sys_tools:make_tar/2 call.
We already know that Name is the name of the release
      file:
systools:make_tar(Name, OptionsList).
OptionsList is a list that can be empty or can
      contain some combination of the following elements:
	{dirs, IncDirList}
	Copies the specified directories (in addition to the
              defaults priv and ebin) to the
              application subdirectories. Thus, to add tests,
              src, and examples to the release, set
              the IncDirList to [tests, src,
              examples].

	{path, DirList}
	Adds paths to the code search path. This option can be
              used along with the -pa and -pz
              parameters passed when starting the Erlang VM that runs the
              system. You can include wildcards in your path. For instance,
              ["lib/*/ebin"] will expand to contain all of the
              subdirectories in lib that
              contain an ebin
              directory.

	{erts, Dir}
	Includes the binaries of the Erlang runtime system found
              in directory Dir in the target tar file. The
              version of the runtime system is extracted from the rel file.
              Make sure that the binaries have been compiled and tested on
              your target operating system and hardware platform.

	{outdir, Dir}
	Puts the tar file in directory Dir. If
              omitted, the default directory is the same directory as that of
              the rel file.

	exref and {exref, AppList}
	Tests the release with the Xref
              cross-reference tool, which looks for calls to undefined and
              deprecated functions. This is the same test executed by the
              systools:make_script/2 call when passing the same
              option.

	src_tests
	Issues a warning if there are discrepancies between the
              source code and the beam files. This is the same test executed
              by the systools:make_script/2 call when passing the
              same option.

	silent
	Returns a tuple of the format {ok, ReleaseScript,
              Module, Warnings} or {error, Module, Error}
              instead of printing the results to I/O. You can get formatted
              errors and warnings by calling
              Module:format_error(Error) and
              Module:format(Warning), respectively. Use this
              option if you are integrating systools in your build process; it
              works in the same way for this as for the
              systools:make_script/2 call.


Two additional options, {variables,[{Prefix, Var}]}
      and {var_tar,VarTar}, allow you to change and manipulate
      the way target libraries and packages are created. Use them when
      deviating from the standard Erlang way of doing things; for example, if
      you prefer to deploy your release as deb,
      pkg, rpm, or other packages or
      containers. They allow you to override the application installation
      directory (by default set to lib)
      and influence where and how the packages are stored. We do not cover
      these options in this chapter; for more information and some examples,
      read the systools reference manual
      page.

Start Scripts and Configuring on the Target
Now that we have our target files in place, we need to configure our start
      scripts. Here we go through these steps manually, later introducing
      tools that automate the process:
	In the target directory (ernie, in our
          case), create a bin directory
          in which to place and edit the start scripts that will boot our
          system.

	Create the log directory,
          to which all debug output from the start scripts is sent. It will be
          one of the first points of call when the system fails to
          start.

	Create a file called start_erl.data in
          the releases directory
          containing the versions of the Erlang runtime system and its
          release.

	If the original tar file did not contain a
          sys.config file, create one (possibly empty)
          and place it in the release version directory.


At this point, fingers crossed, everything will start. Let’s go
      through these steps in more detail, adding and editing files as we go
      along. All of this is in the ernie
      directory:
$ mkdir bin
$ cp erts-7.2/bin/start.src bin/start
$ cp erts-7.2/bin/start_erl.src bin/start_erl
$ cp erts-7.2/bin/run_erl bin
$ cp erts-7.2/bin/to_erl bin
$ mkdir log
In our example, we create the bin directory and copy start.src and start_erl.src to it, renaming them start and start_erl, respectively. We also copy over
      run_erl, which the start scripts
      expect to be available locally, and to_erl, which we will use to connect to an
      embedded Erlang shell. The start script initializes the environment for
      the embedded system, after which it calls start_erl, which in turn starts Erlang via
      the run_erl script.
Think of start_erl as an
      embedded version of erl and start as a script you can use and customize
      as you please. Depending on your needs and requirements, you might also
      want your own version of the erl
      and heart scripts and, if running
      distributed Erlang, the epmd
      binary. All of these can be copied from the bin directory of the runtime system.
Now that the files and binaries are in place, we need to edit them
      accordingly. We modify the start
      file, replacing %FINAL_ROOTDIR% with the absolute path to
      the new Erlang root directory. In our case, this directory is ernie, and we change the file using
      perl with its -i in-place modification option,
      using the value of our shell’s PWD variable for the
      replacement text. We then show you the before and after versions using
      the diff command:
$ pwd
/Users/francescoc/ernie
$ perl -i -pe "s#%FINAL_ROOTDIR%#$PWD#" bin/start
$ diff erts-7.2/bin/start.src bin/start
27c27
< ROOTDIR=%FINAL_ROOTDIR%
---
> ROOTDIR=/Users/francescoc/ernie
$ echo '7.2 1.0' > releases/start_erl.data
$ bin/start
$ bin/to_erl /tmp/
Attaching to /tmp/erlang.pipe.1 (^D to exit)

1> application:which_applications().
[{bsc,"Base Station Controller","1.0"},
 {sasl,"SASL  CXC 138 11","2.6.1"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
2> [Quit]
$ ls /tmp/erlang.*
/tmp/erlang.pipe.1.r	/tmp/erlang.pipe.1.w
Having modified the start
      file, we create the start_erl.data
      file in the releases directory. It contains the
      version of the Erlang runtime system and the release directory
      containing all the boot scripts and configuration files for the release.
      These two items, in our example both numbers, are separated by a
      space.
We are now able to boot our system with the start command. Notice how, unlike when using
      the erl command, this release starts
      as a background job. To connect to the Erlang shell, we use the to_erl command,
      passing it the /tmp directory where
      the read and write pipes reside.
Warning
When running an embedded Erlang system, you might out of habit
        exit the shell using Ctrl-c a. Ctrl-c
        invokes the virtual machine break handler, after which you can execute
        one of the following commands:
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
       (v)ersion (k)ill (D)b-tables (d)istribution
As indicated, the a terminates the Erlang
        node.
To avoid termination, be careful to exit the shell using Ctrl-d. If you type
        q(), halt(), or Ctrl-c a out of
        habit, you will kill the whole background job. By using
        Ctrl-d, you exit the to_erl shell while keeping the Erlang VM
        alive running in the background.

If you are trying to connect to the pipes on your computer and get
      an error of the form No running Erlang on pipe
      /tmp/erlang.pipe: No such file or directory, look in
      the log directory to
      find out why your Erlang node failed to start. All start errors in your
      scripts will be recorded there. Problems might include wrong paths,
      missing sys.config files, a corrupt
      boot file, or an incorrectly named binary.
It is good practice to always include the erl command in the bin directory of
      your target system. This will come as a blessing when, after a failure
      of some sort, you are unable to restart your node. Your first point of
      call in these situations will be the SASL report logs, where crash and
      error reports will in most cases tell you what triggered the chain of
      errors that caused the node to fail. The last thing you want to do is to
      have to move the SASL logs to a remote computer every time you want to
      view them just because your Erlang nodes will not start. Be safe and
      always generate a second boot file similar to start_sasl.boot that contains the same
      application versions of kernel,
      stdlib, and sasl as your
      system.
In our example, we used the /tmp directory for the read and write pipes,
      as it is the default directory used by our scripts. If you plan on
      running multiple embedded nodes on the same machine, though, this will
      cause a problem. A good practice is to redirect your pipes to a
      subdirectory of your Erlang root directory in your target structure.
      This allows multiple node instances to run on the same computer, a
      common practice in many systems. If you look at the last line of the
      start script, you will see where to replace /tmp/ with the
      absolute path of your new pipes in the root directory. You can also
      redirect all of the logs elsewhere:
$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec ..."

Arguments and Flags
So far, so good. But what if we want to start a distributed Erlang node or
      add a patches directory to the code
      search path? Or maybe we have developed a dislike for the sys.config filename and want to retain the
      original bsc.config file. Or, even
      more importantly, are there flags we can pass to the emulator that will
      disable the ability to kill the node via Ctrl-c a?
When starting Erlang, we can pass three different types of arguments to the runtime system. They
      are emulator flags, flags, and plain
      arguments. You can recognize emulator flags by
      their initial + character. They control the
      behavior of the virtual machine, allowing you to configure system
      limits, memory management options, scheduler options, and other items
      specific to the emulator.
Flags start with - and are passed to the Erlang part
      of the runtime system. They include code search paths, configuration
      files, environment variables, distributed Erlang settings, and
      more.
Plain arguments are user-defined and not interpreted by the runtime
      system. You first came across them in “Environment Variables” to
      override application environment variables in app and configuration
      files from the command line. You can use plain arguments in your
      application business logic.
The following sample command uses several different
      arguments:
erl -pa patches -boot basestation -config bsc -init_debug +Bc
This starts Erlang with the patches directory added to the beginning of
      the code search path. It also uses the basestation.boot and bsc.config files to start the system, and
      sets the init_debug flag, increasing the number of
      debug messages at startup. The +Bc emulator flag disables
      the shell break handler, so when you press the sequence Ctrl-c a,
      instead of terminating the virtual machine you terminate just the shell
      process and restart it.
Let’s look at some of the emulator flags in more detail. We’ve
      picked high-level flags and system limit flags that do not deal with
      memory management, multicore architectures, ports and sockets, low-level
      tracing, or other internal optimizations. The internal optimizations are
      outside the scope of this book and should be used with care, only if you
      are sure of what you are doing. You can read more about the arguments we
      cover (and those we don’t) in the manual pages for erl. The
      ones we list are those we have used ourselves in some shape or form
      before the need to optimize our target systems:
	+Bc
	It is dangerous to keep the break handler enabled in live systems,
            as your fingers are often faster than your mind (especially if
            this is a support call in the middle of the night when your mind
            is still fast asleep). If you are used to terminating the shell
            that way, you will be inclined to do it on production systems as
            well. Using the +Bc flag makes Ctrl-c a
            terminate the current shell and start a new one without affecting
            your system. This is the option to enable for all your live
            systems.

	+Bd
	This allows you to terminate the Erlang node using simply
            Ctrl-c, bypassing the break handler
            altogether.

	+Bi
	This makes the emulator ignore Ctrl-c, in which
            case the only way to terminate your Erlang virtual machine is
            using the shell command q() or the halt()
            BIFs. This option is dangerous because it does not allow you to
            recover should an interactive call fail to return, thereby hanging
            the shell.

	+e Num
	This sets the maximum number of ETS tables, which defaults to
            2,053. With Erlang/OTP R16B03 or newer, you can obtain the value
            of the maximum number of ETS tables at runtime by calling
            erlang:system_info(ets_limit).

	+P Num
	This changes the system limit on the maximum number of processes
            allowed to exist simultaneously. The limit by default is 262,144,
            but it can range from 1,024 to 134,217,727.

	+Q Num
	This changes the maximum number of ports allowed in the system,
            set by default to 65,536. The allowable range is 1,024 to
            134,217,727.

	+t Num
	This allows you to change the maximum number of allowed atoms,
            set by default to 1,048,576. These limits are specific to Erlang
            17 or newer and to Unix-based OSs. Default values might differ on
            other operating systems.

	+R Rel
	This allows your Erlang node to connect using distributed Erlang
            to other nodes running an older, potentially
            non–backward-compatible version of the distribution
            protocol.


Regular flags are defined at startup, retrieved in the Erlang side
      of the runtime system, and used by standard and user-defined OTP
      applications alike. Remember that large parts of the Erlang kernel and
      runtime system are written in Erlang, so how you define and retrieve
      flags in your application is identical to how Erlang defines and
      retrieves them in its runtime. Here are the main flags:
	-Application Key Value
	Sets Application’s environment
            variable Key to
            Value. We covered this option in “Environment Variables”.

	-args_file
          FileName
	Allows you to list all of the flags, emulator flags, and plain arguments in a
            separate configuration file named
            FileName, which is read at startup. The
            file can also contain comments that start with a #
            character and continue until the end of the line. Using an
            arguments file is the recommended approach, so as to avoid the
            need to mess with the start scripts to set or change arguments.
            This approach can also allow you keep the arguments file under
            version control with the rest of your code.

	-async_shell_start
	Allows the shell to start in parallel with other parts of the system, rather than
            the default of not processing what you type in the shell until the
            system has been completely booted. This is useful when you are
            trying to debug startup issues or figure out where timeouts are
            occurring.

	-boot
          filename
	Sets the name of the boot file to
            filename.boot. If
            you do not include an absolute path, the emulator assumes the boot
            file is in the $ROOT/bin
            directory.

	-config
          filename
	Sets the location and name of the configuration file to
            filename.config.

	-connect_all false
	Stops the global
            subsystem from maintaining a fully connected network of
            distributed Erlang nodes, in effect disabling the
            subsystem.

	-detached
	Starts the Erlang runtime system in a manner detached from the system console.
            You need this option when running daemons and background
            processes. The -detached option implies -noinput, which basically starts the
            Erlang node but not the shell process that runs the read-evaluate
            loop interpreting all the commands you type. The -noinput option in turn implies the
            -noshell command, which starts
            the Erlang runtime system without a shell, potentially making it a
            component in a series of Unix pipes.

	-emu_args
	Prints, at startup, all of the arguments passed to the emulator. Keep this on all
            the time in your production systems, as you never know when you
            will need access to the information.

	-init_debug
	Provides you with detailed debug information at startup,
            outlining every step executed in the boot script. The overheads of
            using -init_debug and -emu_args are negligible, but the
            information they provide is priceless when troubleshooting.

	-env Variable
          Value
	An alternate (and convenient) way to set host operating system
            environment variables. It is mainly used for testing, but is also
            useful when dealing with Erlang-specific values.

	-eval
	Parses and executes an Erlang expression as part of the node’s
            initialization procedure. If the parsing or execution fails, the
            node shuts down.

	-hidden
	When using distributed Erlang, starts the Erlang runtime system
            as a hidden node, publishing neither its existence nor the
            existence of the nodes to which it is connected.

	-heart
	Starts the external monitoring of the Erlang runtime
            system. If the monitored virtual machine terminates, a script that
            can restart it is invoked. We cover heart in
            detail in “Heart”.

	-mode
          Mode
	Establishes how code is loaded in the system. If
            Mode is interactive, calls to modules that have not been loaded are
            automatically searched for in the code search path. Your target
            systems should run in embedded mode, where all modules should
            be loaded at startup by the boot file, and calls to nonexisting
            modules should result in a crash. You can still load modules in
            embedded mode using the l(Module) or code:load_file(Module) calls from the shell.
Running in embedded mode
            is recommended for all production systems. It ensures that in the
            middle of a critical call, you do not pause the process while
            traversing the code search path looking for a module that has not
            been loaded.

	-nostick
	Disables a feature that prevents loading and overriding modules located
            in sticky directories. By default, the ebin directories of the
            kernel, compiler, and
            stdlib applications are sticky, a measure
            intended to prevent key elements of the system from being
            accidentally corrupted.

	-pa and -pz
	Add directories containing beam files to the beginning and end of
            the code search path, respectively. One common use is to add
            -pa patches to point to a
            directory used to store temporary patches in between
            releases.

	-remsh
          node
	Starts a shell connected to a remote
            node using distributed Erlang. This is
            useful when running nodes with no shells or when you need to
            remotely connect to a node.

	-shutdown_time
          Time
	Specifies the number of milliseconds the system is allowed to
            spend shutting down the supervision trees. It is by default set to
            infinity. Use this option with care, though, because it overrides
            the shutdown values specified in the behavior child
            specifications.

	-name
          name and -sname
          name
	When working with distributed Erlang, these start distributed
            nodes with long or short names, respectively. If nodes are to
            communicate with each other, they must share a cookie, which can
            be set using the -setcookie directive, and all have
            either long or short names. Nodes with short and long names cannot
            communicate with each other.

	-s
          module, -s module
          function, -s module
          function
          args
	The first of these forms executes, at startup,
            module:start(). The second
            executes
            module:function().
            The third is like the second but includes the argument list to the
            function. All args are passed as atoms. The -run option works similarly, except that
            if arguments are defined, they are passed as a list of strings to
            module:function/1.
            Functions executed by -run and
            -s must return, or the startup
            procedure will hang. If they terminate abnormally, they will cause
            the node to terminate as well, aborting the startup
            procedure.


When troubleshooting systems, you can connect to a remote node
      using distributed Erlang. For instance, assume you want to connect to
      node foo@ramone, which has cookie abc123. You would do so by starting an Erlang
      VM with the –remsh flag:  
$ erl -sname bar -remsh foo@ramone -setcookie abc123
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
(foo@ramone)1> node().
foo@ramone
(foo@ramone)2> nodes().
[bar@ramone]
(foo@ramone)3>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
       (v)ersion (k)ill (D)b-tables (d)istribution
a
$
All commands will be executed remotely in foo, with
      the results displayed locally. Be careful of how you exit the local
      shell. Using halt() and q() will terminate the
      remote node. Always use Ctrl-c a.
Let’s now try using -s, -eval, and
      -run in the shell to get a feel for how they work:
$ erl -s observer
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> q().
ok
$ erl -noshell \
-eval 'Average = (1+2+3)/3, io:format("~p~n",[Average]), erlang:halt()'
2.0
$ erl -run io format 1 2 3
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

123Eshell V7.2  (abort with ^G)
1> q().
ok

$ erl -s io format 1 2 3
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

{"init terminating in do_boot",
 {badarg,[{io,format,[<0.24.0>,['1','2','3'],[]],[]},
          {init,start_it,1,[]},{init,start_em,1,[]}]}}

Crash dump is being written to: erl_crash.dump...done
init terminating in do_boot ()
We successfully use erl -s observer to call
      observer:start(). You do not see it in the shell output shown here, but it opens
      up an observer wxWidgets window. This is an efficient way to start
      debugging tools when starting the emulator. We then use the -eval flag to calculate the average of three integers, print out the
      result, and stop the emulator, all without starting the Erlang shell. In
      our third and fourth examples, we use -run io format 1 2 3 to call
      io:format(["1","2","3"]) and -s io format 1 2
      3 to call io:format(['1','2','3']). The latter
      crashes because it attempts to call io:format/1 with a list
      of atoms, when it is expecting a string.
When using the -run and -s flags,
      beware of calling functions such as
      spawn_link and start_link that link themselves
      to the initialization process, because the process is there to
      initialize the system and not act as a parent. Although the process
      currently continues running after executing the initialization calls,
      you should not depend on that behavior because it is not documented and
      might change in a future release.
Applications can use the  init:get_arguments() and
      init:get_argument(Flag) functions to retrieve flags. Flag can be one of the
      predefined flags root, progname, and home, together with all other command-line
      user-defined flags.
Plain arguments include all arguments specified before emulator
      flags and regular flags, after the -extra flag, and in
      between the -- directive and the next flag. We can retrieve
      plain arguments using the init:get_plain_arguments/0 call:
$ erl one -two three -pa bin/bsc -- four five -extra 6 7 eight
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> init:get_plain_arguments().
["one","four","five","6","7","eight"]
2> init:get_argument(two).
{ok,[["three"]]}
3> init:get_argument(pa).
{ok,[["bin/bsc"]]}
4> init:get_argument(progname).
{ok,[["erl"]]}
5> init:get_argument(root).
{ok,[["/usr/local/lib/erlang"]]}
6> init:get_argument(home).
{ok,[["/Users/francescoc"]]}
Heart
It is customary to run your embedded Erlang systems as daemon jobs,
        automatically starting them when the computer they are supposed to run
        on is booted. This means if there is a power outage or any other
        failure, or a maintenance procedure is performed that requires a
        reboot, your system will start automatically. But what happens if only
        the Erlang node itself crashes or stops responding? It could be an
        unexpected memory spike, a top-level supervisor terminating, a dodgy
        NIF causing a segmentation fault in the virtual machine, or even a
        rare bug in the virtual machine that causes the system to hang. This
        is why you need to enable heart.
        Heart can be seen as the supervisor of the node
        itself.
Heart is an external program that monitors
        the virtual machine, receiving regular heartbeats sent by an Erlang
        process through a port. If the external program fails to receive a
        heartbeat within a predefined interval, it attempts to terminate the
        virtual machine and invokes a user-defined command to restart the
        runtime system.
Let’s write a very simple script, bsc_heart, that simply calls the bin/start command. We could just set
        start as the
        heart command, but real-world scenarios tend to
        be too complex for a blind restart and so a restart script is
        typically used. We could, after failed restart attempts, come to the
        conclusion that this is a cyclic restart from which we cannot recover,
        and opt to cease attempting to restart the node. Or, after a certain
        number of restart attempts, allowed only at variable (but increasing)
        time intervals, we could reboot the operating system. Or we could
        trigger other autodiagnostic scripts that would run sanity tests on
        the surrounding environment. The options are many, typically depending
        on your deployment environment and monitoring/alerting facilities, so
        restart scripts can be as simple or as complex as you want them to be.
        Let’s use the following bsc_heart script, which
        we place in the bin directory of
        our target installation:
#!/bin/sh
#Basic Heart Script for the Base Station Controller

ROOTDIR=/Users/francescoc/ernie

$ROOTDIR/bin/start
We then set the HEART_COMMAND environment variable
        to call this script, edit the start_erl script to include
        -heart, and then start the base station controller. We
        then kill it in a variety of different ways. Despite killing the
        system, every time we connect to the I/O pipes, it’s up and
        running:
$ $ cp bsc_heart ernie/bin/.
$ export HEART_COMMAND=/Users/francescoc/ernie/bin/bsc_heart
$ vim bin/start_erl
$ diff erts-7.2/bin/start_erl.src bin/start_erl
47c47
< exec $BINDIR/erlexec ... -config $RELDIR/$VSN/sys ${1+"$@"}
---
> exec $BINDIR/erlexec ... -config $RELDIR/$VSN/sys ${1+"$@"} -heart
$ bin/start
$ bin/to_erl /tmp/
Attaching to /tmp/erlang.pipe.5 (^D to exit)

1> halt().
heart: Sat Aug 23 12:49:47 2014: Erlang has closed.
[End]
$ bin/to_erl /tmp/
Attaching to /tmp/erlang.pipe.5 (^D to exit)

1>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
       (v)ersion (k)ill (D)b-tables (d)istribution
a
[End]
$ bin/to_erl /tmp/
Attaching to /tmp/erlang.pipe.5 (^D to exit)

1>
We see that using halt() or Ctrl-c a
        kills the node, because every time we connect, the command prompt is 1
        again. The heart system immediately restarts the
        process.
The following OS environment variables, all optional, can be set either
        in the start scripts, when booting your system using the -env flag, or wherever else you might
        choose to configure such variables:
	HEART_COMMAND
	The name of the script triggered when the timeout occurs. If this
              variable is not set, a timeout will trigger a warning indicating
              the system would have been rebooted, and the system will not be
              restarted.

	HEART_BEAT_TIMEOUT
	The number of seconds heart waits for a
              heartbeat before terminating the virtual machine and invoking
              the heart command. In Erlang 17 or newer,
              it can be a value greater than 10 and less than or equal to
              65,535. Omitting this setting defaults the timeout to 60
              seconds.

	ERL_CRASH_DUMP_SECONDS
	How long the virtual machine is allowed to spend
              writing the crash dump file before being killed and restarted.
              Because crash dump files can be substantial, the virtual machine
              can take its time writing them to disk. The default setting when
              using heart and not setting this variable
              is 0, meaning that no crash dump file is written;
              the virtual machine is immediately killed and the
              heart command is immediately invoked.
              Setting the value to -1 (or any other negative
              number) allows the virtual machine to complete writing the crash
              dump file no matter how long it takes. Any other positive
              integer denotes the number of seconds allowed to the virtual
              machine to write the crash dump file before it terminates and is
              restarted.


In our example, we decided to set the environment variables in
        the Unix shell, but we could just as easily have edited the start_erl file or passed them as flags to
        erl using the -env
        variable
        value argument:
erl -heart -env HEART_BEAT_TIMEOUT 10  -env HEART_COMMAND boot_bsc
Warning
Race conditions between heart, heartbeats, and
          restarts can occur. If you do not anticipate and check for these
          race conditions, they will leave you scratching your head when you
          are trying to figure out what went wrong. There have been cases
          where an Erlang virtual machine was chugging away under extreme
          heavy load, but the heartbeat never reached
          heart because of underlying OS issues, perhaps
          as a result of I/O starvation together with a low HEART_BEAT_TIMEOUT value. The lack of
          heartbeat caused heart to terminate the Erlang
          VM and restart it. No crash dump was generated because
          heart, at least on Unix-like systems,
          terminates its target with extreme prejudice via SIGKILL, which the target cannot catch.
          Killing the Erlang VM (and possibly rebooting the OS itself) might
          have been the solution to the problem, but it was not of any help to
          the poor developers who were looking for an Erlang-related VM crash,
          trying to figure out why there was no crash dump file.

Heart works on most operating systems.
        Discussing how it executes on Windows and other non-Unix-based OSs is
        beyond the scope of this book, as is exploring the ability to connect
        and configure it to work with the Solaris hardware watchdog timer. For
        more information, read the manual page for heart
        that comes with the standard Erlang distribution.
How Does Yaws Use Heart?
As an example of heart usage, let’s
          consider the Yaws web server, originally developed by Claes
          “Klacke” Wikström and available from both the Yaws website and GitHub. Yaws includes
          the ability to use heart in an interesting way:
          to get around heart’s stubborn habit of
          endlessly attempting to restart its target, the Yaws restart script
          keeps track of how many times it has been restarted within a
          specified time period, much like supervisor child restart counts in
          OTP. To accomplish this, Yaws sets HEART_COMMAND as shown here:
HEART_COMMAND="$ENV_PGM \
    HEART=true \
    YAWS_HEART_RESTARTS=$restarts \
    YAWS_HEART_START=$starttime \
    $program"
As you can see, the Yaws HEART_COMMAND value includes the setting
          of several other variables that its restart shell script examines
          when it executes due to a heart restart:
	HEART environment variable
	Set to true so that Yaws knows
                heart is controlling it

	YAWS_HEART_RESTARTS environment
              variable
	Tracks how many times Yaws has been restarted

	YAWS_HEART_START environment variable
	Tracks the start time based on the Unix epoch (the
                number of seconds since January 1, 1970)

	$restarts and $starttime shell
              variables
	Help Yaws calculate new settings for
                HEART_COMMAND based on the values of
                YAWS_HEART_RESTARTS and
                YAWS_HEART_START set for the previous
                restart


When you run Yaws, you specify via command-line arguments the
          maximum number of restarts allowed in a given period. If the Yaws
          shell script detects through these environment variables that it has
          restarted too many times in the specified period, it emits an error
          message and refuses to restart. For more details, see the source code for the Yaws start
          script.


The Erlang loader
You might sometimes run a release on embedded devices with little or no disk space
        and want to change the method the runtime system uses to load modules.
        Instead of reading them from a file, you might want to load them from
        a database or from another node across the network. The
        -loader argument specifies how the erl_prim_loader
        fetches the modules. The default loader, efile, retrieves the modules from the local
        filesystem. If you want to use the boot server on another machine, you
        must specify the inet loader. When
        using inet, you must include the
        name of the remote node where the boot server is running through the
        -id name argument, where
        name comes from the -name or -sname flags
        issued when starting the remote node. You must also include the IP
        address of that machine using the -hosts
        address flag, where
        address is a string IP address, such as one
        consisting of four integers separated by periods. An example is
        -id foo -hosts "127.0.0.1", which specifies that the boot
        server is running in the foo Erlang virtual machine on
        the local host.
To see loading in action, we first generate a basestation.boot file using the
        local option to systools:make_script/2. The
        local option is critical, as it ensures that our local copies of the
        bsc beam files can be found without us having to
        install them into the lib
        directory of the official release. It basically adds the local path to
        the bsc application into the boot server’s load
        path so that generating the basestation.boot file
        succeeds:
$ erl -pa bsc/ebin
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> systools:make_script("basestation", [local]).
ok
Next, we start the boot server:
$ erl -name foo@127.0.0.1 -setcookie cookie
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
(foo@127.0.0.1)1> erl_boot_server:start([{127,0,0,1}]).
{ok,<0.42.0>}
With the boot server started and ready to serve requests, we can
        start our bar node:
$ erl -name bar@127.0.0.1 -id foo -hosts 127.0.0.1 \
     -loader inet -setcookie cookie \
     -init_debug -emu_args -boot basestation
Executing: /usr/local/lib/erlang/erts-7.2/bin/beam.smp
    /usr/local/lib/erlang/erts-7.2/bin/beam.smp --
    -root  /usr/local/lib/erlang -progname erl --
    -home /Users/francescoc --
    -name bar@127.0.0.1 -id foo -hosts 127.0.0.1
    -loader inet -setcookie cookie
    -init_debug -boot basestation
{progress,preloaded}
{progress,kernel_load_completed}
{progress,modules_loaded}
{start,heart}
{start,error_logger}
{start,application_controller}
{progress,init_kernel_started}

...<snip>....

=PROGRESS REPORT==== 26-Dec-2015::12:59:05 ===
          supervisor: {local,bsc}
             started: [{pid,<0.50.0>},
                       {id,simple_phone_sup},
                       {mfargs,{simple_phone_sup,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]
{apply,{c,erlangrc,[]}}

=PROGRESS REPORT==== 26-Dec-2015::12:59:05 ===
         application: bsc
          started_at: 'bar@127.0.0.1'
{progress,started}
Eshell V7.2  (abort with ^G)
(bar@127.0.0.1)1> application:which_applications().
[{bsc,"Base Station Controller","1.0"},
 {sasl,"SASL  CXC 138 11","2.6.1"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
As the output shows, our node was able to boot by loading from
        the remote boot server. Although our example uses the local host
        (127.0.0.1), thus making one wonder whether loading is occurring over
        the network or from the local filesystem, you can try this on your own
        network on two different hosts and see for yourself that the necessary
        files are loaded from the remote boot server.


The init Module
The init module is preloaded in the Erlang runtime system. It manages
      arguments and the startup and shutdown procedures of your release. At
      startup, it executes all the commands in the boot file. Of interest to
      us is the ability the module gives us to restart the system, cleanly
      shut down all applications, and stop the node, as well as the ability to
      reboot the virtual machine. Here is a list of common uses for the
      module:
	init:restart/0
	Restarts the system in the Erlang node without restarting the emulator. Applications
            are taken down smoothly, modules are unloaded, and ports are
            closed, after which the boot file is executed again, using the
            same boot arguments originally provided. You can use the -shutdown_time flag to limit the amount of time spent taking down the
            applications.

	init:reboot/0
	Like restart, except
            that the emulator is also shut down and restarted.
            Heart, if used, will attempt to restart the
            system, causing a potential race condition that will resolve
            itself when it kills the emulator and restarts it. Timeout values
            set with the -shutdown_time
            flag will be followed.

	init:stop/0
	Takes the system down smoothly and stops the emulator. If running,
            heart is also stopped before any attempts to
            restart the node are made. This is the correct way to stop running
            nodes, because it allows the applications to terminate and clean
            up after themselves and properly shut down. Calling init:stop(Status) has the same effect as
            calling halt(Status). Timeout
            values set with the -shutdown_time flag will be
            followed.

	init:get_status()
	Determines whether the system is being started, is stopped, or is
            currently running. It returns a tuple of the format {InternalStatus, ProvidedStatus}, where
            InternalStatus is one of
            starting, started, or stopping. When starting the system,
            ProvidedStatus indicates what
            part of the boot script init is
            currently running. It gets Info
            status from the last {progress,
            Info} term interpreted by the boot.


We have already covered other useful functions in the
      init module, including get_arguments/0,
      get_argument/1, and get_plain_arguments/0, in
      “Arguments and Flags”.


Rebar3
Many of the manual tasks we have gone through in this chapter are
    automated by various tools. Automation is required to generate templates,
    build the release, and generate the target structure. Because there have
    been no standards or comprehensive ways of shipping releases developed to
    date—just preferred or recommended approaches—tools that are now shipped
    with Erlang/OTP are complemented by tools developed by the community, and
    sometimes they overlap in functionality. In the remainder of this chapter,
    we cover rebar3, a general build tool
    that also manages releases and dependencies.
The rebar3 tool is the second
    generation of rebar, one of the most
    widely used Erlang build tools and one that originated in the Erlang
    community. Rebar3 is a comprehensive
    tool that addresses a number of project management needs, including
    dependency management, compilation, and release generation. You can also
    enhance or extend its functionality via plug-ins.
To obtain rebar3, you can either
    download a prebuilt version from its website:
$ curl -LO https://s3.amazonaws.com/rebar3/rebar3
or clone the rebar3 Git
    repository and build it from source:
$ git clone https://github.com/erlang/rebar3.git
$ cd rebar3
$ ./bootstrap
===> Updating package registry...
...<snip>...
===> Compiling rebar
===> Building escript...
Some Erlang projects that have been around for a few years still
    include their own first-generation rebar executables in their source repositories.
    This was originally done to make it easier for users to build projects
    without forcing them to first build rebar, but given how widespread rebar became, following that outdated tradition
    and including your own copy of rebar3
    in your project is not necessary. A user need only place a copy of
    rebar3 somewhere in the shell path,
    such as /usr/local/bin, and use it
    from there.
Running rebar3 with no arguments
    provides information about how to use it. Here is part of its
    output:
$ rebar3
Rebar3 is a tool for working with Erlang projects.


Usage: rebar [-h] [-v] [<task>]

  -h, --help     Print this help.
  -v, --version  Show version information.
  <task>         Task to run.


Several tasks are available:
...<snip>...

Run 'rebar3 help <TASK>' for details.
Elided from this output is the list of tasks that rebar3 supports. That list is too long to show
    here in its entirety, but in general, rebar3 tasks fall into the following
    categories:
	Build commands
	Support compilation of Erlang and non-Erlang sources and
          cleaning of build artifacts

	Project creation commands
	Generate skeleton projects based on templates

	Dependency management commands
	Support the retrieval, building, updating, cleaning, and
          removal of project dependencies

	Release generation commands
	Support the creation of releases and upgrades

	Test commands
	Support running unit tests, common_test suites, and property-based
          tests


Rebar3 also provides other
    miscellaneous commands that support project activities such as
    documentation, generating escript archives, and starting an Erlang shell
    with all project files and dependencies on the load path.
Generating a Rebar3 Release Project
You can use rebar3 together
      with an appropriate project template to generate a project
      skeleton for a system like our base station controller example. Although
      our example uses only a single user-defined application,
      bsc, we use an approach that can accommodate
      multiple apps, since that is typical of most projects.
First, let’s create a new directory, ernie2, and within it use rebar3 to generate a new bsc release project:
$ mkdir ernie2
$ cd ernie2
$ rebar3 new release bsc desc="Base Station Controller"
===> Writing bsc/apps/bsc/src/bsc_app.erl
===> Writing bsc/apps/bsc/src/bsc_sup.erl
===> Writing bsc/apps/bsc/src/bsc.app.src
===> Writing bsc/rebar.config
===> Writing bsc/config/sys.config
===> Writing bsc/config/vm.args
===> Writing bsc/.gitignore
===> Writing bsc/LICENSE
===> Writing bsc/README.md
As the output shows, rebar3
      generates a number of directories and files for our release, including
      skeleton source files under the apps/bsc/src directory, a sys.config file under the config directory, and a rebar.config file. The latter provides
      directives that supply rebar3 with
      project-specific details such as compiler flags, release information,
      and dependencies. Here’s the basic rebar.config that rebar3 generated for our
      bsc release project:
$ cd bsc
$ cat rebar.config
{erl_opts, [debug_info]}.
{deps, []}.

{relx, [{release, {'bsc', "0.1.0"},
         ['bsc',
          sasl]},

        {sys_config, "./config/sys.config"},
        {vm_args, "./config/vm.args"},

        {dev_mode, true},
        {include_erts, false},

        {extended_start_script, true}]
}.

{profiles, [{prod, [{relx, [{dev_mode, false},
                            {include_erts, true}]}]
            }]
}.
This particular rebar.config
      file contains four tuples, each described in the following list. You can
      modify any of these settings or add others as required for your
      project:
	The erl_opts tuple provides compiler options
            for the erlc compiler.

	The deps tuple declares dependencies for the
            project. Fortunately, bsc depends on nothing
            outside of standard Erlang/OTP.

	The relx tuple provides settings for release
            generation. Rebar3 uses the
            relx tool to generate releases.
            Because our goal in this section is to use rebar3 to generate a
            bsc release, we investigate these settings in
            detail later.

	The profiles tuple provides a way of having
            different settings for different development tasks or roles. The
            prod profile generated here is, as its name implies,
            intended to provide settings for generating a production
            release.


Among the generated source file skeletons, take special note of
      the application resource file skeleton, apps/bsc/src/bsc.app.src. Rebar3 generates this file rather than
      creating an actual application resource file because later, as part of
      its compilation process, it takes the bsc.app.src skeleton, automatically fills in
      its modules definition with the names of all the
      application source modules, and generates the bsc.app application resource file from that.
      We can see this by compiling our newly generated files, after first
      changing the "0.1.0" version numbers rebar3 generated in the bsc.app.src file and rebar.config to the correct
      "1.0" bsc version (any text-filtering
      tool can be used for this purpose; we’ve entered a Perl one-liner here):
      
$ perl -i -pe 's/0\.1\.0/1.0/' ./apps/bsc/src/bsc.app.src ./rebar.config
$ rebar3 compile
===> Verifying dependencies...
===> Compiling bsc
and then looking at the _build/default/lib/bsc/ebin/bsc.app file
      generated by the compilation process:
$ cat _build/default/lib/bsc/ebin/bsc.app
{application,bsc,
             [{description,"Base Station Controller"},
              {vsn,"1.0"},
              {registered,[]},
              {mod,{bsc_app,[]}},
              {applications,[kernel,stdlib]},
              {env,[]},
              {modules,[bsc_app,bsc_sup]},
              {contributors,[]},
              {licenses,[]},
              {links,[]}]}.
As the file contents show, rebar3 created the modules
      definition for us based on the Erlang modules present in the src directory. When we add more modules,
      rebar3 automatically adds them to the
      application resource file for us during its compilation phase, which is
      much easier than manually editing the resource file ourselves. The only
      tricky part is that if you want to modify other fields of the
      application resource file, you have to remember to edit the bsc.app.src file rather than the generated
      bsc.app file.
To run the skeleton application, we can just start a rebar3 shell, which ensures that all the
      appropriate project paths are on the Erlang load path. When the shell
      starts, it also starts our application:
$ rebar3 shell
===> Verifying dependencies...
===> Compiling bsc
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:0] [kernel-poll:false]

===> Booted bsc
===> Booted sasl

...<snip>...

=PROGRESS REPORT==== 26-Dec-2015::21:58:36 ===
         application: sasl
          started_at: nonode@nohost
Eshell V7.2  (abort with ^G)
1> application:which_applications().
[{sasl,"SASL  CXC 138 11","2.6.1"},
 {bsc,"Base Station Controller","1.0"},
 {inets,"INETS  CXC 138 49","6.1"},
 {ssl,"Erlang/OTP SSL application","7.2"},
 {public_key,"Public key infrastructure","1.1"},
 {asn1,"The Erlang ASN1 compiler version 4.0.1","4.0.1"},
 {crypto,"CRYPTO","3.6.2"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
Our generated skeleton application contains no actual code, but
      still, it starts and runs correctly. Note that a rebar3 shell starts some other applications
      bsc doesn’t need, such as
      inets and ssl; if we were to
      start our application manually, these would not be present.
To fill out our project we can retrieve our original sources by
      copying our bsc example code, which is available in
      this chapter’s directory of the book’s GitHub repository:
$ cp -v <path-to-bsc-example-dir>/src/*.erl apps/bsc/src
<path-to-bsc-example-dir>/src/bsc.erl -> apps/bsc/src/bsc.erl
...
When that’s complete, we can again use rebar3 to clean and compile the
      project:
$ rebar3 do clean, compile
===> Cleaning out bsc...
===> Verifying dependencies...
===> Compiling bsc
If we again start a rebar3
      shell, we can see that our application runs as expected:
$ rebar3 shell
...<snip>...
1> application:which_applications().
[{sasl,"SASL  CXC 138 11","2.6.1"},
 {bsc,"Base Station Controller","1.0"},
 {inets,"INETS  CXC 138 49","6.1"},
 {ssl,"Erlang/OTP SSL application","7.2"},
 {public_key,"Public key infrastructure","1.1"},
 {asn1,"The Erlang ASN1 compiler version 4.0.1","4.0.1"},
 {crypto,"CRYPTO","3.6.2"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]

Creating a Release with Rebar3
The rebar3 tool uses relx, rather than
      the standard Erlang/OTP reltool
      facility, in an effort to make it easier for developers to create
      releases, due to reltool being
      widely viewed as being difficult to configure and use
      correctly.
Creating a release with rebar3
      is straightforward:
$ rebar3 release
===> Verifying dependencies...
===> Compiling bsc
===> Starting relx build process ...
===> Resolving OTP Applications from directories:
          /Users/francescoc/ernie2/bsc/_build/default/lib
          /Users/francescoc/ernie2/bsc/apps
          /usr/local/lib/erlang/lib
===> Resolved bsc-1.0
===> Dev mode enabled, release will be symlinked
===> release successfully created!
Once we’ve generated the release, we can verify that it works as
      expected:
$ _build/default/rel/bsc/bin/bsc console
Exec: /usr/local/lib/erlang/erts-7.2/bin/erlexec -boot ...
Root: /Users/francescoc/ernie2/bsc/_build/default/rel/bsc
/Users/francescoc/ernie2/bsc/_build/default/rel/bsc
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:30] [kernel-poll:true]


=PROGRESS REPORT==== 27-Dec-2015::11:37:56 ===
          supervisor: {local,sasl_safe_sup}
             started: [{pid,<0.49.0>},
                       {id,alarm_handler},
                       {mfargs,{alarm_handler,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]

...<snip>...

=PROGRESS REPORT==== 27-Dec-2015::11:37:56 ===
         application: sasl
          started_at: bsc@francescoc
Eshell V7.2  (abort with ^G)
(bsc@francescoc)1> application:which_applications().
[{sasl,"SASL  CXC 138 11","2.6.1"},
 {bsc,"Base Station Controller","1.0"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
Instead of the console argument to
      _build/default/rel/bsc/bin/bsc shown in this example, which
      starts the application and gives us an Erlang shell, you can instead
      specify start to start the release in the
      background, attach to get a shell attached to an
      already-started release, or stop to stop an
      already-started release. Run the command
      _build/default/rel/bsc/bin/bsc with no arguments to see a
      list of all its arguments and options.
Because of the default release settings in the relx
      tuple in rebar.config, this
      generated release is intended for development, not production. The
      default configuration sets dev_mode to true,
      which means application source files used to create the release are
      links to sources under the apps/bsc/src directory. The
      dev_mode setting also sets include_erts to
      false, which keeps the Erlang runtime from being included
      in the release. These settings are handy for development because they
      allow developers to edit their files under the apps area and have those changes instantly
      available for either building into a release or recompiling and
      reloading into an already-running release. The settings also allow
      developers to use the Erlang installation on the system rather than
      having to build one into each release, which enables quick testing of
      the release against multiple runtime versions.
Fortunately, though, building a production release is easy, even
      with these default settings in place, thanks to rebar3 profiles. The profiles
      tuple in rebar.config includes a
      profile named prod that sets dev_mode to
      false and include_erts to true.
      To use the prod profile, we just specify it using the
      rebar3 as
      directive on the command line:
$ rebar3 as prod release
===> Verifying dependencies...
===> Compiling bsc
===> Starting relx build process ...
===> Resolving OTP Applications from directories:
          /Users/francescoc/ernie2/bsc/_build/default/lib
          /Users/francescoc/ernie2/bsc/apps
          /usr/local/lib/erlang/lib
===> Resolved bsc-1.0
===> Including Erts from /usr/local/lib/erlang
===> release successfully created!
The as directive instructs rebar3 to run the specified commands using the
      given profile. Pay particular attention to the text in bold near the
      bottom of this example; it shows that relx includes the Erlang runtime system this
      time, as directed by the prod profile. And because the
      prod profile sets dev_mode to
      false, if you look under _build/prod/rel/bsc/lib/bsc-1.0/src you’ll
      see that the source files have been copied into the release, rather than
      linked back to the apps source area
      as with the default release.
The rebar3
      tar directive makes it trivial to create a tar
      file containing a release:
$ rebar3 as prod tar
===> Verifying dependencies...
===> Compiling bsc
===> Starting relx build process ...
===> Resolving OTP Applications from directories:
          /Users/francescoc/ernie2/bsc/_build/prod/lib
          /Users/francescoc/ernie2/bsc/apps
          /usr/local/lib/erlang/lib
          /Users/francescoc/ernie2/bsc/_build/prod/rel
===> Resolved bsc-1.0
===> Including Erts from /usr/local/lib/erlang
===> release successfully created!
===> Starting relx build process ...
===> Resolving OTP Applications from directories:
          /Users/francescoc/ernie2/bsc/_build/prod/lib
          /Users/francescoc/ernie2/bsc/apps
          /usr/local/lib/erlang/lib
          /Users/francescoc/ernie2/bsc/_build/prod/rel
===> Resolved bsc-1.0
===> tarball /Users/francescoc/ernie2/bsc/_build/prod/rel/bsc/bsc-1.0.tar.gz
         successfully created!

Rebar3 Releases with Project Dependencies
So far our rebar3 example
      has been limited to including only a single application,
      bsc, which has no dependencies, but in practice
      Erlang applications often depend on other applications. Fortunately,
      rebar3 is able to fetch such
      dependencies and compile them together with the application that depends
      on them.
Let’s assume we decide to change bsc logging
      using the popular open source lager framework so
      that our logfiles can work with existing log rotation tools, and so that
      we can count on lager to protect our application
      from running out of memory should it attempt to emit a storm of log
      messages because of some unexpected persistent error condition. Adding a
      dependency on lager to the bsc
      application is easy—we just specify it in the deps tuple in
      the rebar.config
      file:
{deps, [{lager, {git, "git://github.com/basho/lager.git",
                      {tag, "3.0.2"}}}]}.
This directive tells
      rebar3 that
      lager is a source dependency, with the
      git tuple telling rebar3
      the location from which it can fetch the lager
      source code and the tag tuple indicating the version of
      lager on which the bsc
      application depends.
With this directive in place, we can ask rebar3 what our dependencies
      are:
$ rebar3 deps
lager* (git source)
Asking rebar3 to compile causes it to fetch the
      source for the lager dependency as well as the
      sources for any dependencies lager itself
      has:
$ rebar3 compile
===> Verifying dependencies...
===> Fetching lager ({git,"git://github.com/basho/lager.git",
                                 {tag,"3.0.2"}})
===> Fetching goldrush ({git,"git://github.com/DeadZen/goldrush.git",
                                    {tag,"0.1.7"}})
===> Compiling goldrush
===> Compiling lager
===> Compiling bsc
This compilation occurs under the default profile, so
      if we look under _build/default/lib
      after it completes, we see directories for bsc, for
      lager, and also for goldrush,
      a dependency of lager:
$ ls _build/default/lib
bsc		goldrush	lager
To build a release including lager, we first
      need to modify apps/bsc/src/bsc.app.src to add
      lager into the applications list, following
      kernel and stdlib. With these changes in
      place, we can build a release under the default
      profile:
$ rebar3 release
===> Verifying dependencies...
===> Compiling bsc
===> Starting relx build process ...
===> Resolving OTP Applications from directories:
          /Users/francescoc/ernie2/bsc/_build/default/lib
          /Users/francescoc/ernie2/bsc/apps
          /usr/local/lib/erlang/lib
          /Users/francescoc/ernie2/bsc/_build/default/rel
===> Resolved bsc-1.0
===> Dev mode enabled, release will be symlinked
===> release successfully created!
If we look at the contents of the _build/default/rel/bsc/lib directory, we can
      see that rebar3 built all the
      applications necessary to include in the release:
$ ls _build/default/rel/bsc/lib
bsc-1.0		goldrush-0.1.7	lager-3.0.2
We can then run our application and see that all the applications
      we expect to see are indeed running:
$ _build/default/rel/bsc/bin/bsc console
...<snip>....
(bsc@francescoc)1> application:which_applications().
[{sasl,"SASL  CXC 138 11","2.6.1"},
 {bsc,"Base Station Controller","1.0"},
 {lager,"Erlang logging framework","3.0.2"},
 {goldrush,"Erlang event stream processor","0.1.7"},
 {compiler,"ERTS  CXC 138 10","6.0.2"},
 {syntax_tools,"Syntax tools","1.7"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
Not only are bsc, lager,
      and goldrush running, but the standard
      compiler and syntax_tools
      applications were started as well because goldrush
      uses them, which you can see by examining the applications
      list in the _build/default/lib/goldrush/src/goldrush.app.src
      file.
There is much more to rebar3
      than what our bsc application requires. It has a
      plug-in system that makes it extensible and customizable, ties into
      Erlang’s common-test,
      dialyzer, and eunit facilities
      to support testing and code coverage and analysis, and supports
      publishing packages into the Erlang/Elixir hex
      package management system. And as we show next, in Chapter 12, rebar3
      also supports release upgrades.


Wrapping Up
You’ve got to agree that everything we presented here is a mouthful,
    and probably more detail than what you had originally bargained for when
    you started reading this chapter! Having said that, the steps involved in
    bundling up your OTP applications in a release and starting them as one
    unit are not many and are relatively straightforward. The reason we’ve
    gone into so much detail is that we want to explain not just how, but also
    why. You will thank us when you need to integrate Erlang/OTP releases in
    your build system or troubleshoot why a node that was running for years on
    end is refusing to start. You can’t even begin to imagine how many systems
    we’ve reviewed that, despite being responsible for tens of thousands of
    transactions per day, hour, or minute (and in many cases even seconds!)
    are started using erl -s Module,
    are not OTP compliant, do not have heart configured,
    or are not set up as embedded target systems running as daemons. Start by
    creating a proper OTP release, integrating the process in your build
    system, and the rest will follow.
The preferred way to deploy your Erlang nodes that must run for
    years on end and be available 24/7 is as embedded target systems. You must
    be strict with revision control and be aware of the exact versions of your
    modules, applications, and configuration files. You will want to access
    the Erlang shell through I/O streams sent to a directory in your Erlang
    root directory (not /tmp), allowing
    you to run multiple embedded nodes on that host.
Start your Erlang system as a daemon job, ensuring it is
    automatically started every time your computer or image is rebooted.
    Always ensure that you have the erl
    command at hand with a boot file that starts kernel,
    stdlib, and sasl, giving you
    access to the SASL logs on your local machine when your nodes have crashed
    and are refusing to start. And don’t forget to set your emulator flags,
    normal flags, and plain arguments, adapting them to your internal
    operational requirements. Do you want to disable the break handler using
    +Bc but still allow the user to kill the shell? What about
    printing out the arguments passed to the emulator using
    -emu_args and printing startup trace reports using the
    -init_debug flag? And how do you want to implement and
    configure your heart script to handle emulator
    crashes? The combinations are many, and getting the right configuration in
    place that works for you and your organization can take years of
    operational experience and firefighting. You will eventually get there,
    but hopefully, taking into consideration all that we have covered in this
    chapter, the pager calls will be few and far apart, and never in the
    middle of the night.
Having said that, we know that not all systems are mission critical
    and require this level of supervision, complexity, and professionalism.
    Simple target systems can be both acceptable and respectable if they do
    their job and fulfill your requirements. If running many nodes on a single
    machine sharing the same Erlang installation works for you, there is no
    need to ship every release with its own Erlang virtual machine. You will
    not be able to individually upgrade applications and emulators, but then
    again, you might not care! The type of release that works for you, your
    organization, and the types of systems you are deploying is for you to
    judge. It can be as simple or as complicated as you need it to be. What is
    important is that you understand the tradeoffs involved in your choices,
    and do things without cutting corners, otherwise you will end up paying
    for it at a later date.
The process we have covered in this chapter, automated using
    libraries or tools, includes the following steps:
	Create a release resource file for your
        node, defining what will be included in your
        release.
The rel file will contain all of the applications and their
        respective versions, together with the version of the emulator to be
        used in the target deployment.

	Create a boot file containing all of the
        commands required to start your node. 

	Create the file structure you will
        deploy to your target system.
It will contain the lib,
        releases, and bin directories and, if you plan to ship it
        with its own emulator, the erts
        directory.

	Specific to your deployment (and
        possibly on the target host), configure your start
        scripts.
This will include your start_erl.data file and config files
        containing deployment-specific configurations, as well as any
        target-specific configuration scripts.


You can find an additional example of these steps in “Creating a Release Upgrade”, where we create a release of the coffee FSM
    example described in Chapter 6, preparing it for a
    software upgrade. But if you are too lazy to do these chores every time
    (we are) and do not need to integrate in existing build and release
    infrastructure, use existing tools and libraries for the bulk of the work
    and automate the rest. Rebar3
    simplifies all of this a great deal.
So far in this book, you have come across many different file types,
    all held together in a release. We’ve listed them in Table 11-1, as there is no better time than
    now to review them.
Table 11-1. Erlang/OTP file types	File type	File extension	Description
	Erlang module	.erl	File containing the Erlang source code
	Compiled module	.beam	Compiled Erlang source code file for the BEAM
            emulator
	Application resource file	.app	File containing application resource and configuration
            data
	Application upgrade file	appup	File containing application upgrade data
	Release file	.rel	File containing release-specific application and emulator
            versions
	Release upgrade file	relup	File containing release upgrade information
	Start script	.script	Text-based version of the script used to boot the
            system
	Binary start script	.boot	Binary version of the script used to boot the
            system
	Configuration file	.config	File containing application-specific environment variables

We cover .appup and relup files in Chapter 12. They are used for live upgrades of the
    applications and regular upgrades of the emulator.
If you haven’t had enough and want to read more about creating
    releases, head straight to the documentation that ships with Erlang/OTP.
    The OTP Design Principles User’s Guide will tell you more about releases
    and release handling, going as far as creating the first release package
    ready for deployment in your target environment. The OTP System Principles
    User’s Guide has sections that cover the starting, restarting, and
    stopping of systems, as well as describing in more detail the difference
    between the embedded versus interactive code-loading strategies. It
    overlaps with the OTP Design Principles User’s Guide, which also covers
    the creation and configuration of target systems. In doing so, the user’s
    guide introduces the target_system.erl module shipped in the
    sasl application’s examples
    directory as well as in this chapter’s directory in the book’s GitHub
    repository. It is an example that automates many of the steps we covered
    manually when explaining how to build a release and target system, a
    necessity prior to the existence of rebar and rebar3, relx,
    and reltool. Have a look at it, as it
    has for many years been a good source of inspiration for those integrating
    Erlang into their existing build systems.
The user’s guides are complemented by reference manual pages, of
    which the following are relevant to what we have just covered and so are
    worth mentioning:
	If you need more information on the rel file, look up the
        rel reference manual page. Given a rel file,
        systools describes the functions you need to create
        script, boot, and target tar files. The contents of the binary boot
        file and its script text counterpart are described in more detail in
        the script reference manual page.
        To find out more on how they are executed, review the
        init user manual pages.

	There might be times when you need to automate tasks on the
        target machine and integrate the release process with other tools you
        might be using (possibly for non-Erlang parts of your system). If that
        is the case, read the release_handler manual page. It
        describes functions that allow you to unpack and install the tar file
        created by the systools calls. However, it does assume an
        installation of Erlang is already running on the target host, which
        might not always be the case. We cover this library in more detail in
        the next chapter when looking at live upgrades.

	If you need to load code remotely and the example in this
        chapter is not enough, the erl_boot_server,
        erl_prim_loader, and init user manual pages
        will help you.

	The erl and init manual pages describe
        most of the emulator flags and command-line flags, some of which we
        have not covered in this chapter. For plain arguments, you will have
        to refer to the user manual pages of the modules and applications
        using those arguments.

	The heart manual page is the place to look for more
        information on automated restarts, including configuration details and
        required environment variables when implementing your script. You will
        find the environment variables described in the erl
        manual page.

	If you are running on Windows, read the start_erl manual page. It is the equivalent
        of the start command we have been using in this
        chapter, allowing you to start your embedded system in Windows
        environments.


Reltool, which we did
    not cover, has both a user’s guide and reference manual
    pages you will have to study in detail in the unlikely event your system
    requires the configuration complexity not handled by rebar3, which you can find at https://www.rebar3.org, or relx, which you can get either with rebar3 or from GitHub.
If all this seems intimidating, the best thing to do is to simply
    use rebar3. It can build and create
    releases for a wide variety of project types, can be extended for special
    cases through its plug-in system, and can download and help manage
    dependencies on other projects, and it works with the hex package management system for publishing
    your system so others in the Erlang community can use it. For more
    information about rebar3 and hex, see the
    rebar3 documentation.

What’s Next?
Erlang has been called the language of the system. It is not just a
    language suitable for solving a particular type of problem, but rather a
    language and a set of tools that allow you to develop, deploy, and monitor
    predictable and maintainable systems. While in this chapter we have
    covered how to package and deploy your first target systems, that is just
    the beginning of your adventure. What we cover next is how to manage bug
    fixes and deploy new functionality by doing live upgrades. We do so by
    introducing the upgrade tools and functionality that come as part of OTP
    and its behaviors. You’ve heard about Erlang achieving five-nines
    availability, software maintenance and upgrades included? Continue on to
    find out how we do it.

1 Ernie is the username of the account where the AXD301 ATM
          switch runs its Erlang nodes—a trip down memory lane for those who
          contributed to Erlang in some shape or form in the early days,
          including many of the reviewers of this book.


Chapter 12. Release Upgrades
After your system goes live, it churns away in the background handling
  requests day in and day out. It self-heals when issues occur and restarts
  automatically after power outages or system reboots. But as with any piece
  of software, you are bound to continue optimizing it, fixing bugs as they
  are reported and adding new features. Irrespective of having thousands of
  instances of your coffee machine running on dedicated hardware monitored
  through a wireless link, or any other system whose requirements state that
  it must service its requests with 100% availability, upgrades included, then
  Erlang/OTP’s software upgrade capabilities are something to study carefully.
  Imagine you not being able to have your morning coffee because of an ongoing
  firmware upgrade of your office coffee machine!
The built-in functionality in the Erlang VM that allows dynamic module
  loading might work for simple patches where the upgrade is
  backward-compatible. But have you thought of the cases where you’ve changed
  the functional API? Or where a process running a call to completion with an
  old version of the code cannot communicate with a process running a new
  version because of a change in the protocol? How do you handle state changes
  in your loop data between releases or database schema changes? And even more
  importantly, what if an upgrade fails and you need to downgrade?
Complex systems need to be upgraded in a coordinated and controlled
  manner. The built-in functionality used to dynamically load new modules,
  like everything else, of Erlang and OTP provides the foundations used to build
  the tools that coordinate and control these upgrades, greatly reducing and
  even hiding their complexity. Before introducing the tools themselves,
  let’s review the semantics, terminology, and most commonly used functions
  relevant to our example to ensure we are all on the same page.
Software Upgrades
We cover module upgrades in “Upgrading Modules”. If you’ve already
    read it, you might recall that you can load a new module in the Erlang
    runtime environment by using the shell command l(Module), 
    calling code:load_file(Module), or compiling
    the source code using c(Module) or
    make:files(ModuleList,[load]). At any one time, your runtime environment can have two versions of code for the same module loaded. We refer to them as the old and
    current versions. A process running the
    old module version will continue doing so until it issues a fully
    qualified function call; i.e., a call of the format
    Module:Function(...), where the module name is used as a
    prefix to the function.
When a fully qualified function call occurs, the runtime checks to
    ensure that the process is running the current version of the code. If it
    is, the call continues using the current code. But if the process is still
    running the old version, the pointer to the code is switched to the
    current version before the call is made.
Calls to library modules have to be fully qualified because you are
    calling another module, so such a call will automatically use the current
    version. Recursive calls controlling process receive-evaluate loops,
    however, tend to recurse locally without a fully qualified call. We need
    to either change these local calls to be fully qualified, or add a new
    message that triggers a fully qualified function call in the
    receive-evaluate loop. Depending on the complexity of the upgrade, this
    function could either call the loop function in the new module or call a
    hook in the new module that handles any change of the process state,
    including loop data, ETS tables, and database schemas, before returning
    into the loop.
When not executing a fully qualified call, a process running the
    current version of a module will continue running it even after a new
    version is loaded in the system. If a process is already running the old
    version of a module—not the current version—when a version newer than
    the current one is loaded, that process will be unconditionally terminated.
    Processes will also be unconditionally terminated if they are running an
    old module version forcefully removed using the code:purge(Module) call.
Two-Module Limit
The two-module version limit is legacy debt from a design decision taken
      to simplify the JAM virtual machine (the most-used VM at the time) and
      to preserve memory in an architecture where memory was scarce. Today,
      the right design decision would be to allow an unlimited number of
      module versions in the runtime, and garbage collect them when they’re no longer
      in use. In the JAM, in order to garbage collect code, you had to go
      through the stack of each process and look at the return addresses of
      each function call to work out which module version a process was using.
      This was a very time-consuming activity the developers preferred to avoid, so they
      simplified it with the two-module limitation.

With two versions of the code allowed in the runtime system, we need
    a way to determine the current version of the module. The
    -vsn(Version). module attribute helps us achieve exactly that.
    Version can be any Erlang term, but it is most commonly a
    string, number, or atom. More often than not, it is set by a script
    triggered by the revision control system when committing the code to the
    repository (for example, if you use Git for source control, you could set
    Version to a string containing the output of git describe --long, which provides the most
    recent Git tag, the number of commits made since that tag, and the current
    commit hash). Placing the vsn attribute at the beginning of
    the module with the other attributes gives us the ability to determine the
    version of the code we are upgrading from, using it to control changes to
    the state, database schemas, protocols, and other non–backward-compatible
    internal data formats. You can find the version of the current module
    using the Mod:module_info/0,1 call.
The vsn attribute is not mandatory. If omitted, the
    compiler generates it at compile time using the beam_lib:md5/1 call to generate a 128-bit
    md5 digest of the module. The md5 digest is based on properties of the module, but excludes compile
    date and other attributes that are irrelevant to the code, since they may
    change without the code itself changing. This guarantees that a version
    will be tagged with the same 128-bit key regardless of compilation time,
    spaces, carriage returns, or comments in the code.
Remember the example FSM we looked at in “Coffee FSM”? Let’s dust off the Erlang version and compile it
    to better understand how the vsn module attribute works. If
    you are using modules from the book’s GitHub repository, the module we are using is
    under ch12/erlang/coffee.erl.original. Don’t forget to change
    its filename to coffee.erl. You can then compile it as follows:
1> c(coffee).
{ok,coffee}
2> coffee:module_info(attributes).
[{vsn,[293551046745957884913825426256179654413]}]
3> {ok, {coffee, MD5Digest}} = beam_lib:md5(coffee).
{ok,{coffee,<<220,215,224,7,110,247,231,148,86,224,44,
              74,197,2,111,13>>}}
4> <<Int:128/integer>> = MD5Digest, Int.
293551046745957884913825426256179654413
In shell command 2, a call to coffee:module_info/1
    returns the md5 digest in the vsn module attributes,
    something we confirm in shell commands 3 and 4 by getting the digest from
    the module and reversing the digest process. Let’s now add the
    -vsn directive manually in our module and recompile:
-module(coffee).
-export(...).

-vsn(1.0).

...
This ensures the compiler will not override the version with the
    md5 digest and sets it instead to 1.0:
5> c(coffee).
{ok,coffee}
6> coffee:module_info(attributes).
[{vsn,[1.0]}]
Let’s continue working with the Erlang version of the coffee machine
    FSM, adding a new upgrade message that triggers a fully qualified function
    call. This will allow us to upgrade the server in a controlled way,
    understanding the how and why of all the steps involved in the process.
    After that, we explore how it is done using OTP.
The First Version of the Coffee FSM
You might recall that the Erlang version of the coffee FSM consisted of
      three states, selection, payment, and remove (Figure 12-1). In
      our software upgrade example, we add a new state called service, which allows us to open the cabinet
      door and service the coffee maker. But before going there, let’s add some
      generic code that executes the fully qualified call, giving us a
      baseline we can use to perform the upgrade itself. We can do this either
      by fully qualifying every call to the receive-evaluate loop, or by
      sending the process a message that triggers a fully qualified
      call.
[image: ]Figure 12-1. Coffee FSM

The recommended approach to upgrading your code is to separate the
      loading of the new module from each process’s trigger of the upgrade. In
      our generic upgrade code, we load the module using
      module:load_file/2. We then inform the processes that have
      to trigger an upgrade through a fully qualified call by sending them the
      {upgrade, Data} message.
Data is an opaque data type containing
      upgrade-specific information used by the new module. It is there to act
      as a placeholder and to future-proof the code, allowing us to manipulate
      the process state in conjunction with the transition to the new module.
      As an example, pretend we are upgrading our frequency server and want to
      add more frequencies. We could use Data to pass the new
      frequencies to the server during the upgrade. A process that receives
      the upgrade message and its data then issues a fully qualified function
      call to code_change/2, where the first argument is the
      process state and the second is Data. In this function, we
      could append the new frequencies to the list of available ones, entering
      the receive-evaluate loop in the new module with the newly updated loop
      data.
Let’s have a look at what the generic upgrade code for the coffee
      FSM looks like. Notice that we have added a version number to the
      module:
-module(coffee).
-export(...).
-export([..., code_change/2]).
-vsn(1.0).

...

%% State: drink selection 
selection() ->
    receive
        ...
        {upgrade, Data} ->
            ?MODULE:code_change(fun selection/0, Data);
        ...
    end.

%% State: payment
payment(Type, Price, Paid) ->
    receive
        ...
        {upgrade, Extra} ->
            ?MODULE:code_change({payment, Type,
                                 Price, Paid}, Extra);
        ...
    end.

%% State: remove cup 
remove() ->
    receive
        ...
        {upgrade, Data} ->
            ?MODULE:code_change(fun remove/0, Data);
        ...
    end.

code_change({payment, Type, Price, Paid}, _) ->
    payment(Type, Price, Paid);
code_change(State, _) ->
    State().
Note how we need to handle the {upgrade, Extra}
      message in all states. Upon receiving it, we do a fully qualified
      function call to code_change/2, where the first argument is
      the FSM state and loop data and the second is Extra, which
      we transparently pass to the call. The code_change/2
      function in the new module provides a place to change the old process
      state to one compatible with the new code base, possibly using
      Extra. Changes in the process state could include
      adaptations to the loop data format and contents, database schema
      changes, synchronization with other processes, changing process flags,
      or even going as far as manipulating messages in the mailbox.
Once done, code_change/2 yields control by calling
      the tail-recursive function returning the process to its new
      receive-evaluate loop. In our example, these functions are the FSM state
      functions selection/0, payment/3, and
      remove/0. This is the first version of the module, so we do
      not expect the code_change/2 clauses we’ve added to do
      anything; they simply return to the state from which the call
      originated. Adding these clauses avoids the undefined
      function runtime error that we explained will result if you
      attempt an upgrade and a process is running an old version of the
      coffee module.
This is our baseline code. If you are using the code in the book’s
      repository, you will find it in the erlang directory for this chapter. Let’s
      compile it, start the Erlang VM, and get our coffee FSM up and running,
      making sure it works before creating a new version of the module and
      doing a software upgrade:
$ cd erlang
$ cp coffee.erl.1.0 coffee.erl
$ erl -make
Recompile: coffee
Recompile: hw
$ erl -pa patches
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> coffee:start_link().
Machine:Rebooted Hardware
Display:Make Your Selection
{ok,<0.36.0>}
2> coffee:module_info(attributes).
[{vsn,[1.0]}]
3> coffee ! {upgrade, {}}.
{upgrade,{}}
4> coffee:module_info(attributes).
[{vsn,[1.0]}]
Note how in shell command 3 we trigger an upgrade without having
      loaded a new version of the FSM. This results in an execution of the
      code_change/2 call in the current version of the module.

Adding a State
Let’s add a state for servicing the coffee FSM. It gets triggered when the
      coffee FSM is in the selection state and the
      cabinet door is opened. In any other state, the open door event is
      ignored. As we can see in Figure 12-2, closing the
      cabinet door triggers a reboot of the hardware and a transition back to
      the selection state. The closing door event is
      ignored in all other states.
[image: ]Figure 12-2. Service state

We’ve opted to keep the example simple, but could have easily
      inserted locks in the hardware by upgrading hw.erl to add the functions
      hw:lock() and hw:unlock(). These would
      represent safeguards that would ensure that the coffee
      machine door could be opened only in the selection
      state and would keep it locked when the machine is in other
      states.
Let’s look at the new module, where we’ve highlighted the changes
      from version 1.0. The major differences are the addition of the
      service state, the open and close events, and actions executed in the
      code_change/2 function clauses.
First, we see the client functions open/0 and
      close/0, which respectively generate an event when the
      coffee machine door is opened and closed. In state selection, upon
      receiving the open event, we show
      Open in the display and transition to
      the service state.
The service state ignores all events except
      for users inserting coins and the closing of the coffee machine door.
      Upon closing the door, the hardware is rebooted and the display
      instructs the customer to make a selection. The open and close events are ignored in all other states:
-module(coffee).
-export([tea/0, espresso/0, americano/0, cappuccino/0,
         pay/1, cup_removed/0, cancel/0, open/0, close/0]).
-export([start_link/0, init/0, code_change/2]).
-vsn(1.1).

start_link() ->
     ...

open() -> ?MODULE ! open.
close() -> ?MODULE ! close.

     ...

selection() ->
    receive
        {selection, Type, Price} ->
            hw:display("Please pay:~w",[Price]),
            payment(Type, Price, 0);
        {pay, Coin} ->
            hw:return_change(Coin),
            selection();
        {upgrade, Extra} ->
            ?MODULE:code_change(fun selection/0, Extra);
        open ->
            hw:display("Open", []),
            service();
        _Other ->   % cancel
            selection()
    end.

...

service() ->
    receive
        close ->
            hw:reboot(),
            hw:display("Make Your Selection", []),
            service();
        {pay, Coin} ->
            hw:return_change(Coin),
            service();
        _Other ->
            service()
    end.

...

code_change({payment, _Type, _Price, Paid},  _Extra) ->
    hw:return_change(Paid),
    hw:display("Make Your Selection", []),
    selection();
code_change(State, _) ->
    State().
In our code_change function, if a user has selected a drink and is
      in the process of paying for it, we return whatever amount has been paid and transition to
      the selection state. For all other states, we
      transition back to the state we were in prior to the upgrade. In our
      example, we don’t need Extra, but as we are preparing the
      code for potential upgrades without knowing what these upgrades will be,
      the argument is worth including to future-proof our code and allow us
      to pass the variable and use it to change the process state in a later
      upgrade.
We place version 1.1 of the source code in the patches directory
      and compile it. Note how we started the Erlang runtime system with the
      -pa patches directive. When we first start the coffee FSM,
      this directory is empty. As we find and fix bugs, we place the new beam
      files here. Because this directory appears first in the code search
      path, beam files we put here will override beam files of the same module
      appearing later in the code search path. In another shell, type:
$ cd erlang/patches/
$ erl -make
Recompile: coffee
Using the same Erlang node where we started version 1.0 of the
      coffee FSM, we load the new version of the module by calling
      code:load_file/1. The code server looks for the first
      version of the coffee beam file in its code search path, and because the
      patches directory is at the top of list, the version we just compiled is
      chosen. The success of the operation is confirmed in shell command 6,
      showing us that the version attribute is now set to 1.1:
5> l(coffee).
{module,coffee}
6> coffee:module_info(attributes).
[{vsn,[1.1]}]
At this point,
      we have two versions of the coffee module loaded in the runtime system:
      the current one we just loaded and the old one used by the FSM process.
      When we order an espresso in shell command 7 and start paying for it in
      the subsequent command, the shell does a fully qualified call using the
      current version of the code—namely,
      the one we just loaded. The FSM process, however, is still using the
      old version of the coffee
      module.
If we were to load another version of the coffee module at this
      point, even 1.0, the coffee FSM process would be terminated because it
      is running the now deleted old version of the code. The current version
      would become the old version, while the newly loaded module would become
      the current one. We are not doing it in our example, but try it out
      yourself if you’ve compiled the code and are following along.
In shell command 9, we trigger an upgrade. This causes the coffee
      machine FSM, currently in state payment,
      to call code_change/2 in the new module. It returns the
      change and, thanks to the new state service, now allows us to open and
      close the machine door so we can service it:

7> coffee:espresso().
Display:Please pay:150
{selection,espresso,150}
8> coffee:pay(100).
Display:Please pay:50
{pay,100}
9> coffee ! {upgrade, {}}.
Machine:Returned 100 in change
Display:Make Your Selection
{upgrade,{}}
10> coffee:open().
Display:Open
open
11> coffee:espresso().
{selection,espresso,150}
12> coffee:close().
Machine:Rebooted Hardware
Display:Make Your Selection
close
This is how basic Erlang can handle upgrades. The generic code
      is the handling of the {upgrade, Extra} message and the
      calling of code_change/2, which does a fully qualified call
      back to the receive-evaluate loop. This will be the same across all
      processes. What will differ among processes is what we do in
      code_change/2 depending on the loop data, the process
      state, and the contents of Extra itself. Using these
      foundations, let’s read on and see how we do it with OTP.


Creating a Release Upgrade
To upgrade releases using the tools and design principles provided by
    OTP, we have to start with a baseline consisting of a properly packaged
    and deployed OTP release following the principles covered in Chapter 11. We also need:
	One or more new versions of existing applications

	Zero or more new applications

	An application upgrade file for each application that has been
        changed

	Release resource and release upgrade files


The modules containing the bug fixes and new features are packaged
    into new or existing applications, where their version numbers are bumped
    up. Application upgrade files contain
    commands that tell us how to upgrade or downgrade from one application version to
    another. The release resource file, covered in “Release Resource Files”, is the file containing the emulator and application
    versions that make up the new release. Together with the application upgrade
    files and the release file of the baseline system we are upgrading from,
    the new release file is used to generate the release upgrade file. This file contains all the commands that have to be executed
    during the upgrade itself. After having installed the new code on the
    target machine, we run the instructions in the release upgrade file. If
    anything fails, the system is restarted using the old release. Through
    tests and observations, you have to determine if the system is stable. If
    so, it is made permanent. Restarting the system prior to it being made
    permanent will result in the old release being restarted. Let’s do an
    upgrade and see how the different steps and components all work
    together.
In this chapter’s section of the book’s code repository, you will find the
    files used to create our first deployment. We’ve taken the coffee_fsm.erl example and created an OTP
    application out of it, supervisor and application behavior files included.
    We also created the coffee.app file
    and placed it in the ebin directory.
    Download it, compile it, and make sure you can get it up and
    running:
$ cd coffee-1.0/src ; erl -make ; mv *.beam ../ebin ; cd ../..
Recompile: coffee_app
Recompile: coffee_fsm
coffee_fsm.erl:2: Warning: undefined callback function
                             code_change/4 (behaviour 'gen_fsm')
coffee_fsm.erl:2: Warning: undefined callback function
                             handle_event/3 (behaviour 'gen_fsm')
coffee_fsm.erl:2: Warning: undefined callback function
                             handle_info/3 (behaviour 'gen_fsm')
coffee_fsm.erl:2: Warning: undefined callback function
                             handle_sync_event/4 (behaviour 'gen_fsm')
Recompile: coffee_sup
Recompile: hw
$ erl -pa coffee-1.0/ebin
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> application:start(sasl), application:start(coffee).

...<snip>...

=PROGRESS REPORT==== 10-Jan-2016::21:27:28 ===
         application: coffee
          started_at: nonode@nohost
ok
2> coffee_fsm:module_info(attributes).
[{behaviour,[gen_fsm]},{vsn,['1.0']}]
Even if the coffee application
    directory is not in the lib directory
    (yet), we’ve given it a version number for the sake of clarity. Note how,
    when compiling the code, we get the following warning:
Warning: undefined callback function
           code_change/4 (behaviour 'gen_fsm')
Up to now, we asked you to patiently bear with us and ignore this
    warning message, but no more. You should by now understand what it is for
    and have figured out how we are going to use it when we upgrade the
    coffee_fsm module. Note also how, when retrieving the module
    attributes in shell command 2, we get both the behavior type and the
    current module version number.
With our application running, let’s create the boot file, a release
    file, and the target directory structure. We use the empty sys.config and coffee-1.0.rel files in the book’s code
    repository. If you are typing along as you are reading this, getting your
    own version up and running, don’t forget to update the standard OTP
    application and erts versions in the rel file to the Erlang release you
    are currently using. If you are not typing along, or do not have access to
    the code, we’ve included the contents of the sys.config and coffee-1.0.rel files for your convenience. If you are
    running the tests, based on the version of Erlang you are using, you might
    have to modify the standard OTP application version numbers:
$ cat sys.config
[].
$ cat coffee-1.0.rel
{release,
 {"coffee","1.0"},
 {erts, "7.2"},
 [{kernel, "4.1.1"},
  {stdlib, "2.7"},
  {sasl, "2.6.1"},
  {coffee, "1.0"}]}.
$ mkdir ernie
$ erl
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.2  (abort with ^G)
1> systools:make_script("coffee-1.0", [{path, ["coffee-1.0/ebin"]}]).
ok
2> systools:make_tar("coffee-1.0",[{erts, "/usr/local/lib/erlang/"},
                                    {path, ["coffee-1.0/ebin"]},
                                    {outdir, "ernie"}]).
ok
3> halt().

$ cd ernie; tar xf coffee-1.0.tar.gz; rm coffee-1.0.tar.gz 
$ mkdir bin; mkdir log
$ cp erts-7.2/bin/run_erl bin/.; cp erts-7.2/bin/to_erl bin/.
$ cp erts-7.2/bin/start.src bin/start
$ cp erts-7.2/bin/start_erl.src bin/start_erl
$ perl -i -pe "s#%FINAL_ROOTDIR%#$PWD#" bin/start
$ diff erts-7.2/bin/start.src bin/start
27c27,28
< ROOTDIR=%FINAL_ROOTDIR%
---
> ROOTDIR=/Users/francescoc/ernie
$ echo '7.2 1.0' > releases/start_erl.data
Hello Joe, coffee machine working? Seems to be. We now need to
    create the releases/RELEASES file,
    required for upgrading and downgrading releases. We got away without it in
    the previous chapter, as it is only really required when downgrading to
    this release after a failed upgrade. When we do an upgrade and this file
    is not present, a new one is created, but it contains only information for
    the upgraded release. This is fine if the upgrade is successful, because
    when we upgrade a second time, we should be able to downgrade to the first
    upgraded version. The downside is that if the first upgrade fails, we are
    unable to downgrade to the original version once we’ve made the upgrade
    permanent, and we’ll have to reinstall the node instead. Create the file as follows:
$ bin/start
$ bin/to_erl /tmp/
Attaching to /tmp/erlang.pipe.1 (^D to exit)

1> application:which_applications().
[{coffee,[],"1.0"},
 {sasl,"SASL  CXC 138 11","2.6.1"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
2> RootDir = code:root_dir().
"/Users/francescoc/ernie"
3> Releases = RootDir ++ "/releases".
"/Users/francescoc/ernie/releases"
4> RelFile = Releases ++ "/coffee-1.0.rel".
"/Users/francescoc/ernie/releases/coffee-1.0.rel"
5> release_handler:create_RELEASES(RootDir, Releases, RelFile, []).
ok
The RELEASES file contains a
    list with an entry for every release that has been installed. Every entry
    has information similar to that found in the rel file, including release
    and erts versions. Together with the application names and versions,
    however, an absolute path to the application directory is also included.
    While the first version of the RELEASES file will contain a single entry on
    the first release, subsequent upgrades will result in multiple entries:
%% File:releases/RELEASES
[{release,"coffee","1.0","7.2",
          [{kernel,"4.1.1",
                   "/Users/francescoc/ernie/lib/kernel-4.1.1"},
           {stdlib,"2.7",
                   "/Users/francescoc/ernie/lib/stdlib-2.7"},
           {sasl,"2.6.1",
                 "/Users/francescoc/ernie/lib/sasl-2.6.1"},
           {coffee,"1.0",
                   "/Users/francescoc/ernie/lib/coffee-1.0"}],
          permanent}].
The Code to Upgrade
Now that we have our first OTP-compliant release up and running, let’s
      create the new version of the coffee_fsm module, adding the
      new service state and its client
      functions. We start by bumping up the version attribute to
      1.1. It might not mean much now, but if you have kept the
      discipline of bumping up the version (or doing it automatically through
      a script when tagging your code or building your release), payback time
      will come many upgrades later, in the early hours of the morning, when
      you are figuring out why the version of the code you think is running in
      production is actually not the one that should be running.1
We export the state functions service/2 and
      service/3 (you might recall that the gen_fsm
      callback State/2 handles asynchronous events and
      State/3 handles synchronous ones). We also export two
      client functions, open/0 and close/0, which
      asynchronously send the coffee machine door open and close events to the FSM. And finally, we export
      code_change/4, a behavior callback used to update the state
      of the behavior. All these should be familiar from reading “Adding a State”:
-module(coffee_fsm).
-behavior(gen_fsm).
-vsn('1.1').
-export([start_link/0, init/1]).
-export([selection/2, payment/2, remove/2, service/2]).
-export([americano/0, cappuccino/0, tea/0, espresso/0,
         pay/1, cancel/0, cup_removed/0, open/0, close/0]).
-export([stop/0, selection/3, payment/3, remove/3, service/3]).
-export([terminate/3, code_change/4]).

start_link() ->
    gen_fsm:start_link({local, ?MODULE}, ?MODULE, [], []).

...
cup_removed() -> gen_fsm:send_event(?MODULE,cup_removed).
open()        -> gen_fsm:send_event(?MODULE,open).
close()       -> gen_fsm:send_event(?MODULE,close).

...
In state selection, we handle the open event. This is the only state/event
      combination in which the transition to our new service state is allowed. In the
      service state, upon receiving the close event, we transition back to the
      selection state. In all other states,
      open and close events are
      ignored. The service/3 state callback function also handles
      the synchronous stop event, which
      stops the FSM and triggers a call to terminate/3:
%% State: drink selection
selection({selection, Type, Price}, LoopData) ->
    hw:display("Please pay:~w",[Price]),
    {next_state, payment, {Type, Price, 0}};
selection({pay, Coin}, LoopData) ->
    hw:return_change(Coin),
    {next_state, selection, LoopData};
selection(open, LoopData) ->
    hw:display("Open", [ ]),
    {next_state, service, LoopData};
selection(_Other, LoopData) ->
    {next_state, selection, LoopData}.

%% State: service
service(close, LoopData) ->
    hw:reboot(),
    hw:display("Make Your Selection", []),
    {next_state, selection, LoopData};
service({pay, Coin}, LoopData) ->
    hw:return_change(Coin),
    {next_state, service, LoopData};
service(_Other, LoopData) ->
    {next_state, service, LoopData).

...

service(stop, _From, LoopData) ->
    {stop, normal, ok, LoopData}.

...
We now need to implement our new code_change/4
      callback function. This callback takes three arguments when called
      within an event handler or a generic server, and four when called from
      within an FSM:
Mod:code_change(Vsn, State, LoopData, Extra) ->
     {ok, NewState, NewLoopData} | %Finite State Machines
     {error, Reason}
Mod:code_change(Vsn, LoopData, Extra) ->
     {ok, NewLoopData} |   %Generic Servers
     {error, Reason}
Mod:code_change(Vsn, LoopData, Extra) ->
     {ok, NewLoopData} |   %Event Handler
     {error, Reason}
The first argument, Vsn, is the version of the old
      module you are upgrading from, or the version you’re going to when
      downgrading back to the old module. In this example it is
      1.0, and it could also be {down, 1.0} when
      downgrading to a previous version. When a module does not have a version
      directive, use the md5 module checksum, and when versions do not matter
      at all, use wildcards.
State is passed only to FSMs, and contains the state
      the FSM was in when the upgrade was triggered.
The final two arguments include the loop data and any extra
      arguments passed in the upgrade instructions specific for this module.
      In our example, we don’t do anything with the _Extra
      arguments, nor do we manipulate the loop data.
The code_change/4 callback, when successful, has to
      return {ok, NewState, NewLoopData}. Returning {error,
      Reason} will cause the upgrade to fail and the node to restart
      the previous version when dealing with generic servers or FSMs. In the
      case of event handlers, returning anything other than {ok,
      NewLoopData} or terminating abnormally will cause the handler to
      be removed from the event manager, but the node will not revert to its
      previous version and be restarted.
This is what our coffee FSM’s code_change/4 OTP
      callback function looks like:
code_change('1.0', State, LoopData, _Extra) ->
    {ok, State, LoopData};
code_change({down, '1.0'}, service, LoopData, _Extra) ->
    hw:reboot(),
    hw:display("Make Your Selection", []),
    {ok, selection, LoopData};
code_change({down, '1.0'}, payment, {_Type, _Price, Paid}, _Extra) ->
    hw:return_change(Paid),
    hw:display("Make Your Selection", []),
    {ok, selection, {}};
code_change({down, '1.0'}, State, LoopData, _Extra) ->
    {ok, State, LoopData}.
We’ve changed the behavior slightly from the Erlang example.
      Regardless of the state we are in, payment included, we do not change
      the loop data and remain in the state we were originally in. This is
      normal in cases where we simply add functionality or a state. If we were
      to change the state or loop data as part of the upgrade, it would occur
      here.
If an upgrade failure triggers a downgrade and we are in the
      service state, we reboot the hardware
      and return to the selection state,
      because the service state does not
      exist in version 1.0. If the user is in the process of paying for a
      coffee, we return whatever amount the user has paid and move back to the
      selection state. Downgrades, as we
      will see, will cause the system to reboot and start the old version from
      scratch. So if your old version is dependent on some persistent values
      that were set at startup and later changed, make sure your
      code_change reverts to the correct values.
When we are done implementing the new modules, we package them in
      an application, bumping up the version. In our case, our new coffee
      application version is “1.1,” whereas the versions of the hw, coffee_app, and coffee_sup modules are the same as in the
      application version. The version of the coffee_fsm module is now also 1.1.
Upgrading Records
The BEAM virtual machine does not have a data structure to specifically
        represent a record in a database sense. Instead, records are
        represented as tuples where the first element is an atom representing
        the record name and the other fields are tuple entries in the same
        order as they are defined. If your record format changes during a live
        software upgrade, the only way to update the format is using the tuple
        representation of records. This problem does not occur if you use maps
        instead of tuples. We’ll show you how to change a record if you must
        represent it as a tuple.
Imagine a record for our frequency server of the format:
–record(freq, {free, allocated})
After initialization, in its tuple representation, it would look
        like this:
{freq, [5,6,7,8], []}
Assume that in our upgrade, we want to add a new field for
        frequencies that are blocked, making them unavailable while not being
        allocated. Our new record could look like this:
–record(freq, {free, allocated, blocked})
The code_change/3 function in the new module would
        handle the upgrade and downgrade of the different record versions as
        follows:
code_change('1.0', {freq, Free, Alloc}, _Extra) ->
   {ok, {freq, Free, Alloc, []}};
code_change({down, '1.0'}, {freq, Free, Alloc, Blocked}, _Extra) ->
   {ok, {freq, Free++Blocked, Alloc}}.
When you need to change the record format in the Mnesia table, use the
        mnesia: transform_table/3,4 functions. They will
        atomically apply a fun to all objects in the table that does the
        transformation, allowing you to also change the record name (not the
        table name) and update the attributes.


Application Upgrade Files
Now that we have the new version of our coffee machine FSM up and running, we
      need an application upgrade file containing a set of actions to be
      executed when upgrading or downgrading to other versions of the same
      application. Application upgrade files are similar in concept to app files, because
      they are used by systools to create
      the upgrade script. They have the name of the application with the
      .appup suffix and are placed in the
      ebin directory, alongside the
      app file.
Go into the Erlang root directory of your installation and type
      ls lib/*/ebin/*.appup. The call
      will return all application upgrade files installed as part of your
      Erlang release. Starting with Erlang/OTP version 17, .appup files are included in every application.
      Prior to that, you could upgrade only some core applications, as not all
      applications provided an .appup file.
      Let’s have a look at the sasl.appup
      file for its version 2.6.1:
{"2.6.1",
 %% Up from - max one major revision back
 [{<<"2\\.[5-6](\\.[0-9]+)*">>,[restart_new_emulator]}, % OTP-18.*
  {<<"2\\.4(\\.[0-9]+)*">>,[restart_new_emulator]}],    % OTP-17
 %% Down to - max one major revision back
 [{<<"2\\.[5-6](\\.[0-9]+)*">>,[restart_new_emulator]}, % OTP-18.*
  {<<"2\\.4(\\.[0-9]+)*">>,[restart_new_emulator]}]     % OTP-17
}.
Based on its contents, we should be able to figure out what
      happens when application version 2.6.1 is upgrading or downgrading
      between OTP versions 17 and 18. When upgrading from application version
      2.4.X, 2.5.X, or 2.6, or downgrading to 2.6, 2.5.X, or 2.4.X (where X is
      the patch release number), we need to restart the emulator. Notice how
      regular expressions, placed in binaries, create a range of subreleases
      and point to a list of upgrade and downgrade instructions. Instead of
      regular expressions, you can also use strings defining specific
      versions, e.g., “2.4.5.”
Inspect any other .appup files
      in the release you have installed and you will notice they all follow
      this format:
{Vsn,
  [{UpFromV1, InstructionsU1}, ...,  {UpFromVK, InstructionsUK}],
  [{DownToV1, InstructionsD1}, ...,  {DownToVK, InstructionsDK}]}.
Vsn
      is the application version to which you are upgrading.
      UpFromV<N> are the application versions from which
      you will be upgrading. In case something goes wrong,
      DownToV<N> are the application versions to which
      you will be able to downgrade Vsn. Vsn can be
      either a string with the exact version numbers, or a binary containing a
      regular expression allowing you to describe multiple application
      versions on which to execute upgrade and downgrade instructions. If you
      have installed OTP version 17 or later, look at the various .appup files and you will notice that OTP
      standard applications usually allow you to upgrade or downgrade by
      two revisions.
If you plan on using regular expressions, the following constructs will be more
      than enough to denote ranges of versions:
	A period (.) matches any character, so the expression 1.3
            will match any combination of characters starting with 1 and
            ending with 3.

	An asterisk (*) matches the preceding element zero or more
            times.

	A plus sign (+) matches the preceding element one or more
            times.

	A question mark (?) matches the preceding element zero or
            one times.

	The range [0-9] matches the elements between 0 and 9.

	The sequence \\. returns a period. You need to escape the
            backslash because Erlang itself uses the backslash to escape
            characters.

	A caret (^) at the beginning of the regular expression
            anchors the match to the beginning of the version string.

	A dollar sign ($) at the end of the regular expression
            anchors the match to the end of the version string.


As an example,
      <<"^1\\.[0-9]+$">> matches all versions of 1.X,
      <<"^1\\.0\\.[0-9]+$">> matches all versions of
      1.0.X, and
      <<"^1\\.([0-9]+\\.)?\\.[0-9]+$">> will match
      versions 1.X or 1.X.X, where X is an integer.
If you are not sure of your regular expressions, test them using
      re:run(Vsn, RegExp), which returns
      nomatch if the match fails and
      {match, MatchData} otherwise. You can read more about the
      format of regular expressions in the manual pages for the re module.
Browsing the .appup files, you
      should have come across lists of actions associated with different
      versions. They include elements such as restart_new_emulator (used only when upgrading
      the erts, kernel, stdlib, and
      sasl applications), load_module, apply, restart_application, and update. In some cases, when no actions have to
      be taken, you will find a tuple {Vsn, [], []} with two
      empty lists. Actions are divided into high-level instructions and
      low-level ones. High-level instructions are translated to low-level ones
      when creating the release upgrade script.
Let’s go back to our example, where we are going to upgrade the
      coffee FSM application from version 1.0 to 1.1.
      It will not be a complicated upgrade because no drivers or NIFs are
      involved, no new applications or modules are added to the release, and
      there are no interprocess and intermodule dependencies to worry about,
      let alone internal state or loop data changes. Behind the scenes, all we
      need to do is suspend all behavior processes with a dependency on the
      module coffee_fsm, load the new
      version of the module, purge the old one, call code_change, and resume the processes (Figure 12-3).
[image: ]Figure 12-3. Coffee FSM version transitions

Our coffee.appup file contains a tuple containing the
      version we are upgrading to along with the high-level upgrade and
      downgrade instructions. In our case, update loads the new
      module and {advanced, {}} triggers the
      code_change/4 call, passing {} as the last
      argument:
%% File:coffee.appup
{"1.1",  % Current version
 [{"1.0", [{update, coffee_fsm, {advanced, {}}}]}], % Upgrade from
 [{"1.0", [{update, coffee_fsm, {advanced, {}}}]}]  % Downgrade to
}.
During both an upgrade and a downgrade, the update
      high-level instruction will translate to the following set of low-level
      instructions:
	Search for the object code for the module, load it from file,
          and cache it. This ensures that time-consuming file operations are
          done prior to suspending the processes.

	Suspend any process that specified the module as a dependency
          in its child specification, using sys:suspend/1.

	Purge any old version of the module being upgraded.

	Load the new version of the module, making the current version
          the old one.

	Purge any old version of the module, which prior to step 4 was
          the current version.

	Call Mod:code_change/4.

	Resume the suspended processes with sys:resume/1,
          allowing them to continue handling new requests.


So far, so good, but how do we associate a module dependency with
      a behavior process? Remember that in the supervisor child specification,
      you had to list the modules that implement the behavior:
{coffee_fsm, {coffee_fsm, start_link, []},
  permanent, 5000, worker, [coffee_fsm]}
We have to list them because this is where, during an upgrade or
      downgrade, systools tells the
      supervisors to suspend a particular process when upgrading one or more
      of its core modules. In behaviors such as event handlers and other
      special processes where the modules are not known at compile time, we
      would replace the module list with the term dynamic and query the process prior to an
      upgrade.
OTP needs to distinguish between dynamic and static module sets
      for scalability reasons. There is no point in asking millions of
      behaviors what modules they are running every time we do a software
      upgrade, only to discover they do not include the one being upgraded. Processes
      with dynamic modules are few and far apart, and rarely have an impact on
      performance when doing an upgrade. If you have dynamic children where
      you know millions of instances will coexist concurrently and the modules
      are not known at compile time, pick an upgrade strategy that scales or
      do not upgrade at all.

High-Level Instructions
Actions in our .appup file
      are grouped into high-level and low-level instructions,
      with high-level instructions being mapped to low-level ones when the
      upgrade scripts are generated. For the sake of simplicity (and your
      sanity), you are encouraged to use high-level instructions and avoid
      low-level ones where possible, even though they can be mixed together.
      Let’s look at the high-level instructions in more detail:
	{update, Mod}
	This instruction, and all of its variants, is used for
            synchronized code replacements
            where all processes dependent on Mod have to be
            suspended before loading the new version of the module. When it is
            loaded and its old version is purged, the suspended processes are
            resumed. This is the simplest variant of a module update command,
            as the code_change/3,4 behavior callbacks are not
            invoked. You will want to synchronize and suspend all processes
            with a dependency on Mod when you want all processes
            to consistently display the same properties toward other processes
            that interface with them. If you don’t suspend them all prior to
            loading the new module, some processes might display the old
            behavior while others display the new one.

	{update, Mod, supervisor}
	You will want to use this high-level instruction if
            Mod is a supervisor callback module and you are
            changing the supervisor specification returned by the
            init/1 callback function. Any change in the
            supervision tree needs to be handled using the supervisor:start_child/2 function if you are
            adding children. Use supervisor:terminate_child/2 and
            supervisor:delete_child/2 if you are removing children.
            We covered these functions in “Dynamic Children”.
            The update becomes even more complicated if you are changing the
            order in which you start the children because of rest_for_one dependencies. You will have to terminate children and restart them
            in the order specified in your init/1 callback
            function.

	{update, Mod, {advanced,Extra}}, {update, Mod, DepMods}, {update, Mod, {advanced,Extra}, DepMods}
	If we include the {advanced,Extra} tuple, the
            upgrade script invokes the Mod:code_change/3,4
            callback function, passing Extra as the last
            argument. You will need this option when the upgrade requires a
            change of your behavior state and loop data. For this and all
            other update instructions, you
            can omit {advanced,Extra} or replace it with soft, both of which result in
            code_change not being called. DepMods is
            a module list on which Mod depends. Behaviors using
            these modules will also be suspended.

	{update, Mod, {advanced,Extra}, PrePurge, PostPurge,
          DepMods}
	PrePurge and PostPurge are by
            default set to brutal_purge.
            Use this option when you want processes running the old version of
            Mod to be unconditionally terminated before the
            updated module is loaded and after the module upgrade when the
            release is made permanent. You can override this behavior by
            setting PrePurge to soft_purge. If some processes are still
            running a version of the old code,
            release_handler:install_release/1, which triggers the
            execution of the relup file,
            returns {error,{old_processes,Mod}}. If
            PostPurge is set to soft_purge, the release handler will
            purge Mod only after the processes executing the old
            version have terminated their calls.

	{update, Mod, Timeout, {advanced,Extra}, PrePurge,
          PostPurge, DepMods}
	Remember that behaviors are implemented as callback
            functions, so for a purge to fail, they must be executing in a
            callback for an unusually long amount of time or have an unusually
            long message queue. The default timeout value when trying to
            suspend a process is 5 seconds, but this can be overridden by
            setting the Timeout field to an integer in
            milliseconds or the atom infinity. If a behavior does not respond
            to the sys:suspend/1 call and the timeout
            is triggered, the process is ignored. It might later be terminated
            if the module it is executing is purged, or as the result of a
            runtime error when it starts running the new version of the module
            without properly going through the upgrade procedure. Use the
            Timeout option when, after testing your upgrades
            under heavy load, you see there is a need to increase the
            value.

	{update, Mod, ModType, Timeout, {advanced,Extra},
          PrePurge, PostPurge, DepMods}
	By default, one of the code_change/3,4 callback
            functions is executed after loading the new module. In the case of
            a downgrade, code_change/3,4 is called before loading
            the module. You can override this by setting ModType
            to static, which loads the
            module and calls code_change/3,4 before an upgrade or
            downgrade. If not specified, or if you want the default behavior,
            set ModType to dynamic.

	{load_module, Mod}, {load_module, Mod, DepMods}, {load_module, Mod, PrePurge, PostPurge, DepMods}
	You want to use this low-level instruction for upgrades
            where you do not need to suspend the process. We refer to these
            upgrades as simple code
            replacements. The same applies to the instructions used
            for adding and deleting modules. DepMods lists all
            the modules that should be loaded before Mod. This
            argument is an empty list by default. PrePurge and
            PostPurge can be set to either soft_purge or brutal_purge (the default). They work
            the same way as they do with the update command. Use this
            instruction when dealing with library modules or extending
            functionality that does not affect running processes.

	{add_module, Mod}, {delete_module, Mod}
	These commands translate to low-level instructions that add
            and delete modules between releases.

	{add_application, Application}, {add_application, Application, Type}
	This instruction will add a new application to a release,
            including loading all of the modules defined in the app file and, where applicable, starting
            the supervision tree. The application types, covered in Chapter 9, defaults to permanent, but Type can
            also be set to transient,
            temporary, load, or none.

	{remove_application, Application}, {restart_application, Application}
	You will want to use these commands when removing or
            restarting an application. Removing an application shuts down the
            supervision tree, deletes the modules from memory, and stops the
            application. If the upgrade or downgrade requires an application
            restart, this high-level command will translate to commands that
            stop and start the application and its supervision tree. You
            usually find application restarts in .appup files belonging to noncore OTP
            applications such as tools and libraries that can be restarted
            without affecting traffic in the live system.


You can mix high- and low-level instructions in the same .appup file, but for the vast majority of use
      cases, high-level instructions will be enough as most of your actions
      can be completed with them. We cover low-level instructions in the next
      section, as soon as we’ve done our first upgrade.

Release Upgrade Files
Now that we have our coffee.appup file and understand what the
      high-level instructions do, let’s use this knowledge to generate an
      upgrade package. The first step is to create a new boot file using systools:make_script/2. It is not used
      for the upgrade itself, but is part of the package we deploy in case the
      upgraded node has to be rebooted (for whatever reason) after the
      upgrade. In the second shell command, we create a release upgrade file
      called relup, which is placed in
      the current working directory. This file is generated using the emulator
      and application versions specified in the rel and .appup files, using them to retrieve and map high-
      and low-level instructions in the .appup files to a sequence of low-level ones.
      Compile all the code in your coffee-1.1 application directory, and run
      the following commands:
1> systools:make_script("coffee-1.1", [{path, ["coffee-1.1/ebin"]}]).
ok
2> systools:make_relup("coffee-1.1", ["coffee-1.0"],["coffee-1.0"],
                        [{path, ["coffee*/ebin"]}]).
ok
3> systools:make_tar("coffee-1.1",
                      [{path, ["coffee-1.1/ebin"]},
                       {outdir, "ernie/releases"}]).
ok
In our third shell command, we create the tar file coffee-1.1.tar.gz. It contains the lib and
      releases directories specified in coffee-1.1.rel. Calling
      make_tar/2 picks up the relup, start.boot, and sys.config files automatically and creates a
      version 1.1 directory under releases. Note that, unlike in our first
      installation, we did not include the erts option. We are going to use
      the one already installed.
Let’s look at the relup file
      more closely now that the low-level instructions have been generated. We
      explain them all in “Low-Level Instructions”,
      but even without having covered them, you should get a good idea of what
      is going on:
{"1.1",
 [{"1.0",[],
   [{load_object_code,{coffee,"1.1",[coffee_fsm]}},
    point_of_no_return,
    {suspend,[coffee_fsm]},
    {load,{coffee_fsm,brutal_purge,brutal_purge}},
    {code_change,up,[{coffee_fsm,{}}]},
    {resume,[coffee_fsm]}]}],
 [{"1.0",[],
   [{load_object_code,{coffee,"1.0",[coffee_fsm]}},
    point_of_no_return,
    {suspend,[coffee_fsm]},
    {code_change,down,[{coffee_fsm,{}}]},
    {load,{coffee_fsm,brutal_purge,brutal_purge}},
    {resume,[coffee_fsm]}]}]}.
Before covering the low-level commands in more detail, let’s look
      at the systools:make_relup/3,4 call we used to generate the file itself:
systools:make_relup(RelName, UpFromList, DownToList, [Options]) ->
     ok | error | {ok,Relup,Module,Warnings} | {error,Module,Error}
The call takes RelName, the name of a release to
      which we are upgrading or downgrading. This points to the RelName.rel file, used to determine the
      version of the Erlang runtime system and the versions of the various
      applications. RelName can also be a tuple {RelName,
      Descr}, where Descr is a term that is included in
      the upgrade and downgrade instructions, returned by the function
      installing the release on the target machine.
The second and third arguments, UpFromList and
      DownToList, include the list of releases we want to upgrade
      from or downgrade to, respectively. They are all names that point to a
      specific version of a rel file used to determine which applications need
      to be added, removed, or upgraded. Using their respective .app and .appup files, the call also determines the
      sequence of commands that need to be executed. The fourth, optional,
      argument is a list of options that may include:
	{path, DirList}
	Adds paths listed in DirList to the code search
            path. You can include wildcards in your path, so the asterisk in
            "lib/*/ebin" will expand to contain all of the
            subdirectories in lib
            containing an ebin directory.
            The code search path of the node creating the relup file must have
            paths to the old and the new versions of the .rel and .app files, as well as a path to the new
            .appup and .beam files.

	{outdir, Dir}
	Puts the relup file in
            Dir instead of the current working directory.

	restart_emulator
	Generates low-level instructions that reboot the node after
            an upgrade or downgrade.

	silent
	Returns a tuple of the format {ok, Relup, Module,
            Warnings} or {error, Module, Error} instead of
            printing results to I/O. Use this option when calling systools
            functions from scripts or integrating the call in your build
            process where you need to handle errors.

	noexec
	Returns the same values as the silent option,
            but without generating a relup file.

	warnings_as_errors
	Treats warnings as errors and refuses to generate the
            relup script if warnings
            occur.


The format of the relup file
      itself is similar to the .appup
      file:
{Vsn,
  [{UpFromV1, Descr, InstructionsU1}, ...,  {UpFromVK, Descr, InstructionsUK}],
  [{DownToV1, Descr, InstructionsD1}, ...,  {DownToVK, Descr, InstructionsDK}]}.
The Descr term contains a term passed in the
      {RelName, Descr} tuple of the
      systools:make_relup/3,4 call. If Descr was
      omitted from the call, it defaults to an empty list. You will notice
      this in our example, as we left it out for the coffee machine relup
      example. Descr becomes relevant when automating the
      installation of the upgrade on the target machine, as its values can be
      used by the programs or scripts installing the upgrade.

Low-Level Instructions
Relup files consist of low-level instruction sets generated from the
      .appup files. For complex upgrades,
      you can write your files using low-level instructions or edit generated
      ones by hand. Low-level instructions consist of the following:
	{load_object_code, {Application, Vsn,
          ModuleList}}
	Reads all the modules from the Application ebin
            directory, but does not load them into the runtime system. This
            instruction is executed prior to suspending the behaviors and
            special processes. This differs from the high-level instruction
            load that not only loads the module, but also makes
            it available to the runtime.

	point_of_no_return
	This instruction should appear once in the relup script and
            should be placed where the system cannot recover after failing to
            execute one or more of the instructions in the relup file. Crashes
            occurring after this instruction will result in the old version of
            the system being restarted. It is usually placed after the
            load_object_code instruction.

	{load, {Module, PrePurge, PostPurge}}
	Makes a module that has been loaded using
            load_object_code the current version.
            PrePurge and PostPurge can be set to
            soft_purge or brutal_purge (the default).

	{apply, {Mod, Func, ArgList}}
	Calls apply(Mod, Func, ArgList). If the apply
            is executed before the point of no return and fails or returns (or
            throws) {error,Error},
            the call to release_handler:install_release/1 returns
            {error,{'EXIT',Reason}} or
            {error,Error}, respectively. If it’s executed after
            the point of no return and fails, the system is restarted with the
            old version of the release. This instruction could be used instead
            of the code_change/3,4 callback function.

	{remove, {Module, PrePurge, PostPurge}}
	Used together with load and purge.
            This instruction makes the current version of Module
            old.

	{purge, ModuleList}
	Purges the old versions of all modules in
            ModuleList. Behaviors and special processes executing
            the old version of the code being purged are terminated.

	{suspend, [Module | {Module, Timeout}]}
	Suspends behaviors that depend on the Module
            list. Timeout is an integer in milliseconds or the
            atoms default (set to 5 seconds) or
            infinity. If the call to sys:suspend/1 does
            not return within Timeout, the process is ignored but
            not terminated.

	{resume, ModuleList}
	Resumes suspended processes that depend on modules listed in
            ModuleList.

	{code_change, [{Module, Extra}]}, {code_change, Mode, [{Module, Extra}]}
	Triggers the Module:code_change/3,4 call,
            passing Extra in all behavior processes running
            Module. Mode is up or down, defining the call as either an
            upgrade or a downgrade. If omitted, Mode defaults to
            up.

	{stop, ModuleList}
	This instruction results in the
            supervisor:terminate_child/2 call for all behaviors
            with a dependency on one of the modules specified in
            ModuleList.

	{start, ModuleList}
	Starts all stopped processes with a dependency on a module
            in ModuleList by calling
            supervisor:restart_child/2.

	restart_new_emulator
	This instruction is used when upgrading the emulator or the kernel, stdlib, and sasl core applications. The emulator
            needs to be restarted right after upgrading these applications,
            but before executing the remainder of the relup file.
            All other applications will be restarted with their old versions
            running in the new emulator and upgraded when running the
            remainder of the relup file
            in the new emulator. When different processes end up running
            different application versions in this manner,
            non–backward-compatibility clashes between them can occur, so
            ensure all possible scenarios in your upgrade procedure have been
            properly tested before using this technique. If you are worried
            about the order of your low-level instructions, use high-level
            ones and let systools:make_relup/3,4 generate the
            relup file. This instruction
            should be executed only once during the upgrade.

	restart_emulator
	This instruction is used when an emulator restart is
            required as part of an upgrade that does not involve the core
            applications or an emulator upgrade. It may appear
            only once in the relup file
            and has to be the last instruction.



Installing an Upgrade
Let’s go back to the coffee-1.1.tar.gz file we generated and use
      it for our live upgrade. We assume that it has been placed in the
      releases directory of the target
      environment. From the ernie root
      directory, we connect to the coffee_fsm node that we left
      running version 1.0. If it is not running, start it with bin/start. We unpack the new release using the release_handler:unpack_release/1 call,
      uncompressing all the files, adding the coffee-1.1 application to the lib directory, and creating the version 1.1 directory
      in the releases
      directory. We can see in shell commands 2 and 3 that after unpacking the
      new release it resides alongside 1.0, and that 1.0 is still
      running:
$ bin/to_erl /tmp/
Attaching to /tmp/erlang.pipe.1 (^D to exit)

1> release_handler:unpack_release("coffee-1.1").
{ok, "1.1"}
2> release_handler:which_releases().
[{"coffee","1.1",
  ["kernel-4.1.1","stdlib-2.7","sasl-2.6.1","coffee-1.1"],
  unpacked},
 {"coffee","1.0",
  ["kernel-4.1.1","stdlib-2.7","sasl-2.6.1","coffee-1.0"],
  permanent}]
3> application:which_applications().
[{coffee,"Coffee Machine Controller","1.0"},
 {sasl,"SASL  CXC 138 11","2.6.1"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
4> coffee_fsm:espresso().
Display:Please pay:150
ok
5> coffee_fsm:pay(100).
Display:Please pay:50
ok
6> release_handler:install_release("1.1").
{ok,"1.0",[]}
7> coffee_fsm:cancel().
Display:Make Your Selection
ok
Machine:Returned 100 in change
8> coffee_fsm:open().
ok
Display:Open
9> coffee_fsm:close().
Machine:Rebooted Hardware
Display:Make Your Selection
ok
10> application:which_applications().
[{coffee,"Coffee Machine Controller","1.1"},
 {sasl,"SASL  CXC 138 11","2.6.1"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
11> init:restart().
ok
12>
Erlang/OTP 18 [erts-7.2] [smp:8:8] [async-threads:10] [kernel-poll:false]

...<snip>...

Eshell V7.2  (abort with ^G)
1> application:which_applications().
[{coffee,"Coffee Machine Controller","1.0"},
 {sasl,"SASL  CXC 138 11","2.6.1"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
Next, we upgrade the release by executing the
      release_handler:install_release/1 call. If issues arise and
      a restart is triggered, the system will reboot and revert to the old
      version. If the system is stable, the current (new) version is made
      permanent by calling
      release_handler:make_permanent/1.
We then use the new client functions we’ve added to test the
      transition to and from state service
      before rebooting the node in shell command 11. Because we never made the
      release permanent, the node restarts version 1.0.
Next, in shell commands 2 and 3, we reinstall the release and make
      it permanent. At this point, we do not need files specific to 1.0
      anymore. Unused releases can be removed from the system using the
      release_handler:remove_release/1 call. The call removes the applications that are only part of that
      release from the lib directory,
      removes the directory from releases, and updates the RELEASES file there. To revert back to the
      old version we have to reinstall it, covering all the steps we’ve just
      described, including creating an .appup
      file for version 1.0 of the coffee application, a relup file, and a tar file:
2> release_handler:install_release("1.1").
{ok,"1.0",[]}
3> release_handler:make_permanent("1.1").
ok
4> release_handler:remove_release("1.0").
ok
5> release_handler:which_releases().
[{"coffee","1.1",
  ["kernel-4.1.1","stdlib-2.7","sasl-2.6.1","coffee-1.1"],
  permanent}]
6> halt().
[End]
$ ls lib/
coffee-1.1	kernel-4.1.1	sasl-2.6.1	stdlib-2.7
That’s it! A software upgrade during runtime, with the ability to
      fall back to old releases when issues occur or remove them when they are
      no longer needed.
Warning
The release handler is intended to work with embedded target
        systems. If you use it with simple target systems, you need to ensure
        the correct boot and config files are used in the case of a restart.
        How you do it is entirely up to you. You could replace existing files
        or have OS environment variables pointing to the correct ones.


The Release Handler
We introduced the SASL application in Chapter 9. It is one of the core OTP
      applications that has to be part of every release because it contains
      tools required to build, install, and upgrade the release itself. If you
      looked at SASL’s supervision tree (Figure 12-4),
      you might have noticed the release handler process. It is responsible
      for unpacking, installing, and upgrading releases locally on each node.
      It also removes them and makes them permanent. We used the release
      handler and went through these phases in our example.
[image: ]Figure 12-4. The release handler process

The release handler assumes a release tar file, created using systools:make_tar/1,2 and placed in
      the releases
      directory. Each release version can be in one of the following states, as seen in Figure 12-5:
      unpacked, current, permanent, and old. State transitions occur when functions in
      the release_handler module are
      called or a release that has not been made permanent fails, triggering a
      system restart. At any one time, there is always a release that is
      either current or permanent. Let’s look at the functions exported by the
      release_handler module, including
      those that trigger the transition more closely.
[image: ]Figure 12-5. Managing a release

When dealing with your first target installation, the release
      handler becomes relevant only if Erlang is already installed on the
      target machine. As it wasn’t when we created the first coffee_fsm release, everything had to be done
      manually. If you follow the steps, you will notice that the first call
      we did once version 1.0 of the system was up and running was to create the RELEASES file:
release_handler:create_RELEASES(Root, RelDir, RelFile, AppDirs) ->
     ok | {error, Reason}
This call creates the first version of the RELEASES file, stored in the releases directory. It contains the
      persistent state of the release handler, which includes the release
      applications, their versions, and their absolute paths. The Erlang VM executing
      this function must have permission to write to the releases directory. Root is the
      Erlang root directory, while RelDir is the path pointing to
      the releases directory. The
      releases directory is often located
      in the Erlang root directory, but you can override this by setting the
      OS or OTP environment variables described in “Release Directory Structure”. RelFile points to
      the release file located in the releases directory, while AppDirs
      is a list of {App, Vsn, Dir} tuples used to override the
      applications stored in lib. It is most commonly used when distributing
      Erlang in OS-specific packages and not OTP ones. This function unpacks the Name.tar.gz file located in the releases directory:
release_handler:unpack_release(Name) ->
    {ok, Vsn} | {error, Reason}
It checks that all
      mandatory files and directories are present, adding the applications in
      the lib and release directories under releases. It fails if
      the string Name is an existing release, or if there are
      issues unpacking or reading the mandatory files and directories. When we have unpacked the release,
      install_release/1,2 triggers the software upgrade (or
      downgrade), executing the instructions specified in the relup file:
release_handler:install_release(Vsn)
release_handler:install_release(Vsn, OptList) ->
    {ok, OtherVsn, Descr} | {error, Reason} |
    {continue_after_restart, OtherVsn, Descr}
OptList is a list of
      options that allow us to override some of the default settings. They
      include:
	{error_action, restart | reboot} to specify if
            the runtime system is rebooted
            (init:reboot()) or restarted (init:restart()) as the
            result of an upgrade failure.

	{suspend_timeout, Timeout} to override the
            default (5-second) timeout for the sys:suspend/1
            call, used to suspend a process prior to upgrading the
            code.

	{code_change_timeout, Timeout} to override the
            default (5-second) timeout for the sys:change_code/4
            call, used to tell a suspended process to upgrade the code.

	{update_paths, Bool}, used when overriding
            the default lib/App-Vsn
            directory provided in the AppDirs argument in the
            create_RELEASES/4 call. Setting Bool to
            true will cause all code paths
            of the applications in AppDirs to be changed,
            including applications that are not being upgraded. Setting it to
            its default value of false will
            cause only the paths of the upgraded applications to be
            changed.


You might recall that the relup file contains tuples of
      the format {Vsn, Descr, Instructions}. Descr
      is part of the return value when the upgrade or downgrade was
      successful. If {continue_after_restart, OtherVsn, Descr} is
      returned, the runtime system and the core applications are being
      upgraded, requiring an emulator restart before the remainder of the
      script is executed.
If errors we can recover from have occurred, {error,
      Reason} is returned. Recoverable errors include Vsn
      already being the permanent release or the relup file missing, along with others that
      will result in the installation of the release failing, but not
      requiring a node restart. If the upgrade fails due to an unrecoverable
      error, the node is restarted or rebooted.
Installing releases and upgrading code can be a risky and
      time-consuming operation. This function mitigates risks of issues
      happening, checking if Vsn can be installed, ensuring that
      all mandatory files are available and accessible, as well as evaluating
      all low-level instructions in the relup file prior to the point_of_no_return:
release_handler:check_install_release(Vsn)
release_handler:check_install_release(Vsn,Options) ->
    ok | {error, Reason}
Options is a
      list containing [purge], which soft purges the code when
      doing the checks. This will speed up the installation of the release
      itself, as all modules are soft purged prior to the upgrade itself.
When we have installed a new release and executed the instructions
      in the relup file, we keep the nodes under observation, possibly running
      diagnostic tests. If there are issues, restarting the node will use the
      old boot file and cause a restart of the old version. Calling
      make_permanent/1, makes the boot script that points to the
      upgraded release be the one used when rebooting or restarting the
      node. This call can fail for a variety of reasons, including
      Vsn not being the current version or not being a release at
      all:
release_handler:make_permanent(Vsn) -> ok | {error, Reason}
If a release has been made permanent, files specific to old
      releases can be removed. Calling remove_release/1 will delete old applications no
      longer in use, with the Vsn directory containing the .rel, .boot, and sys.config files in the releases/Vsn directory. This call also
      upgrades the available releases in the RELEASES file. It fails if Vsn
      is a permanent or nonexisting release:
release_handler:remove_release(Vsn) -> ok | {error, Reason}
Houston, we have a problem. If your current release is not
      operating as expected and you need to revert to an old release (which
      you have not removed), this call reboots the runtime system with the old
      boot file, making it the new, permanent version:
release_handler:reboot_old_release(Vsn) -> ok | {error, Reason}
This call uses the RELEASES
      file and returns all the releases known to the release handler. Status
      is one of unpacked, current, permanent, or old:
release_handler:which_releases(Status)
release_handler:which_releases() -> [{Name, Vsn, Apps, Status}]
The release_handler module exports functions that
      make it possible to upgrade and downgrade single applications, creating
      a release upgrade script on the fly and evaluating it. These functions
      (which we are not covering in this book) are meant to facilitate and
      automate testing of application upgrades. They should not be used in
      production systems, as the changes are not persistent in the case of
      system restarts.
It is possible to install upgrades without the release handler
      while keeping its view consistent and up to date. This functionality
      comes in handy when dealing with OS-specific packages, when you do
      deployments and upgrades with other tools, or even when you write your own. There
      are functions that allow us to inform the release handler process of the
      addition and removal of releases and release-specific files. You can
      read about these functions as well as the ability to upgrade and
      downgrade single applications in the release_handler manual
      pages that come with the standard Erlang distribution.

Upgrading Environment Variables
When upgrading your release, the new package will include the new (and
      mandatory) sys.config. It will also
      contain a new app file for every new
      and upgraded application. These files might contain new or updated
      application environment variables, or if the files are no longer
      needed, they will have been omitted altogether. During the upgrade,
      the application controller will compare old environment variables with
      their current counterparts in the start scripts (set with the -application
      key value flag),
      config files, and app files, updating any differences
      accordingly. When done, the following callback function is called in the
      new application callback module, prior to resuming the processes:
Module:config_change(Updated, New, Deleted)
Updated, New, and Deleted
      are lists of {Key, Value} tuples, where each key is an
      environment variable and the value is what you want the variable set to.
      This is an optional callback that can be omitted, but is useful when
      process states depend on environment variables read at startup.
Making a release permanent will change the sys.config file pointed to by the start
      scripts to the new version. It is done only now because rebooting a
      node with a release that is not permanent reverts back to the previous
      release.


Upgrading Special Processes
Upgrading special processes is no different from upgrading behaviors. If you
    are doing a simple code replacement, load the new module through the
    add_module instruction. If the upgrade
    has to be a synchronized code replacement, use the same
    update high-level instruction you would use for OTP
    behaviors. Upon receiving a message of the format {system, From,
    Msg}, the special process invokes
    proc_lib:handle_system_msg/6, which suspends the process. (We
    covered system messages in “System Messages”.) If the
    update command had the {advanced,Extra} parameter in its
    Change field, the following callback function is called in
    the special process callback module:
Mod:system_code_change(LoopData, Module, Vsn, Extra) ->
   {ok, NewLoopData}
This call returns the tuple {ok, NewLoopData}.
    Module is the name of the callback module, and Vsn
    is either the version to which you are upgrading or, in the case of a
    downgrade, {downgrade, Vsn}. Vsn is a
    string in both cases.
One final note: remember the system message {get_modules,
    From} that special processes have to handle when they are not aware
    of their dependent modules? Those for which we use the
    dynamic atom in the supervisor specification, covered in
    “Dynamic Modules and Hibernating”? When upgrading, all processes whose
    child specifications in the supervisor have module dependencies set to
    dynamic reply to such a message with From!{modules,
    ModuleList}, containing the list of modules on which the special
    process currently depends. This will inform the release handler
    coordinating synchronized upgrades if this special process is part of a
    dependency chain and should be suspended during the upgrade of a
    particular module.

Upgrading in Distributed Environments
Synchronized software upgrades in distributed environments? Is that possible? Are
    we crazy enough to try it? If you have a small cluster, trust your
    network, and have dependencies connected to your upgrade across your
    nodes, then why not? Remember that distributed Erlang was originally
    intended for clusters that ran behind firewalls in the same data center,
    and more often than not, also in the same subrack. If you were upgrading a
    switch, distributed Erlang often ran on the same backplane the switch was
    controlling, so if you lost your network, there was nothing to control
    because you also lost your switch.
In a small cluster with a few nodes running in the same subrack, you
    have little to worry about. For larger clusters, clusters across data
    centers, or where networks are unreliable, devise a strategy to upgrade a
    node without the need to synchronize.
Enough warnings. Let’s drink some Red Bull and get on with it. If
    you include the sync_nodes
    low-level instruction in your .appup
    file, the relup script that gets
    generated will synchronize with the other nodes also waiting to be
    upgraded and upgrade them too when they are also attempting to
    synchronize.
Synchronization is triggered by one of the following instructions:
    
{sync_nodes, Id, NodeList}
{sync_nodes, Id, {Mod,Func,ArgList}}
You can either hardcode
    NodeList in the .appup
    file, as in the first instruction, or use the second instruction to invoke
    apply(Mod, Func, ArgList) to get the list of nodes that
    recognize Id, which are the nodes to synchronize.
    Id can be any valid Erlang term. For the synchronization to
    be successful, remote nodes must be executing the same instruction with
    the same Id.
If you lose connectivity toward a remote node with which you are
    attempting to synchronize, either because of a network partition or
    because the remote node crashed, the node is restarted with the old
    release. There is no timeout, so if a remote node is not being upgraded or
    is out of sync, the local node attempting to upgrade will hang until all
    remote nodes have executed sync_nodes
    or connectivity toward one of the nodes is lost. This is why the technique
    in this section has some risks for nodes distributed across a wide-area
    network.
If you have not synchronized your upgrades properly, your cluster
    will hang waiting for all the other nodes. And if there are issues with your
    network connectivity or the upgrade in one of the other nodes fails, you
    will trigger a series of node restarts that will hopefully recover and
    continuing running the old release. But in the worst case, this technique
    might cause a cascading failure where you knock out one node after another
    when they fail to cope with the restart. You have been warned! Use
    synchronized distributed upgrades only when it is safe and the use case
    motivates it. If in doubt, perform rolling upgrades across your cluster
    instead, one node at a time, after making sure that nodes running the new
    release are interoperable with those still running the old.

Upgrading the Emulator and Core Applications
You upgrade the emulator and the core applications by providing their new
    versions in the new release file.
    The rest is taken care of for you when generating the relup file. Just remember to include the
    erts option in the systools:make_tar/2 call when
    upgrading the Erlang runtime system, as it will include the emulator in
    the new tar file. If you think it sounds simple, it is, but there are a
    few catches of which you need to be aware.
Upgrading the emulator and core applications
    (erts, kernel,
    stdlib, and sasl) requires a
    restart of the virtual machine, usually triggered by the restart_new_emulator
    instruction. Unlike with other upgrades, this will be the first instruction
    executed in the file, starting the new emulator and the new core
    applications, together with the old versions of the remaining
    applications. This two-phase approach allows the remaining behaviors and
    special processes being upgraded to call code_change as part
    of their upgrade, using new versions of the core applications while doing
    so.
If you are not happy with this approach, you can edit the relup file by hand. Replacing
    restart_new_emulator with the restart_emulator
    instruction will restart the emulator with the new versions for all
    applications. A restart of the emulator (which is not the new emulator) is
    the last instruction you should be executing in your relup file, as all it does is restart the
    system with the new boot file. This means that any instructions that
    follow restart_emulator are ignored, while any instructions
    before it are executed with the old emulator. A helpful instruction you
    have to add manually is apply, which
    you could use instead of code_change if opting to start the
    new versions of the applications directly.
Non–backward-Compatible Upgrades and Downgrades
There will be times when, as a result of the restart_new_emulator instruction, you restart
      old applications that you plan on subsequently upgrading with the new
      core applications. If the upgrade spans several releases, you might run
      the risk of your noncore applications calling deprecated functions in
      the core applications that have since been removed. Deprecated functions
      are kept for two major releases, with warnings printed out when you
      compile the code that uses them, after which you can safely remove the
      functions. The solution is to replace any deprecated functions as soon
      as possible, and upgrade in several steps while testing the upgrades to
      ensure that all applications are forward-compatible.
If you are still running an emulator version older than R15 (and
      we know many of you are), you might run into problems when downgrading,
      as an attempt to load the new versions of the beam files will be made
      after restarting the old emulator. If you are affected, compile your new
      code with the old emulator and its corresponding version of the
      compiler.
In both of these edge cases, testing upgrades and downgrades is
      critical and will at a very early stage highlight any potential issues
      and incompatibilities.


Upgrades with Rebar3
Now that you understand all the details of upgrades, let’s look at how to do them
    using the rebar3 tool introduced in
    “Rebar3”. First, let’s use rebar3 to build a release, starting again with
    the code from coffee-1.0. The
    required commands are similar to those we used in “Rebar3”:
$ mkdir ernie
$ cd ernie2
$ rebar3 new release coffee desc="Coffee Machine Controller"
$ cd coffee
$ perl -i -pe 's/0\.1\.0/1.0/' ./apps/coffee/src/coffee.app.src ./rebar.config
$ cp <path-to-coffee-1.0>/coffee-1.0/src/*.erl apps/coffee/src
$ rebar3 as prod compile
===> Verifying dependencies...
===> Compiling coffee
_build/default/lib/coffee/src/coffee_fsm.erl:2:
  Warning: undefined callback function code_change/4 (behaviour 'gen_fsm')
_build/default/lib/coffee/src/coffee_fsm.erl:2:
  Warning: undefined callback function handle_event/3 (behaviour 'gen_fsm')
_build/default/lib/coffee/src/coffee_fsm.erl:2:
  Warning: undefined callback function handle_info/3 (behaviour 'gen_fsm')
_build/default/lib/coffee/src/coffee_fsm.erl:2:
  Warning: undefined callback function handle_sync_event/4 (behaviour 'gen_fsm')
$ rebar3 as prod release
===> Verifying dependencies...
===> Compiling coffee
...<snip>....
===> Starting relx build process ...
===> Resolving OTP Applications from directories:
          /Users/francescoc/ernie2/coffee/_build/prod/lib
          /Users/francescoc/ernie2/coffee/apps
          /usr/local/lib/erlang/lib
          /Users/francescoc/ernie2/coffee/_build/prod/rel
===> Resolved coffee-1.0
===> Including Erts from /usr/local/lib/erlang
===> release successfully created!
We use the rebar3 release
    template to set up an area for our coffee application, change
    the version number to 1.0, copy our coffee-1.0 sources into
    the new release area, run rebar3
    compile to verify that the code is valid (which, as we saw
    previously, results in compilation warnings from compiling coffee_fsm.erl due to missing callback
    functions), and then build a release using the prod profile.
    We can now start our release to make sure it runs correctly:
$ ./_build/prod/rel/coffee/bin/coffee console
...<snip>....
Machine:Rebooted Hardware
Display:Make Your Selection

=PROGRESS REPORT==== 24-Jan-2016::16:06:10 ===
          supervisor: {local,sasl_safe_sup}
             started: [{pid,<0.213.0>},
                       {id,alarm_handler},
                       {mfargs,{alarm_handler,start_link,[]}},
                       {restart_type,permanent},
                       {shutdown,2000},
                       {child_type,worker}]
...<snip>....
=PROGRESS REPORT==== 24-Jan-2016::16:06:10 ===
         application: sasl
          started_at: coffee@francescoc
Eshell V7.2  (abort with ^G)
(coffee@francescoc)1> application:which_applications().
[{sasl,"SASL  CXC 138 11","2.6.1"},
 {coffee,"Coffee Machine Controller","1.0"},
 {stdlib,"ERTS  CXC 138 10","2.7"},
 {kernel,"ERTS  CXC 138 10","4.1.1"}]
This gives us a release for coffee version 1.0.
    Next, we need a release for version 1.1, so we copy that version of
    coffee_fsm.erl into our source
    directory, bump our version numbers, and then generate a new
    release:
$ cp <path-to-coffee-1.1>/coffee-1.1/src/coffee_fsm.erl apps/coffee/src
$ perl -i -pe 's/1\.0/1.1/' ./apps/coffee/src/coffee.app.src ./rebar.config
$ rebar3 as prod release
===> Verifying dependencies...
===> Compiling coffee
...<snip>....
===> Resolved coffee-1.1
===> Including Erts from /usr/local/lib/erlang
===> release successfully created!
Before we can generate a relup
    file, we need our coffee.appup file.
    Because rebar3 doesn’t create an ebin
    directory in the usual place, we create one, copy the coffee.appup file there, and then use the
    rebar3 relup command:
$ mkdir apps/coffee/ebin
$ cp <path-to-coffee-1.1>/coffee-1.1/ebin/coffee.appup apps/coffee/ebin
$ rebar3 as prod relup
===> Verifying dependencies...
===> Compiling coffee
===> Starting relx build process ...
...<snip>....
===> Resolved coffee-1.1
===> Including Erts from /usr/local/lib/erlang
===> release successfully created!
===> Starting relx build process ...
...<snip>....
===> Resolved coffee-1.1
===> relup successfully created!
If we look at the contents of the generated
    relup file, we find that it’s identical to that
    generated by systools:make_relup/4 in “Release Upgrade Files”:
$ cat ./_build/prod/rel/coffee/relup
{"1.1",
 [{"1.0",[],
   [{load_object_code,{coffee,"1.1",[coffee_fsm]}},
    point_of_no_return,
    {suspend,[coffee_fsm]},
    {load,{coffee_fsm,brutal_purge,brutal_purge}},
    {code_change,up,[{coffee_fsm,{}}]},
    {resume,[coffee_fsm]}]}],
 [{"1.0",[],
   [{load_object_code,{coffee,"1.0",[coffee_fsm]}},
    point_of_no_return,
    {suspend,[coffee_fsm]},
    {code_change,down,[{coffee_fsm,{}}]},
    {load,{coffee_fsm,brutal_purge,brutal_purge}},
    {resume,[coffee_fsm]}]}]}.
From here, you can create a tarball with rebar3 as prod tar and install and upgrade as
    shown in “Installing an Upgrade”.
Assuming you use rebar3 as your
    build and release tool, it’s worth your while to check out the relflow tool,
    written by Richard Jones. It is purpose-built for systems that use Git for
    version control and rebar3 to generate
    releases and upgrades, and it is designed to address all the tedious parts of
    upgrades, such as bumping version numbers and creating .appup files.

Summing Up
As with most things we’ve seen in this book, Erlang provides
    powerful basic language constructs that OTP uses to build libraries and
    frameworks that hide complexity, simplifying the development, deployment,
    and maintenance of Erlang-based systems. Starting with
    code:load_file/1, which handles the loading of a module in
    your runtime system, we looked at how to manage state changes in
    processes, database schema changes together with synchronization of
    processes and their dependencies, and dependencies in distributed
    environments.
In order to upgrade a target system, you need to start with a
    baseline installation. It will usually be the first release, the one you
    created manually. Unless you were using rebar3, it has to be a manual task, because most
    of the release-upgrade tools are written in Erlang and will not run
    without your baseline system. It’s a classic chicken-and-egg
    problem.
With the baseline release in place, you need to follow these steps
    to successfully upgrade your system. Don’t panic, as a lot of these steps are
    either automated, handled by existing tools, or both: 
	Add the new functionality, package it into the respective
          modules and applications, and bump up the module and application
          versions.

	Create the new rel file
          containing new and upgraded applications while omitting the deleted
          ones.

	Generate your start scripts and new sys.config file, ensuring you can boot
          the new release on its own.

	If any of your behaviors or special processes require a state
          change or use a different data format (including database schema
          changes) as part of the upgrade, migrate your state and data format
          from the old version to the new one and back in your
          code_change functions.

	Write an .appup file for
          each application you are upgrading. Place these files in the
          ebin directory.

	Create a relup file
          containing all the low-level instructions executed during the
          upgrade.

	Create a package that you can deploy in the releases directory
          of the installation you are upgrading.

	Unpack the release and install it.

	If stable, make your new release permanent. If unstable,
          reboot the node, restarting the old release.


Once the release is unpacked, a number of transitions can take place
    on the node being upgraded. When you install a release and the upgrade is
    successful, the system starts running the new version. If the upgrade
    fails for any reason, the system is rebooted and reverts to the previous
    version. When running the new version, it can be made permanent. When this
    happens, any subsequent node restart will restart the latest version
    (Figure 12-6).
[image: ]Figure 12-6. Upgrading a release

We also covered upgrades in distributed environments, which allow
    you to synchronize the nodes. This happens in the real world, but only for
    very small clusters where the network is reliable. If you are dealing with
    distributed data centers, cloud computing, virtualization, as well as lots
    of other layers of complexity and instability, you need to take a
    different approach to upgrades. Make sure that old and new nodes are
    backward-compatible and interoperable with each other, allowing them to
    coexist in the same cluster. Upgrade a few nodes, monitor them to ensure
    all is well, and keep on upgrading. If you lose a few machines or get a
    network partition or upgrade failures, keep on trying until all nodes have
    been successfully upgraded.
Let’s take this argument a step further. For clusters where you have
    no single point of failure with multiple instances of the nodes running,
    do live upgrades really make sense? If you are able to do a rolling
    upgrade, cleanly shutting down nodes without losing any requests and
    stopping traffic, isn’t it easier to shut down one node at a time, upgrade
    its code, then restart it to bring it back into the cluster? You would be
    able to upgrade your code without showing the embarrassing Our system is down for maintenance, bear with us, we are
    doing this because your business is important and we value you as a
    customer screen most online banks show us a little too
    frequently, and ensuring that you do not lose any requests as a result of
    the upgrade.
How you do your upgrades depends entirely on the size of your
    cluster, the infrastructure you have in place to control it, your
    redundant capacity, and the experience and size of your team. Software
    upgrades take time and money to implement, test, and deploy. And if things
    go wrong, most of the time, they will go wrong during an upgrade. If you
    are a startup that does not have to provide 99.999% availability, no one
    will care whether you bounce your nodes every now and then. If you are
    upgrading tens of thousands of switches, however, where each switch
    handles traffic for millions of subscribers with contractual penalties for
    downtime and outages, or an e-commerce site generating thousands of
    dollars in revenue every minute, users will care!
Software upgrades are a unique and powerful feature you can use in
    rare, but critical, moments. Use them where the extra effort makes sense,
    ensuring you test your upgrades and downgrades under heavy load, covering
    as many failure scenarios as possible.
If this chapter is not enough, the user guides and reference
    manuals, along with the module documentation that comes with the standard
    Erlang distribution, contain scattered but detailed information on release
    upgrades. You should start with the section on “Creating and Upgrading a Target System” in the
    OTP System Principles User’s Guide. Tools
    are covered in the module documentation for systools and release_handler. Finally, relup and .appup files both have manual pages that describe
    the formats of the files, including all the instructions they may contain.
    Don’t miss the “Appup Cookbook” chapter
    in the OTP Design Principles User’s Guide. The same
    guide also contains descriptions of the code_change functions
    in the respective sections for every behavior and special process.
At the end of the day, though, our advice echoes what we recommended
    in the previous chapter: it’s important to understand the underlying
    concepts, tools, and procedures, but unless your project requires
    extremely special considerations, you’re best off using rebar3. It will handle many of the tedious tasks
    associated with releases and upgrades, can be extended if necessary, and
    has community support that you’ll find helpful if you need advice or
    assistance.

What’s Next?
With the knowledge provided in this chapter on how to package
    releases and perform live upgrades without affecting traffic, the time has
    come to look at how to architect a system. If you want a system with five-nines availability, what basic functionality should all of your production
    nodes have? What distributed architectural patterns should you be applying
    to get your nodes to scale? In the next chapter, we look at what it takes.
    So what are you waiting for? Turn the page and read on!

1 Please don’t ask us about this one!


Chapter 13. Distributed Architectures
Previous chapters have described the implementation of a single, simple node. A node
  is the smallest executable standalone unit consisting of a running instance
  of the Erlang runtime system. In this chapter we start to show how to expand
  from single nodes to distributed systems comprising multiple nodes. We try
  to help you figure out how to achieve availability, scalability, and
  consistency across these nodes. These qualities go hand in hand with
  reliability, which ensures that your system behaves correctly even under
  abnormal circumstances such as failure or extreme load.
Each node consists of a number of loosely coupled OTP applications,
  defined in its OTP release file. An OTP release determines the services the
  node provides and tasks it is capable of handling. Nodes that share a
  release file contain the same set of OTP applications and are considered to
  be nodes of the same type.
Nodes of one type can interact in a cluster with other node types to
  provide the system’s end-to-end functionality. An Erlang system can comprise
  just one standalone node, but more typically consists of multiple nodes
  grouped in one or more clusters.
Clusters are needed for a variety of reasons. You might be
  implementing a microservices architecture, where each cluster of nodes
  provides a set of services. Or you might use clusters for scalability,
  sharding across identical clusters to increase computing power and
  availability. When dealing with distributed Erlang systems, which run on
  hybrid target environments in potentially geographically remote data
  centers, there is no single solution that fits all contexts. The lack of a
  single solution also means that tools and frameworks dealing with
  monitoring, management, and orchestration of Erlang nodes have to cater to
  different cluster patterns. Some tools might be ideal when dealing with
  deployments on Amazon or Rackspace, but they will not work on Parallela or
  Raspberry Pi clusters. Other tools will work best when deploying on bare
  metal, but not as well in virtual environments.
In this chapter and the next few, we cover the first steps involved in
  designing your distributed architecture. This chapter starts by looking at
  Erlang node types and describes how they are grouped together and interact
  with each other. This should help you determine how to split up your system
  into standalone nodes, each offering specific services. We describe the most
  common distributed architectural patterns used to provide these services and
  introduce some of the most popular distributed frameworks, such as “Riak Core” and “Scalable Distributed Erlang”.
Although distributed Erlang will work out of the box, it is not always
  the right tool for the job. We cover other networking approaches you might
  need when connecting your Erlang and non-Erlang nodes to each other. We
  conclude by giving you a high-level approach on how to start defining the
  interfaces and data models of the individual node types.
Node Types and Families
Until recently, there were no common definitions covering distributed Erlang systems.
    OTP did a great job defining the individual components of a single node,
    but stopped short of describing how nodes are grouped together and how
    they interact in clusters. Although there was no ambiguity when developers
    in remote parts of the world spoke about generic servers, applications, or
    releases, confusion arose when trying to discuss clusters, the roles of
    nodes in clusters, or scalability patterns. These definitions were
    discussed and formalized1 as part of the RELEASE project, EU-funded research addressing the
    scalability of the Erlang VM in distributed, many-core architectures.
    Before we start talking about distributed architectures, let’s define our
    terminology.
Imagine a system consisting of three Erlang nodes. The first node
    runs web servers that keep pools of TCP connections open toward the
    clients. Clients could be mobile apps or web browsers. This receives HTTP
    requests, parses them into Erlang terms, and forwards them to a second
    node that handles the business logic of the system.
In handling the requests, the second node might interact with other
    nodes, each providing some form of service. For the sake of simplicity,
    let’s assume it’s a database node, possibly (but not necessarily) written
    in Erlang. To the end user, this all appears as a single system accessed
    as a black box. Erlang, the multiple nodes, and the distribution layer
    among the nodes are all hidden from the client users.
Figure 13-1 is an example of three semantic node types that classify the functionality and purpose of the nodes in the
    cluster. Multiple node instances of the same type could be running
    different versions of the same release. We run multiple instances of a
    single node for availability and scalability. We cover these topics in
    more detail in Chapter 14 and Chapter 15.
[image: ]Figure 13-1. Semantic node types

The web server node is what we refer to as a front-end node.
    Front-end nodes are responsible for providing external connectivity to
    clients and handling all incoming requests. They act as gateways, keeping
    client connections open as needed, formatting inbound requests and
    outbound responses, and passing the requests onward to the nodes handling
    the business logic. They are part of the server-side software, serving,
    but not running, the presentation layer.
Logic nodes, also commonly referred to as back-end
    nodes, implement the system’s business logic. They contain all
    of the code needed to handle client requests forwarded from the front-end
    nodes. They might also cache session data and access external services in
    other nodes when handling requests.
Finally, we have service nodes,
    which provide a service to the logic nodes. Such a service could
    be a database, an authentication server, or a payment gateway. Service
    nodes could themselves provide connectivity toward third-party services
    and APIs.
Node types are merely a way for us to describe the overall
    responsibility of each node. A single node, especially in small or simple
    systems, could have multiple responsibilities and act as both front-end
    and logic node, and even a service node, all in one. Think of a node that
    runs an Erlang web server (such as Yaws, Webmachine, or Cowboy),
    Erlang/OTP glue and business logic, and an Erlang database (such as
    Mnesia, CouchDB, or Riak) all in the same virtual machine. Combining all
    such applications into a single node like this reduces internode I/O and
    networking overhead by running everything in the same memory space, but it
    also produces a single point of failure and an architecture that might not
    scale. In contrast, in a multinode system, the responsibilities of the
    node types are spread across multiple nodes for maintainability,
    scalability, and availability.
When splitting your functionality into node types, try to keep
    memory-bound and CPU-bound functionality in separate nodes. That
    facilitates the fine-tuning of the VM and gives you flexibility in
    choosing the underlying hardware, optimizing for cost and performance. It
    also allows you to minimize the risk of a system failure, because not only
    are simple nodes easier to implement and test, but when they do fail, they
    will not affect the other nodes to the same extent as if all applications
    were running in the same node. A surge in simultaneous requests that
    causes a node to run out of memory should not affect the user database or
    the client connections. (We discuss how to handle surges in “Load Regulation and Backpressure”.)
We group node types running the same OTP release into a node family. This
    is a way of managing nodes as a single entity. You can have different node
    families with the same release, but grouped together based on criteria
    such as data center, cloud region, or even release version. Node families
    are then grouped into clusters, which
    together give you your system. Multiple
    clusters in systems are used to increase availability, reliability, and
    scalability, spreading services geographically across different data
    centers, possibly managed by different cloud or infrastructure
    providers.
To better understand the role of individual
    nodes, let’s go into more detail using the example that we started looking
    at in Figure 13-1: an Erlang system that handles HTTP
    requests. We use it here and in the next two chapters to describe various
    concepts and tradeoffs we have to make when dealing with distributed
    systems.
Picture a system handling the back-end services of an e-commerce
    application. We focus on the login request originating from a client to
    the system. The client sends a login request using a RESTful API with data
    transmitted as JSON over HTTP. This request could originate from a mobile
    app or a web browser. The request is received by a web server running on
    the front-end nodes, which parses it into Erlang terms and
    forwards them to the logic node. The terms forwarded include the login request,
    the user ID, and the encrypted password.
The logic node checks the validity of the request and authenticates
    the user via an authentication server. If successful, a session ID and
    record are created and cached locally in the logic node. It returns the
    session ID back to the front-end server, which encodes it and returns it
    to the client with the acknowledgment that the login request was
    successful. The client uses the session ID in all subsequent communication for the duration
    of the session, and in each subsequent client request this ID is passed to
    the logic node and used to retrieve the record.
Regardless of whether you are using the three-layer architecture in
    Figure 13-1 or some other architectural pattern, the
    logic node is an important intermediary and checkpoint. Avoid having
    front-end nodes communicating directly with service nodes. Although it’s not illegal, it often leads to
    poor system structure and confusion when trying to understand the system
    from an architectural view.
We add multiple instances of node types in our architecture to
    create distributed cluster patterns, also known as system blueprints. If
    you are happy with a static architecture that scales by adding independent
    instances of the system that do not interact with each other, the
    blueprint is easy. If your system scales to 1,000,000 simultaneously
    connected users executing 100,000 requests per second, roll out one per
    country and route user requests by pairing the inbound IP address to a
    geographical location. But if your app is a global online store that
    scales dynamically based on peaks and troughs, elastically adding
    computing capacity in the run-up to events such as payday, Black Friday,
    and Christmas and then releasing it again when not needed, extra thought
    needs to be put into the system from the start.
Both static and dynamic approaches to node (and hardware) management
    in your cluster go hand in hand with the strategies of how you distribute
    your data across nodes, node families, and ultimately clusters. How you
    connect your nodes and clusters together also becomes important, as does
    your data replication strategy across them. Users are logged on to the
    system and shopping away. Do you keep copies of their session data in all
    nodes or just some nodes? And every time a customer adds an item to a
    shopping basket, how are the changes propagated to other nodes? What
    happens if there is a network partition or failure? Or what about a
    software error or a node terminating? We cover these design choices in
    Chapter 14. They boil down to tradeoffs
    between availability, reliability, consistency, and scalability. What you
    need to do early on is understand the compromises that fit the needs of
    the system you are architecting and the end-user experience you want to
    provide.

Networking
So far, we’ve been talking about front-end nodes communicating with logic
    nodes, which in turn send requests to service nodes. We haven’t mentioned
    distributed Erlang, because while it’s ideal for smaller clusters within
    the same data center, it is not always the right solution when multidata
    center deployments, security, availability, and massive scalability come
    into the picture. In some cases, when lots of data needs to be
    transferred, a single socket becomes a bottleneck and you might want to use pools of connections
    found in libraries such as ranch or
    poolboy. RESTful APIs give you platform independence, as do other protocols such as AMQP, SNMP,
    MQTT, and XMPP. Distributed Erlang might still fit your needs, but rather
    than running it over TCP you might want to use alternative carriers such
    as 0MQ, UDP, SSL, or MPI.
In some systems, the network topology will go as far as providing
    different networks for different types of traffic. Traffic handling
    monitoring, billing, configuration, and maintenance would go through an
    operations and maintenance
    (O&M network), while traffic such as setting up of calls, instant messages,
    SMSs, or telemetry data would be routed through a data network. You would
    split them, as the data network would have higher bandwidth and
    availability requirements than the O&M one. You should avoid stopping
    or slowing down users playing a massively multiuser online game, but can
    get away with a delay in moving and processing billing records.
Demonstrating networking choices with our example will help clarify
    the choices you have to make. If you are concerned about security in your
    e-commerce site, you might want to place your front-end nodes in a
    demilitarized zone (DMZ), also known as a perimeter network (Figure 13-2). This is a
    physical or logical part of the network that exposes your nodes to an
    untrusted network (i.e., the Internet) used by the clients to access your
    services. DMZs were traditionally implemented in the hardware through the
    arrangement of managed network elements, and in the software using
    firewalls and other security measures. In cloud computing
    environments you do not get the hardware component, and have to instead
    mimic it through network connections and firewall rules. The end result,
    however, is still the same. By creating an additional layer of security
    around your back-end nodes, you reduce the risk of intrusion in your
    logical and service nodes by not exposing their interfaces.
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If you were to use distributed Erlang, access to your front-end
    nodes would pretty much also mean access to your logic and service nodes
    as well. Gone are the days when no one knew about Erlang and when security
    through obscurity was enough to safeguard you. You must use sockets,
    possibly even encrypted sockets, between the web server and the nodes
    running the business logic, authenticating every request and checking its
    validity. Communication between the nodes running your business logic and
    your databases, however, takes place behind a firewall in what is
    considered to be a safe environment. The nodes can communicate
    transparently with each other using distributed Erlang.
Fallacies of Distributed Computing
If you think that your network is reliable and network partitions are rare, think
      again! Network issues occur when you least expect them, and if you are
      not handling all possible edge cases, the consequences and side effects
      can be disastrous. These are the “fallacies of distributed computing”
      described by Peter Deutsch and his associates decades ago, but just as
      relevant to the systems we design today.
If network connectivity to a remote node goes down or gets
      congested, how do you know it is a network issue, and not the remote
      node that has crashed or is slow at responding? Do you send back an
      error, or do you retry executing the call on a different node? And if
      you retry on a different node, how can you be sure the request you sent
      to the first node didn’t already result in persistent side effects, with
      the network error or crash occurring before the node could send you back
      a reply? It is impossible to differentiate between a node crash and a
      slow node. Despite this, you need to make sure you have mapped all
      errors that can occur in every workflow associated with your
      requests.
Also keep in mind that operations across nodes result in higher
      CPU and I/O usage than operations executed locally as you have
      serialization costs, virtualized network interfaces, and the need to
      handle the protocols. Bandwidth is not unlimited and network latency
      affects the end-to-end performance of your requests. Keep all of this in
      mind when distributing your load, stress-testing your system, and
      fine-tuning it. It is not just about software; the behavior of your
      hardware and infrastructure is just as critical. Nodes and machines come
      and go during the lifetime of your system, something your program needs
      to handle effectively along with network topology changes.
Finally, remember your friendly system administrator, because
      there are administrators who sometimes do not follow procedures, make
      mistakes, or ignore warnings. The original fallacies paper makes the
      point that the network administrator might not even belong to the same
      organization. It is not just about the risk of an administrator tripping
      over the network cables, messing up configurations, or simply having
      different views on and strategies for how topologies should be managed.
      The basic issue is how your software handles these events and views of
      the world. Can your software manage twice the load on a particular node
      resulting from a load balancer or firewall misconfiguration?
Achieving resilience becomes even more difficult if you are using
      cloud infrastructure and do not control the network or know its
      topology, because partitions in those environments can be hard to
      understand and troubleshoot. Cloud computing typically has slower
      instances and busier networks, making the task even harder.

Distributed Erlang
There are two approaches to implementing your architecture using
      distributed Erlang. A static cluster has a fixed number of known parameters with
      fixed identities (hostnames, IPs, MAC addresses, etc.). It isn’t
      provisioned to scale dynamically. In a dynamic cluster, the number of identities and nodes
      changes at runtime. In both cases, your system needs to be implemented
      with transitive connections in mind, because either network connectivity
      or the nodes themselves can fail (and restart). The only difference
      between a static and a dynamic system is that in the latter, alongside
      failing, nodes are started and stopped in a more controlled way. In a
      static system, they don’t stop unless they fail.
Distributed Erlang clusters that are fully connected (Figure 13-3) are ideal for systems of certain size
      and requirements, but as we have said many times before, there is no
      “one size fits all” solution. Based on your node configuration and the
      size and frequency of messages sent across nodes, fully meshed Erlang
      clusters scale at the time of writing to about 70 to 100 nodes before
      performance degradation starts becoming evident. When a new node is
      added to the cluster, information on all visible (nonhidden) nodes that
      share the secret cookie gets propagated to it, connections are set up,
      and monitoring kicks in. So, with 100 connected nodes, you get 5,050 TCP
      connections (100+99+...+2+1) and heartbeats across them all, creating
      overhead in both the node and the network. Other single-process
      bottlenecks exist as well, such as rex, which handles Erlang remote
      procedure calls (RPCs), or the net kernel, which remotely spawns processes and deals
      with network monitoring.
How far you are able to scale your fully meshed distributed Erlang
      cluster depends on the characteristics of your system. Hidden nodes,
      covered in “Node Connections and Visibility”, act as gateways stopping the
      propagation of information across clusters of fully meshed nodes. They
      provide you with isolation and scalability, but you have to build
      frameworks that sit on top of them. You might be better off looking at
      alternative approaches or existing frameworks such as Riak Core and SD
      Erlang, which are covered in the following subsections.
Finally, you can create a special build that uses SSL as a bearer of Erlang distribution instead of plain
      TCP. You can read more about it in the “Using SSL for Erlang
      Distribution” section of the Secure Socket Layer User’s Guide.
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Using Pids
If you are using process IDs instead of registered names across
        distributed Erlang clusters, keep in mind that if the remote node
        crashes and restarts, the pid on the restarted node might be reused.
        This could result in a process other than the intended one receiving
        your message. Always monitor remote nodes and processes, and take
        appropriate action if failure is detected. There is a counter for
        process IDs across nodes that gives you one or more generations of
        restarts with reused pids to avoid the problem, at least as long as
        the Erlang port mapper daemon (epmd) is
        alive.

Riak Core
Riak Core is a framework that provides an eventually consistent
        replicated data model on a system of masterless peer nodes providing
        high availability and helping guarantee no single point of failure. It
        is built on top of distributed Erlang and is the foundation of the
        distributed Riak key-value store, based on ideas from the 2007 Dynamo paper from Amazon. It
        is an ideal framework for systems that require high availability and
        the need to self-heal after node or network failures. Fully explaining
        all the details of Riak Core would require a book of its own, so we
        cover just the highlights that make it a serious contender in the
        distributed frameworks space.
Riak Core runs on a cluster of physical nodes overlaid with a
        system of virtual nodes, also known as vnodes.
        The number of vnodes is configurable, but a typical Riak
        Core cluster includes 15–20 physical nodes that collectively host 256
        vnodes. Each vnode claims a range of the 160-bit integer space of the
        SHA-1 hash function, which Riak Core uses as the basis of its consistent
        hashing system. Consistent hashing spreads key-value data
        evenly across the cluster while minimizing the amount of data
        relocation required as physical nodes are operationally added to or
        removed from the cluster.
To store data in a Riak Core cluster, a client sends a write
        request including both key and value. Riak Core hashes the key to
        obtain its hash value, then determines which vnode owns the range of
        160-bit values that includes that hash value. Because Riak Core
        replicates each write, it first determines the replication factor for
        the request, which is called N and typically
        defaults to 3. It then stores N copies of the data,
        one in that primary vnode and the rest in the vnodes that respectively
        own the next N–1 hash ranges. Riak Core considers
        the write complete when the number of written copies equals the write
        factor, W. By default, W is
        N/2+1, which is 2 if N is
        3.
To read data from a cluster, a client sends a request including
        the key. Riak Core first hashes the key to determine the primary vnode
        that should be holding the requested value. It then requests the value
        from that vnode and the N–1 next consecutive
        vnodes, and waits for the read factor, called R, to
        be fulfilled. Like W, by default
        R is N/2+1, which is 2 when
        N is 3. Once two copies of the value are
        successfully read, Riak Core returns the requested value to the
        client.
When a Riak Core cluster is first created, its physical nodes
        claim ownership of vnodes such that adjacent vnodes are not stored on
        the same physical node. Thus, by storing replicas in consecutive
        vnodes, and assuming the cluster comprises at least the minimum
        recommended five physical nodes, Riak Core tries its best to guarantee
        the replicas are stored on different nodes. Should any physical node
        crash or become unreachable, the other replicas can still respond to
        requests for reading or writing that data, thus providing availability
        even if the cluster is partitioned. The arrangement of vnodes on
        physical nodes is made clear in Figure 13-4, where, when
        looking up a value, the hash of the key points to the vnode, which in
        turn points to the primary Erlang node responsible for that
        value.
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One advantage of using vnodes and consistent hashing pertains to
        the reshuffling that takes place when nodes get added or taken out of
        service. Assume that our cluster in Figure 13-4 has 16
        nodes and we take node 1 permanently out of service. Riak Core
        redistributes vnodes 1, 17, 33, and 49 across existing nodes without
        needing to reshuffle all of the data across all nodes. The vnodes that
        are on the nodes still in service stay put. And if a new node is put
        into production, four vnodes will be moved to it from their current
        locations, affecting only the nodes where the vnodes are
        located.
Riak Core nodes are peers, and there is no master node. Nodes
        use a gossip protocol to
        communicate shared information such as cluster topology changes and
        the vnode claims to other randomly selected nodes. If updates to the
        cluster topology were missed on particular nodes for whatever reason,
        the gossip protocol forwards these changes, ensuring that the system
        heals itself.
Riak Core uses hinted
        handoffs to ensure that N copies of the data are stored,
        even if the primary vnode or some of the replica vnodes are down or
        unreachable because of a network partition. In such a case, Riak Core
        stores the data in an alternative vnode and gives that vnode a hint as
        to where the data really should be stored. When the unreachable vnodes
        again become available, the alternative vnodes hand the data off to
        them, thereby healing the system. Hinted handoffs are part of Riak
        Core’s sloppy quorums. Writes
        require W acknowledgments to be
        considered successful, and similarly reads are considered successful
        with R results, but Riak doesn’t care whether those
        quorums comprise primary or alternative vnodes (hence the term
        “sloppy”). If Riak were to instead use strict quorums,
        which consist only of primary vnodes, the result would be diminished
        system availability when primaries were down or unreachable.
As soon as we start distributing data and states across
        replicas, we introduce uncertainty. How do we know an operation was
        successfully replicated to all nodes? What if, because of partitions
        or node, network, hardware, or software failures, data becomes
        inconsistent?
In cases where nodes return different values without achieving a
        quorum, Riak Core tries to resolve the conflicting values using dotted version
        vectors (DVVs). DVVs provide a way for Riak Core to
        identify a partial ordering of write events for a given value that can
        help determine which of the values is the correct one. This ordering
        is based not on timestamps, which are too unreliable and too difficult
        to keep synchronized across a cluster of nodes, but rather on logical
        clocks based on monotonically increasing counters at each node that
        acts on the value. If the DVV information is not enough to resolve the
        conflict, all conflicting values of the state are returned to the
        client as sibling values, and the conflict must then be resolved by
        the client application, presumably using domain-specific knowledge to
        make its decision.
So, how does Riak Core help us implement our distributed
        architecture? Although you are still limited to a maximum of a hundred
        nodes in your core, you can use these nodes as hubs or gateways to
        other clusters, as shown in Figure 13-5. Logic nodes
        running Riak Core create a fully meshed ring used for messaging, job
        scheduling, and routing requests to service nodes, or to act as
        gateways to other clusters.
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Figure 13-6 uses another approach for
        massive scalability: a star architecture, where service nodes
        connected to each other can be used for storage and analytics
        purposes, increasing and decreasing in size dynamically based on load.
        Both patterns serve their purpose and overcome the scalability issues
        encountered with fully meshed networks. More complex patterns are
        available as well, as are simpler ones. Some include running multiple
        Riak Core clusters connected to each other via hidden nodes acting as
        gateways.
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If consistent hashing and Riak Core are the right approach for
        the problems you’re solving, you may also want to look at the NkCLUSTER
        application, a layer on top of Riak Core written to create and manage
        clusters of Erlang nodes and to distribute and schedule jobs on the
        cluster. NkDIST is a
        library that evenly distributes processes, automatically moving
        them when the Riak Core cluster is rebalanced through the addition or
        removal of nodes. You can find NkDIST and
        NkCLUSTER documentation in their respective GitHub pages
        and repositories.
For further reading on Riak Core, we recommend Mariano Guerra’s Little Riak Core
        Book on GitHub.
        You can read the official
        documentation on Basho’s website (Basho is the company that created and maintains Riak Core). A
        web search will also reveal many talks and tutorials. And finally, an
        excellent example of how to use Riak Core is Udon, a distributed
        static file web server by Mark Allen.

Scalable Distributed Erlang
Scalable Distributed Erlang (SD Erlang) takes a different approach from that of Riak Core. SD Erlang
        emerged from the RELEASE research project at the University of Glasgow. Although
        at the time of writing it was not production-ready, the ideas behind
        it are interesting and have been shown to allow systems to scale to
        tens of thousands of nodes. The basic approach is to reduce network
        connectivity and the namespace through a small extension to the
        existing distributed Erlang.
SD Erlang defines a new layer called an s_group. Nodes can belong to
        zero, one, or more s_groups, and nodes that belong to the same s_group
        transitively share connections and a namespace. A
        namespace is a set of names registered using the
        global:register_name/2 function in distributed Erlang or the
        s_group:register_name/3 function in SD Erlang. Names
        registered in distributed Erlang are replicated on all connected
        normal (not hidden) nodes. In SD Erlang, the name is replicated on all
        nodes of the given s_group.
Figure 13-7 shows two s_groups named G1 and G2.
        Each contains three Erlang nodes. Because node C is shared by both
        s_groups, it can transmit messages between nodes in different
        s_groups. Node C is called a gateway.
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Using the SD Erlang concept of node groups, a programmer can
        arrange nodes in different configurations, e.g., clustering nodes and
        connecting them via gateways.
To enable SD Erlang applications to be portable and scalable, a
        concept of semi-explicit placement
        is also introduced. This controls the placement of new nodes based on
        communication distances to other nodes and on node attributes. Node attributes
        are hardware-, software-, and programmer-defined characteristics of
        nodes that enable them to be aware of their unique characteristics and
        their neighboring nodes. Communication distances use the time it takes
        to transfer data from one node to another as a metric. Assuming
        connections with equal bandwidth, shorter transfer times correspond to
        smaller communication distances between nodes.
Documentation about SD Erlang is available on the University of
        Glasgow’s site. Lots of conference talks and articles about it
        are also available online.


Sockets and SSL
There will be times when distributed Erlang is not enough. On extremely
      high volume systems, bottlenecks can occur in the global name server, rex, or the net kernel—not to mention the
      distributed Erlang port itself, which, even if fast, is capable of
      handling only one request at a time, as it’s designed for control
      messages rather than for data transfer. Or, as we saw in our DMZ
      example, you might want to avoid distributed Erlang for security
      reasons, limiting the openness the fully meshed network brings to the
      table. When distributed Erlang is not the right tool for the job, adding
      a thin layer above the ssl or gen_tcp
      libraries starts making sense. You open one or more sockets between
      the nodes, controlling the flow of information sent and received.
The System Monitor
How do you find out whether your distributed Erlang port is
        congested? Hidden deep in the documentation of Erlang/OTP is a BIF
        that allows you to trigger monitoring events associated with memory
        management and the scheduler. A call to erlang:system_monitor(Pid,
        [busy_dist_port]) sets up monitoring. A trace message of the
        format {monitor, SusPid, busy_dist_port, Port} will be
        sent to Pid every time a process gets suspended because
        it is trying to send a message through an internode communication port
        already being used by another process. SusPid is the
        suspended process.
Other scheduler-related items that you can monitor include
        busy_port and long_schedule. Important memory-related
        monitors you can turn on include long_gc and large_heap, triggered if a process spends
        too long garbage collecting or allocates an unusually large
        heap.
Be careful how you handle system messages in live environments. We’ve seen
        millions of them being generated per hour in badly written systems
        under heavy load. You can read more about the
        system_monitor BIFs on the erlang
        manual page. We will also cover monitoring in more detail in
        Chapter 16.

Bottlenecks can also occur when moving large volumes of data with
      sockets. As an example, we were once working with a system that managed
      instant messages. The instant messages tended to be short and bursty, so
      a single TCP connection from our DMZ coped well under extreme load. When
      we upgraded the same system to also manage email, queues quickly started
      building up in the front-end nodes when exposed to continuous heavy
      load. This had to do with the sizes of the messages being sent, which
      were much larger than the instant messages, causing the TCP socket
      processes to back up. The backup eventually caused the virtual machine
      to run out of memory. The network was far from saturated, so adding
      multiple connections between the front-end and logic nodes (Figure 13-8) got rid of the bottleneck.
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Typical use cases where we’ve had to use multiple connections
      across nodes include the transfer of images, logs, or emails and email
      attachments. The volumes of data have to be substantial for multiple
      connections to pay off, though, so avoid premature optimization. Start
      with a single connection and add more only when you have metrics showing
      you have a problem that multiple connections can fix.
This is a common approach for which there are a few open source
      libraries. The gen_rpc
      application on GitHub has been benchmarked doing in excess of 60,000 RPC
      requests per second. If you need simple functionality, you can also
      write your own connection API. In its simplest guise, such an API would
      be a thin layer consisting of a few dozen lines of code that is highly
      optimized for the traffic and security requirements of your
      applications. That said, it might make sense to base your socket library
      on a process pool library such as Poolboy.
The example in Figure 13-2 illustrates the security
      rationale for not always relying on Erlang to distribute processing. We
      would not want the front-end nodes communicating with the logic nodes
      using distributed Erlang, because an intruder who gained access to the
      stateless client nodes would also gain full access to all the connected
      nodes and be able to execute OS-level commands on the remote machines.
      Just imagine someone obsessed by tidiness executing rpc:multicall(nodes(), os, cmd, ["rm -rf
      *"]) in order to enjoy the peace and serenity a clean hard drive
      brings.
Even if you roll out your own TCP- or SSL-based communication
      library between the front-end and logic nodes, you can still use
      distributed Erlang to let the logic nodes communicate with each other
      and share data through Riak, Mnesia, or simple message passing. In turn,
      the logic nodes might use RESTful approaches to communicate with service
      nodes. When your system starts getting complicated, mixing communication
      methods for security, performance, and scalability purposes becomes
      common. The mix could be between nodes, node types, or node families.

Service Orientation and Microservices
Another pattern for creating systems that scale is microservices and
      service-oriented architectures (SOA). Although SOA is considered
      heavyweight and old-fashioned by some, it is widely used in enterprise
      systems and its ideas are fundamental to microservices. Both are similar
      in concept to the client-server paradigm where processes and nodes (or
      node families) provide services to other nodes and processes. These
      services, often standalone or loosely coupled, together provide the
      functionality required by your system. They are often expressed in terms
      of an API, where each service (or function) implements an action invoked
      by a node requesting the service. The services provided are the same as
      those we have looked at already in this book. They could include client
      front-end interfaces, authentication databases, logging, alarming, logic
      nodes, and other service nodes (Figure 13-9). Services should
      be packaged in a generic enough way to encourage reusability not just
      among other services, but also across systems.
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Services are connected together by a service bus. They use a protocol that describes
      how services exchange and interpret messages. This is done with service metadata,
      which describes what each service does and the data it requires. The
      metadata should be in a format that allows nodes to dynamically
      configure and publicize their services, which in turn allows other
      services to dynamically discover and use them. The messages themselves
      are often defined using JSON, XML, Protocol Buffers, Erlang terms, or
      even OMG IDL.
The service bus runs over a network and allows communication
      following a particular protocol. Requests can be sent using SOAP, HTTP,
      or AMQP. You could use web services, Java RMI, Thrift bindings, or even
      Erlang-based RPCs and message passing. Certain message buses have the
      added benefit of helping throttle requests and dealing with load
      regulation and backpressure. We cover these concepts in more detail in
      “Load Regulation and Backpressure”.
The advantage of standardized protocols is that they allow you to
      combine ready-made components or standalone nodes, possibly implemented
      in multiple programming languages. At the same time, they force you to
      package your services in a way that encourages reusability across
      systems. This does, however, come at the cost of overhead in the size of
      the data shared across nodes as well as the encoding and parsing of the
      requests and replies.
Gproc
Gproc is an application by Ulf Wiger used for service discovery. It provides a registry
        where you can store metadata that describes process roles and
        characteristics. It allows you to use any Erlang term to register a
        process, and allows multiple aliases to a single process. Nonunique
        process properties can be stored and queried using match
        specifications and query list comprehensions. The registry is global,
        allowing the process metadata to be distributed and accessed across
        multiple nodes. You can find gproc and its
        documentation on GitHub.


Peer to Peer
Peer-to-peer (p2p)
      architectures are probably the most scalable distributed architectural
      patterns of all, as they are completely decentralized and consist of
      nodes of the same type that set up ad hoc connections to other nodes.
      Every node has the same privileges, capabilities, and responsibilities,
      in contrast to client-server architectural patterns, where the purpose
      of some node types is to serve other node types.
In p2p architectures, every node is both a client and a server,
      allowing it to start a communication session in a decentralized way.
      Think of protocols such as BitTorrent, Gnutella, Gossip, and Kazaa.
      While to the masses, p2p is synonymous with file sharing, its use in the
      Erlang world is more associated with massively parallel computations,
      distributed file storage, and big data analytics. P2p nodes tend to form
      connections in unpredictable and rapidly changing ways, but with low
      overhead (Figure 13-10). However, passing data through
      multiple nodes to get to its ultimate destination can result in extra
      overall load on the network.
[image: Erlang clusters grouped in peer to peer
            architectures]Figure 13-10. Peer-to-peer architectures

Having said this, there is nothing stopping you from using p2p
      nodes to act as communication hubs, with clients connecting to them in a
      way similar to the architectural patterns described with Riak Core.
      Although you do not come across them every day, these patterns are ideal
      for systems that need to continue executing in partitioned networks and
      do not require strong consistency.


Interfaces
Once you’ve split your node into node types and defined what services they will
    provide and how they will communicate with each other, the time comes to
    specify the interfaces the nodes export. Depending on the size and
    complexity of the system, this might be a daunting and discouraging task
    if you don’t know where to start or how to break it down into smaller
    tasks. It’s important, however, because interfaces are not only used by
    other nodes when sending requests; they will be used to implement the
    business logic, to test the nodes on a standalone basis, and to run
    end-to-end tests of the system.
Consider what you expect your system to do and break it down into
    stories and features. These could be client actions or actions triggered
    by external events. Walk through these actions and events, and in doing
    so, determine: 
	The function to call when accessing the node

	The arguments you need to pass to the node in order to fulfill
          the request

	The data model of the tables and state each node must have or
          make available to fulfill this request

	Calls to other nodes, repeating this procedure for them

	Any destructive operations in the nodes, including table
          updates and state changes resulting from the call

	The return values of the call


The key to success is abstracting and simplifying everything without
    getting stuck in the details. At this stage of your architecture design,
    you do not need to determine every single item that can go wrong. You
    should not worry about complex algorithms or optimization strategies. Just
    think of positive use cases, and if you cover any errors, make sure they
    are only ones defined in the business logic of your system.
Let’s walk through the example defined in “Node Types and Families”, where a client sends a login request to the
    front-end servers. Breaking down the story into smaller steps, this is
    what our line of thought would look like:
	The front-end server receives a REST-based login
          request with a UserId and an encrypted
          Password. It parses the request and corresponding
          JSON structure, converting the data to Erlang terms. It forwards the
          request to the logic node.

	The logic node receives the login request with
          the UserId and an encrypted
          Password. 
	It checks whether an ongoing session is already
                associated with the UserId, and if so, it
                reauthenticates the user and returns the existing
                SessionId.

	If there is no session, the logic node forwards the
                request to the authentication server, authenticates the
                user, and returns the SessionId.



	The authentication server receives an auth request with a
          UserId and an encrypted
          Password. 
	If the authentication is successful, the account is
                active, and the password has not expired, the server
                acknowledges the request and returns the
                UserData associated with the
                UserId.

	If the authentication fails, the authentication server returns the
                Reason for failure. Reasons could be
                unknown_user, bad_password, user_suspended, or password_expired.



	The logic node receives the result from the authentication
          server.
	If the authentication was successful and no session
              existed for this user, it creates a unique
              SessionId and stores it in a session table
              together with the UserData, the
              UserId, and a TimeStamp.
              It returns the SessionId to the front-end
              node.

	If the authentication was successful and a session existed
              for this user, it returns the existing
              SessionId to the front-end node.

	If the authentication failed, the logic node returns
              login_failed, user_suspended, or password_expired to the front-end
              node.



	The front-end node receives the responses from the logic
          nodes, creates a JSON structure, and replies to the original
          request.


We’ve kept everything at a high level, worrying only
    about function calls and parameters on a node level and discussing the
    return values and errors that can occur in the business logic of our
    system. Forget parse errors, processes, nodes crashing and being
    unavailable, or network connectivity issues for now. Note, however, that
    if there is a failed login, the logic node generalizes the error cases
    without exposing whether it is the UserId or
    Password that is incorrect; this is a security measure that
    makes it harder for attackers to determine whether a particular
    UserID exists.
Along with definitions of the interfaces, we make a first run of the
    data and state that are needed by these calls and expected to be stored in
    tables or behavior loop data. We also document how the calls change this
    data. Having gone through this exercise, Table 13-1 lists what we would expect to
    have extracted.
Table 13-1. Interfaces and tables	Web front-end node
	login(UserId, Password) -> {ok, SessionId} | {error, login_failed}

	No tables or state
	Logic node
	login(UserId, Password) -> {ok, SessionId} | {error, login_failed | user_suspended | password_expired}

	SessionTable: SessionId,
            UserId, TimeStamp,
            UserData
 UserTable:
            UserId, SessionId

	Authentication server
	auth(UserId, Password) -> {ok, UserData} | {error, unknown_user | bad_password | user_suspended | password_expired}

	UserTable: UserId,
            Password, AccountState,
            TimeStamp, UserData

Doing this for all the use cases and stories will give you a solid
    foundation that you can use to design the individual nodes, as well as
    other stories and use cases you might have missed. If many users were
    involved in this project or will have to read the high-level design
    document, providing a short description of what the functions do will also
    help. You will go through many iterations of your interface as you design
    your system, rearranging your tables, moving functionality around, and
    reducing duplication of your data. Don’t think you’ll get it right on your
    first try.

Summing Up
In this chapter, we’ve covered the first steps in determining the
    distributed architecture of your system. You have to make choices at some
    point, being aware that these choices will be revisited during the
    implementation and verification phases. There is a lot to take into
    account, so be careful not to get lost in the details and overengineer
    your system. If you need to handle 10,000 requests per second dealing with
    small volumes of data, fully connected distributed Erlang will probably be
    enough, but if you are moving high volumes of data, distributed Erlang
    alone won’t suffice. Do not fall into the trap of premature optimization,
    adding complexity that will slow down your system, decrease reliability,
    and increase maintenance costs without any added benefits. If unsure,
    start your project with a proof of concept ensuring your approach is the
    right one. It will validate your ideas and stop you from making mistakes
    in a production system.
These are the steps we’ve covered in this chapter:
	Split up your system’s functionality into manageable,
        standalone nodes.
During this task, it will help to categorize the nodes as
        front-end, logic, or service nodes. Try to keep the services
        provided by your nodes simple, and remember that nodes are a way to
        isolate failure. Losing a node should have no impact on any requests
        that are not being routed through it.

	Choose a distributed architectural
        pattern.
When deciding on a pattern, take into account scalability,
        availability, and reliability. Will a static number of nodes be
        enough, or do you need dynamic scaling? Do you really need one of the
        distributed frameworks, or is a simple cluster running fully connected
        distributed Erlang enough for your needs? Although you need to design
        scalability and availability into your system from the start, do so
        without overengineering your system. Always start simple, and add
        complexity when you know you need it. Just because you can use Riak
        Core or SD Erlang does not mean you have to. Ask yourself whether the
        problem you are solving falls into the category of problems they
        solve.

	Choose the network protocols your nodes, node
        families, and clusters will use when communicating with each
        other.
Although most systems can get away with running as fully
        connected distributed Erlang clusters behind a firewall, there will be
        cases where you need to think out of the box to solve specific
        requirements your system might have. Do you need to optimize your
        network for bandwidth, speed, or both? What are your security
        requirements? And most importantly, how do you handle network
        unreliability? You need to choose different approaches for nodes
        running in the same subrack versus being located in geographically
        remote data centers. There are choices you might want to make up
        front, and others you will have to revisit when you have proper
        benchmark results to validate your choices.

	Define your node interfaces, state, and data
        model.
When specifying your interfaces, you will be validating the
        choices you made when you split the functionality of your system into
        manageable, standalone nodes. Getting your interfaces and data model
        right is also an iterative process that will require revisiting design
        choices. You will want to reduce duplication of data while minimizing
        the size and number of arguments you send in requests to other nodes.
        You will want to standardize your APIs across nodes while catering for
        external protocols and interfaces.



What’s Next?
Now that we have covered node types, system blueprints, and node and
    node family connectivity, the time has come to look at failure scenarios
    and how to mitigate them. The next chapter covers retry strategies when
    requests fail because of software, hardware, or networking issues. These
    retry strategies go hand in hand with the partitioning and distribution of
    data and state across nodes and node families.

1 “Distributed Erlang Component Ontology,” 30 June 2013 by
        Hoffmann, Cesarini, Fernandez, Thompson & Chechina.


Chapter 14. Systems That Never Stop
You need at least two computers to make a fault-tolerant system. Built-in Erlang
  distribution, no shared memory, and asynchronous message passing give you
  the foundations needed for replicating data across these computers, so if
  one computer crashes, the other can take over. The good news is that the
  error-handling techniques, fault isolation, and self-healing that apply to
  single-node systems also help immensely when multiple nodes are involved,
  allowing you to transparently distribute your processes across clusters and
  use the same failure detection techniques you use on a single node. This
  makes the creation of fault-tolerant systems much easier and more
  predictable than having to write your own libraries to handle semantic gaps,
  which is typically what’s required with other languages. The catch is that
  Erlang on its own will not give you a fault-tolerant system out of the box—but its programming model will, and at a fraction of the effort required by
  other current technologies.
In this chapter, we continue explaining approaches to distributed
  programming commonly used in Erlang systems. We focus on data replication
  and retry strategies across nodes and computers, and the compromises and
  tradeoffs needed to build systems that never stop. These approaches affect
  how you distribute your data, and how you retry requests if they have failed
  for reasons out of your control.
Availability
Availability defines the uptime of a system over a certain period of time. High
    availability refers to systems with very low downtime, software
    maintenance and upgrades included. While some claim having achieved nine-nines availability,1 these claims tend not to be long-lived. Nine nines of uptime
    means only 31.6 milliseconds of downtime per year! It will take you 10
    times longer to blink, let alone figure out something has gone wrong. A
    realistic number often achieved with Erlang/OTP is 99.999% uptime,
    equating to just over 5 minutes of downtime each year, upgrades and
    maintenance included.
High availability is the result of your system having no single
    point of failure, and being fault-tolerant, resilient, and reliable. It can
    also be the result of having a system that even in the face of partial
    failure can still provide some degree of service, albeit reduced from
    normal levels. Let’s look in detail at what these terms entail for the system
    you are trying to build.
Fault Tolerance
Fault tolerance refers to
      the ability of a system to act predictably under failure.
      Such failure could be due to a software fault, where a process crashes
      because of a bug or corrupt state. Or it could be due to a network or
      hardware fault, or the result of a node crashing. Acting predictably can
      mean looking for alternative nodes and ensuring that requests are
      fulfilled, or just returning errors back to the callers.
In the example in Figure 14-1, a client
      sends a request to the front-end node running the web servers. The
      request is parsed and forwarded to the logic node (Figure 14-1, part 1). At this point, the logic node, or
      a process in the logic node, crashes (Figure 14-1,
      part 2). If we are lucky, the front-end node detects this crash and
      receives an error. If we’re unlucky, an internal timeout is triggered.
      When the error or timeout is received, an error is sent back to the
      client.
[image: Fault tolerance means responding predictably even after
            failure]Figure 14-1. Fault tolerance

This system acts in a predictable way and is considered fault
      tolerant because a response has been sent back to the client. It allows
      the client to act in a predictable way, as long as the server, the type
      of request, and the protocol allow for it. The response might not be
      the one the client was hoping for, but it was a valid response. It is
      now up to the client to decide what to do next. It might retry sending
      the request, escalate the failure, or do nothing.
The hardest part in this use case is knowing whether the logic
      node actually failed, or if the failure is in the network between the
      nodes—or, even worse, if the logic node is just incredibly slow in
      responding, triggering a timeout in the front-end node while actually
      executing the request. There is no practical difference between a slow
      node and a dead node. Your front-end nodes need to be aware of all these
      conditions and handle the resulting uncertainty. This is done through
      unique identifiers, idempotence, and retry attempts, all of which we
      discuss later in this chapter. It might even require audit logs and
      human intervention. The last thing you want is for your purchase request
      to time out and for the client to keep on retrying until a request is
      actually acknowledged. You might wake to discover you purchased 50
      copies of the same book.
Erlang has dedicated, asynchronous error channels that work across
      nodes. It does not matter if the node or process crashed, or if the
      crash was in a local or remote node. You can use the same proven
      error-handling techniques, such as monitors, links, and exit signals,
      within your node as well as within your distributed environment. The
      only difference will be latency if the exit signals are originating in
      remote nodes, something already taken care of through asynchronous
      message passing. Make sure that errors are propagated accordingly in
      your call chain, taking actions on every level that might address the
      issue. This includes the handling of false positives, as an action can
      be enacted, but crash or time out before its success is reported. Or it
      can time out due to network issues, but succeed asynchronously after the
      time out. This is one of the biggest challenges of asynchronous
      distributed systems.

Resilience
Resilience is the ability of a system to recover quickly from failure. In
      the example in Figure 14-2, the client sends a request
      to a web server node that crashes prior to handling the request (Figure 14-2, part 1). This might be caused by the client
      request, by a request from another client, or simply as the result of
      the Erlang runtime hitting a system limit such as running out of memory.
      The node could have failed even before the client sent its request. A
      heartbeat script detects the node failure and, depending on the number
      of restarts in the last hour, decides whether to restart the process or
      reboot the machine itself (as the error might be in one of the
      interfaces and could be eliminated through an OS restart). The client
      keeps on sending the same request, which repeatedly fails as the node is
      not available. But once the machine is rebooted or the node restarted,
      if it is safe to do so, the client request is accepted and successfully
      handled. The node failed, but quickly recovered on its own (Figure 14-2, part 2), minimizing downtime.
[image: Resilience means recovering quickly after
            failure.]Figure 14-2. Resilience

As we’ve seen in many of the previous chapters in this book, the
      trick is to isolate failure, separating the business logic from the
      error handling. If a process crashes, its dependencies are terminated
      and quickly restarted. If a node goes down, a heartbeat script triggers
      an immediate restart. If a network or hardware outage occurs, the
      redundant network is used. By isolating functionality in manageable
      quantities in different node types, isolating failure becomes a
      straightforward and easy task. If you have a node that does too much,
      you increase the possible causes of a node crash through increased
      complexity, and you increase the recovery time.
Back-Off Algorithms in Clients
If you have a client that automatically tries to reconnect and send a request
        after a failure, make sure it uses a back-off
        algorithm to regulate the frequency of its retries. Picture
        your system with a few million connected devices handling a couple
        hundred thousand requests per second experiencing a 1-minute outage.
        The outage will result in all the devices trying to reconnect and send
        requests, creating a surge in traffic. This surge increases for every
        second of downtime, hitting the system with force as soon as it
        becomes operational again. If not handled properly, this will cause
        more front-end nodes to terminate, creating an even larger surge on
        the remaining ones and taking out the next batch until there are none
        left. This is what we call a cascading failure,
        something you need to guard against in both your client and
        server.
The easiest variant of a back-off algorithm in a client is based
        on Fibonacci, where the interval between retries
        increases from 1 second to 2, 3, 5, 8, and 13 seconds, respectively,
        capped at a large number such as 89, 144, or more seconds. An exponential back-off
        algorithm is one that increases the retry interval between
        failed requests exponentially, while the random delays created
        by a random back-off
        algorithm might be appropriate so that multiple nodes issue
        their retries at different times. The algorithm that best suits your
        needs will control the surge in failed retry attempts coming at the
        same time, allowing the system to recover and continue functioning
        even after a failure.


Reliability
The reliability of a system is its ability to function under particular
      predefined conditions. In software and distributed systems, these
      conditions often include failure and inconsistency. In other words, the
      system has to continue functioning even when components that comprise it
      fail themselves or when data becomes inconsistent because it fails to
      replicate across nodes. When looking at reliability, you need to start
      thinking of the redundancy of these components. When we mention
      components, we do not mean only hardware and software. We also mean data
      and state, which need to be replicated and consistent across
      nodes.
A single point of failure means
      that if a particular component in your system fails, your
      whole system fails. That component could be a process, a node, a
      computer, or even the network tying it all together. This means that in
      order for your system to have no single point of failure, you need to
      have at least two of everything. At least two computers with software
      distributed and running a failover strategy across them. At
      least two copies of your data and state. Two routers, gateways, and
      interfaces, so that if the primary one fails, the secondary takes over.
      Alternative power supplies (or battery backups) for the same reason. And
      if you have the luxury, place the two computers in separate,
      geographically remote data centers. You should also keep in mind that
      having only two of everything might itself be a problem waiting to
      happen, since if one of something goes down, the remaining instance
      automatically becomes a single point of failure. For this reason, using
      three or more instances instead of just two is normally a given when
      high reliability is a critical requirement. All of this comes at a
      higher bandwidth and latency cost.
Extraordinary Measures
One of the authors arrived at a customer site one morning to find a digger parked
        in the driveway and a bewildered builder holding two ends of a broken
        cable while doing the motion of trying to stick them back together.
        For a week, the site lost its Internet connection, landline phone
        service, and even mobile connectivity, because the antennas on the
        roof were using that very same cable. If you need to service requests
        after a natural disaster (or a clueless builder), make sure you have
        site redundancy.
US regulatory agencies’ disaster recovery guidelines for financial institutions
        recommend a minimum distance of 200–300 miles between primary and
        secondary data centers. European telecommunication recommendations are
        not as extreme, but they do guarantee that if a site is hit by a
        nuclear bomb, or a bomb is dropped anywhere in between the two sites,
        one of the sites will be distant enough to be unaffected! That is the
        price you have to pay for high availability.
At the end of the day, availability becomes a question of costs,
        tradeoffs, and risks. The financial damage caused by a network outage
        might be less than the cost of installing a redundant network or having
        redundant hardware, turning it into a business decision. And this is a
        technical book about software, so let’s leave the bean counters alone
        and get back on track.

What does having two or three of everything mean for your software? Your
      request hits one of the load balancers, which forwards it to one of the
      front-end nodes. The node used is chosen by the load balancer using a
      variety of strategies—random, round robin, hashing, or sending the
      request to the front-end node with the least CPU load or the one with
      the smallest number of open TCP connections. We prefer hashing
      algorithms, as they are fast and give you predictability and consistency
      with low overheads. When troubleshooting what is going (or what went)
      wrong with a request, having a deterministic route across nodes makes
      debugging much easier, especially if you have hundreds of nodes and
      decentralized logs.
Let’s look at an example of how we avoid a single point of
      failure. The front-end node receives the request, parses it, and
      forwards it to a logic node (Figure 14-3,
      part 1). Soon after the request is forwarded, something goes wrong. The
      failure could have occurred anywhere, and we are unsure of the state of
      the request itself. We do not know whether the request ever reached the
      logic node, or whether the logic node started or even finished handling
      it. It could have been this very request that caused a process to crash,
      caused a synchronous call to time out, or caused the whole node to crash.
      Or perhaps the node might not have crashed at all; it might be extremely
      overloaded and slow in responding, or network connectivity might have
      failed. We should be able to distinguish between something crashing in
      the node itself and the node not responding. But beyond that, we just
      don’t know.
What we do know, though, is that we have a client waiting for a
      reply. So, upon detecting the error, the front-end node forwards the
      request to a secondary logic node. This node handles the request (Figure 14-3, part 2) and returns the reply to the
      front-end node, which formats it and sends it back to the client (Figure 14-3, part 3). All along, the client has no
      idea of the drama happening behind the scenes. The resilience in the
      node where the error occurs ensures that it comes up again, reconnects
      to the front-end nodes, and starts handling new requests. So, despite
      part of our system failing, it still provided 100% uptime to the client
      thanks to our “no single point of failure” strategy.
[image: Forwarding requests with no single points of
            failure]Figure 14-3. Single points of failure

At most once, exactly once, and at least once
When handling failure strategies, you need to start getting
        clever and make sure you have all edge cases covered. There are three
        approaches you can take for every request, because how you handle
        requests maps to message delivery semantics across nodes in
        distributed systems. In our example in Figure 14-3, the only guarantee you have is that
        your request has been executed at least
        once. If you are logging on to the system and the first
        logic node is so slow that the front-end node tries another one and
        succeeds with it, the worst-case scenario is that you log on twice and
        two sessions are created, one of which will eventually expire.
Similarly, if you are sending an SMS or an instant message, you
        might be happy with the at most once
        approach. If your system sends billions of messages a day, the loss of
        a few messages is acceptable relative to the load and the cost
        associated with guaranteed delivery. You send your request and forget
        about it. In our example with no single point of failure, when the
        front-end node sends the request to the logic node, it also
        immediately sends a reply back to the client.
But what if you were sending money or a premium rate SMS? Losing
        money, making the transfer more than once, or sending and charging for
        the same premium SMS multiple times because of an error will not make
        you popular. Under these circumstances, you need the exactly once
        approach. A request can succeed or fail. If failure is in your
        business logic, such as where a user is not allowed to receive premium rate
        SMSs, we actually consider the failed request to be successful, as it falls
        within the valid return values. Errors that should
        worry us are timeouts, software bugs, or corrupt state causing a
        process or node to terminate abnormally, leaving the system in a
        potentially unknown or undefined state. As long as you use the exactly
        once approach in a single node, abnormal process termination can be
        detected. As soon as you go distributed, however, the semantics of the
        request cannot be guaranteed.
The successful case is when you send a request and receive a
        response. But if you do not receive a response, is it because of the
        request never reaching the remote node, because of a bug in the remote
        node, or because the acknowledgment and reply of the successful
        execution got lost in transit? The system could be left in an
        inconsistent state and need cleaning up. In some systems, the cleanup
        is executed automatically by a script that tries to determine what
        went wrong and address the problem. In other cases, cleaning up might
        require human intervention because of the complexity of the code or
        seriousness of the failed transaction. If a request to send a premium
        rate SMS failed, a script could start by investigating if the mobile
        device received the remote SMS, if the user was charged for it, or if
        the request ever made it to the system. Having comprehensive logs, as
        we show in “Logs”, becomes critical.
A common pattern in achieving exactly once semantics with at
        most once calls is to use unique sequence numbers in the client requests. A client
        sends a request that gets processed correctly (Figure 14-4, part 1). If the response from the
        front-end node is lost or delayed, a timeout in the client is
        triggered. The client resends the request with the same identifier,
        and the logic node identifies it as a duplicate request and returns the
        original reply, possibly tagging it as a duplicate (Figure 14-4, part 2). You are still not guaranteed success, as the connectivity between the
        client and the server might not come up again. But it will work in the
        presence of transient errors.
[image: Caching responses for duplicate requests.]Figure 14-4. Duplicate requests

This approach relies on idempotence. The
        term describes an operation that the user can apply multiple times
        with the same effect as applying it once. For example, if a request
        changes a customer’s shipping address, whether the system performs the
        request successfully once or multiple times has the same result,
        assuming the shipping address is the same in each request. Such a
        request can actually be executed multiple times because the side
        effects of any second or subsequent executions essentially have no
        observable effect. With our request identification scheme, though, the
        second and subsequent executions never occur.
Imagine a billing system for premium rate SMSs. You need to
        guarantee that if you charge the user, you will do so exactly once,
        and only after the SMS is received. An approach typically taken to
        guarantee this result is reserving the funds in the recipient
        account before sending the SMS. When reserving them,  the billing
        system returns a unique identifier. The SMS is sent, possibly multiple
        times. The charge is made only when the first report
        notifying that it has been delivered is received by the billing
        system. The unique identifier is then used to execute the payment and
        charge the account. Subsequent attempts to use the same identifier,
        possibly when receiving multiple copies of the same delivery report,
        do not result in additional charges. And if the SMS never reaches
        its recipient, the reserved funds are eventually released after timing
        out. The timeout also invalidates the identifier.
At most once, at least once, and exactly once approaches all
        have advantages and tradeoffs. While deciding what strategy to use,
        keep in mind that requests and the messaging infrastructure
        that underpins them are unreliable. This unreliability needs to be
        managed in the business logic and semantics of every request. The
        easiest to implement and least memory- and CPU-intensive approach is
        the “at most once” approach, where you send off your request and
        forget about it. If something fails, you have lost the request, but
        without affecting the performance of all of the other requests
        that succeeded. The “at least once” approach is more expensive,
        because you need to store the state of the request, monitor it, and
        upon receiving timeouts or errors, forward it to a different node.
        Along with higher memory and CPU usage, it can generate additional
        network traffic. Theoreticians will argue that the at least once
        approach cannot be guaranteed to be successful, as all nodes receiving the request can
        be down. We’ll leave them scratching their heads and figuring out what
        double and triple redundancy are all about. The hardest strategy is the
        “exactly once” approach, because you need to provide guarantees when
        executing what is in effect a transaction. The request can succeed or
        fail, but nothing in between.
These guarantees are impossible with distributed
        systems, since failure can also mean a request being successfully
        executed but its acknowledgment and reply being lost. You need
        algorithms that try to retrace the call through the logs and
        understand where a failure occurred to try to correct it or compensate
        for it. In some systems, this is so complex or the stakes are so high
        that human intervention is required.
Until now, we’ve said, “Let it crash.” Yes, let it crash, and no
        matter which of the three strategies you pick, put your effort into the
        recovery, ensuring that after failure, your system returns to a
        consistent state. The beauty of error handling and recovery in Erlang
        is that your recovery strategy will be the same when dealing with all
        of your errors, software, hardware, and network faults included. If
        you do it right, there will be no need to duplicate code in a process
        recreating its state after a crash or recovering after a network
        partition or packet loss.


Sharing Data
When you are thinking about your strategies for avoiding a single point
      of failure and for recovery, you have to make a new set of decisions
      about whether and how you are going to replicate data across your nodes,
      node families, and clusters. Your decisions will affect your system’s
      availability (which includes fault tolerance, resilience, and
      reliability) and, ultimately, also scalability. Luckily, you can defer
      some of these decisions to when you stress test and benchmark your
      system. You might want to make other decisions up front based on the
      requirements you already know and on past experiences in designing
      similar systems. But whatever your decision is, one of the hardest
      things when dealing with distributed systems is accessing and moving
      your data; it can be the cause of your worst bottlenecks. For every
      table and state, you have three approaches you can choose from:
      share nothing, share something, and share everything. Choose your data replication
      strategy wisely, and pick the one that most closely matches the level of
      scale or availability for which you are aiming.
Share nothing
The share-nothing architecture is where no data or state is shared. This could be
        specific to a node, a node family, or a cluster. Once you have
        addressed the underlying infrastructure, such as hardware, networks,
        and load balancing, share-nothing architectures can result in linearly
        scalable systems. Because each collection of nodes has an independent
        copy of its own data and state, it can operate on its own. When you
        need to scale, all you need to do is add more infrastructure and
        reconfigure your load balancers.
Figure 14-5, part 1 shows two front-end and
        two logic nodes. Using a login request, Client1 and Client2 send their credentials to initiate a
        session. This request is forwarded to one of the two front-end nodes
        using the load-balancing strategy configured in the load balancer. In
        our example, each node gets a request that it forwards to its primary
        logic node. These nodes each check the client credentials and create a
        session, storing the session state in a database.
Client1 now sends a new request right after
        the node storing its session data has crashed, losing everything
        (Figure 14-5, part 2). The front-end node forwards
        it to its standby logic node, which rejects the request because it is
        unaware of the session. The client, upon receiving an unknown session
        error, sends a new login request that is forwarded and handled by the
        second logic node. All future requests from this client should now be
        forwarded to the logic node containing the session. If they aren’t and
        the node that crashed comes up again, the client will have to log on
        again (Figure 14-5, part 3), and we just assume
        that the session in the standby node will eventually time out and be
        deleted.
[image: Nodes not sharing any data.]Figure 14-5. Share-nothing architecture

As we don’t have to copy our session state across nodes, we
        get better scalability, because we can continue adding front-end and
        logic nodes as the number of simultaneously connected users increases.
        The downside of this strategy is that if you lose a node, you lose the
        state and all of the data associated with it. In our example, all
        sessions are lost, forcing users to log on again and establish a new
        session in another node. You also need to choose how to route your
        requests across nodes, ensuring that each request is routed to the
        logic node that stores its matching session data. This guarantees continuity
        after a node failure and recovery.

Share something
What do we do if we want to ensure that users are still logged on and
        have a valid session after a node failure? The share-something
        architecture, where you duplicate some but not all of your data, might
        address some of your concerns. In Figure 14-6,
        we copy the session state across all logic nodes. If a node
        terminates, is slow, or can’t be reached, requests are forwarded to
        logic nodes that have copies of the session data. This approach
        ensures that the client does not have to go though a login procedure
        when switching logic nodes. But it trades off some scalability,
        because the session data needs to be copied across multiple nodes
        every time a client logs in and deleted when the session is
        terminated. Things get even more expensive whenever a node is added to
        the cluster or restarts, because sessions from the other nodes might
        have to be copied to it and kept consistent.
[image: Nodes sharing some, but not all of their data]Figure 14-6. Share-something architecture

The strategy just described is called share something because it
        is a compromise: you copy some, but not all of the data and state
        associated with each session. The strategy reduces the overhead of
        copying while increasing the level of fault tolerance. Let’s return to
        our e-commerce site. The session data is copied, so if a node is lost,
        the user does not have to log on again. However, the contents of the shopping cart are not copied, so upon losing a node, the users
        unexpectedly have their carts emptied. When a user is
        checking out and paying for the selected items, only those items in the
        active logic node’s shopping cart will appear.
We have been assuming all along that if the logic node crashed,
        all of its data would be lost. What if the shopping cart were stored
        in a persistent key-value store which, upon restart, was reread? Or
        what if a network partition occurred, or the node was just slow in
        responding and, as such, presumed dead? When the node becomes
        available, you need to decide on your routing strategy—namely, which
        of the two logic nodes receives new requests. And because you have two
        shopping carts, they now need to be merged (Figure 14-7, part 1), or one of them has to be
        discarded.
How is this done? Do you join all of the items? What if we had
        added an item to the shopping cart in the second node? Will we end up
        with one or two copies of the item? Or what if we had sent a delete
        operation to the second node, but the operation failed because the
        item was not there? How you solve these problems depends on your
        business and your risks. Some distributed databases, such as Riak and
        Cassandra, provide you with options. In our example, the node that
        crashed becomes the primary again, and we move the contents of the
        second shopping cart to it (Figure 14-7, part 2).
[image: Merging data after network partitions]Figure 14-7. Network partitions with the share-something
          architecture

The Dynamo paper discussed in “Riak Core”
        describes the Amazon way of merging its shopping cart when recovering
        from failures. If, during the merge, there is uncertainty over the
        deletion of an item, it gets included, leaving the responsibility to
        the shopper to either remove it when reviewing the final order or
        return it for a refund if it actually gets shipped. How many times,
        upon checkout, have you found an item in your Amazon shopping cart you
        were sure you had deleted? It has happened to us a few times.
The share-something architecture is ideal for use cases where
        you are allowed to lose an occasional odd request but need to retain
        state for more expensive operations. We used a shopping cart example.
        Think of an instant messaging server instead. The most expensive
        operation, and biggest bottleneck, is users logging in and
        starting a session. The session needs to access an authentication
        server, retrieve the user’s contact list, and send everyone a status
        update. Imagine a server handling a million users. The last thing you
        want as the result of a network partition or a node crash is for a
        million users to be logging back on, especially when the system is still
        recovering from having sent 30 million offline status updates
        (assuming 60 contacts per user, of whom half are online).
One good solution is to distribute the session record across
        multiple nodes. What you do not share, however, are the status
        notifications and messages. You let them go through a single node with
        the “at most once” approach for sending messages in order to preserve
        speed. You assume that if the node crashes or is separated from the
        rest of the cluster through a network error, you either delay the
        delivery of the notifications and messages or lose some or all of
        them. How many times have you sent an SMS to someone close to you,
        only for them to receive it hours (or days) later, or never at all?
Consistency
When dealing with distributed systems, there are multiple forms of
          consistency that differ due to varying degrees of visibility,
          ordering, and replica coordination. In a perfect system, all nodes
          would see all updates at the same logical time and in the same
          order; no reads would ever return stale data; and there would be no
          latency anomalies, crashed nodes, network partitions, or lost
          messages. In our imperfect world, though, these guarantees do not
          hold and these problems actually do occur, and so systems must make
          tradeoffs between consistency, availability, and latency.
One weak form of consistency is eventual consistency, where updates at different replicas can occur in different
          orders, and reads can return stale values. While this consistency
          model sounds like it might do more harm than good, in practice it
          can be valuable for applications requiring read and write
          availability and predictable latency even when the system is
          operating under conditions of partial failure, as long as those
          applications can handle occasionally reading stale data.
Other forms of consistency, such as monotonic
          read and monotonic
          write, have to do with guarantees related to recency.
          When you read a value under a monotonic
          read model, you are guaranteed that you will never again
          see a value older than the one you just read. Similarly, with the
          monotonic write model you are
          guaranteed that any update you issue for a value will finish prior
          to any further updates you issue for the same value. These ordering
          guarantees come at a cost of increased coordination across the
          distributed system, and thus potentially increased latencies and
          lower availability.
Still stronger ordering guarantees are provided with the read your own
          writes consistency level, which is self-explanatory, and
          with a consistency model that’s a combination of monotonic reads and
          writes where your update for a given value is guaranteed to never
          act on an instance older than your most recent read of the same
          value.
Even higher degrees of consistency can be achieved using consensus
          protocols such as Paxos, Zookeeper Atomic Broadcast (ZAB), and Raft, where a majority of replicas must vote and agree
          on updates for a given value. These protocols can deliver strong
          consistency guarantees, but to achieve them they require a high degree
          of coordination among replicas and so can have negative impacts on
          latency and availability. Even so, if your application requires this
          level of consistency guarantee, you are far better off using an
          implementation of a proven consensus protocol than trying to invent
          your own. For example, Riak Ensemble implements
          Multi-Paxos, an optimized version of basic Paxos.
One sometimes confusing point about these distributed system
          consistency levels is that they are different from the “C” in
          the Atomicity, Consistency, Isolation, and Durability
          (ACID) properties of transactional databases. In ACID, consistency means that effects of transactions
          become visible upon their completion and that no transactions
          violate database constraints.


Share everything
Share-nothing and share-something architectures might work for some systems and data sets,
        but what if you want to make your system as fault tolerant and
        resilient as possible? While it is not possible to have a distributed
        system where losing requests is not an option, you might be dealing
        with money, shares, or other operations where inconsistency or the
        risk of losing a request is unacceptable. Each transaction must
        execute exactly once, its data has to be strongly consistent, and
        operations on it must either succeed or fail in their entirety.
        Although you can get away with not receiving an SMS or instant
        message, finding an equity trade you thought had been executed missing
        in your portfolio or money missing from your bank account is
        indefensible. This is where the share-everything architecture comes
        into the picture. All your data is shared across all of the nodes, any
        of which might, upon hardware or software failure, take over the
        requests. If there is any uncertainty over the outcome of a request,
        an error is returned to the user. When things go wrong, they have to
        be reconciled after the fact. For example, if you try to withdraw from
        multiple ATMs more funds than you have in your account, you get the
        money, but then later the bank penalizes you for overdrawing your
        account. But with no single point of failure, using redundant hardware
        and software, the risk for this error should be reduced to a
        minimum.
In Figure 14-8, we duplicate the sessions
        and shopping cart contents in two logic nodes, each handling a subset
        of clients and duplicating the session state and shopping cart to the
        other nodes. If a node terminates, the other one takes over. Should
        the node recover, it will not accept any requests until all of the
        data from the active node has been copied over and is consistent with
        other nodes.
[image: Nodes sharing all of their data.]Figure 14-8. Share-everything architecture

We call this primary-primary replication.
        This contrasts with primary-secondary
        replication, where a single primary node is responsible for the data. The secondary nodes can access the data, but must coordinate any
        destructive operations such as inserts or deletes with the primary if
        they wish to modify the data. If the primary is lost, either the
        system stops working entirely, or it provides a degraded service level where
        writes and updates are not allowed, or one of the secondaries takes
        over as primary.
The share-everything architecture is the most reliable of all
        data-sharing strategies, but this reliability comes at the cost of
        scalability. It tolerates the loss of nodes without impacting
        consistency of data, but if some nodes go wrong, it also loses
        availability. This strategy is also the most expensive to run and
        maintain, because every operation results in computational overhead
        and multiple requests across the network to ensure that the data is
        kept replicated and consistent. Upon restarting, nodes must connect to
        a primary and retrieve a copy the data to bring them back in sync with
        the primary node, ensuring they have a correct and current view of
        the state and the data.
Although share-everything architectures do not necessarily
        require distributed transactions across nodes, you will need them when
        dealing with data such as money or shares you cannot afford to lose.
        This contrasts with the requirements we saw for messaging, where
        duplicating the messages through eventual consistency will greatly
        reduce the risk of them getting lost if you lose a node, but with no
        strong guarantee that you will never lose a message.
When you have decided on your data-sharing strategy, you need to
        go through each request in your API, trace the call, and try to map
        everything that can go wrong. Within the node itself, for synchronous
        calls, you need to consider behavior timeouts and abnormal process
        termination. If dealing with asynchronous messaging, ensure that
        message loss (when the receiving process has terminated) is handled
        correctly. Across nodes, you need to consider network errors,
        partitions, slow nodes, and node termination. When you’re done, pick the
        recovery strategy that best suits the particular calls. This needs to
        be done for every external call, and will often result in a mixture of
        the three recovery strategies, depending on the importance of the
        state change.
CAP Confusion
The CAP theorem, a conjecture originally put forward in 2000 by Eric
          Brewer and formally proven in 2002 by Seth Gilbert and
          Nancy Lynch, states that in any distributed system it
          is impossible to fully provide consistency, availability, and partition tolerance at all times. For the
          purposes of CAP, these properties are defined as follows:
	Consistency guarantees that clients get correct responses to all
                requests.

	Availability guarantees that the system eventually services
                every request sent to it, for both reads and updates.

	Partition tolerance guarantees continued system operation even when
                the network or nodes fail and messages are delayed or
                lost.


The CAP theorem essentially states in a different way some
          issues we’ve already known about for decades, yet many view it as
          controversial and confusing. This stems from CAP having often been
          explained as requiring you to “pick two” of the three properties
          when designing a distributed system. Since one of the properties,
          partition tolerance, is inherent in the definition of distributed
          systems and is thus automatically chosen for you, the only realistic
          choice left was between consistency and availability. For example,
          some have claimed that Mnesia is a CA system, but clearly they’ve never
          attempted to use it during a network partition (conditions under
          which it is anything but available).
Real distributed systems tradeoffs are never as simple as the
          flawed “pick two” CAP dilemma. In 1977, decades before CAP, Leslie
          Lamport introduced the notions of
          safety and liveness
          for analyzing system properties, which Lamport, Bowen Alpern, Fred B. Schneider, and others explored and explained more deeply in the
          decades that followed. Simply put, safety means that as a
          distributed system operates, nothing bad happens, while liveness
          signifies that something good eventually happens. CAP consistency is
          a safety property because it implies correctness, whereas
          availability is a liveness property because it means clients always
          get valid replies.
The 1980s also gave us the Fischer-Lynch-Paterson (FLP) impossibility result,
          which proved that there is no distributed algorithm that can achieve
          consensus in an asynchronous system if even a single part of
          the system is failing. Both this theorem and the “P” in CAP indicate
          that delays and failure are inherent in distributed computing
          systems, both in hardware and software, and thus they can never be
          downplayed or ignored. In the face of failure, full consensus can’t
          be achieved due to some nodes being unreachable, which in turn means
          agreement, consistency, and validity across the system suffer some
          degree of degradation. No matter how you analyze it, you run into
          these fundamental truths that all lead to the same conclusion:
          achieving full safety and liveness—or in CAP terms, full consistency
          and availability—is impossible in any practical distributed
          system.
In real-life systems, not only do the choices and tradeoffs
          between consistency and availability depend highly on the
          application, but different parts of the same application can require
          different tradeoffs. For example, a popular digital device at the
          time of writing is the fitness tracker. Such a device, worn by a
          user, collects health-related data, such as pulse rate, duration of
          fitness activities, or the number of steps taken while running or
          walking, and communicates the data to the device vendor. The vendor
          then makes the data available via the Web and mobile apps not only
          to the user, but perhaps also to the user’s social network and
          designated health care providers as well. Even
          though all the data might be stored in a single database, the part
          of the overall application that handles user registration requires
          strong consistency to ensure two users don’t register with the same
          username, whereas for the data delivery portions of the application,
          having a highly available data store is more important than providing
          fully consistent updates to all interested parties.
Applications such as these explain why some databases, such as
          Riak, can simultaneously support both strong consistency and
          eventual consistency, letting the application choose what it needs.
          And modern research, such as the work of Peter Bailis, has analyzed the
          consistency-availability spectrum in depth to show that applications
          can often operate correctly with less consistency and coordination
          than were previously considered necessary, and in some cases can
          even correctly accomplish tasks that were once thought to work only
          with full distributed transaction support.
CAP, safety and liveness, and other related approaches are all
          ways of explaining that distributed systems involve a broad spectrum
          of tradeoffs and choices. Due to their telephony backgrounds, the
          designers of Erlang/OTP were aware of these choices, but the growth of
          the Web and the scale of large websites has forced a much larger
          part of the industry to try to come to grips with all these
          distributed system issues because at scale, they all show up whether
          you like it or not, and typically at the worst possible time.



Tradeoffs Between Consistency and Availability
We were refactoring a system where the customer claimed they had never had an outage,
      servicing all requests with 100% availability, software upgrades
      included, for years on end. They were not using Erlang, and to add icing on
      the cake, were running everything on mainframes! When we began to
      scratch under the surface, we found out that their definition of
      availability meant that the front-end nodes were always up, accepting
      and acknowledging requests. In the case of errors and outages in their
      logic and service nodes, however, requests were logged and processed
      manually! We could argue that this system was indeed highly available,
      but unreliable, as it did not always function as defined. Getting it
      into a consistent state after failure required manual intervention. The
      choices you make in your recovery strategy are all about tradeoffs
      between consistency and availability, while your data-sharing strategy is
      about tradeoffs between latency and consistency.
On one side, you have the exactly once
      approach, ensuring that an operation executes to completion or fails.
      However, this is also the least available solution (Figure 14-9, part 1), as
      strong consistency requirements mean choosing consistency over
      availability. If things go wrong, the system might under certain
      circumstances become unavailable in order to ensure consistency. On the
      other end of the spectrum is weak consistency with high availability. By accepting the
      loss of occasional requests, you accept an inconsistent view of the
      state or data, handling this inconsistency in the semantics of your
      system. As a result, you can continue servicing your requests even under
      network partitions. The compromise is the at
      least once approach, which guarantees that a request has successfully executed on at
      least one node. It is then up to the semantics of the system, where
      necessary, to handle the propagation and merging of this state change to
      other nodes.
[image: The various compromises between availability, consistency,
            and reliability]Figure 14-9. Tradeoffs between consistency, reliability, and availability

A similar argument can be made on the sharing of data approach (Figure 14-9, part 2), where the tradeoffs
      are between availability and reliability. Using the share-everything
      approach across nodes, you make your system more reliable, as any node
      with a copy of the data and state can take over the request correctly.
      While it is not always possible to guarantee that data is replicated, it
      is a safer approach than the share-something or share-nothing
      architectures, where some or all of the data and state are lost in the event
      of failure.
Nirvana would be reaching the top right of both graphs: a system
      that is consistent, reliable, and available. If you lose a node, the
      state is guaranteed to be replicated on at least one other node, and
      guaranteeing that your requests are either executed exactly once or fail and return an error message to the client will leave your system in a
      consistent state. Alas, having it all is not possible. If it were,
      everyone would just choose to do it this way, and distributed systems
      wouldn’t be difficult at all!


Summing Up
In this chapter, we introduced the concept of availability, defined as the uptime of a system,
    errors and maintenance included. Availability is a term that encompasses
    the following additional concepts:
	Fault tolerance, allowing
          your system to act in a predictable way during
          failure. Failure could be loss of processes, nodes, network
          connectivity, or hardware.

	Resilience, allowing your
          system to quickly recover from failure. This could
          mean a node restarting after a crash or a redundant network kicking
          in after the primary one fails.

	Reliability, where under
          particular, predefined conditions, errors included,
          your system continues to function. If a node is unresponsive because
          it has terminated, is slow, or got separated from the rest of the system
          in a network partition, your business logic should be capable of
          redirecting the request to a responsive node.


Your levels of fault tolerance, resilience, and
    reliability, and ultimately availability, are the result of correctly
    applying the Erlang/OTP programming model and choices you make in your
    data-sharing and recovery strategies. This brings us to the next steps in
    determining our distributed architecture. The steps we covered in Chapter 13 included:
	Split up your system’s functionality into manageable,
        standalone nodes.

	Choose a distributed architectural
        pattern.

	Choose the network protocols your nodes, node
        families, and clusters will use when communicating with each
        other.

	Define your node interfaces, state, and data
        model.
You now need to pick your retry and data-sharing
        strategies:

	For every interface function in your
        nodes, you need to pick a retry strategy. 
Different functions will require different retry strategies.
        When deciding if you want to use the at most
        once, at least once, or
        exactly once approach, you need to
        examine all possible failure scenarios in the call chain, software,
        hardware, and network included. Take particular care of your failure
        scenarios for the exactly once strategy.

	For all your data and state, pick your
        sharing strategy across node families, clusters, and types, taking
        into consideration the needs of your retry strategy.
In a data-sharing strategy, for both state and data, you need to
        decide if you want to share
        nothing, share
        something, or share
        everything across node families, clusters, and systems. You
        could also use consistent hashing to have multiple copies of the data,
        but not necessarily on all nodes.


In deciding on your sharing and retry strategies, you might need to
    review and change the design choices you made in steps 1–4. You mix and
    choose a variety of sharing and recovery alternatives specific to
    particular data, state, and requests. Not all requests have to be executed
    exactly once, and not all the data needs to be shared across all nodes.
    Guaranteed-delivery share-everything approaches are expensive, so use them
    only for the subset of data and requests that require them. And
    remember, things will fail. Try to isolate state, and share as little of
    it as possible among processes, nodes, and node families. Embrace failure
    and embed it in your architecture. Although it would be great to achieve
    the impossible and have systems that share everything and are strongly
    consistent, reliable, and available, in practice you have to choose your
    tradeoffs wisely based on system requirements, guarantees you want to
    provide to your customers, and the cost of operations.

What’s Next?
Having covered distributed architectures and how we use replication
    of data and retry strategies to increase availability, the time has come
    to look at scalability. In the next chapter, we cover a new set of
    tradeoffs required for scale. We look at load-testing techniques, load
    regulation, and the detection of bottlenecks in your system.

1 British Telecom issued a press release claiming nine-nines availability during a
       six-month trial of an AXD301 ATM switch network that carried all of its
        long-distance-traffic calls.


Chapter 15. Scaling Out
Distributing for scale and replicating for availability both rely on multiple instances
  of every node running on separate computers. But as computers can (and will)
  end up missing in action and connectivity among them will fail, scaling out
  is not only about adding computing capacity. Rather, scaling out must be
  carefully integrated and orchestrated with your consistency and availability
  models, where you have already chosen which tradeoffs to make. It’s easy to
  say that you need to write a system that scales infinitely without losing a
  single request, but delivering it is never simple, and it’s often the case
  that such an ideal implementation is unnecessary in practice to support your
  target applications. While Erlang/OTP systems do not scale magically, using
  OTP and making the right tradeoffs takes a large part of the pain out of the
  process.
In this chapter, we follow on from the distributed programming
  patterns and recovery and data-sharing patterns described in Chapter 13 and Chapter 14, focusing on the scalability tradeoffs you
  make when designing your architecture. We describe the tests needed to
  understand your system’s limitations and ensure it can handle, without
  failing, the capacity for which it was designed. This allows you to put
  safeguards in place, ensuring users do not overflow the system with requests
  it can’t handle. The last thing you want to deal with when under heavy load
  is a node crash, the degradation of throughput, or a service provider or
  third-party API not responding as a result of the wrath of Erlang being
  unleashed upon it.
Horizontal and Vertical Scaling
The scalability of a system
    is its ability to handle changes in demand and behave
    predictably, especially under spikes or sustained heavy loads. Scalability
    can be achieved vertically, by throwing
    more powerful computers at the problem, or horizontally, by adding more nodes and
    hardware.
Amdahl’s Law
Amdahl’s Law is used to predict the maximum speedup of your parallel program when
      adding cores. In simple terms, it tells us that a program will be as
      fast as its slowest component. When dealing with parallelism and
      concurrency, the slowest component is your sequential code. Amdahl’s Law
      states that S(N) = 1/((1–P) + P/N), where
      S(N) is the speedup the system can achieve when
      executing with N cores, and P
      is the proportion of the program that can be made parallel. As
      N approaches infinity, the maximum speedup becomes
      S(N) = 1/1–P.
You can throw as many cores as you want at your parallel code, but
      if your sequential code takes 100 ms to run, no matter how fast your
      parallel code runs, you will not be able to run faster than 100 ms.
      Another way of looking at the principle is this: if 5% of your code base
      is sequential, your maximum speedup will be 20 times, and if 50% of your
      code is sequential, your maximum speedup will be 2 times. This is
      visible in Figure 15-1, which also shows the law of
      diminishing returns. 
[image: Amdahl's Law showing diminishing returns as you add more
              cores.]Figure 15-1. Amdahl’s Law

When we reach a certain limit, adding more cores improves
      performance only marginally. This is where it makes sense to scale your
      system by partitioning your data set and operations into distributed
      nodes, running them in parallel.

Vertical scalability, also referred to as scaling up, might at first glance appear to be a quick win. You have a
    single server that guarantees strong consistency of your data. You just
    add larger chips, faster clock cycles, more cores and memory, a faster
    disk, and more network interfaces. Who does not like the feeling of
    opening a box containing the fastest, shiniest, highest capacity, yet
    slimmest computer on which to benchmark your software?
But alas, this approach is dated, because servers can only get so
    big, and the bigger they get, the more expensive they become. And you
    need at least two, because a super fast computer can still
    be a single point of failure.
Another argument for scaling horizontally is multicore. With machines supporting thousands of cores, no
    matter how parallel and free of bottlenecks your program might be, there
    are only so many cores a single VM will be able to optimally utilize. You
    need to also keep in mind that Amdahl’s Law applies not only to your
    Erlang program, but to the sequential code in the Erlang VM. This likely
    means that in order to fully utilize the hardware, you have to run
    multiple distributed VMs on a single computer. If you need to deal with
    two computers or computers running multiple Erlang nodes, you might as
    well take the leap and scale horizontally.
Scaling horizontally, also known as scaling out, is
    achieved using cloud instances and commodity hardware. If you need more
    processing power, you can rent, buy, or build your own machines and deploy
    extra nodes on them. Distributed systems, whether you want them or not,
    are your only viable approach. They will scale better, are much more
    cost-effective, and help you achieve high availability. But as we have
    seen in the previous chapters, this will require rethinking how you
    architect your applications.
In small clusters running distributed Erlang, Erlang/OTP scales
    vertically or horizontally in essentially the same way. In both cases,
    scaling is achieved using the location transparency of processes, meaning
    they act the same way whether they run locally or remotely. Processes
    communicate with each other using asynchronous message passing, which in
    soft real-time systems absorbs at the cost of latency across nodes. And
    asynchronous error semantics also work across nodes. As a result, a system
    written to run on a single machine can easily be distributed across a
    cluster of nodes. This also facilitates elasticity,
    the ability to add and remove nodes (and computers) at runtime
    so you can cater not only for failure, but also for peak loads and systems
    with a growing user base.
Scaling with Native Code
A little-known fact about Erlang/OTP is its excellence as an
      integration platform. It supports a variety of standard networking protocols, allowing it to support applications
      that communicate with disparate components and bridge them together. It
      can also deal easily with proprietary protocols, through facilities such
      as its excellent networking socket APIs. Additionally, Erlang/OTP
      provides ports, which allow applications to call
      and exchange data with external programs. Developers have used these and
      other Erlang/OTP capabilities to successfully build database drivers,
      JSON parsers, special-purpose web clients and servers, and other
      integration-oriented components and applications.
Scalable systems often comprise multiple components written in
      different programming languages because different languages have
      complementary strengths and weaknesses. Sometimes, for example, the
      capabilities built into Erlang/OTP just aren’t enough. Some applications
      require heavy mathematical calculations, and Erlang isn’t well suited
      for performing those quickly. Other applications might need access to
      non-Erlang libraries that would be difficult or prohibitively expensive
      to rewrite in Erlang.
For these and other similar reasons, Erlang/OTP provides support
      for calling non-Erlang functions, termed native implemented
      functions (NIFs), directly from Erlang code. Some parts of Erlang/OTP itself
      are written as NIFs, such as portions of the lists,
      maps, ets, and crypto standard
      modules, among others. To other Erlang functions, NIFs look like regular
      Erlang functions. They accept regular Erlang terms as arguments and
      return regular terms as well, but under the covers these functions are
      implemented in a different language, typically C or C++. However, they
      execute directly within the Erlang runtime. When the runtime loads an
      Erlang module containing NIFs, it loads along with it a shared library
      containing the native function implementations, and then patches the
      module’s BEAM code with instructions that invoke the native functions
      instead. The runtime provides a C API for NIFs allowing them to access
      and create Erlang terms, send messages to other processes, raise
      exceptions, and even schedule other NIFs for future execution. For a
      complete overview of the NIF API, see the erl_nif
      manual page that comes with the Erlang/OTP distribution.
Should you measure your application and find that parts of it are
      worth rewriting as NIFs for performance reasons, or if you must reuse an
      existing C/C++ library rather than reimplement it in Erlang, be very
      careful, because misbehaving NIFs can wreak havoc on the Erlang VM.
      Forget the “let it crash” philosophy if you’re writing a NIF; they
      execute directly on the runtime’s scheduler threads, so if a NIF
      crashes, it takes the entire VM down with it. You can also inflict a
      more insidious and slower death on the VM by making your NIFs run for
      more than 1–2 milliseconds at a time, as this causes the NIF to hog a VM
      scheduler thread and disrupt its carefully choreographed interactions
      with other scheduler threads. Over time, such disruptions can eventually
      lead to a phenomenon known as “scheduler collapse” where schedulers
      think they have no work to do and mistakenly go to sleep, leaving just
      one scheduler to handle the entire workload.
To avoid this, either make sure your NIFs execute quickly, or
      write them to break their work into short chunks that can be scheduled
      for future execution using the enif_schedule_nif() C API function.
      Another alternative is to use VM “dirty schedulers,” which are pools of
      schedulers that do not have the same set of constraints as normal
      schedulers and are specifically designed for running only NIFs and
      native code. Dirty schedulers are marked experimental in Erlang 17 and
      18, though, and so they are turned off by default. We hope that by
      Erlang 19, they will be a regular Erlang runtime feature available for
      any application that needs them.


Capacity Planning
Understanding what resources your node types use and how they interact with
    each other allows you to optimize the hardware and infrastructure in terms
    of both efficiency and cost. This work is called capacity planning. Its purpose is to try to
    guarantee that your system can withstand the load it was designed to
    handle, and, with time, scale to manage increased demand.
The only way to determine the load and resource utilization and
    balance the required number of different nodes working together is to
    simulate high loads, testing your system end to end. This ensures the
    nodes are able to work together under extended heavy load, handling the
    required capacity in a predictable manner without any bottlenecks. It also
    allows you to test your system’s behavior in case of failure.
In Chapter 13, we suggest you divide
    your system functionality into node types and families and connect nodes
    in a cluster. Although one can argue that grouping the different
    applications of all your node types together—front-end, business logic,
    and service functionality in the same node—will run fast because
    everything is running in the same memory space, this solution is not
    recommended for anything other than simple systems. For complex systems,
    it is easier to divide and conquer, studying and optimizing throughput and
    resource utilization on nodes that are limited in functionality.
Balancing your system is also a cost optimization exercise, where you try to reduce
    the costs of hardware, operations, and maintenance. Imagine front-end
    nodes that parse relatively few simultaneous requests, but act as an
    interface to clients who keep millions of TCP connections open. These
    nodes will most likely be memory-bound and need a different type of
    hardware specification from a CPU-bound front-end node that has fewer, but
    more traffic-intensive, connections and spends most of its time parsing
    and generating JSON or XML. Logic nodes routing requests and running
    computationally intensive business logic will need more cores and memory,
    while a service node managing a database will probably be I/O-bound and
    need a fast hard disk.
An often overlooked item when dealing with capacity planning is
    ensuring you can handle the designated load even after a software,
    hardware, or network failure. If your system has two front-end nodes for
    every logic node and both run at 100% memory or CPU capacity, losing a
    front-end node means you will now be able to handle only half of your
    designated load. To ensure you have no single point of failure, you need
    at least three front-end nodes running at a maximum capacity of 66% CPU
    each and two back-end nodes averaging 50% CPU each. This way, losing any
    machine or node will still guarantee you can handle your peak load
    requirements. If you want triple redundancy, you will have to throw even
    more hardware at the problem.
When working with capacity planning, you will be measuring and
    optimizing your system in terms of throughput and latency. Throughput refers to the number of units going through the system. Units could
    be measured in number of requests per second when dealing with uniform
    requests, but when the CPU load and amount of memory needed to process the
    requests vary in size (think emails or email attachments), throughput is
    better measured in kilobytes, megabytes, or gigabytes per second.
Latency is the time it takes to serve a particular request. Latency might
    vary depending on the load of your system, and is often correlated to the
    number of simultaneous requests going through it at any point in time.
    More simultaneous requests often means higher latency.
The predictable behavior of the Erlang runtime system, where a
    balanced system under heavy load results in a constant throughput,
    addresses most use cases. But there might be instances where extreme usage
    spikes or third-party services that are slow in responding could result in
    a backlog of requests, an outage caused by the Erlang VM running out of
    system resources, or the need to apply load regulation so latency stays
    within predefined intervals.
In “Tradeoffs Between Consistency and Availability”, we discussed the
    tradeoffs between consistency and availability based on your recovery and
    data-sharing strategies and distributed architectural patterns. You might
    not have realized it, but you were also making tradeoffs with scalability
    (Figure 15-2).
[image: The trade-offs between consistency, availability and
          scalability.]Figure 15-2. Scalability tradeoffs

The most scalable framework is SD Erlang. With it, you effectively share data
    within an s_group, but minimize what is shared across s_groups. Data and
    workflows shared among s_groups go through gateway nodes. By controlling
    the size of s_groups and the number of gateways, you can have strong
    consistency within an s_group and eventual consistency among
    s_groups.
Riak Core comes second, and despite being a fully meshed Erlang
    cluster, it can scale well by using consistent hashing to shard your data
    and load balancing jobs across the cluster. You can use it as a giant
    switch running your business logic, connecting service nodes that are part
    of the cluster, but not fully meshed to the core itself. With a hundred
    connected nodes in the core, where each node handles thousands of requests
    per second, most seriously scalable event-driven systems should fall under
    this category. Thanks to vnodes, you can start small and minimize
    disruption when nodes are added (or removed).
Lastly, a distributed Erlang cluster is limited in scale but does
    well enough to cater to the vast majority of Erlang systems. Even if you
    are aiming for tens of thousands of requests per second, you will often
    find it is more than enough. Be realistic in your capacity planning and
    add complexity only when you need it.
On one end of the scale are the exactly-once and share-everything
    approaches, which lean toward consistency and reliability, respectively.
    They are also the most expensive in terms of CPU power and network
    requirements, and as such, are also the least scalable. If you want a
    truly scalable system, you need to reduce the amount of shared data to a
    minimum and, if you have to share data, use eventual consistency wherever
    appropriate. Use asynchronous message passing across nodes, and in cases
    where you need strong consistency, minimize it in as few nodes as
    possible, placing them close to each other so as to reduce the risk of
    network failure.
Capacity Testing
Capacity testing is a must when working with any scalable and available
      system to help ensure its stability and understand its behavior under
      heavy load. This is true regardless of what programming language you use
      to code the system.
What is your system’s maximum throughput before it breaks? How is
      the system affected by increased utilization or the loss of a computer
      resulting from a hardware or network malfunction? And is the latency of
      these requests under different loads acceptable? You need to ensure your
      system remains stable under extended heavy load, recovers from spikes,
      and stays within its allocated system limits. Too often, systems are
      deployed without any proper stress testing, and they underperform or
      crash under minimal load because of misconfiguration or bottlenecks. To
      reduce the risk of running into these issues when going live, you will
      have to apply the four testing strategies shown in Figure 15-3.
[image: The various approaches to generating load on your
            system]Figure 15-3. Capacity-testing strategies

They are: 
	Soak testing
	This generates a consistent load over time to ensure
              that your system can keep on running without any performance
              degradation. Soak tests can continue for months and are used to
              test not only your system, but the whole stack and
              infrastructure.

	Spike testing
	This ensures you can handle peak loads and recover from
              them quickly and painlessly.

	Stress testing
	This gradually increases the load you are generating
              until you hit bottlenecks and system limits. Bottlenecks are
              backlogs in your system whose symptom is usually long message
              queues. System limits include running out of ports, memory, or
              even hard disk space. When you have found a bottleneck and
              removed it, rerun the stress test again to tackle the next
              bottleneck or system limit.

	Load testing
	This pushes your system at a constant rate close to its
              limits, ensuring it is stable and balanced. Run your load test
              for at least 24 hours to ensure there is no degradation in
              throughput and latency.


Don’t underestimate the time, budget, and resources it
      takes to remove bottlenecks and achieve high throughput with predictable
      latency. You need hardware to generate the load, hardware to run your
      simulators, and hardware to run multiple tests in parallel. With crashes
      that take days to generate, running parallel tests with full visibility
      of what is going on is a must. It will at times feel like you are
      looking for a needle in a haystack as you are troubleshooting and
      optimizing your software stack, hardware, and network settings.
Generating load
How you generate load varies across systems and organizations.
        You can use existing open source tools and frameworks such as Basho
        Bench, MZBench, and Tsung; commercial products; or SaaS load-testing
        services. Some tools allow you to record and replay live traffic. Or
        if you want to simulate complex business client logic or test simple
        scenarios, it might be easier to write your own tests. You will soon
        discover that to test an Erlang system, you will most likely need a
        load tool written in Erlang.
If you are connecting to third-party services or want to test
        node types on a stand-alone basis, you will need to write simulators,
        because your third parties will most likely not allow you to test
        against live systems. Simulators like the one shown in Figure 15-4 are often standalone Erlang nodes that expose
        the external API and, to some degree of intelligence, replicate their
        behavior. They are designed to handle the load of your external
        services, but often go far beyond that.
Warning
Exercise extreme care when load testing the final instance of
          your system right before going live, and make sure you are connected
          to your simulators and have throttling in place toward your external
          service providers. We would advise against you discovering the hard
          way that your external service providers do not have any load
          control in place. We once ran load tests on an autodialer we were
          writing, forgetting to divert the requests to the simulators. The
          error caused a major outage of the IP telephony provider we were
          planning to use. They were not too happy. Nor were we, as we got
          kicked out and had to find and integrate with a new provider days
          before going live.

[image: End to end stress testing of your cluster]Figure 15-4. An Erlang system under load



Balancing Your System
In a properly balanced Erlang system running at maximum capacity, the throughput
      should remain constant while latency varies. If the work cost per
      request is constant and your system handles a peak throughput of 20,000
      requests per second, when 20,000 requests are going through the system
      at any one time, the peak latency should be 1 second. If 40,000 requests
      are going through the system simultaneously, it will take the system 2
      seconds to service a request. So, while throughput remains the
      same—20,000 requests per second—the latency doubles. The BEAM VM is one
      of the few virtual machines to display this property, providing
      predictability for your system even under sustained extreme
      loads.
In Figure 15-5 we show a graph where the y-axis
      represents the throughput of a typical Erlang system before being
      optimized. It could be the number of instant messages handled per
      second, the throughput in megabytes of data sent by a web server, or the
      number of log entries being formatted and stored to file. The x-axis
      shows the number of simultaneous requests going through the
      system at any one time. This degradation often manifests itself after
      hitting high CPU loads. At that point, the more requests there are going through
      the system, the lower the throughput and higher the latency. It is important that
      you understand this behavior of the BEAM virtual machine, as it is bound to affect you.
[image: A non-balanced Erlang system.]Figure 15-5. Degradation of an Erlang system under load

Line 2 in Figure 15-6 shows the result of
      removing bottlenecks in the system. You should get a constant throughput
      regardless of the number of simultaneous requests. The throughput at
      peak load might go down a little, but that is a small price to pay for a
      system that will behave in a predictable manner irrespective of the
      number of simultaneous requests going through it. Most other languages
      will experience degraded throughput because processes have high
      context-switching costs. Using the Erlang virtual machine, highly
      optimized for concurrency, greatly reduces the risk. The limit on how
      much a node can scale is now determined by system limits such as CPU
      load, available memory, or I/O. We refer to nodes hitting these limits
      as being CPU-bound,
      memory-bound, or I/O-bound. The shared area shows the
      performance degradation of a badly balanced system.
[image: A well-balanced Erlang system.]Figure 15-6. An Erlang system tuned to handle large loads

To find the bottlenecks in your system, start off testing a single
      node. Use simulators, but be wary of premature optimizations. Some node
      types might not need to be optimized, as they might never be subjected
      to heavy loads. And you might end up with nodes that are super fast, but
      continue to respond too slowly because service-level agreements with
      external APIs now become your bottleneck. The goals of your various
      capacity testing exercises are to measure and record how latency,
      throughput, and simultaneous requests going through the system affect
      one another.
In some cases, bottlenecks will throttle requests that
      surprisingly keep the service alive. The problem is that they tend to
      slow it down. For this reason, it sometimes makes sense to test your
      system on different hardware and VM configurations.
Consider your system stable only when all performance bottlenecks
      have been removed or optimized, leaving you to deal with issues arising
      from your external dependencies such as I/O, your filesystem, or network
      or external third-party services not being able to handle your load.
      These items are often out of your control, leaving it necessary to
      regulate your loads instead of continuing to scale up or out.

Finding Bottlenecks
When you are looking for bottlenecks on a process and node basis, most
      culprits are easily found by monitoring process memory usage and mailbox
      queues. Memory usage is best monitored using the
      erlang:memory() BIF, which returns a list of tuples with
      the dynamic memory allocations for processes, ETS tables, the binary
      heap, atoms, code, and other things.
You need to monitor the different categories of memory usage
      throughout your load testing, ensuring that there are no leaks and that
      resource usage is constant for long runs. If you see the atom table or
      binary heap increasing in size over time without stabilizing, you might
      run into problems days, weeks, or months down the line. At some point,
      you will also want to use the system monitor, described in “The System Monitor”, to ensure that process memory spikes and
      long garbage collections are optimized or removed. Message queues can be
      monitored using the i() or regs() shell
      commands.
If using the shell is not viable because you are working with
      millions of processes, the percept and
      etop tools will often work, as might the observer
      tool. Along with other monitoring tools, we discuss collecting system
      metrics in “Metrics”. If you are collecting system
      metrics and feeding them into your OAM infrastructure, you can use them
      to locate and gain visibility into bottlenecks.
Multicore Architectures and Memory Spikes
We were testing our first high-throughput system running on a multicore
        architecture. One of the acceptance tests was to show it could sustain
        the peak load it was designed to handle over a period of 24 hours.
        Despite all of the nodes running at 50% CPU with plenty of memory to
        spare, one of the nodes managing an API toward a third-party service
        provider crashed, on average, every 8 hours. We were throttling
        requests based on the service-level agreement, ensuring there were no
        more than a few hundred simultaneous requests. We polled the memory
        every 10 seconds, getting readings of hundreds of megabytes of free
        memory right before each crash. We rewrote the code and reduced memory
        consumption and CPU load by 50%, but that only delayed the problem,
        rather than eliminating it. The node now crashed every 16–20
        hours.
Eventually we turned on the system monitor and noted that a few seconds before the
        crash, an unusually high number of long garbage collection and large
        heap trace events were generated. These were connected to the creation
        of a session, where an XML file sent back to us with session data
        caused a huge memory spike when parsed. We were seeing memory spikes
        when plotting our graphs, but did not think much about them because
        they were contained. What happened in the run-up to every crash was a
        surge in session initialization requests, causing these spikes to pool
        together and create a monster spike that caused the VM to run out of
        memory. We eventually discovered that using more cores increased the
        probability of this monster spike happening. In less than half a
        second, this memory surge used up all available memory and caused the
        node to crash.
The solution? We created a separate FIFO queue for session
        initialization, throttling the number of simultaneous requests that
        caused the memory usage to spike. Despite our controlling the problem
        by adding a bottleneck, the memory graphs became flat, throughput was
        not affected, and the system passed the stress tests.

The biggest challenge, however, is often not finding the
      bottlenecks, but creating enough load on your system to generate them.
      Multicore architectures have made this more difficult, as huge loads will
      often expose issues in other parts of the stack that are related not to
      Erlang, but to the underlying hardware, operating system, and
      infrastructure. One approach to detecting some of your bottlenecks is to
      run your Erlang virtual machine with fewer cores using the erl
      +S flag, or stress testing the node on less powerful hardware.
Synchronous versus asynchronous calls
Most commonly, bottlenecks manifest themselves through long message
        queues. Imagine a process whose task is to format and store logs to
        files. Assume that for every processed request we want to store dozens
        of log entries. We start sending our log requests asynchronously using
        gen_server:cast to a log server that can’t cope with the
        load, because each request process is generating log entries at a rate
        faster than what the generic server process can handle. Multiply that
        by thousands of producers and slow file I/O, and you’ll end up with a
        huge message queue in the consumer’s mailbox. This queue is the
        manifestation of a bottleneck that negatively affects the behavior of
        your system. How does this happen?
Every operation in your program is assigned a number of
        reductions (covered in “Multicore, Schedulers, and Reductions”), each of which
        is roughly equivalent to one Erlang function call. When the scheduler
        dispatches a process, it is assigned a number of reductions it is
        allowed to execute, and for every operation, it reduces the reduction
        count. The process is suspended when it reaches a receive
        clause where none of the messages in the mailbox match, or the
        reduction count reaches zero. When process mailboxes grow in size, the
        Erlang virtual machine penalizes the sender process by increasing the
        number of reductions it costs to send the message. It does so in an
        attempt to control producers and allow the consumer to catch up. It is
        designed this way to give the consumer a chance to catch up after a
        peak, but under sustained heavy load, it will have an adverse effect
        on the overall throughput of the system. This scenario, however,
        assumes there are no bottlenecks. Penalizing senders with added
        reductions is not adequate to prevent overgrown message queues for
        overloaded processes.
A trick to regulate the load and control the flow, so as to get
        rid of these bottlenecks, is to use synchronous calls even if you do
        not require a response back from the server. When you use a
        synchronous call, a producer initiating a request will not send a new
        log request until the previous one has been received and acknowledged.
        Synchronous calls block the producer until the consumer has handled
        previous requests, preventing its mailbox from being flooded. It will
        have the same effect described in Figure 15-6,
        where, at the expense of throughput, you get a stable and predictable
        system. When using this approach, remember to fine-tune your timeout
        values, never taking the default 5-second value for granted, and never
        setting it to infinity.
Another strategy for reducing bottlenecks is to reduce the
        workload in the consumers, moving it where possible to the clients. In
        the case of log entries, for example, you could process them in
        batches, flushing a couple hundred of them at a time to disk. You
        could also offload work to the requesting process, making it format
        the entries instead of leaving that to the server. After all,
        formatting log entries can be done concurrently, whereas writing the
        log entries to disk must take place sequentially.
Now that you’ve optimized your code, learned your system’s
        limits, and addressed its bottlenecks, you will need guarantees that
        your system will not fail over or degrade in performance if you hit
        those limits.


System Blueprints
If you have come this far, the time has come to formalize all your
      design choices into cluster and resource blueprints, combining them
      together into a system blueprint. Your resource blueprint
      specifies the available resources on which to run your cluster. It
      includes descriptions of hardware specifications or cloud instances,
      routers, load balancers, firewalls, and other network components.
Your cluster blueprint is
      derived from the lessons learned from your capacity
      planning. It is a logical description of your system, specifying node
      families and the connectivity within and among them. You also define the
      ratios of different node types you need to have a balanced system
      capable of functioning with no degradation of service. This blueprint
      can be used by your orchestration programs to ensure your cluster can be
      scaled in an orderly fashion, without creating imbalances among your
      nodes. It should also ensure your system can continue running after
      failure, with no degradation of service. Cluster blueprints are
      analogous to an Amazon autoscaling group on Amazon Web Services, but are
      more detailed. When you hit an upper limit in one of your clusters,
      deploy a new cluster.
Your cluster and resource blueprints are combined in what we call
      a system blueprint. With the system
      blueprint in hand, you can understand both how your distributed system
      is structured and how it can be deployed on hardware or cloud instances.


Load Regulation and Backpressure
A long, long time ago, on New Year’s Eve, in a country far, far away, everyone
    picked up the phone and called to wish one another a happy and prosperous
    new year. Phone trunks were jammed. Calls were allowed through at the rate
    the various trunks were configured to handle, and the network kept on
    operating despite the surge. It behaved predictably for the maximum
    capacity it was designed to manage.
The system stayed afloat because it employed backpressure to limit the number of connected
    calls made through a trunk at any point in time. You always got the dial
    tone and were allowed to dial, but if you tried to access an international
    trunk with no available lines, your call was rejected with a busy tone. So
    you kept on trying until you got through. Backpressure is the approach of
    telling the sender to stop sending because there’s no room for new
    messages.
From phone calls, the world moved to SMSs. As SMS became popular,
    the spike on New Year’s Eve started getting larger, as did the delays in
    delivering the SMSs. And as soon as mobile phones allowed you to send SMSs
    in bulk to dozens of users, delays got even worse, with messages often
    arriving in the early hours of the morning when their senders (and
    recipients) had long since gone to bed. Rarely were SMSs rejected—they got
    through, but with major delays. The mobile operators were applying a
    technique called load regulation, where
    the flow of requests was diverted to a queue to ensure that no requests
    were lost. Messages were retrieved from the queue and sent to the SMS
    center (SMSC) as fast as it could handle them.
Calling each other or sending SMSs might be a thing of the past,
    but the techniques developed and used in the telecom space still remain
    relevant when dealing with massive scale. Together, load regulation and
    backpressure allow you to keep throughput and latency predictable while
    ensuring your system does not fail as a result of overload. The difference
    is that load regulation allows you to keep and remember requests by
    imposing limits on the number of simultaneous connections and throttling
    requests using queues, while backpressure rejects them. If you are using
    load regulation toward third-party APIs or service nodes, remember that
    all you are doing is smoothing out your peaks and troughs, ensuring you do
    not overflow the third party with requests. If you keep on receiving
    requests at a rate faster than they can handle, you will eventually have
    to stop queuing and start rejecting.
Little’s Law
Little’s Law is an equation L = λW stating that the
      queue length, L,
      is equal to the arrival rate,
      λ, multiplied by the response time, W. In most
      Internet-connected programs, the queue length is the number of client
      requests waiting to be (and currently being) serviced, the arrival rate
      is the number of client requests per time unit being accepted into and
      serviced by the system, and the response time is how long it takes to
      service one client request. Reorganizing the parameters in the equation,
      we get response time = queue length / arrival
      rate. This shows that if the queue length gets longer or the
      arrival rate—or perhaps more accurately, the throughput—decreases, the
      response time will go up.
In a live system, you cannot control the arrival rate, but it is
      hopefully constant, even under heavy load. What you can control, though,
      are the queue length, by applying backpressure, and the throughput, by
      removing bottlenecks from the request-processing path. By controlling
      the queue length and keeping the arrival rate constant throughout a
      balanced system, you control the response time. The key to getting the
      values right and applying backpressure at the right time is to have full
      visibility of what is going on in your system and to measure it.

Let’s use our New Year’s Eve SMS example. If the gateway is
    receiving more texts than can be handled by the SMSC (which forwards texts
    to your mobile terminal), it queues the texts in your load-regulation
    application, feeding them on a FIFO basis at the rate the SMSC can handle.
    This rate is called the service-level
    agreement. If the SMSs keep on coming in at this fast rate for
    a sustained period of time, the queue size is bound to hit its limit and
    overflow. When this happens, the gateway starts rejecting SMSs, either
    individually in the logic nodes or in bulk by triggering some form of
    backpressure in the front-end nodes, and not accepting them in the gateway
    nodes. This scenario is illustrated in Figure 15-7.
[image: Using Load regulation and applying backpressure.]Figure 15-7. Load regulation and backpressure

In order to throttle requests and apply backpressure, you need to
    use load-regulation frameworks. These could be embedded into your Erlang
    nodes, or be found at the edges in the front-end and service nodes.
    Another common practice to control load is through load balancers.
    Software and hardware load balancers will, on top of balancing requests
    across front-end nodes, also throttle the number of simultaneously
    connected users and control the rate of inbound requests. Sadly, this will
    by default involve stress testing the load balancers themselves, opening a
    new can of worms.1 Whoever said it was easy to develop scalable, resilient
    systems?
Keep in mind that load regulation comes at a cost, because you are
    using queues and a dispatcher can become a potential bottleneck that adds
    overhead. Start controlling load only if you have to. When deploying a
    website for your local flower shop, what is the risk of everyone in town
    flocking to buy flowers simultaneously? If, however, you are deploying a
    game back end that has to scale to millions of users, load regulation and
    backpressure are a must. They give you the ability to keep the latency or
    throughput of your system constant despite peak loads, and ensure your
    system does not degrade in performance or crash as a result of hitting
    system limits. There are two widely used load-regulation applications in Erlang: Jobs and
    Safetyvalve.
Jobs and Safetyvalve
Jobs,
      written by Ulf Wiger, is a scheduler for load regulation of Erlang-based systems. It
      provides a queuing framework where each queue can be configured for
      throughput rate, job type, and number of concurrent requests. You can
      add and modify queues at runtime. Queuing jobs delays their execution,
      and limits the number of simultaneous processes. The Jobs application
      also allows you to configure timeouts for jobs in the queue, provides
      strategies such as FIFO and LIFO to extract jobs from the queue, and
      provides queue limits. Once a queue’s limit is reached, further jobs are
      rejected until spaces appear again on the queue.
The Jobs scheduler follows the Erlang way of submitting to load
      regulation by spawning a job process that asks for permission to
      execute. When permission is granted, it simply completes the task and
      terminates. Samples of the underlying memory usage and Mnesia load are
      taken to tell the scheduler to dampen (reduce) the job scheduling rate
      or number of concurrent requests when certain thresholds are exceeded.
      Sampling is done through a plug-in, so you can write your own plug-in
      and check other items, such as memory. Dampening effects are removed
      once the sampled values return to normal. In distributed systems, Jobs
      will propagate the load status across multiple nodes so they can also
      take appropriate action.
Another popular load-regulation framework is Safetyvalve.
      It was inspired by Jobs, but is much simpler in scope, focusing on
      queuing mechanisms to protect the system from overloads by controlling
      throughput and the number of simultaneous requests allowed to execute.
      Safetyvalve allows you to configure multiple queues. For every queue,
      you can set the queue type, queue polling frequency, and handling of
      bursts using the token bucket algorithm. You add tokens to a bucket
      every time you poll the system. The tokens allow you to execute requests
      in a burst when starting the system or after periods of inactivity. You
      can configure the rate at which tokens are added after every poll, as
      well as the maximum size of the token bucket, limiting the size of the
      burst. You can also configure the size of the queue as well as the
      maximum number of concurrent tasks allowed to execute.


Summing Up
In this chapter, we’ve covered the scalability aspects to take into
    consideration in Erlang/OTP-based systems. The key to the scalability of
    your system is ensuring you have loosely coupled nodes that can come and
    go. This provides elasticity to add computing power and scale on demand.
    You often want strong consistency within your nodes and node families and
    eventual consistency elsewhere. Communication should be asynchronous,
    minimizing guaranteed delivery to the subset of requests that really
    require it.
The steps to architecting your system covered in the previous two
    chapters included:
	Split up your system’s functionality
        into manageable, standalone nodes. 

	Choose a distributed architectural
        pattern.

	Choose the network protocols your nodes,
        node families, and clusters will use when communicating with each
        other. 

	Define your node interfaces, state, and
        data model. 

	For every interface function in your
        nodes, pick a retry strategy.

	For all your data and state, pick your
        sharing strategy across node families, clusters, and types, taking
        into consideration the needs of your retry strategy.
Iterate through all these steps until you have the tradeoffs
        that best suit your specification. You will also have made decisions
        that directly impact scalability, resulting in tradeoffs between
        scalability, consistency, and availability. Now:

	Design your system blueprint, looking at
        node ratios for scaling up and down.
To define your cluster and resource blueprints, you should
        understand how you are going to balance your front-end, logic, and
        service nodes based on your choice of distributed architectural
        patterns and target hardware. You need to remember the goal of no
        single point of failure, ensuring you have enough capacity to handle
        the required latency and throughput, and can achieve resilience even
        if you lose one of each node type. When you’re done, combine the two
        into a system blueprint.
The only way to validate your system blueprint is through
        capacity testing on target hardware. Write your simulators and run
        soak, stress, spike, and load tests to remove bottlenecks and validate
        your assumptions.

	Identify where to apply backpressure and
        load regulation. 
When capacity testing your system, you should strive to obtain a
        good idea of the system’s limitations. Understand where to apply load
        regulation and backpressure, protecting your system from degrading in
        performance or crashing altogether. How many simultaneous requests can
        go through the system before latency becomes too high or some nodes
        run out of memory? Is your system capable of handling failure with no
        degradation of service? Also, make sure you do not crash your
        third-party APIs and services, maintaining the accepted service-level
        agreements.


Our last word of advice is not to overengineer your system.
    Premature optimizations are the root of all evil. Do not assume you need a
    distributed framework, let alone use one just because it is there or
    because you can. Even if you’ll be writing the engine for the next
    generation of MMOGs or building the next WhatsApp, start small and ensure
    you get something that works end to end. Be prepared to use these
    frameworks, but hide them behind thin abstraction layers of software and
    APIs, allowing you to change your strategy at a later date. Then, when
    stress testing your system, recreate error scenarios. Kill nodes, shut
    down computers, pull out network cables, and learn how your system behaves
    and recovers from failure. During this stage you can decide what tradeoffs
    you will make between availability, consistency, and scalability. The
    difference in infrastructure cost between not losing any requests and
    losing the occasional one could mean an order of magnitude or more in
    hardware capacity. Do you really need 10 times more hardware, and the cost
    and complexity associated with it, for a service no one is paying for, and
    which very rarely fails anyhow?

What’s Next?
Now that you have a system that you believe is scalable, available,
    and reliable, you need to ensure your DevOps team has full visibility into
    what is happening on the system after it has gone live. In the next
    chapter, we cover metrics, logs, and alarms, which allow personnel
    supporting and maintaining the system to monitor it and take actions
    before issues escalate and get out of hand.

1 The sad part of this paragraph is that we’ve often caused load
        balancers to crash or behave abnormally and had to shut them down when
        load testing, because they weren’t powerful enough to withstand the
        load we were generating.


Chapter 16. Monitoring and Preemptive Support
If you have read this far, you must really be out to impress everyone
  with a system that is not only scalable and reliable, but also highly
  available. With the right tools and approach, the five nines once reserved
  for telecom systems are now easily attainable in whatever other vertical for
  which you might be developing software. But implementing everything
  described in the previous chapters is not enough. Just as important as
  resilient software, redundant hardware, networks, power supplies, and
  multiple data centers, your secret sauce to high availability is achieving a
  high level of visibility into what is going on in your system and the
  ability to act on the information you collect.
Your DevOps team will use all this information for two purposes:
  preemptive support and postmortem debugging. Monitoring the system will allow them to pick up early warning signs and
  address problems before they get out of control, either manually or through
  automation. Is your disk filling up? Trigger a script that does some
  housekeeping by deleting old logs. Has your load been increasing steadily
  over the past months as a result of an increase in registered users and
  concurrent sessions? Deploy more nodes to help manage the load before
  running out of capacity.
No matter how much of an optimist you might be, you will not be able
  to catch all problems and bugs before they manifest themselves. Sometimes
  things go wrong, making you rely on higher layers of fault tolerance to
  manage failure. When processes or nodes are restarted automatically, you
  need a snapshot of the state of the system prior to the crash. Together with
  your historical data, the state snapshot will allow you to quickly and
  effectively deal with postmortem debugging, figure out what caused the
  crash, and ensure it never happens again.
If you do not have snapshots of the system, debugging will be not be
  methodical and you will have to rely on guesswork. Finding a needle in a
  haystack would be easier. The last thing you want to count on is for errors
  to politely manifest themselves when you are sitting in front of the
  computer staring at the screen. They won’t. The system will wait for your
  lunch or coffee break, or until you’ve gone home, before crashing. Ensuring
  you have the visibility and historical data will be time well spent prior to
  launch, paying for itself many times over when you are determining the
  causes of errors, fixing bugs, and putting in place preemptive measures to
  ensure the problems you experience do not happen again. In this chapter, we
  cover approaches to monitoring and preemptive support, introducing some of
  the most common support automation approaches.
Monitoring
Anyone can see, through a crash dump report, that a virtual machine
    ran out of memory. But what type of memory caused the crash? Was it the
    atom table, the memory taken up by the code, the process memory, the
    binary heap, or system memory? Maybe the system had a surge of login
    requests that in turn caused the memory spike. Or the latency of a request
    increased because of a slow third-party API, causing processes to live
    longer. Or a particular request type failed, triggering an I/O-intensive
    cleanup procedure, which in turn triggered a lot of other unexpected
    events or timeouts. Without proper visibility in place, you can only guess
    the current state of your system and are unable to spot trends and address
    issues before they escalate. After issues have escalated, lack of
    historical data makes troubleshooting both time-consuming and daunting.
    This is why systems need to be monitored, and information stored for later
    access.
Monitoring is done using a combination of the following
    facilities:
	Logs record state changes in your program. A state change could be part of
        your business logic, such as a user logging on and initiating a
        session, or a system state change such as a node joining the
        cluster.

	Metrics are obtained
        by polling a value at a particular point in time. You
        could be monitoring system metrics such as CPU utilization and memory
        usage, ETS table size, the number of open TCP connections, or business
        metrics such as latency, active sessions, or the number of login
        requests per hour.

	Alarms are a form of
        event associated with a state. They are raised when
        certain criteria are met, such as running out of disk space or hitting
        concurrent session threshold values. Similarly, they are cleared when
        these criteria are no longer valid: for example, after files are
        compressed or deleted, or after users log off.


Monitoring should be developed in conjunction with the configuration
    and management functionality of your system. We refer to this
    functionality as the operations, administration, and maintenance (OAM) part, or
    O&M if it does not allow you to configure and manage your business
    logic. In the remainder of the chapter, we focus on monitoring and use the
    term OAM to mean both.
In many Erlang systems, especially those designed by architects who
    have never had to support a live system, OAM support tends to be missing,
    incomplete, or bolted on as an afterthought. If you come across systems
    where the only way to find the number of active sessions is by manually
    adding the size of the ETS session tables across all nodes, or changing
    live configuration is achieved by calling
    application:set_env, they’ve done it wrong. All systems
    should let you inspect, manage, and do basic troubleshooting without any
    knowledge of Erlang or need to access the Erlang shell.
In the telecom world, this noncritical OAM functionality is put in
    its own node (or node pair for redundancy) for the same reasons discussed
    in “Node Types and Families”, namely reducing the overhead on the
    front-end, logic, and service nodes while increasing resilience. The OAM
    node should be designed to ensure that in case of failure, your system is
    still capable of servicing requests. This means that only critical OAM
    functionality is put in non-OAM nodes, usually reduced to a few critical
    alarms and the ability to check the liveness of the node.
OAM nodes can be used to handle both Erlang and non-Erlang
    components of your software. They act as a hub toward the wider operations
    and maintenance infrastructure of the organization where you deploy your
    software (Figure 16-1). This wider OAM infrastructure
    would also monitor and manage your network, switches, load balancers,
    firewalls, hardware, OS, and stack. It could include open source tools
    such as Graphite, Cacti, Nagios, Chef, or Capistrano; proprietary tools;
    or the use of SaaS providers such as Splunk, Loggly, or NewRelic.
    Connectivity could be one of many standards and protocols, including SNMP
    and standard management information bases (MIBs), YANG/NETCONF, REST, web
    sockets, or whatever the flavor of the month might be (as long as it is
    not CORBA).
[image: OAM nodes offload your system, providing a link to the wider
          OAM infrastructure.]Figure 16-1. Operations and maintenance nodes

Logs
A log is an entry in a file or database that records an event that can
      be used as part of an audit trail. The entry could reflect a system
      event in the Erlang VM or operating system, or an event that triggers a
      state change in your business logic. Logs are used for a variety of
      purposes, including tracing, debugging, auditing, compliance monitoring,
      and billing. Different log entries are usually tagged, allowing you to
      decide the level of granularity of what is stored at runtime. Common
      tags include debug, info, notice, warning, and error.
The different ways logs are used by different people with varying
      technical skills and tool sets makes it hard to suggest a “one size fits
      all” approach. What is important, however, is to have logs that allow
      those using them to uniquely follow the flow of requests across nodes in
      order to locate issues or gather required data.
Picture our e-commerce example, where millions of requests run
      through the system daily. How do you handle a complaint from a customer
      who claims they never received their package, despite their credit card
      being charged? How do you narrow down your search and link the missing
      message to process crash reports or networking issues? You need to
      quickly find where in your code the request disappeared and admit guilt,
      or prove your innocence using a solid audit trail as evidence, thereby
      shifting the focus for finding the problem to your warehouse team or the
      courier.
Can you then use the same logs to create a customer profile based
      on the items purchased? Or look at the durations of user sessions to
      understand their shopping behavior? Understand how many users fill
      customers’ shopping carts but never check out? Or add up the total
      number of sales and, for revenue assurance purposes, compare it with the
      figures provided by the bank handling the credit card transactions? That
      is the level of granularity to aim for.
We saw the SASL logs that you get for free when using OTP in “The SASL Application”. If configured correctly, you get binary
      logs with supervisor, progress, error, and crash reports. You can also
      add your own handlers, forwarding crash and error logs to a central
      location. But saving the information is just the start to finding all
      the help it can provide when mined properly. Imagine a system with
      hundreds (or even thousands) of nodes, elastically scaling up and down.
      If you did not forward them to a central log repository, you would have
      to SSH onto a machine, connect to the Erlang shell, start the report
      browser, and search for crash reports, hoping they had not been rotated.
      If that were the case, how would you ever find out if something went
      wrong?
At one site we ran systems where processes were crashing daily.
      Since they were being automatically restarted, we were not aware of the
      issues, and the system was perceived as running normally, when in fact,
      a very small fraction of the requests were failing. Failure had been
      isolated so well, we had no idea our system was riddled with bugs.
      That’s not cool. If you want high availability, you need to automate the
      discovery of the SASL crash and error reports, and then ensure any
      faults get addressed. Although they may appear to be small in number, a
      user out there is experiencing each fault. And if many of these issues
      happen in quick succession, they could cause the supervisor to reach its
      maximum number of restarts, terminate, and escalate the issue, possibly
      taking the node down. Increasing the number of allowed restarts in your
      supervisor specification is not the solution. You need to solve the root
      problem that causes the crashes.
Users have often added their own log entries to the SASL logs, but
      this isn’t recommended because it mixes logs of different types and
      purposes in the same file. It might work for smaller systems with little
      traffic, but as soon as you have to handle tens of thousands of requests
      per second or more, where each request results in multiple log entries,
      you will quickly outgrow the capabilities of the SASL logs and will
      definitely want separate files (and possibly formats) for every log
      type.
Lager
Lager
        is one of the most popular open source logging frameworks for Erlang.
        It provides highly optimized logging capabilities in Erlang systems
        that integrate with traditional Unix logging tools like logrotate
        and syslog. Log levels such as
        debug, info, notice, warning, error, critical, alert, and emergency can be assigned different handlers,
        allowing you to decide how to manage the information provided. Default
        handlers format your logs for offline viewing, for terminal output,
        and for forwarding to SMS, pagers, and other service providers. Most
        of the OTP error messages are reformatted into more readable ones.
        Lager also has overload protection and
        throttling, allowing logs being sent to it to toggle between
        asynchronous and synchronous calls depending on the mailbox size. It
        also introduces the notion of a sink, allowing you to forward only the
        most critical log entries.

To understand what business-specific items you should be logging,
      trace the functional information flow of each request, identifying where
      the request will change the state of the system, and then log items that
      will get the user to select different branches. Think about what will
      give the maintainers, support engineers, DevOps team, accountants,
      auditors, marketing, and customer service representatives a good
      overview of what is happening or has happened. Every time a notable
      change in state occurs, log useful information that was not previously
      stored.
Ensure that you can, through unique identifiers, link together the
      various log entries, recreating the functional information flow. You
      cannot rely on timestamps alone, because the quantities of data will be
      huge. Nor can you rely on the session ID, user ID, or phone number, as
      they will not be unique across multiple requests. Assign a unique ID
      every time a unique request is received by an external client. As
      external requests might consist of several independent requests within
      your system or other external systems, unique identifiers might vary
      from one log to another. To link them together, you must ensure they are
      available in the function call where you invoke the log and store them
      together. While log entries can be added later, you must think through
      your logging strategy before you start coding, as the logs might be the
      only reason for using unique IDs in your business logic. You do not want
      to refactor all your code because you’ve realized that right before a
      call to an external API, you do not have the request ID generated
      elsewhere. You should also be prepared to change what you log based on
      feedback from maintainers, the DevOps team, and other log
      consumers.
Try to reduce repetition across logs. Store information only once
      and link it together with other logs using your identifiers. Using a
      single log to store everything might work during development, but when
      tens of thousands of sustained transactions take place per second, it
      will be hard to efficiently extract useful data out of the file and it
      could become a potential bottleneck. Ideally, your logs should create a
      relational model, where depending on the flow, a log entry in a file
      with a unique ID is linked to an entry in another file. This unique ID
      could be a session ID, which links items browsed by a user, items placed
      in and removed from a shopping cart, and items paid for on checkout. One
      log file could contain all the items browsed by a user, including the
      time spent viewing an item, another file items added to and deleted from
      the shopping cart, and a third log file items that were paid for. Items
      that were paid for on checkout might have another unique ID generated by
      the payment gateway, linking the session to one or more payments. All
      payment logs, in turn, would not have to store the session ID, as the
      link between the two would be made from the checkout log.
Another way to view the logs is as FSMs, where every entry is a
      state, and transitions to new states take place based on a set of
      conditional evaluations in your business logic. Replaying the state
      transitions in the FSM would allow DevOps engineers to retrace the steps
      taken by users adding items to their shopping baskets and paying for
      them.
Identify the different levels of logging, and especially what is
      useful only in debug mode, so as to not overload the system with useless
      logs. As a minimum requirement, always log the incoming and outgoing
      requests and results where appropriate so you are later able to identify
      the problematic system or component. As an example, if you are calling
      an external API, create a log entry with the request, the latency, and
      any unique request ID the external API has provided you. If the API
      request to your external service times out, just replace the result with
      a timeout tag. You can later analyze the log and see whether you need to
      increase the timeout values.
You will have to log system-specific items in your
      business-specific logs irrespective of what the node or system does. We
      have already discussed SASL logs, which you get as part of OTP. Always
      log all Erlang shell commands and interactions. You will be surprised to
      learn how many outages are caused by operations staff who are not used
      to working in the shell. Knowing what they have done can be just as
      important for proving that your code was working correctly as it is for
      restoring the service. How you log shell commands will depend on your
      target architecture. You could redirect your I/O, use bash commands, or
      add a hook to log the entries in the Erlang VM itself.
Other items to log could include network connectivity and memory
      issues, which are notifications arising from the
      system_monitor BIF described in “The System Monitor”. Be careful with the latter, as we have
      caused nodes to crash after they ran out of disk space as a result of
      logging millions of distributed Erlang port busy notifications in a
      24-hour period. The same applies to badly written code that caused
      memory spikes, triggering long gc and large heap messages. In these
      cases, an incremental counter that bumped up every time such a message
      was generated would be better than logging the messages themselves. You
      can build in the ability to toggle the logging of the messages, so that
      you can switch to retrieving details when you need to debug the
      situation.
It is often also worth logging times when code is loaded or
      purged, node restarts, and the successful saving (and renaming) of crash
      dumps. Log whatever you believe will make your life easier and help you
      understand and correlate abnormal behavior or corrupt system state to a
      series of events.
If you store logs locally, use append-only files, and make sure
      your data is organized properly. It is common for log files to be stored
      offline, in databases, or with SaaS providers. Disk space is cheap. Logs
      could be stored as CSV files in plain text and fed into a variety of
      systems used for troubleshooting, billing, compliance, and revenue
      assurance. Logs could follow a standard such as
      syslog, or have a proprietary format. Make sure the
      data is accessible in a friendly format for those who need it. To
      slightly misuse Pat Helland’s wise words, “a database is a cache of your
      event logs,” if your database (or state) gets corrupted, the logs should
      tell you why. If it is not corrupt, they will tell you why not.
Where Is My Text Message?
We once received a support call where a very angry user complained he had
        received SMS goal notifications hours after the soccer (football for
        our European chums) match had ended. Equipped with his number, we
        found the front-end node where the request to send SMSs to this number
        reached our system. In our logs, we found that three SMSs had been
        sent to that number that day. Each SMS had been assigned a unique
        identifier when it entered the system.
Based on the timestamps in the logs, we figured out that two
        SMSs were sent during the match in conjunction with the team scoring,
        and the third, which we guessed contained the final score, was sent
        after the match had ended. When an SMS reached our system, we created
        a log entry with its identifier, along with information such as the
        SMS type and the cost code stating how much the operator should charge
        the user to deliver it. In our case, we used the identifier and the
        fact that the SMS was a premium-rated message to locate the next log
        entry. Checks in this part of the business logic were made there to
        ensure that the account was active, that it was allowed to receive
        premium-rated SMSs, and in the case of prepay subscriptions, that
        there were enough funds in the account to pay for the message. We
        found that entry in seconds, and were able to see from the log entry
        that all checks were affirmative. The user was a postpay subscriber
        (billed monthly based on use), his account was not suspended, and he
        was allowed to receive premium rate SMSs. Using the unique identifier,
        we checked the logs in the service node that sent the SMSs to the
        SMSC for delivery to the mobile terminal. The SMSC returned
        its own unique identifier, which was logged together with the
        timestamp at which the request was acknowledged. According to the
        logs, it took a few milliseconds from the moment the system received
        the request in the front-end nodes for the message to work its way
        through all of the checks and on to the SMSC via the service
        node.
We then used the unique identifier from the SMSC to search the
        delivery report log sent to our system from the SMSC. Indeed, at
        30-minute intervals in the hours that followed, we got terminal
        detached messages, followed by a final delivery report that the SMS
        had been successfully delivered. As per the complaint, it was a few
        hours after the match had ended. Looking at the unique identifiers for
        the other two SMSs, we got a similar story, with a delivery receipt
        with a timestamp similar to the first one.
Why weren’t the messages delivered, since our system handled
        them so promptly? The answer was in the terminal detached messages,
        telling us that the user either was out of coverage or had his handset
        switch off. It took us a couple of minutes to respond to this request
        and prove our innocence. We could not have done it without precise
        timestamps, unique identifiers, and detailed information allowing us
        to link the different logs together. With this in mind, think of
        systems where requests disappear, with no clue about what went wrong.
        Good luck proving your innocence there.


Metrics
Metrics are sets of numeric data collected at regular intervals and
      organized in chronological order. Metrics are retrieved from all levels
      of your application stack. You need to retrieve data on the OS and
      network layers, on the middleware layer (which includes the Erlang
      virtual machine and many of the libraries described in this book), and
      in your business layer. Metrics can be used in many parts of a business
      and are needed for many reasons, all similar to the reasons you need
      alarms and logs:
	Developers use metrics to improve the performance and
          reliability of the system and troubleshoot issues after they have
          occurred.

	DevOps engineers monitor the system to detect abnormal
          behavior and prevent failures.

	Operations staff use metrics to predict trends and usage
          spikes, using the results to optimize hardware costs.

	Marketing uses them to study long-term user trends and user
          experience.


To visualize metrics, imagine an incremental counter called
      login that is bumped up every time
      someone tries to log on to the system. If they are successful, login_success could be bumped up, or upon
      failure, login_failure incremented
      instead. We could take this further, and create counters for different
      failure types such as bad_password,
      unknown_user, user_suspended, and userdb_error. Such metrics could help identify
      attempts to hack into the system, help monitor fraud attempts, or maybe
      just prove a poor user experience. If you are getting hundreds of
      unknown user or bad password errors from the same source, you might want
      to ask those responsible for security to review the logs and determine
      what is going on. Marketing might want to determine how many users who
      fail to log on actually retry and eventually succeed. This would also be
      determined by examining the logs, but metrics would provide the first
      hint that something is wrong.
The operations team might want to make sure the system load
      doesn’t exceed available resources, requesting metrics on the memory
      usage of the Erlang VM. You can poll not only the total memory usage,
      but also how much memory is used by processes, the system, the atom
      table, ETS tables, binaries, and to store the code. You could even take
      it a step further and differentiate between the space allocated to store
      process and atom memory versus the memory actually used.
As a developer, you might not think much about these issues as you
      rush to deliver the system, but once you have gone live and someone who
      does not speak Erlang has to figure out why it is running low on memory,
      imagine the power of being able to correlate spikes in process memory
      usage or large portions of time spent on garbage collecting data with
      particular user operations such as logging in.
Figure 16-2 plots the different types of memory
      usage in the Erlang VM, alongside total memory consumption. We can
      clearly see that the 50% increase in memory is due to an increase in the
      used process memory, which probably correlates either to increased
      system usage or to a buildup of processes that aren’t being properly
      terminated.
[image: Different types of memory fluctuation]Figure 16-2. Memory usage

Metrics collected take on different values and formats depending
      on their purpose. One typical value is an amount, a discrete or continuous value with incremental and decremental
      capabilities. A common form of amount is counters, as
      we have seen.
Gauges are a form of counter that provide a value at a particular point in
      time. Although the number of login attempts since we started the system
      might not help someone in operations, the number of ongoing sessions
      will. Other typical examples of gauges are to measure memory or hard
      disk usage.
Time is another common measurement, mainly used to measure latency in all
      levels of the stack. Data collectors tend to group time readings
      into histograms,
      collections of values (not necessarily only time-related) that have had
      some form of statistical analysis applied to them. Histograms may show
      averages, minimum and maximum values, or percentiles. As examples, what
      was the latency of the fastest 1% of the requests? And the slowest
      1%?
The third type of metric is a value in a particular unit of
      time. These are commonly called meters, which provide an increment-only counter
      whose values are evened out with mean rates and exponentially weighted
      moving averages. The adjustments ensure you do not see spikes and
      troughs that might occur.
A spiral is a form of
      meter with a sliding window count, showing the increment
      of a counter in a particular time frame. If you are showing a value
      relative to the last minute, the sliding count could drop readings older
      than 1 minute and replace them with new ones, each second. Values you
      could show include the bit rate per second and operations per second,
      such as the number of initiated sessions.
Metrics have a timestamp associated with them. They are retrieved and stored in a
      time series database at regular intervals. A time series database is
      optimized to handle data indexed by timestamps, allowing you to access
      data in chronological order. Metrics are often aggregated and
      consolidated over time to provide overviews on a system level. You might
      want to collect all counters from a particular node type or see the
      total number of requests for all nodes in the last 15 minutes, hour,
      day, or month.
Look at the counter in Figure 16-3, which shows
      the total length of all the process message queues over a 12-hour
      period. It was plotted based on data collected when investigating a node
      crash that occurred at 3:34 AM. The node crashed after running out of
      memory. The metrics not only allowed us to identify what caused the
      crash, but provided an operational insight: had someone been monitoring
      the process message queue length, there was a 3-hour window where the
      issue could have been noticed and addressed.
[image: Node crash resulting from long message queues]Figure 16-3. Message queue length

In Erlang, ETS tables have the atomic operation
      ets:update_counter that allows you to increment and decrement counters. They can
      be used for speed, but beware of global locks and bottlenecks when
      scaling on multicore architectures. Recommended open source applications
      that focus on metrics include folsom
      and exometer. They offer some of the basic system metrics you expect out of
      your Erlang VM, and let you create your own metrics on a per
      node-basis.
Exometer
Exometer consists of a group of applications providing a package to gather
        and export metrics in individual nodes. It provides predefined data
        points and metric types that can be sampled, as well as APIs and
        callback functions to add user-defined metric types. When a state
        needs to persist between sampling, it is possible to implement probes
        that run in their own process space, storing state and using it to
        gather the metrics. Metrics and data points can be exported to
        third-party tools and APIs, including Graphite, OpenTSDB (via Telnet),
        AMQP, StatsD, and SNMP. You can also choose to develop and add your
        own custom reporters. Exometer operates with very
        low impact on memory, CPU, and network usage so as to minimize its
        effects on resources required by the applications it’s measuring and
        monitoring.


Alarms
Alarms are a subset of events associated with a state. While an event
      will tell you that something happened, an alarm will indicate that
      something is ongoing. For instance, an event tells you that a socket was
      closed abnormally, but an alarm warns of your inability to create any
      socket connections toward an external database.
An alarm is raised when the
      issue you are monitoring manifests itself. This could represent, for
      instance, losing the last socket connection toward the database or
      failing to create a connection at startup. The alarm is said to remain
      active until the issue is resolved—maybe on its own
      accord, or through automatic or manual intervention—and the state
      reverts back to normal. This could happen when connectivity toward the
      database is restored. When this happens, the alarm is said to be
      cleared.
Alarms can also be associated with a severity. Severities include
      cleared, indeterminate, critical, major, minor, and warning. Each alarm severity is configured
      individually in the OAM node on a system-by-system basis, allowing the
      DevOps teams (and automated scripts) to react differently to them. For
      example:
	An alarm about a disk that’s 80% full might be associated with
          a minor severity. You can get notified about it during office hours
          and deal with it after the coffee break.

	However, if the disk continues filling up and becomes 90%
          full, the severity might rise to major. You can get called about
          that during office hours, out of office hours, and on weekends, but
          not between 11 PM and 7 AM.

	If the disk becomes 95% full, the severity might then go to
          critical; regardless of when this occurs, a pager call alerts
          someone, perhaps getting them out of bed, to investigate and address
          the cause before the node runs out of space and crashes.


In other systems, however, where nodes can crash without affecting
      availability and reliability, a node that crashed because its disk is
      full could be handled when convenient during office hours, assuming
      there is enough redundancy to guarantee the system can still handle the
      load. There is no one size fits all solution; each system is unique and
      must be managed differently.
Alarms can originate from the affected node or in the OAM node
      itself. They can be based on thresholds or state changes, or a mixture
      of the two.
In threshold-based alarms, metrics are monitored and the alarm is raised if a limit
      is exceeded in one of the metrics. Depending on the exceeded value, such
      as a disk full alarm, you could configure and apply different severities
      based on the requirements of your system. Other examples of
      threshold-based metrics include system limits such as memory, number of
      sockets, ports, open files, or ETS tables. If you are monitoring the
      number of requests that went through your system using an incremental
      counter, and this counter has not changed in the last minute, there is
      probably an issue and you will want to have someone investigate.
Most threshold-based alarms can be managed in the OAM node, but
      there are exceptions created by the frequency at which you transfer the
      data and the volumes you are willing to move. As an example, processes
      with very long message queues are usually a symptom of issues about to
      happen. They are easy to monitor, but the monitoring and raising of
      alarms has to happen on the managed nodes, as it is not feasible to send
      the message queue lengths of all processes to the OAM node. There will
      also be times where you want to detect these issues and raise an alarm
      immediately, without having to wait for the OAM node to receive the
      metrics and raise a threshold-based alarm.
State-based alarms are triggered when a potentially harmful state change
      occurs. They include alarms highlighting hardware issues such as a
      cabinet door being opened or a cooling fan failing. Other examples
      include the connectivity toward an external API or database being
      unresponsive or a node going down.
It’s up to you to decide how many alarms to send and the levels of
      detail to include in these alarms. You might want to do sanity checks in
      your system. What happens if a .beam, .boot, .app, or sys.config file gets corrupted? You will not
      notice until the node is restarted. Although a node can take a few
      seconds to restart, marginally affecting your uptime, identifying the
      corrupt file is enough to kiss your five nines goodbye. Isolating the
      corrupt file and fixing it is not easy and will take time, drastically
      increasing your downtime. If you think it will not happen to you, think
      again, because it has happened to many others, us included!
SASL has a basic alarm handler, which we cover in “The SASL Alarm Handler”. It allows you to raise and clear alarms, but
      does not handle severities and dependencies. The idea behind the SASL
      alarm handler is to manage alarms on the affected nodes. These can be
      forwarded to more complex alarm applications in your OAM node or
      external tools. But if you do write your own OAM node, you will need
      something more complex and configurable, handling alarm duplication,
      severities, and operator interaction.
Elarm
The elarm
        application is the de facto Erlang-based alarm manager used in
        production systems to manage alarms. It allows you to configure
        severities and actions, as well as implement handlers that forward
        requests via email or SMS, or to external systems such as Nagios or
        pager duty. Users (or the system) can acknowledge and clear alarms as
        well as add notes for other members of the DevOps team. You can
        configure alarms to provide users with default information such as
        severity, probable cause, and repair actions. All alarm events are
        logged, and the current state of alarms can be queried and filtered.
        While the SASL alarm handler is ideal for basic alarm handling,
        elarm is what you should be running in your OAM
        nodes, making it the focal point where all of the alarms are
        collected, aggregated, and consolidated. This information is then used
        to make decisions on actions and escalation, be it automated or
        manual.

No two systems are alike. Based on their functionality, traffic
      load, and user behavioral patterns, they will need to be managed and
      configured differently. A critical alarm in one system might be a
      nonissue or a warning in another. Once you’ve gone live, you will need
      to configure and fine-tune your alarms. This is commonly done when you
      handle false positives and false negatives. A false
      positive is an alarm generated because of a nonissue. It
      could be caused by an overly sensitive threshold or even paranoid
      management asking you to monitor too much. In cases where disks fill up
      slowly, a 70% disk full alarm could be active for months without any
      need for intervention. But in systems where disks fill up quickly, such
      an alarm might warrant waking someone up in the middle of the night, as
      it might be a warning that the node is going to crash within the hour.
      It is important to fine-tune your system and eliminate false positives,
      as too many of them will result in serious alarms being ignored.
It is also important to do the opposite: namely, manage false negatives. A false
      negative is when alarms should have been raised, but are not.
      This could be because of threshold configuration or lack of coverage in
      particular parts of the system. After every failure or degradation of
      service, review which alarms could have been raised (if any) and start
      monitoring events that might indicate that failure or service
      degradation is imminent.
We see alarms in systems too rarely, and when they do exist, they
      have often been added as an afterthought. The majority are
      threshold-based, with the only state-based alarms being based on
      external probes sending requests to the system. Alarms play a critical
      role in detecting and addressing anomalies before they escalate and have
      been a must in the telecoms space for decades. It is time for other
      verticals to adopt these practices widely and apply the lessons learned
      about them. It will greatly facilitate support automation (covered in
      the following section) and be one of the pillars you can count on when
      trying to achieve five-nines availability.


Preemptive Support
Support automation is the
    building of a knowledge base that is used to reduce service
    disruption by reacting to external stimuli and resolving problems before
    they escalate. If you are allowed only minutes of downtime per year,
    downtime is something you need to plan for when designing your system. It
    is no good detecting something has gone wrong and expecting a human to
    intervene and manually run a script. Being allowed a few minutes of
    downtime per year means running that script through automation. Automation
    is achieved through the collection and analysis of metrics, events,
    alarms, and configuration data. If certain patterns are detected in the
    metrics and sequence of events, a set of predefined actions are taken,
    preemptively trying to resolve the problem before it occurs. It could be
    something as simple as deleting files, configuring a load balancer, or
    deploying a new node to increase throughput while decreasing
    latency.
You need to keep three main areas of support automation in mind when
    designing your Erlang system:
	Proactive support automation
        is focused on reducing downtime using end-to-end health
        checks and diagnostic procedures. It could be implemented through an
        external system that sends requests to test availability, latency, and
        functionality.

	Preemptive support automation
        gathers data in the form of metrics, events, alarms, and logs for a
        particular application; analyzes the data; and uses the results to
        predict service disruptions before they occur. An example is noticing
        an increase in memory usage, which predicts that the system might run
        out of memory in the near future unless appropriate corrective actions
        are taken. These actions could include enabling load regulation and
        backpressure, request throttling, starting or stopping nodes, and
        migration of services using capability-based deployment.

	Self-support automation
        describes the tools and libraries that can be used to troubleshoot
        solutions and to diagnose and resolve problems. They are invoked as
        the result of proactive and preemptive support automation.


An example of proactive support automation is external probes that
    simulate users sending HTTP requests, monitoring the well-being of the
    system by sending requests to different parts of it. In our e-commerce
    example, probes could include tests to ensure that the product database is
    returning search results, that users can log on and start a session, and
    that checkout and payment procedures are successful. There is, after all,
    no point in having a shop where customers can browse the items, but not
    buy them!
You want to know about issues with your system long before your
    customers find out, and already be working on a resolution before the
    moaning on social media starts. Make sure that the probes run outside of
    your network. We’ve been caught out as a result of a defective switch,
    where probes within the firewalls were not detecting anomalies but
    customers outside the perimeter network were not able to access the
    system.
In the case of preemptive support, if you know what needs to be done
    when an alarm is raised or the thresholds of certain metrics are met, you
    should automate actions. In the disk full example we gave in “Alarms”, upon receiving the 80% disk space alarm, you could
    start compressing logs. If compressing logs doesn’t help and the alarm
    severity is raised with a 90% disk full alarm, you could change the
    wraparound time of your logs and shut down those that will not affect
    service. If you are unfortunate enough to get a 100% disk full alarm,
    start deleting anything not required and not critical to the correct
    functioning of the system.
Other examples of automated preemptive support include deploying of
    new nodes when existing system capacity is not enough, reconfiguring load
    balancers, and changing thresholds used to trigger load regulation and
    backpressure. As an example, clients using lager send
    log entries asynchronously for speed, but as soon as the
    lager mailbox hits a certain size, the asynchronous
    calls are replaced by synchronous ones in an attempt to slow down the
    producers and allow lager to catch up.
Preemptive support does not have to be completely automated. Do not
    underestimate the value of having your DevOps team analyze logs, alarms,
    and metrics, especially under peak or extended heavy load, to predict and
    avoid outages that you might not have thought of.
A Needle in a Haystack
We had nodes crashing and restarting for months at a customer site
      without noticing. Refactoring of the code we never soak tested resulted
      in us not handling the EXIT signal from the ports we were using
      to parse inbound XML. Yaws recycles processes by default, so every
      process ended up having thousands of EXIT messages from
      previous requests that had to be traversed every time a new request was
      received. The nodes regularly ran out of memory and crashed. When
      restarted, the mailboxes were cleared, and the buildup to the next crash
      would commence.
Customers complained that at times, the system was slow. We blamed
      the speed problems on their Windows servers. From external probe
      testing, we occasionally saw system availability drop from 100% to
      99.999%. We rarely caught this issue because the external probes sent
      one request per minute and took a few hundred milliseconds to process
      it, while the node took 3 seconds to restart. So, we blamed this drop in
      availability on the operations team messing with firewall
      configurations.
Even with triple redundancy, the system was failing, but we did
      not notice. It was only when we happened to be logged on to one of the
      front-end nodes and realized that it was running at 100% CPU while
      handling only 10 requests per second that we realized we had a problem
      and started investigating.
Had we monitored the message queues, we would have picked up this
      issue immediately and prevented it from escalating. Had operations
      viewed CPU utilization and request latency graphed over time, they would
      have noticed something was wrong. And had someone looked at the logs,
      they would have seen that the nodes were crashing and restarting
      regularly. Armed with this information, even if we had not been able to
      fix the EXIT signal problem immediately we could
      have at least reconfigured Yaws to limit its process recycling to
      temporarily work around the problem.
We learned our lesson, so after having solved this issue, we
      started monitoring the latency of the requests. It paid off, as we
      noticed that every hour, exactly on the hour, latency spiked from a few
      hundred milliseconds to a few seconds! Investigation traced the issue to
      synchronous calls taking place when the log files were being rotated.
      Flushing the file to disk stopped all other requests because of the
      synchronous nature of the calls to the log process. We ended up spawning
      a process that opened the new file and took care of all new log entries,
      allowing the old file to be flushed in the background.


Summing Up
Monitoring systems is never dull. If you want five-nines
    availability, do not take anything for granted; monitor everything, and
    spend the time necessary to regularly review alarms, logs, and metrics.
    The reviews should be both manual and automated. You never know what you
    or one of your tools is going to find. The only thing you can be sure of
    is that these issues will manifest themselves, and will do so when you
    least expect it.
Just because you’ve isolated failure on a function, process,
    application, and node level does not mean allowing processes to crash is
    acceptable. The “let it crash” approach gives you the programming model
    you need to reduce crashes through simplicity. Make sure you are aware
    failure is occurring, and fix the issues as soon as you detect them. You
    need to be aware something is about to happen with enough margin to allow
    you to react to it before your users notice.
And finally, don’t waste time looking for needles in a haystack.
    Have all the data at hand so that you can prove your innocence (or admit
    guilt) when anomalies do manifest themselves.
That’s it! Who ever said designing systems that are scalable and
    highly available was hard? All you need to do is follow our 10 easy
    steps:
	Split up your system’s functionality
        into manageable, standalone nodes. 

	Choose a distributed architectural
        pattern.

	Choose the network protocols your nodes,
        node families, and clusters will use when communicating with each
        other. 

	Define your node interfaces, state, and
        data model. 

	For every interface function in your
        nodes, pick a retry strategy.

	For all your data and state, pick your
        sharing strategy across node families, clusters, and types, taking
        into consideration the needs of your retry strategy.

	Design your system blueprint, looking at
        node ratios for scaling up and down.

	Identify where to apply backpressure and
        load regulation. 

	Define your OAM approach, defining
        system and business alarms, logs, and metrics.

	Identify where to apply support
        automation.


And finally, when all of these pieces are in place and running, keep
    on revisiting your tradeoffs and assumptions as your requirements evolve.
    Add more resilience and visibility as and when you need it. Identify the
    reason for every outage and put in place the early warning signals in your
    monitoring system, along with resilience in your software and
    infrastructure, to ensure it never happens again.
For further reading, we suggest you look at the documentation that
    comes with lager, elarm,
    exometer, and folsom. You can
    find it in their respective repositories on GitHub. Stuff Goes
    Bad, Erlang in Anger is an ebook by Fred Hébert we
    warmly recommend. The Erlang/OTP system documentation also has a user’s
    guide on OAM principles, mainly focusing on SNMP. It should be read
    alongside the documentation for the operations and maintenance
    applications os_mon, otp_mibs,
    and snmp.

What’s Next?
This is the last chapter we are planning on writing—at least for a
    while. You will be the one writing the next chapter when applying the
    knowledge from this book in designing your scalable and highly available
    systems using Erlang/OTP and its programming model. In doing so, keep in
    mind the words spoken by Håkan Millroth at one of the very first Erlang User Conferences: to run a
    successful project, you need good tools, good people, and a little bit of
    cleverness. You’ve discovered the good tools, and you have the cleverness,
    and hopefully good people. We are now looking forward to hearing all about
    your success stories! Thank you for reading so far, and good luck!
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