
Issue 67  December 2015

Andrew Ng
on Life, Creativity, and Failure

2  ﻿

Curator
Lim Cheng Soon

Contributors
Nico Pitney
Adrian Mouat
Peteris Caune
Nate Bartley
Chris Beams
Leonie Watson
Robleh Jama

Proofreader
Shelly Davis

Printer
Blurb

HACKER MONTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Issue 67 December 2015

Andrew Ng
on Life, Creativity, and Failure

Cover Photo by: Christopher Michel [flickr.com/photos/cmichel67/13181917214]

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://flickr.com/photos/cmichel67/13181917214

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-67

Contents
FEATURES

04  Andrew Ng on Life, Creativity, and Failure
By NICO PITNEY

PROGRAMMING

12  Swarm v. Fleet v. Kubernetes v. Mesos
By ADRIAN MOUAT

16  Deploying a Django App with No Downtime
By PETERIS CAUNE

20  Erlang Beauty
By NATE BARTLEY

22  How to Write a Git Commit Message
By CHRIS BEAMS

SPECIAL

28  Losing Sight
By LÉONIE WATSON

STARTUPS

32  How I Quit My Job and Built My First App
By ROBLEH JAMA

http://hackermonthly.com/issue-67

4  FEATURES

FEATURES

By NICO PITNEY

Andrew Ng on Life,
Creativity, and Failure

Photo credit: Christopher Michel [flickr.com/photos/cmichel67/13181917214]

http://flickr.com/photos/cmichel67/13181917214

  5

Here’s a list of univer-
sities with arguably
the greatest computer

science programs: Carnegie Mellon,
MIT, UC Berkeley, and Stanford.
These are the same places, respec-
tively, where Andrew Ng received
his bachelor’s degree, his master’s,
his Ph.D., and has taught for 12
years.

Ng is an icon of the artificial
intelligence world with the pedi-
gree to match, and he is not yet
40 years old. In 2011, he founded
Google Brain, a deep-learning
research project supercharged by
Google’s vast stores of computing
power and data. Delightfully, one
of its most important achievements
came when computers analyz-
ing scores of YouTube screenshots
were able to recognize a cat. (The
New York Times’ headline: “How
Many Computers to Identify a Cat?
16,000.”) As Ng explained, “The
remarkable thing was that [the
system] had discovered the concept
of a cat itself. No one had ever told
it what a cat is. That was a mile-
stone in machine learning.”

Ng exudes a cheerful but pro-
found calm. He happily discusses
the various mistakes and failures
of his career, the papers he read
but didn’t understand. He wears
identical blue oxford shirts each
and every day. He is blushing but
proud when a colleague mentions
his adorable robot-themed engage-
ment photo shoot with his now-
wife, a surgical roboticist named
Carol Reiley.

One-on-one, he speaks with a
softer voice than anyone you know,
though this has not hindered his
popularity as a lecturer. In 2011,
when he posted videos from his
own Stanford machine learning
course on the web, over 100,000

people registered. Within a year, Ng
had co-founded Coursera, which is
today the largest provider of open
online courses. Its partners include
Princeton and Yale, top schools in
China and across Europe. It is a
for-profit venture, though all classes
are accessible for free. “Charging for
content would be a tragedy,” Ng has
said.

Then, last spring, a shock. Ng
announced he was departing
Google and stepping away from
day-to-day involvement at Cours-
era. The Chinese tech giant Baidu
was establishing an ambitious $300
million research lab devoted to
artificial intelligence just down the
road from Google’s Silicon Valley
headquarters, and Andrew Ng
would head it up.

At Baidu, as before, Ng is trying
to help computers identify audio
and images with incredible accu-
racy, in realtime. (On Tuesday,
Baidu announced it had achieved
the world’s best results on a key
artificial intelligence benchmark
related to image identification,
besting Google and Microsoft.) Ng
believes speech recognition with 99
percent accuracy will spur revo-
lutionary changes to how humans
interact with computers, and how
operating systems are designed.
Simultaneously, he must help Baidu
work well for the millions of search
users who are brand new to digital
life. “You get queries [in China] that
you just wouldn’t get in the United
States,” Ng explained. “For example,
we get queries like, “Hi Baidu, how
are you? I ate noodles at a corner
store last week and they were deli-
cious. Do you think they’re on sale
this weekend?” That’s the query.”
Ng added: “I think we make a good
attempt at answering.”

Elon Musk and Stephen Hawk-
ing have been sounding alarms over
the potential threat to humanity
from advanced artificial intelligence.
Andrew Ng has not. “I don’t work
on preventing AI from turning evil
for the same reason that I don’t
work on combating overpopulation
on the planet Mars,” he has said.
AI is many decades away (if not
longer) from achieving something
akin to consciousness, according to
Ng. In the meantime, there’s a far
more urgent problem. Comput-
ers enhanced by machine learning
are eliminating jobs long done by
humans. The trend is only acceler-
ating, and Ng frequently calls on
policymakers to prepare for the
socioeconomic consequences.

At Baidu’s new lab in Sunny-
vale, Calif., we spoke to

Andrew Ng for Sophia, a HuffPost
project to collect life lessons from
fascinating people. He explained
why he thinks “follow your pas-
sion” is terrible career advice and
he shared his strategy for teaching
creativity; Ng discussed his failures
and his helpful habits, the most
influential books he’s read, and his
latest thoughts on the frontiers of
AI.

You recently said, “I’ve seen people
learn to be more creative.” Can you
explain?
The question is, how does one
create new ideas? Is it those unpre-
dictable lone acts of genius, people
like Steve Jobs, who are special in
some way? Or is it something that
can be taught and that one can be
systematic about?

I believe that the ability to inno-
vate and to be creative are teach-
able processes. There are ways by
which people can systematically

6  FEATURES

innovate or systematically become
creative. One thing I’ve been doing
at Baidu is running a workshop
on the strategy of innovation.
The idea is that innovation is not
these random unpredictable acts
of genius, but that instead one
can be very systematic in creating
things that have never been created
before.

In my own life, I found that
whenever I wasn’t sure what to do
next, I would go and learn a lot,
read a lot, talk to experts. I don’t
know how the human brain works
but it’s almost magical: when you
read enough or talk to enough
experts, when you have enough
inputs, new ideas start appearing.
This seems to happen for a lot of
people that I know.

When you become sufficiently
expert in the state of the art, you
stop picking ideas at random. You
are thoughtful in how to select
ideas, and how to combine ideas.
You are thoughtful about when you
should be generating many ideas
versus pruning down ideas.

Now there is a challenge still —
what do you do with the new ideas,
how can you be strategic in how to
advance the ideas to build useful
things? That’s another whole piece.

Can you talk about your infor-
mation diet, how you approach
learning?
I read a lot and I also spend time
talking to people a fair amount.
I think two of the most efficient
ways to learn, to get information,
are reading and talking to experts.
So I spend quite a bit of time doing
both of them. I think I have just shy
of a thousand books on my Kindle.
And I’ve probably read about two-
thirds of them.

At Baidu, we have a reading
group where we read about half
a book a week. I’m actually part
of two reading groups at Baidu,
each of which reads about half a
book a week. I think I’m the only
one who’s in both of those groups
[laughter]. And my favorite Satur-
day afternoon activity is sitting by
myself at home reading.

Let me ask about your early influ-
ences. Is there something your par-
ents did for you that many parents
don’t do that you feel had a lasting
impact on your life?
I think when I was about six, my
father bought a computer and
helped me learn to program. A lot
of computer scientists learned to
program from an early age, so it’s
probably not that unique, but I
think I was one of the ones that was
fortunate to have had a computer
and could learn to start to program
from a very young age.

Unlike the stereotypical Asian
parents, my parents were very laid
back. Whenever I got good grades
in school, my parents would make
a fuss, and I actually found that
slightly embarrassing. So I used to
hide them. [Laughter] I didn’t like
showing my report card to my par-
ents, not because I was doing badly
but because of their reaction.

I was also fortunate to have
gotten to live and work in many
different places. I was born in the
U.K., raised in Hong Kong and
Singapore, and came to the U.S. for
college. Then for my own studies, I
have degrees from Carnegie Mellon,
MIT, and Berkeley, and then I was
at Stanford.

I was very fortunate to have
moved to all these places and
gotten to meet some of the top
people. I interned at AT&T Bell
Labs when it existed, one of the
top labs, and then at Microsoft
Research. I got to see a huge diver-
sity of points of view.

“I don’t know how the human brain works but
it’s almost magical: when you read enough
or talk to enough experts, when you have
enough inputs, new ideas start appearing.”

  7

“

Is there anything about your
education or your early career that
you would have done differently?
Any lessons you’ve learned that
people could benefit from?
I wish we as a society gave better
career advice to young adults. I
think that “follow your passion” is
not good career advice. It’s actually
one of the most terrible pieces of
career advice we give people.

If you are passionate about driv-
ing your car, it doesn’t necessarily
mean you should aspire to be a
race car driver. In real life, “follow
your passion” actually gets amended
to, “Follow your passion of all the
things that happen to be a major at
the university you’re attending.”

But often, you first become good
at something, and then you become
passionate about it. And I think
most people can become good at
almost anything.

So when I think about what to
do with my own life, what I want
to work on, I look at two criteria.
The first is whether it’s an oppor-
tunity to learn. Does the work on
this project allow me to learn new
and interesting and useful things?
The second is the potential impact.
The world has an infinite supply
of interesting problems. The world
also has an infinite supply of impor-
tant problems. I would love for
people to focus on the latter.

I’ve been fortunate to have
repeatedly been able to find oppor-
tunities that had a lot of potential
for impact and also gave me fantas-
tic opportunities to learn. I think
young people optimizing for these
two things will often have the best
careers.

Our team here has a mission of
developing hard AI technologies,
advanced AI technologies that let
us impact hundreds of millions of
users. That’s a mission I’m genu-
inely excited about.

Do you define importance primar-
ily by the number of people who
are impacted?
No, I don’t think the number is
the only thing that’s important.
Changing hundreds of millions of
people’s lives in a significant way, I
think that’s the level of impact that
we can reasonably aspire to. That is
one way of making sure we do work
that isn’t just interesting, but that
also has an impact.

You’ve talked previously about
projects of yours that have failed.
How do you respond to failure?
Well, it happens all the time, so it’s
a long story. [Laughter] A few years
ago, I made a list in Evernote and
tried to remember all the projects I
had started that didn’t work out, for
whatever reason. Sometimes I was
lucky and it worked out in a totally
unexpected direction, through luck
rather than skill.

But I made a list of all the proj-
ects I had worked on that didn’t go
anywhere, or that didn’t succeed,
or that had much less to show for
it relative to the effort that we put
into it. Then I tried to categorize
them in terms of what went wrong
and tried to do a pretty rigorous
post mortem on them.

So, one of these failures was
at Stanford. For a while we were
trying to get aircraft to fly in forma-
tion to realize fuel savings, inspired
by geese flying in a V-shaped forma-
tion. The aerodynamics are actually
pretty solid. So we spent about
a year working on making these
aircraft fly autonomously. Then we
tried to get the airplanes to fly in
formation.

But after a year of work, we
realized that there is no way that
we could control the aircraft with
sufficient accuracy to realize fuel
savings. Now, if at the start of the
project we had thought through the
position requirements, we would

The world has an infinite supply of interesting
problems. The world also has an infinite supply
of important problems. I would love for people
to focus on the latter.”

8  FEATURES

have realized that with the small
aircraft we were using, there is just
no way we could do it. Wind gusts
will blow you around far more
than the precision needed to fly the
aircraft in formation.

So one pattern of mistakes I’ve
made in the past, hopefully much
less now, is doing projects where you
do step one, you do step two, you
do step three, and then you realize
that step four has been impossible
all along. I talk about this specific
example in the strategy innovation
workshop I talked about. The lesson
is to de-risk projects early.

I’ve become much better at
identifying risks and assessing them
earlier on. Now when I say things
like, “We should de-risk a project
early,” everyone will nod their head
because it’s just so obviously true.
But the problem is when you’re
actually in this situation and facing
a novel project, it’s much harder to
apply that to the specific project
you are working on.

The reason is these sorts of
research projects, they’re a strate-
gic skill. In our educational system
we’re pretty good at teaching facts
and procedures, like recipes. How
do you cook spaghetti bolognese?
You follow the recipe. We’re pretty
good at teaching facts and recipes.

But innovation or creativity is a
strategic skill where every day you
wake up and it’s a totally unique
context that no one’s ever been in,
and you need to make good deci-
sions in your completely unique
environment. So as far as I can
tell, the only was we know way to
teach strategic skills is by example,
by seeing tons of examples. The
human brain, when you see enough
examples, learns to internalize those
rules and guidelines for making
good strategic decisions.

Very often, what I find is that for
people doing research, it takes years
to see enough examples and to
learn to internalize those guidelines.
So what I’ve been experimenting
with here is to build a flight simula-
tor for innovation strategy. Instead
of having everyone spend five years
before you see enough examples, to
deliver many examples in a much
more compressed time frame.

Just as in a flight simulator, if you
want to learn to fly a 747, you need
to fly for years, maybe decades,
before you see any emergencies.
But in a flight simulator, we can
show you tons of emergencies in
a very compressed period of time
and allow you to learn much faster.
Those are the sorts of things we’ve
been experimenting with.

When this lab first opened, you
noted that for much of your career
you hadn’t seen the importance
of team culture, but that you had
come to realize its value. Several
months in, is there anything you’ve
learned about establishing the right
culture?
A lot of organizations have cultural
documents like, “We empower
each other,” or whatever. When
you say it, everyone nods their
heads, because who wouldn’t want
to empower your teammates. But
when they go back to their desks
five minutes later, do they actu-
ally do it? It’s difficult for people
to bridge the abstract and the
concrete.

At Baidu, we did one thing for
the culture that I think is rare. I
don’t know of any organization that
has done this. We created a quiz
that describes to employees specific
scenarios — it says, “You’re in this
situation and this happens. What do
you do: A, B, C, or D?”

No one has ever gotten full marks
on this quiz the first time out. I
think the quiz interactivity, asking
team members to apply specifics
to hypothetical scenarios, has been
our way of trying to connect the
abstract culture with the concrete;
what do you actually do when a
teammate comes to you and does
this thing?

What are some books that had a
substantial impact on your intellec-
tual development?
Recently I’ve been thinking about
the set of books I’d recommend to
someone wanting to do something
innovative, to create something
new.

The first is “Zero to One” by
Peter Thiel, a very good book that
gives an overview of entrepreneur-
ship and innovation.

We often break down entrepre-
neurship into B2B (“business to
business,” i.e., businesses whose
customers are other businesses) and
B2C (“business to consumer”). For
B2B, I recommend “Crossing the
Chasm.” For B2C, one of my favor-
ite books is “The Lean Startup,”
which takes a narrower view but it
gives one specific tactic for innovat-
ing quickly. It’s a little narrow but
it’s very good in the area that it
covers.

Then to break B2C down even
further, two of my favorites are
“Talking to Humans,” which is a
very short book that teaches you
how to develop empathy for users
you want to serve by talking to
them. Also, “Rocket Surgery Made
Easy.” If you want to build products
that are important, that users care
about, this teaches you different
tactics for learning about users,
either through user studies or by
interviews.

  9

Then finally there is “The Hard
Thing about Hard Things.” It’s a
bit dark but it does cover a lot of
useful territory on what building an
organization is like.

For people who are trying to
figure out career decisions, there’s
a very interesting one: “So Good
They Can’t Ignore You.” That gives
a valuable perspective on how to
select a path for one’s career.

Do you have any helpful habits or
routines?
I wear blue shirts every day, I don’t
know if you know that. [laughter]
Yes. One of the biggest levers on
your own life is your ability to form
useful habits.

When I talk to researchers, when
I talk to people wanting to engage
in entrepreneurship, I tell them
that if you read research papers
consistently, if you seriously study
half a dozen papers a week and you
do that for two years, after those
two years you will have learned a
lot. This is a fantastic investment in
your own long term development.

But that sort of investment,
if you spend a whole Saturday
studying rather than watching TV,
there’s no one there to pat you on
the back or tell you you did a good
job. Chances are what you learned
studying all Saturday won’t make
you that much better at your job
the following Monday. There are
very few, almost no short-term
rewards for these things. But it’s a
fantastic long-term investment. This
is really how you become a great
researcher, you have to read a lot.

People that count on willpower
to do these things, it almost never
works because willpower peters
out. Instead I think people that are
into creating habits — you know,
studying every week, working hard

every week — those are the most
important. Those are the people
most likely to succeed.

For myself, one of the habits I
have is working out every morning
for seven minutes with an app. I
find it much easier to do the same
thing every morning because it’s
one less decision that you have to
make. It’s the same reason that my
closet is full of blue shirts. I used to
have two color shirts actually, blue
and magenta. I thought that’s just
too many decisions. [Laughter] So
now I only wear blue shirts.

You’ve urged policymakers to
spend time thinking about a future
where computing and robotics
have eliminated some substantial
portion of the jobs people have
now. Do you have any ideas about
possible solutions?
It’s a really tough question. Com-
puters are good at routine repetitive
tasks. Thus far, the main things that
computers have been good at auto-
mating are tasks where you kind of
do the same thing day after day.

Now this can be at multiple
points on the spectrum. Humans
work on an assembly line, making
the same motion for months on
end, and now robots are doing some
of that work. A midrange chal-
lenge might be truck-driving. Truck
drivers do very similar things day
after day, so computers are trying
to do that too. It’s harder than
most people think, but automated
driving might happen in the next
decade or so, we don’t know. Then,
even higher-end things, like some
radiologists read the same types
of x-rays over and over each day.
Again, computers may have traction
in those areas.

But for the social tasks which
are non-routine and non-repetitive,
those are the tasks that humans
will be better at than computers
for quite a period of time, I think.
In many of our jobs we do different
things every day. We meet different
people, we have to arrange different
things, solve problems differently.
Those things are relatively difficult
for computers to do, for now.

The challenge that faces us is
that, when the U.S. transformed
from an agricultural to a manufac-
turing and services economy, we
had people move from one routine
task, such as farming, to a different
routine task, such as manufactur-
ing or working call service centers.
A large fraction of the population
has made that transition, so they’ve
been okay, they’ve found other
jobs. But many of their jobs are still
routine and repetitive.

The challenge that faces us is
to find a way to scalably teach
people to do non-routine non-
repetitive work. Our education
system, historically, has not been
good at doing that at scale. The top
universities are good at doing that
for a relatively modest fraction of
the population. But a lot of our
population ends up doing work that
is important but also routine and
repetitive. That’s a challenge that
faces our educational system.

I think it can be solved. That’s
one of the reasons why I’ve been
thinking about teaching innovation
strategy, teaching creativity strategy.
We need to enable a lot of people to
do non-routine, non-repetitive tasks.
These tactics for teaching innova-
tion and creativity, these flight
simulators for innovation, could be
one way to get there. I don’t think
we’ve figured out yet how to do it,
but I’m optimistic it can be done.

10  FEATURES

You’ve said, “Engineers in China
work much harder than the average
Silicon Valley engineer. Engineers
in Silicon Valley at startups work
really hard. At mature companies, I
don’t see the same intensity as you
do in startups and at Baidu.” Why
do you think that is?
I don’t know. I think the individual
engineers in China are great. The
individual engineers in Silicon
Valley are great. The difference I
think is the company. The teams
of engineers at Baidu tend to be
incredibly nimble.

There is much less appreciation
for the status quo in the Chinese
internet economy and I think
there’s a much bigger sense that
all assumptions can be challenged
and everything is up for grabs.
The Chinese internet ecosystem is
very dynamic. Everyone sees huge
opportunity, everyone sees mas-
sive competition. Stuff changes
all the time. New inventions arise,
and large companies will one day
suddenly jump into a totally new
business sector.

To give you an idea, here in the
United States, if Facebook were
to start a brand new web search
engine, that might feel like a
slightly strange thing to do. Why
would Facebook build a search
engine? It’s really difficult. But that
sort of thing is much more think-
able in China, where there is more
of an assumption that there will be
new creative business models.

This seems to suggests a different
management culture, where you
can make important decisions
quickly and have them be intel-
ligent and efficient and not chaotic.
Is Baidu operating in a unique
way that you feel is particularly
helpful to its growth?
Gosh, that’s a good question. I’m
trying to think what to point to. I
think decision making is pushed
very far down in the organization at
Baidu. People have a lot of auton-
omy, and they are very strategic.
One of the things I really appreci-
ate about the company, especially
the executives, is there’s a very
clear-eyed view of the world and of
the competition.

When executives meet, and the
way we speak with the whole com-
pany, there is a refreshing absence
of bravado. The statements that are
made internally — they say, “We
did a great job on that. We’re not
so happy with those things. This is
going well. This is not going well.
These are the things we think we
should emphasize. And let’s do a
post-mortem on the mistakes we
made.” There’s just a remarkable
lack of bravado, and I think this gives
the organization great context on
the areas to innovate and focus on.

You’re very focused on speech
recognition, among other prob-
lems. What are the challenges
you’re facing that, when solved,
will lead to a significant jump in
the accuracy of speech recognition
technology?
We’re building machine learning
systems for speech recognition.
Some of the machine learning tech-
nologies we’re using now have been
around for decades. It was only in
the last several years that they’ve
really taken off.

Why is that? I often make an
analogy to building a rocket ship.
A rocket ship is a giant engine
together with a ton of fuel. Both
need to be really big. If you have
a lot of fuel and a tiny engine,
you won’t get off the ground. If
you have a huge engine and a tiny
amount of fuel, you can lift up,
but you probably won’t make it to
orbit. So you need a big engine and
a lot of fuel.

The reason that machine learning
is really taking off now is that we
finally have the tools to build the
big rocket engine — that is giant
computers, that’s our rocket engine.
And the fuel is the data. We finally
are getting the data that we need.

The digitization of society creates
a lot of data and we’ve been creat-
ing data for a long time now. But
it was just in the last several years
we’ve been finally able to build big
enough rocket engines to absorb
the fuel. So part of our approach,
not the whole thing, but a lot of
our approach to speech recogni-
tion is finding ways to build bigger
engines and get more rocket fuel.

  11

For example, here is one thing
we did, a little technical. Where
do you get a lot of data for speech
recognition? One of the things we
did was we would take audio data.
Other groups use maybe a couple
thousand hours of data. We use a
hundred thousand hours of data.
That is much more rocket fuel than
what you see in academic literature.

Then one of the things we did
was, if we have an audio clip of
you saying something, we would
take that audio clip of you and add
background noise to it, like a clip
recorded in a cafe. So we synthesize
an audio clip of what you would
sound like if you were speaking in
a cafe. By synthesizing your voice
against lots of backgrounds, we just
multiply the amount of data that
we have. We use tactics like that
to create more data to feed to our
machines, to feed to our rocket
engines.

One thing about speech recogni-
tion: most people don’t understand
the difference between 95 and
99 percent accurate. Ninety-five
percent means you get one-in-20
words wrong. That’s just annoying,
it’s painful to go back and correct it
on your cell phone.

Ninety-nine percent is game
changing. If there’s 99 percent, it
becomes reliable. It just works and
you use it all the time. So this is
not just a four percent incremental
improvement, this is the difference
between people rarely using it and
people using it all the time.

So what is the hurdle to 99 percent
at this point?
We need even bigger rocket engines
and we still need even more rocket
fuel. Both are still constrained and
the two have to grow together.
We’re still working on pushing that
boundary. n

Sophia is a project to collect life les-
sons from fascinating people. Learn
more: [hn.my/sophia]

Andrew Ng is an Associate Professor at
Stanford; Chief Scientist of Baidu; and
Chairman and Co-Founder of Coursera. In
2011 he led the development of Stanford
University’s main MOOC (Massive Open
Online Courses) platform and also taught
an online Machine Learning class that was
offered to over 100,000 students, leading
to the founding of Coursera.

Nico Pitney is an executive editor at the
The Huffington Post. Previously he was
national editor, managing editor, and VP
of product development. He was also Huff-
Post's first DC bureau chief, overseeing
coverage during the 2008 elections. He
lives in San Francisco with his wife and
daughter.

Reprinted with permission of the original author.
First appeared in hn.my/andrewng (huffingtonpost.com.au)

http://hn.my/sophia
http://hn.my/andrewng

12  PROGRAMMING

PROGRAMMING

By ADRIAN MOUAT

Most software systems
evolve over time. New
features are added and

old ones pruned. Fluctuating user
demand means an efficient system
must be able to quickly scale
resources up and down. Demands
for near-zero downtime require
automatic fail-over to pre-provi-
sioned back-up systems, normally in
a separate data centre or region.

On top of this, organizations
often have multiple such systems
to run, or need to run occasional
tasks such as data-mining that are
separate from the main system but
require significant resources, or talk
to the existing system.

When using multiple resources, it
is important to make sure they are
efficiently used — not sitting idle
— but can still cope with spikes in
demand. Balancing cost-effective-
ness against the ability to quickly
scale is a difficult task that can be
approached in a variety of ways.

All of this means that the run-
ning of a non-trivial system is full of
administrative tasks and challenges,

the complexity of which should
not be underestimated. It quickly
becomes impossible to look after
machines on an individual level;
rather than patching and updating
machines one-by-one, they must be
treated identically. When a machine
develops a problem, it should be
destroyed and replaced, rather than
nursed back to health.

Various software tools and
solutions exist to help with these
challenges. Let’s focus on orchestra-
tion tools, which help make all the
pieces work together, working with
the cluster to start containers on
appropriate hosts and connect them
together. Along the way, we’ll con-
sider scaling and automatic failover,
which are important features.

Swarm
Swarm [hn.my/swarm] is the
native clustering tool for Docker.
Swarm uses the standard Docker
API, meaning containers can be
launched using normal Docker
run commands, and Swarm will
take care of selecting an appropriate

host to run the container on. This
also means that other tools which
use the Docker API — such as
Compose and bespoke scripts —
can use Swarm without any changes
and take advantage of running on a
cluster rather than a single host.

The basic architecture of Swarm
is fairly straightforward; each host
runs a Swarm agent and one host
runs a Swarm manager (on small
test clusters this host may also
run an agent). The manager is
responsible for the orchestration
and scheduling of containers on
the hosts. Swarm can be run in a
high-availability mode where one of
etcd, Consul, or ZooKeeper is used
to handle fail-over to a back-up
manager. There are several different
methods for how hosts are found
and added to a cluster, which is
known as discovery in Swarm. By
default, token-based discovery is
used, where the addresses of hosts
are kept in a list stored on the
Docker Hub.

Swarm v. Fleet v.
Kubernetes v. Mesos
Comparing Different Orchestration Tools

http://hn.my/swarm

  13

Fleet
Fleet [hn.my/fleet] is the cluster
management tool from CoreOS.
It bills itself as a “low-level cluster
engine”, meaning that it is expected
to form a “foundation layer” for
higher-level solutions such as
Kubernetes.

The most distinguishing fea-
ture of fleet is that it builds on
top of systemd. Whereas systemd
provides system and service ini-
tialization for a single machine,
Fleet extends this to a cluster of
machines. Fleet reads systemd unit
files, which are then scheduled on a
machine or machines in the cluster.

The technical architecture of
fleet is shown in Figure 12-2.
Each machine runs an engine and
an agent. Only one engine is active
in the cluster at any time, but all
agents are constantly running (for
the sake of the diagram, the active
engine is shown separately to the
machines, but it will be running on
one of them). Systemd unit files
(henceforth units) are submitted to
the engine, which will schedule the
job on the “least-loaded” machine.
The unit file will normally simply
run a container. The agent takes
care of starting the unit and report-
ing state. Etcd is used to enable
communication between machines
and store the status of the cluster
and units.

The architecture is designed
to be fault-tolerant; if a machine
dies, any units scheduled on that
machine will be restarted on new
hosts.

Fleet supports various scheduling
hints and constraints. At the most
basic level, units can be scheduled
as global, meaning an instance will
run on all machines, or as a single
unit which will run on a single
machine. Global scheduling is very
useful for utility containers for tasks
such as logging and monitoring.
Various affinity type constraints
are supported, so for example, a
container that runs a health check

can be scheduled to
always run next to
the application server.
Metadata can also be
attached to hosts and
used for scheduling, so
you could, for example,
ask for your contain-
ers to run on machines
belonging to a given
region or with certain

hardware.
As Fleet is based on systemd, it

also supports the concept of socket
activation; a container can be
spun up in response to a connec-
tion on a given port. The primary
advantage of this is that processes
can be created just-in-time, rather
than sitting around idle waiting for
something to happen. There are
potentially other benefits related to
management of sockets, such as not
losing messages between container
restarts.

Kubernetes
Kubernetes [kubernetes.io] is a con-
tainer orchestration tool built by
Google, based on their experiences
using containers in production
over the last decade. Kubernetes

is somewhat opinionated and
enforces several concepts around
how containers are organized and
networked. The primary concepts
you need to understand are:

■■ Pods — Pods are groups of
containers that are deployed and
scheduled together. Pods form
the atomic unit of scheduling in
Kubernetes, as opposed to single
containers in other systems. A
pod will typically include one
to five containers which work
together to provide a service. In
addition to these user contain-
ers, Kubernetes will run other
containers to provide logging
and monitoring services. Pods are
treated as ephemeral in Kuber-
netes; you should expect them to
be created and destroyed con-
tinually as the system evolves.

■■ Flat Networking Space — Net-
working is very different in
Kubernetes to the default Docker
networking. In the default Docker
networking, containers live on a
private subnet and can’t commu-
nicate directly with containers on
other hosts without forwarding
ports on the host or using proxies.
In Kubernetes, containers within
a pod share an IP address, but the
address space is “flat” across all
pods, meaning all pods can talk to
each other without any Network
Address Translation (NAT). This
makes multi-host clusters much
easier to manage, at the cost of
not supporting links and making
single-host (or, more accurately,
single-pod) networking a little
more tricky. As containers in the
same pod share an IP, they can
communicate by using ports on
the local host address (which
does mean you need to coordi-
nate port usage within a pod).

Figure 12-2. Fleet Architecture

http://hn.my/fleet
http://kubernetes.io

14  PROGRAMMING

■■ Labels — Labels are key-value
pairs attached to objects in
Kubernetes, primarily pods, used
to describe identifying character-
istics of the object, e.g. version:
dev and tier: front-end. Labels
are not normally unique; they
are expected to identify groups
of containers. Label selectors can
then be used to identify objects
or groups of objects, for example,
all the pods in the front-end tier
with environment set to produc-
tion. Through using labels, it is
easy to do grouping tasks such as
assigning pods to load-balanced
groups or moving pods between
groups.

■■ Services — Services are stable
endpoints that can be addressed
by name. Services can be con-
nected to pods by using label
selectors; for example, my “cache”
service may connect to several
“redis” pods identified by the
label selector “type”: “redis”. The
service will automatically round-
robin requests between the pods.
In this way, services can be used
to connect parts of a system
to each other. Using services
provides a layer of abstraction
that means applications do not
need to know internal details of
the service they are calling; for
example, application code run-
ning inside a pod only needs to
know the name and port of the
database service to call. It does
not care how many pods make
up the database, or which pod it
talked to last time. Kubernetes
will set up a DNS server for the
cluster that watches for new
services and allows them to be
addressed by name in application
code and configuration files.

It is also possible to set up ser-
vices which do not point to pods
but to other preexisting services
such as external APIs or databases.

■■ Replication Controllers — Repli-
cation controllers are the normal
way to instantiate pods in Kuber-
netes (typically, you don’t use the
Docker CLI in Kubernetes). They
control and monitor the number
of running pods (called repli-
cas) for a service. For example,
a replication controller may be
responsible for keeping five Redis
pods running. Should one fail, it
will immediately launch a new
one. If the number of replicas is
reduced, it will stop any excess
pods. Although using replication
controllers to instantiate all pods
adds an extra layer of configura-
tion, it also significantly improves
fault tolerance and reliability.

Mesos and Marathon
Apache Mesos [mesos.apache.org]
is an open-source cluster manager.
It’s designed to scale to very large
clusters involving hundreds or
thousands of hosts. Mesos supports
diverse workloads from multiple
tenants; one user’s Docker contain-
ers may be running next to another
user’s Hadoop tasks.

Apache Mesos was started as a
project at the University of Cali-
fornia, Berkeley before becoming
the underlying infrastructure used
to power Twitter and an important
tool at many major companies
such as eBay and Airbnb. A lot of
continuing development in Mesos
and supporting tools (such as Mara-
thon) is undertaken by Mesosphere,
a company co-founded by Ben
Hindman, one of the original devel-
opers of Mesos.

The architecture of Mesos is
designed around high-availability
and resilience. The major compo-
nents in a Mesos cluster are:

■■ Mesos Agent Nodes — Respon-
sible for actually running tasks.
All agents submit a list of their
available resources to the master.
There will typically be tens to
thousands of agent nodes.

■■ Mesos Master — The master is
responsible for sending tasks to
the agents. It maintains a list of
available resources and makes
“offers” of them to frameworks.
The master decides how many
resources to offer based on an
allocation strategy. There will
typically be two or four standby
masters ready to take over in case
of a failure.

■■ ZooKeeper — Used in elections
and for looking up address of
current master. Typically three or
five ZooKeeper instances will be
running to ensure availability and
handle failures.

■■ Frameworks — Frameworks
coordinate with the master to
schedule tasks onto agent nodes.
Frameworks are composed of
two parts: the executor process
which runs on the agents and
takes care of running the tasks,
and the scheduler which regis-
ters with the master and selects
which resources to use based on
offers from the master. There
may be multiple frameworks run-
ning on a Mesos cluster for differ-
ent kinds of tasks. Users wishing
to submit jobs interact with
frameworks rather than directly
with Mesos.

http://mesos.apache.org

  15

In Figure 12-4 we see a Mesos
cluster which uses the Marathon
framework as the scheduler. The
Marathon scheduler uses Zoo-
Keeper to locate the current Mesos
master which it will submit tasks to.
Both the Marathon scheduler and
the Mesos master have standbys
ready to start work should the cur-
rent master become unavailable.

Typically, ZooKeeper will run on
the same hosts as the Mesos master
and its standbys. In a small cluster,
these hosts may also run agents, but
larger clusters require communica-
tion with the master, making this
less feasible. Marathon may run
on the same hosts as well, or may
instead run on separate hosts which
live on the network boundary and
form the access point for clients,
thus keeping clients separated from
the Mesos cluster itself.

Marathon [hn.my/marathon]
(from Mesosphere) is designed
to start, monitor, and scale long-
running applications. Marathon is
designed to be flexible about the
applications it launches, and can
even be used to start other comple-
mentary frameworks such Chronos
(“cron” for the datacenter). It makes
a good choice of framework for
running Docker containers, which
are directly supported in Marathon.

Like the other orches-
tration frameworks
we’ve looked at, Mara-
thon supports various
affinity and constraint
rules. Clients interact
with Marathon through
a REST API. Other fea-
tures include support
for health checks and
an event stream that
can be used to integrate
with load-balancers or

for analyzing metrics.

Conclusion
There are clearly a lot of choices
for orchestrating, clustering, and
managing containers. That being
said, the choices are generally well-
differentiated. In terms of orches-
tration, we can say the following:

■■ Swarm has the advantage (and
disadvantage) of using the stan-
dard Docker interface. Whilst
this makes it very simple to use
Swarm and to integrate it into
existing workflows, it may also
make it more difficult to support
the more complex scheduling
that may be defined in custom
interfaces.

■■ Fleet is a low-level and fairly
simple orchestration layer that
can be used as a base for running
higher-level orchestration tools,
such as Kubernetes or custom
systems.

■■ Kubernetes is an opinionated
orchestration tool that comes
with service discovery and rep-
lication baked-in. It may require
some redesigning of existing
applications, but used correctly
will result in a fault-tolerant and
scalable system.

■■ Mesos is a low-level, battle-
hardened scheduler that supports
several frameworks for container
orchestration, including Mara-
thon, Kubernetes, and Swarm. At
the time of writing, Kubernetes
and Mesos are more developed
and stable than Swarm. In terms
of scale, only Mesos has been
proven to support large-scale
systems of hundreds or thousands
of nodes. However, when looking
at small clusters of, say, less than
a dozen nodes, Mesos may be an
overly complex solution. n

Adrian Mouat is Chief Scientist at Container
Solutions, a pan-European services com-
pany that specialises in Docker and Mesos.
He is the author of the O’Reilly book Using
Docker: Developing and Deploying Soft-
ware with Containers. In the past, he has
worked on a wide range of software proj-
ects, from small webapps to large-scale
data-analysis software.

Figure 12-4. Mesos Cluster

Reprinted with permission of the original author.
First appeared in hn.my/mesos (radar.oreilly.com)

http://hn.my/marathon
http://hn.my/mesos

16  PROGRAMMING

By PETERIS CAUNE

When healthchecks.io started to receive
more than one request per second, it
became clear I could not just go on

carelessly restarting web servers after code deploys. For
a monitoring service, it would be bad form to miss even
a few HTTP requests. And, going forward, if the server
gets busier, the problem only becomes bigger.

To give a quick overview of what I’m working with,
the app is a relatively straightforward Django app,
served by gunicorn behind nginx. Data lives in a Post-
greSQL database. The gunicorn process and an addi-
tional background job are both managed by supervisor
[supervisord.org]. It’s hosted on a single $20 Digital-
Ocean droplet.

 Aside: With regard to technology choices, the guiding prin-
ciple I’ve been following is to keep the stack as simple as
is feasible for as long as possible. Adding things, like load
balancers, database replication, key value store, message
queue, and so on, would each have certain benefits. Then
on the other hand, there would also be more stuff to be
managed, monitored, and kept backed up. Also, for some-
one new to the project, it would take more time to figure
out the “ins and outs” of the system and set up everything
from scratch. I see it as a nifty challenge to stay with the
simple, no-frills setup, while also not compromising perfor-
mance or features.

 The deployment mechanism I’ve used thus far is a
Fabric script plus configuration templates for supervi-
sor and nginx. Each time I run “fab deploy” from my
workstation, Fabric script does the following on the
remote host:

■■ sets up a new directory for the new deployment.
Let’s refer to this directory as $TARGET.

■■ sets up a Python3 virtualenv in $TARGET/venv

■■ fetches the latest snapshot of code from GitHub into
$TARGET. It is convenient to use GitHub’s Subver-
sion interface for this and run an “svn export” com-
mand. It produces just the source files without any
version control metadata — exactly what’s needed.

■■ installs dependencies listed in requirements file.
These get installed into the new virtualenv and don’t
affect the live application. Downloading and building
the dependencies take up to a minute.

■■ runs Django management commands to collect static
files, run database migrations, etc.

■■ rewrites the supervisor configuration file to run guni-
corn from the new virtual environment

■■ updates nginx configuration, in case I’ve changed
anything in the nginx configuration template

■■ runs “supervisorctl reload” and “/etc/init.d/nginx
restart”. At this point the web application becomes
unavailable and remains unavailable until supervisor
starts back up, launches gunicorn process, and the
Django code initializes. This usually takes five to ten
seconds, and nginx would typically return “502 Bad
Gateway” responses during this time.

■■ All done!

Deploying a Django App
with No Downtime

http://healthchecks.io
http://supervisord.org

  17

Here’s how the relevant part of Fabric script looks.
The virtualenv context manager seen below is from the
excellent fabtools library. [hn.my/fabtools]

def deploy():
 """ Checks out code, prepares venv, runs 	
 management commands, updates supervisor and
 nginx configuration. """

 now = datetime.datetime.today()
 now_string = now.strftime("%Y%m%d-%H%M%S")
 project_dir = "/home/hc/webapps/hc-%s" %
now_string
 venv_dir = os.path.join(project_dir, "venv")

 svn_url = "https://github.com/healthchecks/
healthchecks/trunk"
 run("svn export %s %s" % (svn_url, proj-
ect_dir))

 with cd(project_dir):
 run("virtualenv --python=python3 --sys-
tem-site-packages venv")
 # local_settings.py is where things like
 # access keys go
 put("local_settings.py", ".")
 put("newrelic.ini", ".")

 with virtualenv(venv_dir):
 run("pip install -U gunicorn raven
newrelic")
 run("pip install -r requirements.
txt")
 run("python manage.py collectstatic
--noinput")
 run("python manage.py compress")

 with settings(user="hc"):
 run("python manage.py migrate")
 run("python manage.py ensure-
triggers")
 run("python manage.py clearses-
sions")

 switch(project_dir)

def switch(project_dir):
 # Supervisor
 upload_template("supervisor/hc.conf.tmpl",
 "/etc/supervisor/conf.d/
hc.conf",
 context=locals(),
 backup=False,
 use_sudo=True)

 upload_template("supervisor/hc_sendalerts.
conf.tmpl",
 "/etc/supervisor/conf.d/
hc_sendalerts.conf",
 context=locals(),
 backup=False,
 use_sudo=True)

 # Nginx
 upload_template("nginx/hc.conf.tmpl",
 "/etc/nginx/sites-enabled/
hc.conf",
 context=locals(),
 backup=False,
 use_sudo=True)

 sudo("supervisorctl reload")
 sudo("/etc/init.d/nginx reload")

Now, how to eliminate the downtime during the last
steps of each deploy? Let’s set some constraints: no
load balancer (for now anyway). Everything runs off a
single box, and even a single non-200 response is unde-
sirable. And, baby steps: I will consider the simple (and
common) case when there are no database migrations
to be applied or they are backwards-compatible; the
old version of the app keeps working acceptably after
the migrations are applied.

The first idea I looked into was based on the observa-
tion that availability is more important for some parts
of the app than others. Specifically, the API part of the
app listens for pings from the monitored client systems,
and the front-end part serves pages to normal web-
site visitors. While it would be embarrassing to show
error pages to human visitors, not missing any pings is
actually more important. A missed ping can lead to a
false alert being sent sometime later. That’s even more
embarrassing!

http://hn.my/fabtools

18  PROGRAMMING

I considered and prototyped listening to pings using
Amazon API Gateway. It would put ping messages
in Amazon SQS queue, which the Django app could
consume at its leisure. This would be a relatively simple
way to improve availability and scalability by quite a
lot at the cost of somewhat increased complexity and a
new external dependency. I might look into this again
in the future.

Next idea: Separate the “listen to pings” functionality
from the rest of the Django app. The ping listener logic
is very simple and, ultimately, amounts to two SQL
operations: one update and one insert. It could be easy
enough to rewrite this part, perhaps using one of the
Python microframeworks, or maybe using a language
other than Python, or maybe even handle it from nginx
itself, using ngx_postgres module [hn.my/ngx]. For a
little amusement, here’s the nginx configuration frag-
ment which, basically, works as is:

location ~ ^/(\w\w\w\w\w\w\w\w-\w\w\w\w-\w\w\w\
w-\w\w\w\w-\w\w\w\w\w\w\w\w\w\w\w\w)/?$ {
 add_header Content-Type text/plain;

 postgres_pass database;
 postgres_output value;

 postgres_escape $ip $remote_addr;
 postgres_escape $agent =$http_user_agent;
 postgres_escape $body =$request_body;

 postgres_query "
 WITH t AS (
 UPDATE api_check
 SET last_ping=now()
 WHERE code='$1'
 RETURNING id, last_ping
)
 INSERT INTO api_ping
 (created, remote_addr, method, ua,
body, owner_id, scheme)
 SELECT
 last_ping, $ip, '$request_method',
$agent, $body, id, '$scheme'
 FROM t
 RETURNING 'OK'
 ";

 postgres_rewrite no_changes 400;
}

Here’s what’s going on: When the client requests the
URL of a certain format, the server runs a PostgreSQL
query and returns either HTTP code 200 or HTTP
code 400. This is also a performance win because the
request doesn’t have to travel through the hoops of
gunicorn, Django, and psycopg2. As long as the data-
base is available, nginx can handle the ping requests,
even if the Django application is not running for any
reason.

The not-so-great thing with this approach is that
it’s “tricky” and adds to the number of things that the
developer and systems administrator need to know. For
example, when the database schema changes, the SQL
query above might need to be updated and tested as
well. Getting the ngx_postgres extension set up isn’t a
simple matter of “apt-get install” either.

Thinking more about it, the main goal of zero down-
time can also be achieved by just carefully orchestrat-
ing process restarts and reloads.

My deployment script was using “/etc/init.d/nginx
restart” because I didn’t know any better. As I learned,
it can be replaced it with “/etc/init.d/nginx reload”
which handles things gracefully:

Run service nginx reload or /etc/init.d/nginx reload.

It will do a hot reload of the configuration without
downtime. If you have pending requests, then there
will be lingering nginx processes that will handle those
connections before it dies, so it’s an extremely graceful
way to reload configs. – “Nginx config reload without
downtime” on ServerFault [hn.my/configreload]

Similarly, my deployment script was using “supervi-
sorctl reload” which stops all managed services, rereads
configuration, and starts all services. Instead “supervi-
sorctl update” can be used to start, stop, and restart the
changed tasks as necessary.

Now, here’s what “fab deploy” can do:

■■ set up a new virtual environment as before

■■ create a supervisor task with unique name
(“hc_timestamp”)

■■ start the new gunicorn process alongside the running
one. nginx talks to gunicorn processes using UNIX
sockets, and each process uses a separate, again time-
stamped, socket file

■■ wait a little — then verify that the new gunicorn
process has started up and is serving responses

http://hn.my/ngx
http://hn.my/configreload

  19

■■ update nginx configuration to point to the new
socket file and reload nginx

■■ stop the old gunicorn process

Here’s the improved part of Fabric script which
juggles supervisor jobs:

def switch(tag, project_dir):
 # Supervisor
 supervisor_conf_path = "/etc/supervisor/
conf.d/hc_%s.conf" % tag
 upload_template("supervisor/hc.conf.tmpl",
supervisor_conf_path, context=locals(),
backup=False, use_sudo=True)

 upload_template("supervisor/hc_sendalerts.
conf.tmpl", "/etc/supervisor/conf.d/hc_sen-
dalerts.conf", context=locals(), backup=False,
use_sudo=True)

 # Starts up gunicorn from the new virtualenv
 sudo("supervisorctl update")

 # Give it some time to start up
 time.sleep(5)

 # Let's check the new server is nominally
 # working gunicorn listens on UNIX socket so
 # this is a bit contrived:
 l = ("GET /about/ HTTP/1.0\\r\\n"
 "Host: healthchecks.io\\r\\n"
 "\\r\\n")

 cmd = 'echo -e "%s" | nc -U /tmp/hc-%s.sock'
% (l, tag)
 # Look for known string in response. If it's
 # not found, something is wrong with the new
 # deployment and we abort
 assert "Monkey See Monkey Do" in run(cmd,
quiet=True)

 # nginx
 upload_template("nginx/hc.conf.tmpl",
"/etc/nginx/sites-enabled/hc.conf",
context=locals(), backup=False, use_sudo=True)

 sudo("/etc/init.d/nginx reload")

should be live now - remove supervisor conf
for previous versions
 s = sudo("for i in /etc/supervisor/conf.d/*.
conf; do echo $i; done")
 for line in s.split("\n"):
 line = line.strip()
 if line == supervisor_conf_path:
 continue
 if line.startswith("/etc/supervisor/
conf.d/hc_2"):
 sudo("rm %s" % line)

 # This stops gunicorn processes
 sudo("supervisorctl update")

With this, nginx is always serving requests and is
talking to a live gunicorn process at all times. To verify
this in practice, I wrote a quick script that requests a
particular URL again and again in an infinite loop. As
soon as it hits a non-200 response, it would print out a
hard-to-miss error message. With this banging against
my test VM, I did a couple deploys and saw no missed
requests. Success!

Summary
There are many ways to achieve zero downtime during
code deploys, and each has its own trade-offs. For
example, a reasonable strategy is to extract the critical
parts out of the bigger application. Each part can then
be updated independently. Later, the parts can also be
scaled independently. The downside to this is more
code and configuration to maintain.

What I ultimately ended up doing:

■■ hot-reload supervisor and nginx configurations
instead of just restarting them. Obvious thing to do
in retrospect.

■■ make sure the new gunicorn process is alive and
being used by nginx before stopping the old guni-
corn process.

■■ and keep the whole setup relatively simple. As the
project gets more usage, I will need to look at perfor-
mance hotspots and figure out how to scale horizon-
tally, but this should do for now! n

Pēteris Caune is the creator of healthchecks.io, a tool for moni-
toring cron jobs. Pēteris doesn’t get very much done because
on sunny days he is out cycling, and on rainy days he is on his
indoor bike trainer.

Reprinted with permission of the original author. First appeared in hn.my/djangodeploy

http://healthchecks.io
http://hn.my/djangodeploy

20  PROGRAMMING

By NATE BARTLEY

There is an adage in the
Erlang community that
we should make our code

work, then make it beautiful, then,
and if truly necessary, make it all
run fast. This insight is rendered
from decades of coding of many
brilliant hackers. In fact, the last
part is probably a nod to Donald
Knuth’s famous caution against
early optimization.

It may look familiar to some, or
maybe it’s new. Certainly, there are
variations of this in other languages
for sure. But all the same, one may
coil up and ask, why is beautiful on
the list?

Making code beautiful is essen-
tial, and there’s a reason it is parked
in the number-two spot in the peck-
ing order. If our code isn’t beautiful,
it’s unlikely that it will convey just
what the hell is going on.

Since I’m no level-ten Erlang
poet, I consult a refactoring style
guide that ensures my code will be
straightforward to read. A lot of
this guideline is lifted from Garrett
Smith’s [hn.my/gar1t] fantastic
insight on the same matter — with
some light repurposing here and
there. If you need some tips on get-
ting your Erlang code past the mere
working stage and into the beauty
pageant, then please, read on.

I call this module-writing heu-
ristic “fucrs” (pronounced any way
you like).

Give me an “F”: function-ize
After a version of an Erlang

module is working, I go back and
turn all my “case” statements into
plain ol’ functions. For example:

foo(X) ->
 case X of
 bar -> void;
 _Else -> undefined
 end.

would become:

foo(X) -> foo1(X).

foo1(bar) -> void;
foo1(_Else) -> undefined.

This practice is a gold-standard
for me, as I immediately noticed
my code to be vastly more lucid.
“F” also serves as a reminder to turn
any haphazard “funs” into normal
functions, too. Sometimes you need
“funs” — of course — but ordinarily,
writing a plain function is a much
cleaner way to present things. Once
done, I move on to the next letter.

Gimme a “U”: un-nest
This is an easy one to do, but sadly,
it is not popular. It’s not alarming to
see code in the wild with functions
entrenched six or seven times. And
incredibly, the Elixir language has
introduced a language device, the
pipe operator, to better mollify this
malpractice. Obviously, nesting runs
rampant. The “fucrs” guideline takes
an extreme conservative stance on
this; nesting should never happen,
ever. The values passed into func-
tions must only be variables, or
basic data constructs like lists,
tuples, etc.; never a function. For
example:

foo(X) ->
final_function(maybe_function(X)).

would be rewritten:

foo(X) ->
 Maybe = maybe_function(X),
 final_function(Maybe).

Spelling things out so pedanti-
cally makes code dead-simple and
clear. Yes, there is a tad more code,
but you will also note that nothing
is hiding. Un-nesting simply dumbs
things down. Now, who wouldn’t
want that after hours of squinting
at a screen?

Erlang Beauty

http://hn.my/gar1t

  21

Gimme a “C”: canonicalize
It’s nice to open a module and see
some familiar faces. Although there
is no standard naming conven-
tion for functions, “fucrs” makes
an attempt to include the ones
from Garrett’s talk whenever pos-
sible. Functions named as “new”,
“start”, “init”, etc. are pleasantly
unsurprising and can help your
modules have an air of familiarity.

Gimme an “R”: rename
Quite related to canonicalization is
to do a pass on the code in order to
rename variables/atoms as neces-
sary. I find that in the heat of the
moment, a naming will occur out of
some emotional response to some-
thing. For example, I once caught
an atom I had named “stupid_foo”
which at the time meant quite
a bit, but means little thereafter.
Naming things can be hard, but I
find when I am tasked with renam-
ing things in bulk, it’s easier than
coming up with great names while
also tasked with getting code to
work. Expressive names are helpful
to your future self and others. Use
simple, deliberate words as much as
possible.

Finally; “S”: seven-ize
Someone smart, somewhere, at
some time, did a study which
concluded that the human brain
can easily hold six or seven items in
short-term memory with little trou-
ble, but beyond that, it becomes
taxing. This applies nicely to lines
of code in a function. Amazingly,
after all the above guidelines have
been followed, bringing a func-
tion’s lines-of-code count down
to a maximum of seven is surpris-
ingly easy to do. It may seem crazy,
but I challenge you to try it, first
as an exercise, then come to your
own conclusions. For me, I tend
to max-out around five lines of
code per function with no effort,
though at first, seven was an easier
goal. The reason should be clear; a
reader can keep a handful of state-
ments in mind when reading such
a terse function, but reasoning a
behemoth, it goes against what our
brains are capable of.

So, there you have it: a one-word
style guide to consult after your
Erlang code is ticking along with-
out error, but could benefit from a
face-lift. Give it a try, and be sure
to thank Garrett if “fucrs” works for
you. n

Nate Bartley is co-founder of ikura, an
Oakland-based Erlang startup bringing
CRON into the 21st century. When he’s
not hacking, he’s playing violin & climb-
ing rocks around California.

Reprinted with permission of the original author.
First appeared in hn.my/erlangb (ikura.co)

http://hn.my/erlangb

22  PROGRAMMING

By CHRIS BEAMS

Introduction: Why good commit
messages matter
If you browse the log of any
random git repository, you will
probably find its commit messages
are more or less a mess. For exam-
ple, take a look at these gems from
my early days committing to
Spring:

$ git log --oneline -5 --author
cbeams --before "Fri Mar 26
2009"

e5f4b49 Re-adding Configuration-
PostProcessorTests after its
brief removal in r814. @Ignore-
ing the testCglibClassesAre-
LoadedJustInTimeForEnhance-
ment() method as it turns out
this was one of the culprits
in the recent build breakage.
[...] The test method is still
useful, but should only be run
on a manual basis to ensure
CGLIB is not prematurely class-
loaded, and should not be run
as part of the automated build.
2db0f12 fixed two build-
breaking issues: + reverted
ClassMetadataReadingVisitor
to revision 794 + eliminated

ConfigurationPostProcessorT-
ests until further investiga-
tion determines why it causes
downstream tests to fail (such
as the seemingly unrelated
ClassPathXmlApplicationContext-
Tests)
147709f Tweaks to package-info.
java files
22b25e0 Consolidated Util and
MutableAnnotationUtils classes
into existing AsmUtils
7f96f57 polishing

Yikes. Compare that with
these more recent commits from
the same repository:

$ git log --oneline -5 --author
pwebb --before "Sat Aug 30
2014"

5ba3db6 Fix failing Compos-
itePropertySourceTests
84564a0 Rework @PropertySource
early parsing logic
e142fd1 Add tests for ImportSe-
lector meta-data
887815f Update docbook depen-
dency and generate epub
ac8326d Polish mockito usage

Which would you rather read?

The former varies wildly in
length and form; the latter is con-
cise and consistent. The former is
what happens by default; the latter
never happens by accident.

While many repositories’
logs look like the former, there
are exceptions. The Linux
kernel [hn.my/linuxcommit] and git
[hn.my/gitcommit] itself are great
examples. Look at Spring Boot,
[hn.my/spring] or any repository
managed by Tim Pope.

The contributors to these reposi-
tories know that a well-crafted git
commit message is the best way
to communicate context about a
change to fellow developers (and
indeed to their future selves). A diff
will tell you what changed, but only
the commit message can properly
tell you why. Peter Hutterer makes
this point well:

Re-establishing the context of a
piece of code is wasteful. We can’t
avoid it completely, so our efforts
should go to reducing it [as much]
as possible. Commit messages can
do exactly that, and as a result, a
commit message shows whether a
developer is a good collaborator.

How to Write a
Git Commit Message

http://hn.my/spring

  23

If you haven’t given much
thought to what makes a great git
commit message, it may be that you
haven’t spent much time using git
log and related tools. There is a
vicious cycle here; because the
commit history is unstructured and
inconsistent, one doesn’t spend
much time using or taking care of
it. And because it doesn’t get used
or taken care of, it remains unstruc-
tured and inconsistent.

But a well-cared-for log is a
beautiful and useful thing. git
blame, revert, rebase, log, short-
log, and other subcommands come
to life. Reviewing others’ commits
and pull requests becomes some-
thing worth doing and suddenly
can be done independently. Under-
standing why something happened
months or years ago becomes not
only possible but efficient.

A project’s long-term success
rests (among other things) on its
maintainability, and a maintainer
has few tools more powerful than
his project’s log. It’s worth taking
the time to learn how to care for
one properly. What may be a hassle
at first soon becomes habit and,
eventually, a source of pride and
productivity for all involved.

Most programming languages
have well-established conventions
as to what constitutes idiomatic
style, i.e. naming and formatting
and so on. There are variations on
these conventions, of course, but
most developers agree that picking
one and sticking to it is far better
than the chaos that ensues when
everybody does their own thing.

A team’s approach to its commit
log should be no different. In order
to create a useful revision history,
teams should first agree on a commit
message convention that defines at
least the following three things:

Style. Markup syntax, wrap
margins, grammar, capitalization,
punctuation. Spell these things out,
remove the guesswork, and make
it all as simple as possible. The end
result will be a remarkably consis-
tent log that’s not only a pleasure
to read but that actually does get
read on a regular basis.

Content. What kind of informa-
tion should the body of the commit
message (if any) contain? What
should it not contain?

Metadata. How should issue-
tracking IDs, pull request numbers,
etc. be referenced?

Fortunately, there are well-
established conventions as to what
makes an idiomatic git commit
message. Indeed, many of them are
assumed in the way certain git com-
mands function. There’s nothing
you need to reinvent. Just follow
the seven rules below and you’re on
your way to committing like a pro.

The seven rules of a great git
commit message
1.	 Separate subject from body with

a blank line

2.	 Limit the subject line to fifty
characters

3.	 Capitalize the subject line

4.	 Do not end the subject line with
a period

5.	 Use the imperative mood in the
subject line

6.	 Wrap the body at seventy-two
characters

7.	 Use the body to explain what
and why vs. how

For example:

Summarize changes in around
fifty characters or less

More detailed explanatory
text, if necessary. Wrap it to
about seventy-two characters
or so. In some contexts, the
first line is treated as the
subject of the commit and the
rest of the text as the body.
The blank line separating the
summary from the body is criti-
cal (unless you omit the body
entirely); various tools like
`log`, `shortlog`, and `rebase`
can get confused if you run the
two together.

Explain the problem that this
commit is solving. Focus on
why you are making this change
as opposed to how (the code
explains that). Are there side
effects or other unintuitive
consequences of this change?
Here's the place to explain
them.

Further paragraphs come after
blank lines.

- Bullet points are okay, too.

- Typically a hyphen or aster-
isk is used for the bullet,
preceded by a single space,
with blank lines in between,
but conventions vary here.

If you use an issue tracker,
put references to them at the
bottom, like this:

Resolves: #123
See also: #456, #789

24  PROGRAMMING

➊ Separate subject from
body with a blank line

From the git commit manpage:

Though not required, it’s a good
idea to begin the commit message
with a single short (less than fifty-
character) line summarizing the
change, followed by a blank line
and then a more thorough descrip-
tion. The text up to the first blank
line in a commit message is treated
as the commit title, and that title is
used throughout git. For example,
git-format-patch (1) turns a
commit into email, and it uses the
title on the subject line and the rest
of the commit in the body.

Firstly, not every commit requires
both a subject and a body. Some-
times a single line is fine, especially
when the change is so simple that
no further context is necessary. For
example:

Fix typo in introduction to
user guide

Nothing more need be said; if
the reader wonders what the typo
was, she can simply take a look
at the change itself, i.e. use git
show or git diff or git log -p.

If you’re committing something
like this at the command line, it’s
easy to use the -m switch to git
commit:

$ git commit -m "Fix typo in
introduction to user guide"

However, when a commit merits
a bit of explanation and context,
you need to write a body. For
example:

Derezz the master control
program

MCP turned out to be evil and
had become intent on world

domination. This commit throws
Tron's disc into MCP (causing
its deresolution) and turns it
back into a chess game.

This is not so easy to commit
this with the -m switch. You really
need a proper editor. If you do
not already have an editor set
up for use with git at the com-
mand line, read this section of Pro
Git. [hn.my/progitconf]

In any case, the separation of
subject from body pays off when
browsing the log. Here’s the full log
entry:

$ git log
commit 42e769bdf4894310333942f
Author: Kevin Flynn
 <kevin@flynnsarcade.com>
Date: Fri Jan 01 00:00:00
 1982 -0200

 Derezz the master control program

 MCP turned out to be evil and
had become intent on world
domination. This commit throws
Tron's disc into MCP (causing
its deresolution) and turns it
back into a chess game.

And now git log --oneline,
which prints out just the subject
line:

$ git log --oneline 42e769
Derezz the master control
program

Or, git shortlog, which groups
commits by user, again showing just
the subject line for concision:

$ git shortlog
Kevin Flynn (1):
Derezz the master control program

Alan Bradley (1):
Introduce security program "Tron"

Ed Dillinger (3):
Rename chess program to "MCP"
Modify chess program
Upgrade chess program

Walter Gibbs (1):
Introduce protoype chess program

There are a number of other
contexts in git where the distinc-
tion between subject line and body
kicks in — but none of them work
properly without the blank line in
between.

➋ Limit the subject line to
fifty characters

Fifty characters is not a hard limit,
just a rule of thumb. Keeping sub-
ject lines at this length ensures that
they are readable and forces the
author to think for a moment about
the most concise way to explain
what’s going on.

Tip: If you’re having a hard time
summarizing, you might be com-
mitting too many changes at once.
Strive for atomic commits (a topic
for a separate post).

GitHub’s UI is fully aware of
these conventions. It will warn you
if you go past the fifty-character
limit:

 And will truncate any subject
line longer than sixty-nine charac-
ters with an ellipsis:

 So shoot for fifty characters, but
consider sixty-nine the hard limit.

http://hn.my/progitconf

  25

➌ Capitalize the subject line
This is as simple as it sounds.

Begin all subject lines with a capital
letter.

For example:

■■ Accelerate to eighty-eight miles
per hour

Instead of:

■■ accelerate to eighty-eight miles
per hour

➍ Do not end the subject
line with a period

Trailing punctuation is unnecessary
in subject lines. Besides, space is
precious when you’re trying to keep
them to 50 chars or less.

Example:

■■ Open the pod bay doors

Instead of:

■■ Open the pod bay doors.

➎ Use the imperative mood
in the subject line

Imperative mood just means
“spoken or written as if giving a
command or instruction”. A few
examples:

■■ Clean your room

■■ Close the door

■■ Take out the trash

Each of the seven rules you’re
reading about right now are written
in the imperative (“Wrap the body
at seventy-two characters”, etc).

The imperative can sound a little
rude; that’s why we don’t often use
it. But it’s perfect for git commit
subject lines. One reason for this is
that git itself uses the imperative
whenever it creates a commit on
your behalf.

For example, the default message
created when using git merge reads:

Merge branch 'myfeature'

And when using git revert:

Revert "Add the thing with the
stuff"
This reverts commit
cc87791524aedd593cff5a74532be-
fe7ab69ce9d.

Or when clicking the “Merge”
button on a GitHub pull request:

Merge pull request #123 from
someuser/somebranch

So when you write your commit
messages in the imperative, you’re
following git’s own built-in conven-
tions. For example:

■■ Refactor subsystem X for
readability

■■ Update getting started
documentation

■■ Remove deprecated methods

■■ Release version 1.0.0

Writing this way can be a little
awkward at first. We’re more used
to speaking in the indicative mood,
which is all about reporting facts.
That’s why commit messages often
end up reading like this:

■■ Fixed bug with Y

■■ Changing behavior of X

And sometimes commit messages
get written as a description of their
contents:

■■ More fixes for broken stuff

■■ Sweet new API methods

To remove any confusion, here’s
a simple rule to get it right every
time.

A properly formed git commit
subject line should always be able
to complete the following sentence:

■■ If applied, this commit will your
subject line here

For example:

■■ If applied, this commit will
refactor subsystem X for readability

■■ If applied, this commit will
update getting started documentation

■■ If applied, this commit will
remove deprecated methods

■■ If applied, this commit will
release version 1.0.0

■■ If applied, this commit will merge
pull request #123 from user/
branch

Notice how this doesn’t work for
the other non-imperative forms:

■■ If applied, this commit will fixed
bug with Y

■■ If applied, this commit will
changing behavior of X

■■ If applied, this commit will more
fixes for broken stuff

■■ If applied, this commit will sweet
new API methods

Remember: Use of the imperative is
important only in the subject line.
You can relax this restriction when
you’re writing the body.

26  PROGRAMMING

➏ Wrap the body at seventy-
two characters

Git never wraps text automati-
cally. When you write the body of
a commit message, you must mind
its right margin and wrap text
manually.

The recommendation is to do
this at seventy-two characters,
so that git has plenty of room to
indent text while still keeping
everything under eighty characters
overall.

A good text editor can help
here. It’s easy to configure Vim, for
example, to wrap text at seventy-
two characters when you’re writing
a git commit. Traditionally, however,
IDEs have been terrible at provid-
ing smart support for text wrap-
ping in commit messages (although
in recent versions, IntelliJ IDEA
has finally gotten better about this).

➐ Use the body to explain
what and why vs. how

This commit from Bitcoin Core is
a great example of explaining what
changed and why:

commit eb0b56b19017ab5c16c745e-
6da39c53126924ed6
Author: Pieter Wuille <pieter.
wuille@gmail.com>
Date: Fri Aug 1 22:57:55 2014
+0200

Simplify serialize.h's excep-
tion handling

Remove the 'state' and 'except-
mask' from serialize.h's stream
implementations, as well as
related methods.

As exceptmask always included
'failbit', and setstate was
always called with bits =
failbit, call it did was

immediately raise an excep-
tion. Get rid of those vari-
ables, and replace the setstate
with direct exception throwing
(which also removes some dead
code).

As a result, good() is never
reached after a failure (there
are only 2 calls, one of which
is in tests), and can just be
replaced by !eof().

fail(), clear(n) and excep-
tions() are just never called.
Delete them.

Take a look at the full diff
[hn.my/eb0b5] and just think how
much time the author is saving
fellow and future committers by
taking the time to provide this
context here and now. If he didn’t,
it would probably be lost forever.

In most cases, you can leave
out details about how a change
has been made. Code is gener-
ally self-explanatory in this regard
(and if the code is so complex that
it needs to be explained in prose,
that’s what source comments are
for). Just focus on making clear the
reasons you made the change in the
first place — the way things worked
before the change (and what was
wrong with that), the way they
work now, and why you decided to
solve it the way you did.

The future maintainer that
thanks you may be yourself!

Tips
Learn to love the command line.
Leave the IDE behind.
For as many reasons as there are git
subcommands, it’s wise to embrace
the command line. Git is insanely
powerful; IDEs are too, but each in
different ways. I use an IDE every
day (IntelliJ IDEA) and have used
others extensively (Eclipse), but I
have never seen IDE integration for
git that could begin to match the
ease and power of the command
line (once you know it).

Certain git-related IDE func-
tions are invaluable, like calling git
rm when you delete a file, and
doing the right stuff with git when
you rename one. Where every-
thing falls apart is when you start
trying to commit, merge, rebase,
or do sophisticated history analysis
through the IDE.

When it comes to wielding the
full power of git, it’s command-line
all the way.

Remember that whether you
use Bash or Z shell, there are tab
completion scripts that take much
of the pain out of remembering the
subcommands and switches.

Read Pro Git
The Pro Git [hn.my/progit] book
is available online for free, and it’s
fantastic. Take advantage! n

Chris Beams is an open source software
developer currently working on the Gradle
build system. Follow him on Twitter at
@cbeams

Reprinted with permission of the original author.
First appeared in hn.my/gitcommit (chris.beams.io)

http://hn.my/eb0b5
http://hn.my/progit
http://twitter.com/cbeams
http://hn.my/gitcommit

  27

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

28  SPECIAL

By LÉONIE WATSON

SPECIAL

I don’t know who will read this.
I don’t even know why it has
suddenly become important to

write it, but for whatever it’s worth,
this is an account of an event in my
life that changed everything.

I lost my sight over the course
of twelve months, from late 1999
to late 2000. It was mostly my
fault that it happened. I was diag-
nosed with Type I diabetes when
I was a little girl. At the time they
explained that I would have to eat
a precise amount of food each day,
and that I would need to inject a
precise amount of insulin to handle
it. These measurements were
reviewed and revised on an annual
basis.

Note: Type I diabetes means your
body stops producing insulin and
you have to inject it instead. Type II
diabetes (the kind you hear about
on the news) means that your body
still produces insulin but is unable to
absorb it properly, which is why it can
often be controlled through diet and
tablet-based medication instead of
insulin injections.

When I was a little older, I asked
my pediatrician why it had to be
this way. I wanted to know why
I couldn’t work out how much
food (carbohydrates) I was about
to eat, measure my blood glucose,
and then calculate my insulin dose
based on those and other factors.
After all, I reasoned, this is what
my body would have done natu-
rally, so why couldn’t I emulate
that behaviour? To this day I don’t
know whether he actually patted
me on the head, or whether my
subconscious has superimposed
that memory based on his reply
(“don’t be so ridiculous”), but it
doesn’t really matter in the scheme
of things.

Looking back, I understand that
was the moment that everything
changed. It would take another
fifteen years for the impact of that
moment to be felt, but that was
where it all began. That was where
the rebellion started.

At some point during my teens,
I discovered that I could skip an
injection without anything terrible
happening. It wasn’t something I
did intentionally, at least not then,
but it made me think I could get
away with it from time to time.
From then on, I did just enough

injections to stop anyone from
figuring out what I was up to. I
stopped monitoring my blood glu-
cose levels almost entirely, and as
soon as I was old enough, I stopped
going to see my doctor for annual
checkups.

Throughout my student days, I
had a riot. I went to drama school
where I worked hard and played
harder. I smoked, danced, partied,
fell in and out of love, discussed
Stanislavsky and Brecht until
the wee small hours, drunkenly
declaimed Shakespeare, and kept on
ignoring the fact I was diabetic.

By the time the century was
drawing to a close, I was working in
the tech industry. Quite by acci-
dent I had gone to work for one of
the UK’s first ISPs in early 1997.
Somewhere along the way I taught
myself to code and by 1999 was
working as a web developer. This
was the era of the dot-com boom,
and everyone was having fun. There
were pool tables in the office, Nerf
guns on every desk, insane par-
ties that the company wrote off
against taxes; Paul Okenfold was
the soundtrack to our lives, and
we’d fall out of clubs at six a.m. and
drive to Glastonbury Tor to watch
the sunrise just for the hell of it.

Losing Sight

  29

One morning in October 1999,
I woke up with a hangover. As
I looked at my reflection in the
mirror, I realised I could see a
ribbon of blood in my line of sight.
As I looked left then right, the
ribbon moved sluggishly as though
floating in dense liquid. Assuming it
was a temporary result of the previ-
ous night’s antics, I left it a couple
of days before visiting an optician
to get it checked out. When I did,
the optician took one look at the
backs of my eyes and referred me
to the nearest eye hospital for fur-
ther investigation.

When diabetes is uncontrolled
for a time, it causes a lot of unseen
damage. It works something like
this: When you eat something, your
blood sugar levels rise and your
body produces insulin to convert
that glucose into usable energy. If
enough insulin isn’t available, then
the cells in your body are starved
of energy and begin to die, and the
excess glucose remains trapped in
your bloodstream. If that wasn’t
enough, the excess glucose smothers
your red blood cells and prevents
them from transporting oxygen
efficiently around your body.

One of the ways this damage
eventually manifests itself is dia-
betic retinopathy. In an attempt to
get enough oxygen to the retina
at the back of your eye, your body
creates new blood vessels to try
and compensate. The new blood
vessels are created as an emergency
measure and so they’re weaker than
they need to be. This means they’re
prone to bursting and hemorrhag-
ing blood into the eye — creating
visible ribbons of blood like the one
I could see. The lack of oxygen to
your retina and the accumulation of
blood in your eye have the inevi-
table effect of damaging your sight.

The people at the eye hospital
told me I would need laser treat-
ment. This might halt the break-
down of the blood vessels at the
back of my eye and enable the
remaining vessels to strengthen
enough to get the oxygen where it
needed to go. It seemed like a rea-
sonable option since my sight was
still reasonably good at this point.

Laser treatment isn’t pleasant.
It requires an anesthetic injection
into the eye before a laser is fired
repeatedly at the blood vessels at
the back. One side effect of this is
that it plays havoc with your retina.
If you think of your retina like a
piece of cling film pulled taut over
the open end of a jar, then imagine
how it distorts when pressure is
applied to it, you won’t be far off
the effect laser treatment can have.
I remember one round of treat-
ment skewing the sight in one eye
around ninety degrees and making
everything slightly pink for several
hours. Trust me when I tell you that
it’s impossible to remain upright
with one eye seeing straight and the
other ninety degrees out of whack!

Looking back now, I realise my
consultant knew that laser treat-
ment was almost certainly a futile
gesture. Despite this, no one ever
came straight out and told me the
consequences of having advanced
diabetic retinopathy. It was always
spoken of in terms of progressive
deterioration without ever men-
tioning the logical conclusion of
that progression.

I do remember the day I admit-
ted it to myself though. My sight
had been steadily worsening over
the months, and it was a day in the
spring of 2000 that it happened. I
have no idea what prompted it, but
I was walking down the stairs at
home when it hit me like the pro-
verbial sledgehammer — I would
be blind. Until that moment I had
never believed people when they
said an emotional reaction could be
like a physical blow. I don’t doubt
that anymore. With absolute cer-
tainty, I knew I would lose my sight
and that I only had myself to blame.
I sat on a step a couple up from the
bottom of the stairs and fell apart.
I cried like a child. I cried for my
lost sight, for all my broken dreams,
for my stupidity, for all the books
I would never read, for the faces I
would forget, and for all the things
I would never accomplish.

Having come unravelled, I
couldn’t pull myself together, and
after a few weeks, I reluctantly
realised I needed help. My doctor
prescribed anti-depressants that
effectively put me to sleep for
about twenty-three hours out of
every twenty-four. After six weeks
I decided enough was enough and
took myself off the meds for good.

A curious thing had happened
in the intervening weeks though.
Whilst I was asleep, my mind
appeared to have wrapped itself
around the enormity of what was
happening. This wasn’t any kind of
revelation, but it was a recognition
of what I was up against, and that
was enough for the time being.

30  SPECIAL

Over the ensuing months I gave
up work as my sight continued to
deteriorate, and I stayed at home
and tried to keep busy. Most people
look baffled when I tell them that
going stir crazy was one of the
hardest things to deal with about
losing my sight. People who know
me understand that to me, boredom
is a fate worse than death (or blind-
ness as it turns out)!

There were days when I raged
out of control. Days when I
screamed and threw things at the
people I loved just because they
were there. There was the day I
stumbled in the kitchen and up-
ended a draining rack full of crock-
ery that smashed into a thousand
pieces around me, the days when I
demolished a keyboard I could no
longer use, or kicked the hell out of
the hoover because the cable was
so caught up around the furniture
I couldn’t untangle it, days too
numerous to count when I bruised,
cut, scratched, or burned myself in
pursuit of everyday tasks, and the
rage and the tears would over-
whelm me all over again.

That amount of fury isn’t a good
thing. It took my relationship with
the most important person in my
life to the brink of collapse, but for-
tunately, patience is one of his abid-
ing qualities even though I tested it
to the limit during those times. My
friends and family went through
this every bit as much as I did, only
they managed it with a degree of
grace, humour, and affection I was
incapable of recognising at the time.
Now I know with absolute cer-
tainty that if it hadn’t been for their
collective love and support, things
would have turned out very differ-
ently for me.

Towards the end of that year,
not long before Christmas, the
last of my sight vanished. To think
of it now, it seems that I went to
bed one night aware of a slight red
smudge at the farthest reaches of
my vision (the standby light on
the television), then woke the next
morning to nothing at all. I don’t
suppose it happened exactly like
that, but it’s close enough.

I do remember being surprised to
learn that only 3% of blind people
are completely blind. Most have
some degree of light perception or
even a little usable vision, but I’m
one of the few who can see nothing
at all, and nothing is the best way to
describe it. People assume it must
be like closing your eyes or being in
a dark room, but it’s not like that at
all. It’s a complete absence of light,
so it isn’t black or any other colour
I can describe.

To offset what would otherwise
be an incredibly boring view, my
mind obligingly gives me things
to look at instead. It shows me a
shadowy representation of what it
thinks I would see if I could — like
my hands holding a cup of tea in
front of me. Since my mind is con-
strained only by my imagination, it
rather charmingly overlays every-
thing with millions of tiny sparkles
of light, that vary in brightness and
intensity depending on my emo-
tional state.

My retinas are long since gone, so
no actual light makes its way to the
backs of my eyes. This is what gives
my eyes their peculiar look — each
pupil is permanently open to its
fullest extent in an effort to take in
light. Oddly this is the one thing that
still makes me feel a little uncertain
about being blind, but given that I
no longer really remember what I
look like, perhaps there will come a
time when that uncertainty will fade.

With the last of my sight gone,
I discovered something I hadn’t
expected. Now that I couldn’t see
anything, things started to get a lot
easier to deal with. Looking back
now, I realise that was because I
stopped trying to look at what I was
doing and started to use my other
senses.

I’ll pause at this point to clear
up a common misconception — I
do not have extraordinary hearing,
sense of smell, or any other sense.
I do pay more attention to those
other senses, though, so although
I’ll often hear a phone ringing when
other people don’t, it’s only because
I’m devoting more of my concen-
tration to listening than they are.

The next few months were
a time of discovery, sometimes
painful, often frustrating, but also
littered with good memories. I
learned how to do chores, how to
cook, where to find audio books,
how to cross the road, what it feels
like to drink too much when you
can’t see straight to begin with, and
many more things I’d learned once
in my life before. The one thing I
didn’t do was learn Braille, at least
not with any dedication. I simply
didn’t have the patience to go back
to reading baby books, at a time
when so much else was new and
strange. I did learn something far
more important though.

  31

I discovered something called a
screen reader, a piece of software
that could be installed on my
computer and which would speak
on-screen content to me in a syn-
thetic voice. It would even echo my
keystrokes back to me as I typed,
which was just as well because I
suddenly realised I couldn’t touch-
type despite having used computers
on/off since the early 1980s!

I then decided to enrol in an
online course with the Open Uni-
versity. The course was called, “You,
your computer, and the Internet”,
a subject that was child’s play for
someone who had been using the
Internet for nearly a decade. For
someone who could barely use a
computer with a screen reader, it
was something of a practical chal-
lenge, though. It took me an entire
day to figure out how to log into
the course environment, and for a
while, every new task seemed to
take as long. Day by day things got
easier, though, and by the time I fin-
ished the course, I was well on my
way to regaining an important part
of my life. Somewhere along the
way, I’d also rediscovered my love
of learning and promptly enrolled
in another course. One thing led to
another, and I eventually graduated
with a degree in computer science
in 2010.

It’s been fifteen years since all
this happened. Somewhere along
the way I went back to work, and
I now have the uncommonly good
fortune to be working and col-
laborating with lots of smart and
interesting people, many of whom
I’m delighted to call friends.

I still find technology challenging
sometimes because we have yet to
reach a time when things are engi-
neered to be accessible as standard.
That, too, is changing.

So life moved on, as life has a
habit of doing, and as I celebrated
my fortieth birthday last year, per-
haps it gave me cause to reflect. n

Léonie is a Senior Accessibility Engineer
with The Paciello Group (TPG) and owner
of LJWatson Consulting. Amongst other
things she is co-chair of the W3C Web
Platform Working Group, and a member
of the ARIA and SVG working groups. In
her spare time Léonie blogs on tink.uk,
writes for Smashing magazine, SitePoint.
com and Net magazine. She also loves
cooking, dancing and drinking tequila
(although not necessarily in that order).

Reprinted with permission of the original author.
First appeared in hn.my/sight (tink.uk)

http:// hn.my/sight

32  STARTUPS

STARTUPS

By ROBLEH JAMA

This story starts back in
the summer of 2009. I
had just gotten my first

iPhone 3GS, and I was loving it.
Think way back, back to the time
when Angry Birds wasn’t a hit
on the App Store yet. Apple had
launched the App Store in 2008,

the same year I had sold my previ-
ous startup. I was working full-time
at a large software company, but I
wasn’t very Intuit (into it). I was
getting extremely excited about the
mobile space and looked into start-
ing to make apps.

On a more personal note, in
2009, I had just gotten married and
was expecting my first daughter.
I wanted to make an app that she
would love and use.

How I Quit My Job and Built
My First App

And Turned My App Into a Sustainable Business

  33

I planned to publish my first
app under a company name. My
wife and I were coming up with
names on our way back from the
midwives, where we’d just listened
to our unborn baby’s heartbeat. It
was a big moment. I thought out
loud, “Why don’t we call the studio
Tiny Heartbeats?” My wife said that
was good, but Tiny Hearts sounded
better. She was right.

With the name settled, I started
exploring the App Store and using
a lot of different apps. I grew
obsessed deciphering the ingredi-
ents that made some apps climb
to the top of the charts while I
watched others disappear. The
App Store became my school. One
of the apps I really loved in 2009
was Live Cams Pro, an app that
allowed users to watch live streams
of their security cameras on the
go. More interestingly, users could
view various streams of public live
camera feeds at traffic lights, cities,
and airports. Live Cams Pro was
briefly the number-one paid app
before Angry Birds.

It wasn’t the best-designed app,
but I loved the live cameras of
animals at the zoos the most. At the
time, I lived close to the Toronto
Zoo and went there regularly with
my wife (we had yearly passes). My
passion for animals made me curious
enough to see if I could make the
best animal app in the App Store.

When I was thinking of this app
concept, I looked at what jobs
people might use it for. The main
goal of the app would be to edu-
cate children about animals in an
entertaining and engaging way. As a
secondary, but not insignificant ben-
efit, the app would buy parents five
minutes of peace and quiet. Chil-
dren will love it, but parents will
pay for it, so it was great that the
app could complete jobs for both
audiences. The goal was to create an
app that kids would love to use, and
parents would love to buy.

I was a soon-to-be parent at this
point, so I had a good sense of what
my target market was thinking
and what their plans and interests
were. If you’re not your own target
market, then you should go talk
to members of your market and
validate your ideas from there. (You
could consider co-creating your
product with members of that com-
munity. It’ll be challenging, but well
worth it. We’ll save that story for
another day).

I can’t overstate the impor-
tance of understanding your target
market. It’s your job to know your
target market’s problems, fears,
aspirations, and what they want in
an app or digital product. It’s not
the customer’s job to know what
they want. In a way, I was building
the app for myself and my daughter 
—  which is why I was in charge
of the feature set, the designs, and
various other product decisions.

I decided to create a virtual zoo
that would fit in people’s pockets 
—  hence the name of my animal
app, Pocket Zoo. It was going to
educate and entertain children
and nature lovers (like myself). I
resolved to create the best app to
solve that specific problem. We
created a beautiful virtual zoo
with over fifty animal illustrations.
We also curated some of the best
animal content online from photos
to videos and live cams. We made it
educational by creating easy-to-read
facts for each animal, which was
where we spent most of our time.

How We Built Pocket Zoo

After this idea came about, I just
focused on executing. I got in
touch with the co-founders of my
previous startup, Rob Chia and
Mohamed Hashi, and hired them
on contract. I also collaborated with

The old Tiny Hearts logo

Live Cams Pro

Pocket Zoo app icon starring Pingwin.
We spent a lot of time trying to get
this just right.

Pocket Zoo app screens post iOS 7 update

34  STARTUPS

two illustrators that I found after
doing some digging around. I found
a designer friend to help with our
branding and video. My wife helped
out with content. I even got my
teacher friends involved to approve
it and make sure it’d be good for
children.

In the App Store, design is your
marketing. How your app looks will
get you in the door, and usefulness
will keep you in the user’s phone.

When you understand mobile,
you realize what you choose not to
do often is just as important as what
you choose to do. You can’t cram
everything into this little screen.
At Tiny Hearts, [tinyhearts.com]
we try to focus each of our apps to
do just one thing really, really well.
It’s little coincidence that the most
successful apps not only look great
but are focused and intuitive.

Back to the story  —  I wanted to
have this app ready for the App
Star Awards, and submissions were
due either March or April of 2010.
In order to qualify for this award,
we needed to have a forty-five-
second demo. The App Star awards
were started by Oriel Ohayon from
AppsFire, and it’s where I was first
introduced to the work of Mills and
the crew at Ustwo and Jeremy
Olson from Tapity  —  who had both
submitted apps to the competition.
If we won, Pocket Zoo would be
seen by folks like Robert Scoble and
get mentions on blogs like Tech-
crunch, TUAW, and Read Write
Web, which meant great exposure
down the line. We ended up being
the runner-up and received a bunch

of press because of it. As a side
note, creating external deadlines is
also a great way to rally a team.

May came around, and my
daughter was born (May 10, 2010
to be exact), the same week that
my app was submitted to the App
Store (May 5th). I launched Pocket
Zoo in the store and did a bit of
outreach later that month. I just
had a baby and was still focused
on the product, so I didn’t have a
chance to do marketing and out-
reach earlier before the launch.
Pocket Zoo debuted at the end of
May and hit a bit of a lull. Fortu-
nately, Apple featured it in June,
and the app gained a ton of traction.
It made the top fifty paid apps and
was the number-one education app
for a short time. Pocket Zoo also
subsequently got featured in The
New York Times, which lifted its
traction again. Wired magazine also
called it a “must-have app.”

Early Pocket Zoo map divided into
zoogeographic locations inspired by
the Toronto Zoo

Final Pocket Zoo map

Original wireframes

This is what the live cams feature
looked like in 2010

Pocket Zoo featured in the New York
Times

http://tinyhearts.com

  35

More importantly, I got several
emails from people of all ages, all
over the world  —  parents, grand-
parents, children, and teachers.
They loved the app and spent hours
watching animals on Pocket Zoo.
They left awesome reviews, which
inherently is a huge reward. If I had
to choose, I would rather hear from
real people using my apps than any
award, accolade, or press coverage.
(No disrespect, obviously.)

Taking the Leap
After my daughter was born, I
started my parental leave. As that
was wrapping up, I had a choice to
make  —  either to take the leap and
keep doing apps full-time or to go
back to my day job. I made enough
money for my family to survive, so
I was in a good position to quit my
job.

This decision is different for
people in different situations with
different risk tolerances and aver-
sion. When the Pocket Zoo iPad
app came out, I knew there was
no turning back. I quit the big
company.

That’s not to say it was
an easy decision. A few months
after deciding to do apps full-time,
Pocket Zoo wasn’t generating
consistent revenue, and my bank
account started feeling it. (I’ll talk
about how I solved that problem
in the section below, where Pocket
Zoo evolves into Tiny Hearts
studio.)

Here’s a major reason why I left:
I knew that in order to succeed,
I’d have to take the app business
seriously. Even though apps might
seem like fun and games, you
can’t win if you come to it lightly.
Building an app can be a hobby.
Making a living from apps is not.
Think business, not apps. You can’t

be a Sunday developer and be in
business. Apple says in its review
guidelines:

If your app looks like it was
cobbled together in a few days, or
you’re trying to get your first prac-
tice app into the store to impress
your friends, please brace yourself
for rejection. We have lots of serious
developers who don’t want their
quality apps to be surrounded by
amateur hour.

Pocket Zoo’s initial momentum
continued after I quit my job, and
I had more time to make the most
of it. Although I did marketing late,
Pocket Zoo was inherently compel-
ling for Apple, and the press loved
it. These influencers wanted to
share it with people. The decisions
I’d made with product and design
came to make order-of-magnitude
differences in word-of-mouth
marketing.

At the time, Pocket Zoo was also
very unique; new things get news.
Even though Pocket Zoo was very
niche  —  for children and animal
lovers  —  it was still unique and
new. Today, there are millions of
apps out there, so it’s more difficult
to be unique and new. Don’t get
discouraged. There will always be
room for more good apps. There are
also lots of new ideas out there, and
there are lots of new ways of doing
old things.

From Pocket Zoo to Tiny Hearts
studio

I’d mentioned my original inten-
tion to launch under a company
name earlier in this piece. From the
get-go, I knew that I would need a
studio in order to make apps for a
living. I couldn’t rely on just Pocket
Zoo or any other one app; I needed
to diversify.

The studio model fits my DNA
well because my brain doesn’t like
to do one thing. I wanted to make
different things. I knew I wanted
to create something else after I
launched Pocket Zoo. I would go
on to launch a game, an alarm
clock app (that hit number one in
its category in the App Store), a
fitness app (that was featured in
an Apple commercial), and an iOS
keyboard (that recently peaked
at number two on the paid apps
chart). I followed my curiosity as I
hopped into these different catego-
ries, but it was also a great way to
learn the art and science of creating
apps through experimentation.

New Tiny Hearts logo .  The four quad-
rants represent the types of products
we strive to create: beautiful, playful,
useful, and meaningful

Quick Fit as it appeared in the
international Apple “Strength” TV
commercial

36  STARTUPS

Through the years, I figured out other ways to make
money with Tiny Hearts. Some collaborators had great
ideas but lacked mobile expertise, so I would work
with them to bring their vision to life. Pocket Zoo
organically led to us working on educational games
with edtech and media companies. Quick Fit opened
the door to work on software for wearables with
clients. The cash flow I got by providing services work
for big corporations, start-ups, and non-profits made
bootstrapping a bit less stressful. It empowered us to be
less reliant on investors and fluctuating app revenues.
Most importantly, we got to learn a lot from projects
that fulfill and excite us.

Today, Tiny Hearts is made up of over a dozen full-
time team members and contractors working on our
own products and products for clients. Our mission at
Tiny Hearts is to make people’s lives better in small,
meaningful, ways.

We make apps people love, by making apps we love.

You can find a lot of Tiny Hearts’ DNA, in terms of
processes and values, in Pocket Zoo. We eventually had
to put Pocket Zoo to sleep (another story for another
day), but it will forever remain the foundation that we
built the rest of our apps and services business on. n

Robleh Jama is the founder of Tiny Hearts, [tinyhearts.com] an
award-winning product studio. They make their own products
like Next Keyboard, Wake Alarm, and Quick Fit  —  as well as prod-
ucts for select clients. You can follow him on Twitter @robjama

The Tiny Hearts team  —  team work makes the dream work

Reprinted with permission of the original author.
First appeared in hn.my/tinyhearts

http://tinyhearts.com
http://twitter.com/robjama
http://hn.my/tinyhearts

  37

http://www.hostedgraphite.com

http://pivotaltracker.com

	FEATURES
	Andrew Ng on Life, Creativity, and Failure

	PROGRAMMING
	Swarm v. Fleet v. Kubernetes v. Mesos
	Deploying a Django App with No Downtime
	Erlang Beauty
	How to Write a
Git Commit Message

	SPECIAL
	Losing Sight

	STARTUPS
	How I Quit My Job and Built My First App

