
Issue 66  November 2015

The Time It Takes To Change The Time
Stefano Maggiolo

2  ﻿

Curator
Lim Cheng Soon

Contributors
Stefano Maggiolo
Rodrigo Monteiro
Tim Babb
Jeff Bradberry
Ben Einstein
Ian Murdock

Proofreader
Emily Griffin

Printer
Blurb

HACKER MONTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Dennis [catch---22.deviantart.com]

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://catch---22.deviantart.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-66

Contents
FEATURES

04  The Time It Takes To Change The Time
By STEFANO MAGGIOLO

08  The Guide To Implementing 2D Platformers
By RODRIGO MONTEIRO

PROGRAMMING

18  How a Kalman Filter Works, in Pictures
By TIM BABB

25  Introduction to Monte Carlo Tree Search
By JEFF BRADBERRY

STARTUP

32  Will Your Hardware Startup Make Money?
By BEN EINSTEIN

SPECIAL

35  How I Came To Find Linux
BY IAN MURDOCK

http://hackermonthly.com/issue-66

4  FEATURES

FEATURES

By STEFANO MAGGIOLO

You may remember my map
showing the difference
between solar time and

standard time from last year, as it
was by far the most shared con-
tent I created. In fact, somebody
even uploaded it to Wikipedia for
the time zone article! But with
great power comes great respon-
sibility (…); and in this case, that
means keeping the map up-to-date
as time regulation evolves. You may
think that this is a rare event, but
when you consider the 200 or so
sovereign states in the world, and
the quadratic number of possible
conflicts between them, it occurs
quite frequently.

Indeed, the triggering event that
prompted me to draw a new ver-
sion of the old map wasn’t the poor
color choice of the first attempt (for
many people, green and red do not
play well together), nor did it have
anything to do with the minor mis-
takes in the zone divisions. More-
over, my new map was completely
unrelated to any political faux pas
(for example, not marking Taiwan
in the same way as most other
sovereign states). After all, the map
was drawn on top of a preexisting

one on Wikipedia, with only minor
modifications made (apart from the
gradients, that is).

The real reason behind the new
map is that just a few months after
releasing the original version, Russia
decided to change the time in most
of the country. Since Russia extends
to about 3.5% of the world’s area,
and 11.5% of the emerged lands
area, the issue was too substantial
to ignore.

Aside from this big change,
the new map reflects that certain
territories in Ukraine and Geor-
gia follow Moscow time instead
of their countries’ own timezone.
Further, it accommodates the intro-
duction of the “Southeast” timezone
(permanent UTC-05:00) in Quin-
tana Roo, Mexico. In terms of longi-
tude, Continental Mexico is about
30 degrees wide, from Tijuana to
Cancun, so two timezones would
make sense. However, the nation
has four!

Solar time vs standard time
Overall, the map is still skewed
toward the red (meaning that
the solar noon occurs later in the
day), and most of what could be
observed from the first version is
still valid. In particular, for the joy
of reddit commentators, China is
still very red.

On the other hand, one change
wasn’t implemented: Australia still
refuses to make Central Western
Time — aka the awesome
UTC+08:45 timezone — official.
You see how the difference
between Western and Central Aus-
tralia is a whole hour and a half?
The problem isn’t too significant
because no people live at the transi-
tion zone, apart from a very narrow
strip of 350km along the southern
coast, on the road between Perth
and Adelaide, where about 200
proud residents literally live on
their own time.

The Time It Takes To
Change The Time

  5

If made official, it would be the
timezone with the fewest resi-
dents (followed by UTC+10:30,
Lord Howe Island, with about 360
inhabitants, and UTC+12:45, Cha-
tham Islands, with roughly 600),
apart from the ephemeral UTC-
12:00 timezone: Only a few birds
are known to inhabit the two US
islands of Howland and Baker, with
their whopping 4 squared kilome-
ters. However, since the territories
are uninhabited, nobody ever
determined a timezone for these
two islands, and they are unof-
ficially UTC-12:00 — just because
they happen to be at the correct
longitude!

I mentioned that 90 minutes
is an unusually large difference
between neighboring timezones,
since one hour is the standard.
That may be the case, but there
are still many places with much
larger differences (and these places
often involve China, thanks to
the nation’s single, large-scale
timezone). The worst offender is
the 90-kilometer border between
Afghanistan (UTC+04:30) and
China (UTC+08:00), which spans a
difference of three and a half hours!

How to draw a map
Drawing the first version of this
map was a very long process, done
more or less by hand. I spent
quite a bit of time modifying the
source of an existing SVG file,
and I most certainly did not want
to go through the same process
again this time around. As such,
I blatantly ignored xkcd and
proceeded to Create the Tool that
would create the map for me. For
the future, the real value of the
tool depends on the availability of
up-to-date data — still, I can trick
myself into thinking I’ve saved time.

All the tools mentioned below
can be found in the solar time vs
standard time repository. When
people look at maps, they often
fail to realize how many ingredi-
ents combine to create them; we
take a lot of things for granted. This
map probably has a below-average
number of ingredients, although we
can see:

■■ timezone boundaries over the sea
(approximate, as the territorial
water boundaries are too intricate
to draw);

■■ land/water and country
boundaries;

■■ timezone territories (which are a
different hierarchy than coun-
tries; a country may have more
than one timezone, and a time-
zone may encompass multiple
countries);

■■ city coordinates;

■■ labels of:

countries;

cities;

timezones.

Fortunately, there are datas-
ets available for most of these; some
with a unique source — maybe
slightly out-of-date — and some
with more sources. Choosing the
best options in terms of accuracy
and license is an important step
when creating a map programmati-
cally. In our case, timezones come
from Eric Muller’s website, and the
same goes for national boundaries
(these, in turn, come from the FIPS
dataset). Homogeneity, further-
more, is an important quality in
a good map, and since timezone
boundaries are a very rare dataset,
it made sense to take the national

boundaries from Muller as well.
Conversely, the coordinates of
major cities (including other useful
informational to select whose to
show) were taken from the ESRI
datasets.

Getting the data, however, is just
the first step. The second isn’t too
difficult, though: Draw the SVG
with the boundaries. This involves
some templating to create the file,
and most importantly, translating
latitude and longitude into pixel
coordinates (that is, the choice of
a projection). Again, I was con-
strained to a rectilinear projection,
as this made drawing the gradients
was much simpler, so I stuck with
the Muller information.

 The third step of the map-
making process is writing the labels
— and this involves an impor-
tant choice: You must determine
whether it’s faster to design an algo-
rithm that tries to place the labels
automatically, or to place them
semi-manually. The first option
is tough; I would frame it as an
optimization problem, where the
function to optimize depends on
the distance between the labels and
that to which they refer — on their
size, and on how much they over-
lap — but I’ll admit I did not go
for this option. Instead, the semi-
manual approach consists of placing
the labels in a reasonable position
(at the centroid of the country, and
anchored to the coordinates of the
city), and then to tweak whatever
labels might need tweaking.

6  FEATURES

Then, the fourth step is to draw
the labels and lines of the time-
zones. For the labels, I wrote a list
of positions I wanted — so again,
the process was very manual. For
the lines, in theory, a good approxi-
mation is to draw 24 equispaced
meridians, but then the map

becomes very hard to read. To
make the job of drawing multiple
polylines on the map, I wrote a
very simple helper tool based on
Maps API, which lets the user draw
directly on the map and retrieve the
coordinates of the vertices in JSON
format.

Finally, the last step: data correc-
tion! Unfortunately, Eric Muller’s
data is not completely up-to-date.
Some fixes were easy (just chang-
ing the offset of a few timezones),
while others weren’t quite as
simple, and I eventually decided to
use GIMP to draw over the final

  7

image generated by the program
(This explains the GIMP file in the
repository.) In post-processing, I
also shifted the center of the map
so that the cut point was not over
Siberia; in theory, it should have
been easy enough to do in the
projection stage, but the source

datasets already split all lands on
the 180 meridian, which made it
more convenient to use the same
cut point in the projection. n

Stefano has a background in programming
competitions, Mathematics, and Geom-
etry. Being true to the root of the word
“geometry”, he loves maps and works as
a software engineer in Google’s location
team in London.

Reprinted with permission of the original author.
First appeared in hn.my/time (poormansmath.net)

http:// hn.my/time

8  FEATURES

By RODRIGO MONTEIRO

Having previously been
disappointed by the
information available

on the topic, this is my attempt
at categorizing different ways to
implement 2D platform games,
list their strengths and weaknesses,
and discuss some implementation
details.

The long-term goal is to make
this an exhaustive and comprehen-
sible guide to the implementation
of 2D platform games. If you have
any sort of feedback, correction,
request or addition — please leave
it in the comments!

Disclaimer: some of the information
presented here comes from reverse
engineering the behavior of the game,
not from its code or programmers.
It’s possible that they are not ACTU-
ALLY implemented in this way, and
merely behave in an equivalent way.
Also, note that tile sizes are for the
game logic, graphical tiles might be of
a different size.

FOUR WAYS OF IMPLEMENTING
I can think of four major ways in
which a platform game can be
implemented. From simplest to
most complicated, they are:

Type #1: Tile-based (pure)
Character movement is limited to
tiles, so you can never stand half-
way between two tiles. Animations
may be used to create the illusion
of smooth movement, but as far as
the game logic is concerned, the
player is always right on top of a
specific tile. This is the easiest way
to implement a platform game, but
it imposes heavy restrictions on the
control of the character, making it
unsuitable for traditional action-
based platformers. It is, however,
popular with puzzle and “cinemato-
graphic” platformers.

Examples: Prince of Persia, Toki
Tori, Lode Runner, Flashback

How it works
The map is a grid of tiles, each one
storing information such as whether
it’s an obstacle or not, what image
to use, what kind of footstep sound
to use, and so on. The player and
other characters are represented
by a set of one or more tiles that
move together. In Lode Runner, for
example, the player is a single tile.
In Toki Tori, the player is 2×2 tiles.
In Flashback, which is unusual due
to the smaller size of its tiles, the
player is two tiles wide and five tiles
tall (see image above) when stand-
ing, but they are only three tiles tall
when crouching.

In this kind of game, the player
will rarely — if ever — be moving
diagonally, but, if he is, the move-
ment can be decomposed in two
separate steps. Likewise, he will
likely only move one tile at once,
but multi-tile movement can be
done as multiple steps of one tile if
needed (in Flashback, you always
move two tiles at once). The algo-
rithm is then as follows:

The Guide To Implementing
2D Platformers

 Flashback, shown with tile
boundaries

  9

1.	 Create a copy of the character
where he’d like to move to (e.g.,
if moving one tile to the right,
make a copy where every tile of
the character is shifted 1 tile to
the right)

2.	 Check that copy for intersection
with the background and other
characters.

3.	 If an intersection is found,
the character’s movement is
blocked. React accordingly.

4.	 Otherwise, the path is clear.
Move character there, option-
ally playing an animation so the
transition looks smooth.

This kind of movement is very
ill-suited for traditional arc-shaped
jumps — so games in this genre
often have no jump at all (Toki
Tori, Lode Runner), or only allow
vertical or horizontal jumps (Prince
of Persia, Flashback), which are
nothing but special cases of linear
movement.

Advantages of this system include
simplicity and precision. Since
the games are more deterministic,
glitches are much less likely and
the gameplay experience is more
controlled with less of a need to
tweak values depending on cir-
cumstances. Implementing certain
mechanics (such as grabbing ledges
and one-way platforms) becomes a
breeze, compared to more complex
movement styles — all you have to
do is check whether the player tiles
and the background tiles are aligned
in the one specific way that allows
for a given action.

In principle, this system doesn’t
allow steps of less than one tile,
but that can be mitigated in a few
different ways. For example, the
tiles can be a bit smaller than the
player (say, a player is 2×6 tiles), or

you can allow a visual-only move-
ment to take place inside a given
tile, without affecting the logic
(which is the solution that I believe
that “Lode Runner — The Legend
Returns” takes).

Type #2: Tile Based (Smooth)
Collision is still determined by a
tilemap, but characters can move
freely around the world (typically
with 1px resolution, aligned to
integers, but see the note at the end
of the article regarding smoothing
of movement). This is the most
common form of implementing
platformers in 8-bit and 16-bit con-
soles, and remains popular today,
as it is still easy to implement and
makes level editing simpler than
more sophisticated techniques. It
also allows for slopes and smooth
jump arcs.

If you’re unsure which type of
platformer you want to implement,
and you want to do an action game,
I suggest going for this one. It’s very
flexible, relatively easy to imple-
ment, and gives you the most con-
trol of all four types. It’s no wonder
that the majority of the best action
platformers of all time are based on
this type.

Examples: Super Mario World,
Sonic the Hedgehog, Mega Man,
Super Metroid, Contra, Metal Slug,

and practically every platformer of
the 16-bit era

How it works
Map information is stored in the
same way as with the pure tile
technique, the difference is merely
in how the characters interact with
the background. The character’s
collision hitbox is now an Axis-
Aligned Bounding Box (AABB,
that is, a rectangle that cannot
be rotated), and are typically still
an integer multiple of tile size.
Common sizes include one tile
wide and one (small Mario, morph
ball Samus), two (big Mario, Mega
Man, crouched Samus) or three
(standing Samus) tiles tall. In many
cases, the character sprite itself
is larger than the logical hitbox,
as this makes for a more pleasant
visual experience and fairer game-
play (it’s better for the player to
avoid being hit when he should
have than for him to get hit when
he should not have). In the image
above, you can see that the sprite
for X is square-ish (in fact, it is two
tiles wide), but his hitbox is rectan-
gular (one tile wide).

Assuming that there are no
slopes and only one-way platforms,
the algorithm is straightforward:

1.	 Decompose movement into X
and Y axes, step one at a time. If
you’re planning on implement-
ing slopes afterward, step X first,
then Y. Otherwise, the order
shouldn’t matter much. Then,
for each axis:

2.	 Get the coordinate of the for-
ward-facing edge, e.g., if walking
left, the x coordinate left of the
bounding box. If walking right,
x coordinate of the right side. If
up, y coordinate of the top, etc.

Mega Man X, shown with tile boundar-
ies and player hitbox.

10  FEATURES

3.	 Figure out which lines the tiles
of the bounding box intersect
with — this will give you a mini-
mum and maximum tile value
on the OPPOSITE axis. For
example, if we’re walking left,
perhaps the player intersects
with horizontal rows 32, 33 and
34 (that is, tiles with y = 32 *
TS, y = 33 * TS, and y = 34 * TS,
where TS = tile size).

4.	 Scan along those lines of tiles
and toward the direction of
movement until you find the
closest static obstacle. Then loop
through every moving obstacle,
and determine which of these
obstacles is the closest and actu-
ally on your path.

5.	 The total movement of the
player along that direction is
then the minimum between the
distance to the closest obstacle
and the amount that you wanted
to move in the first place.

6.	 Move player to the new posi-
tion. With this new position,
step the other coordinate, if still
not done.

Slopes

Slopes (the tiles pointed out by
green arrows on the image above)
can be very tricky because they are
obstacles, and yet still allow the

character to move onto their tile.
They also cause movement along
the x-axis to adjust position on the
y-axis. One way to deal with them
is to have the tile store the “floor y”
on either side. Assuming a coor-
dinate system where (0, 0) is at top-
left, then the tile just left of X (first
slope tile) is {0, 3} (left, right), then
the one he stands on is {4, 7}, then
{8, 11}, then {12, 15}. After that,
the tiles repeat, with another {0,
3}, etc., and then we have a steeper
slope, composed of two tiles: {0, 7}
and {8, 15}.

 The system that I’m going to
describe allows arbitrary slopes,
although, for visual reasons, those
two slopes are the most common,
and result in a total of 12 tiles (the
6 described previously, and their
mirrorings). The collision algorithm
changes as follows for horizontal
movement:

■■ Make sure that you step X posi-
tion before Y position.

■■ During collision detection (4
above), the slope only counts as a
collision if its closest edge is the
taller (smaller y coordinate) one.
This will prevent characters from
“popping” through the slope from
the opposite side.

■■ You might want to forbid slopes
to stop “halfway through” (e.g.,
on a {4, 7} tile). This restriction
is adopted by Mega Man X and

many other games. If you don’t,
you have to deal with the more
complicated case of the player
attempting to climb from the
lower side of the slope tile — one
way to deal with this is to pre-
process the level, and flag all such
offending tiles. Then, on collision
detection, also count it as a col-
lision from the lower side if the
player’s lowest y coordinate is
greater (that is, below) the tile’s
offset edge (tile coordinates * tile
size + floor y).

■■ A full obstacle tile adjacent to
the slope the character is cur-
rently on should not be consid-
ered for collision if it connects to
the slope, that is, if the character
(that is, his bottom-center pixel)
is on a {0, *} slope, then ignore
left tile, and, if on a {*, 0} slope,
then ignore the right tile. You
may have to do this for more tiles
if your character is wider than
two tiles — you might simply
skip checking on the entire row
if the player is moving toward
the upper side of the slope. The
reason for this is to prevent the
character from getting stuck at
those tiles (highlighted yellow
above) while still climbing the
slope, as his foot will still be
below the “surface level” by the
time he comes into contact with
the otherwise solid tile.

And for vertical movement:

■■ If you’re letting gravity do its job
for downhill movement, make
sure that the minimum gravity
displacement is compatible with
slope and horizontal velocity. For
example, on a 4:1 slope (as {4,
7} above), the gravity displace-
ment must be at least 1/4 of the
horizontal velocity, rounded up.

Mega Man X, with slope tile annotations

Detailed View of the {4, 7} tile

  11

On a 2:1 slope (such as {0, 7}), at
least 1/2. If you don’t ensure this,
the player will move horizontally
right off the ramp for a while,
until gravity catches up and drags
him down, making him bounce
on the ramp, instead of smoothly
descending it.

■■ An alternative to using gravity
is to compute how many pixels
above the floor the player was
before movement, and how many
it is afterward (using the formula
below), and adjust his position so
they’re the same.

■■ When moving down, instead of
considering a slope tile’s top edge
as its collision boundary; instead,
compute its floor coordinate at
the current vertical line, and use
that. To do that, find the [0, 1]
value that represents the player’s
x position on tile (0 = left, 1
= right) and use it to linearly
interpolate the floorY values. The
code will look something like:

float t = float(centerX - tileX)
/ tileSize;
float floorY = (1-t) * leftFloorY
+ t * rightFloorY;

■■ When moving down, if multiple
tiles on the same Y coordinate
are obstacle candidates, and the
one on the X coordinate of the
player’s center is a slope tile,
use that one and ignore the rest
— even though the others are
technically closer. This ensures
proper behavior around the edges
of slopes, with the character actu-
ally “sinking” on a completely
solid tile because of the adjacent
slope.

One-way platforms

One-way platforms are platforms
that you can step on, but can also
be jumped through. In other words,
they count as an obstacle if you’re
already on top of them, but are
otherwise traversable. That sentence
is the key to understanding their
behavior. The algorithm changes as
follows:

■■ On the x-axis, the tile is never an
obstacle

■■ On the y-axis, the tile is only an
obstacle if, prior to the move-
ment, the player was entirely
above it (that is, the bottom-most
coordinate of player was at least
one pixel above the top-most
coordinate of one-way platform).
To check for this, you will prob-
ably want to store the original
player position before doing any
stepping.

It might be tempting to have it
act as an obstacle if the player’s
y speed is positive (that is, if the
player is falling), but this behav-
ior is wrong: it’s possible for the
player to jump so he overlaps the
platform, but then fall down again
without having his feet reach the
platform. In that case, he should
still fall through.

Some games allow the player to
“jump down” from such platforms.
There are a few ways to do this, but
they are all relatively simple. You
could, for example, disable one-way
platforms for a single frame and
ensure that y speed is at least one
(so he’ll be clear of the initial colli-
sion condition on the next frame),
or you could check if he’s standing
exclusively on one-way platforms,
and, if so, manually move the player
one pixel down to the bottom.

Ladders

Ladders might seem complicated to
implement, but they are simply an
alternate state — when you’re on a
ladder, you ignore most of the stan-
dard collision system, and replace it

Super Mario World - showing Mario falling through (left) and standing on (right)
the same one-way platform

 Mega Man 7, with tile boundaries,
highlighted ladder tiles, and player
ladder hitbox.

12  FEATURES

with a new set of rules. Ladders are
typically one tile wide.

You can usually enter the ladder
state in two ways:

■■ Have your character hitbox
overlap with the ladder, either
on ground or on air, and hit up
(some games also allow you to
hit down)

■■ Have your character stand on
top of a “ladder top” tile (which
is often a one-way platform tile
as well so you can walk on top of
it), and hit down.

This has the effect of immedi-
ately snapping the player’s x coor-
dinate to align with the ladder tiles,
and, if going down from the top of
the ladder, move y coordinate so
the player is now inside the actual
ladder. At this point, some games
will use a different hitbox for the
purposes of determining whether
the player is still on the ladder.
Mega Man, for example, seems to
use a single tile (equivalent to the
top tile of the original character,
highlighted in red in the image
above).

There are a few different ways of
LEAVING the ladder:

■■ Reaching the top of the ladder.
This will usually prompt an
animation and move the player
several pixels up in y, so he’s now
standing on top of the ladder.

■■ Reaching the bottom of a hang-
ing ladder. This will cause the
player to simply fall, although
some games won’t let the player
leave the ladder in this way.

■■ Moving left or right. If there is no
obstacle on that side, the player
may be allowed to leave that way.

■■ Jumping. Some games allow you
to release the ladder by doing
this.

While on the ladder, the charac-
ter’s movement changes so, typi-
cally, all he can do is move up or
down and sometimes attack.

Stairs

Stairs are a variation of ladders, seen
in a few games, but notably in the
Castlevania series. The actual imple-
mentation is very similar to that of
ladders, with a few exceptions:

■■ The player moves tile by tile or
half-tile by half-tile (as in Drac-
ula X)

■■ Each “step” causes the player to
be shifted simultaneously on X
and Y coordinates, by a preset
amount.

■■ Initial overlapping detection
when going up might look on the
tile ahead instead of just the cur-
rent overlapped one.

Other games also have stairs that
behave like slopes. In that case, they
are simply a visual feature.

Moving Platforms

Moving platforms can seem a little
tricky, but are actually fairly simple.
Unlike normal platforms, they
cannot be represented by fixed tiles
(for obvious reasons), and instead
should be represented by an AABB,
that is, a rectangle that cannot be
rotated. It is a normal obstacle for
all collision purposes, and if you
stop here, you’ll have very slippery
moving platforms (that is, they
work as intended, except that the
character does not move along it on
his own).

There are a few different ways to
implement that. One algorithm is
as follows:

■■ Before anything on the scene is
stepped, determine whether the
character is standing on a moving
platform. This can be done by
checking, for example, whether
his center-bottom pixel is just
one pixel above the surface of the
platform. If it is, store a handle to
the platform and its current posi-
tion inside the character.

■■ Step all moving platforms. Make
sure that this happens before you
step characters.

Castlevania - Dracula X, with tile
boundaries

Super Mario World

  13

■■ For every character that’s stand-
ing on a moving platform, figure
the delta-position of the plat-
form, that is, how much it has
moved along each axis. Now,
shift the character by the same
amount.

■■ Step the characters as usual.

Other Features

Other games have more compli-
cated and exclusive features. Sonic
the Hedgehog series is notable for
this. Those are beyond the scope
of this article (and my knowledge,
for that matter!), but might be the
subject of a future article.

Type #3: Bitmask
Bitmask is similar to “Tile Based
(Smooth),” but instead of using
large tiles, an image is used to
determine collision for each pixel.
This allows finer detailing, but
significantly increases complex-
ity, memory usage, and requires
something akin to an image editor
to create levels. It also often implies
that tiles won’t be used for visu-
als, and may, therefore, require
large, individual artwork for each
level. Due to those issues, this is a
relatively uncommon technique but
can produce higher quality results
than tile-based approaches. It is also
suitable for dynamic environments
— such as the destructible scenarios
in Worms — as you can “draw” into
the bitmask to change the scenario.

Examples: Worms, Talbot’s
Odyssey

How it works
The basic idea is very similar to
the tile (smooth) algorithm — you
can simply consider each pixel
to be a tile, implement the exact
same algorithm, and everything
will work, with one major excep-
tion — slopes. Since slopes are now
implicitly defined by the position-
ing between nearby tiles, the previ-
ous technique doesn’t work, and
a much more complex algorithm
has to be used in its place. Other
things, such as ladders, also become
trickier.

Slopes
Slopes are the primary reason why
this type of implementation is very
hard to get right. Unfortunately,
they are also pretty much manda-
tory, as it’d make no sense to use
this implementation without slopes.
Often, they’re the reason why
you’re even using this system.

This is, roughly, the algorithm
used by Talbot’s Odyssey:

■■ Integrate acceleration and veloc-
ity to compute the desired delta-
position vector (how much to
move on each axis).

■■ Step each axis separately, start-
ing with the one with the largest
absolute difference.

■■ For the horizontal movement,
offset the player AABB by 3
pixels to the top so he can climb
slopes.

■■ Scan ahead, by checking against
all valid obstacles and the bit-
mask itself, to determine how
many pixels the character is able
to move before hitting an obsta-
cle. Move to this new position.

■■ If this was horizontal movement,
move as many pixels up as neces-
sary (which should be up to 3) to
make up for slope.

■■ If, at the end of the movement,
any pixel of the character is over-
lapping with any obstacle, undo
the movement on this axis.

■■ Regardless of the result of the
last condition, proceed to do the
same for the other axis.

Because this system has no
distinction between moving down,
because you’re going downhill or
because you’re falling, you’re likely
to need a system counting how
many frames it’s been since the
character last touched the floor, for
purposes of determining whether it
can jump and changing animation.
For Talbot, this value is 10 frames.

Another trick here is efficiently
computing how many pixels the
character can move before hitting
something. There are other pos-
sible complicating factors, such

Sonic the Hedgehog 2

Worms World Party, featuring destruc-
tible terrain

Talbot’s Odyssey, with the collision
bitmask overlaid on top of the game.

14  FEATURES

as one-way platforms (dealt in
the exact same way as for tiled
(smooth)) and sliding down steep
inclines (which is fairly complex
and beyond the scope of the
article). In general, this technique
requires a lot of fine-tuning and is
intrinsically less stable than tile-
based approaches. I only recom-
mend it if you absolutely must have
detailed terrain.

Type #4: Vectorial
This technique uses vectorial data
(lines or polygons) to determine the
boundaries of collision areas. Very
difficult to implement properly, it
is nevertheless increasingly popu-
lar due to the ubiquity of physics
engines, such as Box2D, which are
suitable for implementing this tech-
nique. It provides benefits similar to
the bitmask technique, but without
major memory overhead, using a
very different method of editing
levels.

Examples: Braid, Limbo

How it works
There are two general ways of
approaching this:

■■ Resolve movement and collisions
yourself, similar to the bitmask
method, but using polygon angles
to compute deflection and have
proper slopes.

■■ Use a physics engine (e.g.,
Box2D)

Obviously, the second is more
popular (though I suspect that
Braid went for the first), both
because it is easier and because it
allows you to do many other things
with physics in the game. Unfor-
tunately, in my opinion, one has
to be very careful when going this
route, to avoid making the game
feel like a generic, uninteresting
physics-platformer.

Compound objects
This approach has its own unique
problems. It may suddenly be dif-
ficult to tell whether the player is
actually standing on the floor (due
to rounding errors), or whether
it’s hitting a wall or sliding down
a steep incline. If using a physics
engine, friction can be an issue, as
you’ll want friction to be high on
the foot but low on the sides.

There are different ways to deal
with those, but a popular solu-
tion is to divide the character into
several different polygons, each
with different roles associated: so
you’d (optionally) have the main
central body, then a thin rectangle
for feet, and two thin rectangles for
sides, and another for head or some
similar combination. Sometimes
they are tapered to avoid getting
caught in obstacles. They can have
different physics properties, and
collision callbacks on those can be
used to determine the status of the

character. For more information,
sensors (non-colliding objects that
are just used to check for overlap)
can be used. Common cases include
determining whether we’re close
enough to the floor to perform a
jump, or if the character is pushing
against a wall, etc.

GENERAL CONSIDERATIONS
Regardless of the type of platform
movement that you have chosen
(except perhaps for type #1), a few
general considerations apply.

Acceleration

One of the factors that affects
the feel of a platform the most is
the acceleration of the character.
Acceleration is the rate of change in
speed. When it is low, the character
takes a long time to reach its maxi-
mum velocity or to come to a halt
after the player lets go of controls.
This makes the character feel “slip-
pery,” and can be hard to master.
This movement is most commonly
associated with the Super Mario
series of games. When the accel-
eration is high, the character takes
very little (or no time) to go from
zero to maximum speed and back,
resulting in very fast responding
“twitchy” controls, as seen in the
Mega Man series (I believe that
Mega Man actually employs infinite
acceleration, that is, you’re either
stopped or on full speed).

Braid (level editor), with visible layers
(top) and the collision polygons
(bottom)

Super Mario World (low acceleration),
Super Metroid (mid acceleration), and
Mega Man 7 (high acceleration)

  15

Even if a game has no accelera-
tion on its horizontal movement,
it is likely to have at least some for
the jump arcs — otherwise they
will be shaped like triangles.

How it works
Implementing acceleration is actu-
ally fairly simple, but there are a
few traps to watch out for.

■■ Determine xTargetSpeed. This
should be 0 if the player is not
touching the controls, -maxSpeed
if pressing left or +maxSpeed if
pressing right.

■■ Determine yTargetSpeed. This
should be 0 if the player is stand-
ing on a platform, +terminal-
Speed otherwise.

■■ For each axis, accelerate the cur-
rent speed toward target speed
using either weighted averaging
or adding acceleration.

The two acceleration methods
are as follows:

■■ Weighted averaging: accelera-
tion is a number (“a”) from 0 (no
change) to 1 (instant accelera-
tion). Use that value to linearly
interpolate between target and
current speed, and set the result
as current speed.

■■ Adding acceleration: We’ll deter-
mine which direction to add the
acceleration to (using the sign
function, which returns 1 for
numbers >0 and -1 for <0), then
check if we overshot.

It’s important to integrate the
acceleration into the speed before
moving the character; otherwise,
you’ll introduce a one-frame lag
into character input.

When the character hits an
obstacle, it’s a good idea to zero his
speed along that axis.

Jump control

Jumping in a platform game can be
as simple as checking if the player
is on the ground (or, often, whether

he was on
the ground
anytime
in the last
n frames),

and, if so, giving the character an
initial negative y speed (in physical
terms, an impulse) and letting grav-
ity do the rest.

There are four general ways in
which the player can control the
jump:

■■ Impulse: seen in games such as
Super Mario World and Sonic the
Hedgehog, the jump preserves
the momentum (that is, in imple-
mentation terms, the speed) that
the character had before the
jump. In some games, this is the
only way to influence the arc of
the jump — just like in real life.
There is nothing to implement
here — it will be like this unless
you do something to stop it!

■■ Aerial acceleration: that is, retain-
ing control of horizontal move-
ment while in midair. Though
this is physically implausible, it
is a very popular feature, as it
makes the character much more
controllable. Almost every plat-
former game has it, with excep-
tions for games similar to Prince
of Persia. Generally, the airborne
acceleration is greatly reduced, so
impulse is important, but some
games (like Mega Man) give you
full air control. This is generally
implemented as merely tweaking
the acceleration parameter while
you’re airborne.

■■ Ascent control: another physi-
cally implausible action, but
very popular, as it gives you
much greater control over the
character. The longer you hold
the jump button, the higher the
character jumps. Typically, this

vector2f curSpeed = a * targetSpeed + (1-a) * curSpeed;
if (fabs(curSpeed.x) < threshold) curSpeed.x = 0;
if (fabs(curSpeed.y) < threshold) curSpeed.y = 0;

vector2f direction = vector2f(sign(targetSpeed.x - curSpeed.x),
 sign(targetSpeed.y - curSpeed.y));
curSpeed += acceleration * direction;
if (sign(targetSpeed.x - curSpeed.x) != direction.x)
 curSpeed.x = targetSpeed.x;
if (sign(targetSpeed.y - curSpeed.y) != direction.y)
 curSpeed.y = targetSpeed.y;

Super Metroid - Samus performing the
“Space Jump” (with “Screw Attack”
power-up)

16  FEATURES

is implemented by continuing
to add impulse to the charac-
ter (though this impulse can
incrementally decrease) for as
long as the button is held, or
alternatively by suppressing grav-
ity while the button is held. A
time limit is imposed, unless you
want the character to be able to
jump infinitely.

■■ Multiple jumps: once airborne,
some games allow the player
to jump again, perhaps for an
unlimited number of times (as in
the Space Jump in Super Metroid
or the flight in Talbot’s Odys-
sey), or for a limited number
of jumps before touching the
ground (“double jump” being the
most common choice). This can
be accomplished by keeping a
counter that increases for each
jump and decreases when you’re
on the ground (be careful when
you update this, or you might
reset it right after the first jump),
and only allowing further jumps
if the counter is low enough.
Sometimes, the second jump
is shorter than the initial one.
Other restrictions may apply —
the Space Jump only triggers if
you’re already doing a spin jump
and just began to fall.

Animations and leading

In many games, your character
will play an animation before
actually performing the action
you requested. However, on a
twitchy action-based game, this
will frustrate players — DON’T
DO THAT! You should still have
leading animations for things such
as jumping and running, but if you
care about how the game responds,
make those cosmetic only, with the
action taken immediately regardless
of the animation.

Smoother movement
Using integers to represent the
position of the characters is wise,
as it makes movement faster and
more stable. However, if you use
integers for everything, you will end
up with some jerky motion. There
are multiple solutions to this. These
are a few:

■■ Use a float for all computations
and for storing position, and
cast to integer whenever you’re
rendering or computing collisions.
Fast and simple, but it starts losing
precision if you move too far away
from (0,0). This is probably not
relevant unless you have a very
large playfield, but it’s something
to keep in mind. If it comes to it,
you can use a double instead.

■■ Use a fixed point number for
all computations and position,
and again cast to integer when
you’re rendering or computing
collisions. Less precise than float
and with a more limited range,
but the precision is uniform and
can, on some hardware, be faster
(notably, floating point processing
is slow on many mobile phones).

■■ Store position as an integer, but
keep a “remainder” stored in a
float. When integrating position,
compute the delta-movement as
a float; add the remainder to the
delta-movement, and then add
the integer part of this value to
the position and the fractional
part of the “remainder” field.
On the next frame, the remain-
der will get added back in. The
advantage of this method is that
you’re using an integer every-
where except for movement,
ensuring that you won’t have
floating-point complications
elsewhere, and increasing per-
formance. This technique is also
very suitable if you have some
framework in which the position
of the object has to be an integer,
or where it is a float, but that
same position is used directly by
the rendering system — in that
case, you can use the framework-
provided float position to store
integer values only, to make
sure that the rendering is always
aligned to pixels. n

Rodrigo is a Senior Games Developer at
Bossa Studios, in London. Originally from
Brazil, he started making games at the age
of 11, and later came to Europe to work in
the video game industry.

Black Thorne, character doing a long
animation before shooting backward (Y
button)

Reprinted with permission of the original author.
First appeared in hn.my/2d (higherorderfun.com)

http://hn.my/2d

  17

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

18  PROGRAMMING

PROGRAMMING

By TIM BABB

I have to tell you about the
Kalman filter, because what it
does is pretty damn amazing.

Surprisingly few software engi-
neers and scientists seem to know
about it, and that makes me sad
because it is such a general and
powerful tool for combining infor-
mation in the presence of uncer-
tainty. At times its ability to extract
accurate information seems almost
magical — and if it sounds like I’m
talking this up too much, then take
a look at this video [hn.my/imu]
where I demonstrate a Kalman
filter figuring out the orientation of
a free-floating body by looking at
its velocity. Totally neat!

What is it?
You can use a Kalman filter in any
place where you have uncertain
information about some dynamic
system, and you can make an edu-
cated guess about what the system
is going to do next. Even if messy
reality comes along and interferes
with the clean motion you guessed
about, the Kalman filter will often
do a very good job of figuring out
what actually happened. And it
can take advantage of correlations

between crazy phenomena that you
maybe wouldn’t have thought to
exploit!

Kalman filters are ideal for
systems which are continuously
changing. They have the advantage
that they are light on memory (they
don’t need to keep any history
other than the previous state), and
they are very fast, making them
well suited for real time problems
and embedded systems.

The math for implementing the
Kalman filter appears pretty scary
and opaque in most places you find
on Google. That’s a bad state of
affairs, because the Kalman filter is
actually super simple and easy to
understand if you look at it in the
right way. Thus it makes a great
article topic, and I will attempt
to illuminate it with lots of clear,
pretty pictures and colors. The pre-
requisites are simple: all you need is
a basic understanding of probability
and matrices.

I’ll start with a loose example of
the kind of thing a Kalman filter
can solve, but if you want to get
right to the shiny pictures and
math, feel free to jump ahead.

What can we do with a Kalman
filter?
Let’s make a toy example. You’ve
built a little robot that can wander
around in the woods, and the robot
needs to know exactly where it is so
that it can navigate.

 We’ll say our robot has a state
, which is just a position and a

velocity:

Note that the state is just a list
of numbers about the underlying
configuration of your system; it
could be anything. In our example
it’s position and velocity, but it
could be data about the amount
of fluid in a tank, the temperature
of a car engine, the position of a
user’s finger on a touchpad, or any
number of things you need to keep
track of.

How a Kalman Filter Works,
in Pictures

http://hn.my/imu

  19

Our robot also has a GPS sensor,
which is accurate to about 10
meters, which is good, but it needs
to know its location more precisely
than 10 meters. There are lots of
gullies and cliffs in these woods,
and if the robot is wrong by more
than a few feet, it could fall off a
cliff. So GPS by itself is not good
enough.

 We might also know something
about how the robot moves: It
knows the commands sent to the
wheel motors, and it knows that
if it’s headed in one direction and
nothing interferes, at the next
instant it will likely be further along
that same direction. But of course it
doesn’t know everything about its
motion: it might be buffeted by the
wind, the wheels might slip a little
bit, or roll over bumpy terrain. So
the amount the wheels have turned
might not exactly represent how far
the robot has actually traveled, and
the prediction won’t be perfect.

The GPS sensor tells us some-
thing about the state, but only indi-
rectly, and with some uncertainty
or inaccuracy. Our prediction tells
us something about how the robot
is moving, but only indirectly,
and with some uncertainty or
inaccuracy.

But if we use all the informa-
tion available to us, can we get a
better answer than either estimate
would give us by itself? Of course
the answer is yes, and that’s what a
Kalman filter is for.

How a Kalman filter sees your
problem
Let’s look at the landscape we’re
trying to interpret. We’ll continue
with a simple state having only
position and velocity.

We don’t know what the actual
position and velocity are; there are
a whole range of possible combina-
tions of position and velocity that
might be true, but some of them
are more likely than others:

 The Kalman filter assumes
that both variables (position and
velocity, in our case) are random
and Gaussian distributed. Each
variable has a mean value μ, which
is the center of the random distri-
bution (and its most likely state),
and a variance σ2, which is the
uncertainty:

In the above picture, position and
velocity are uncorrelated, which
means that the state of one variable
tells you nothing about what the
other might be.

The example below shows some-
thing more interesting: Position
and velocity are correlated. The
likelihood of observing a particular
position depends on what velocity
you have:

 This kind of situation might arise
if, for example, we are estimating a
new position based on an old one. If
our velocity was high, we probably
moved farther, so our position will
be more distant. If we’re moving
slowly, we didn’t get as far.

20  PROGRAMMING

This kind of relationship is really
important to keep track of, because
it gives us more information — one
measurement tells us something
about what the others could be.
And that’s the goal of the Kalman
filter: we want to squeeze as much
information from our uncertain
measurements as we possibly can!

This correlation is captured
by something called a covariance
matrix. In short, each element
of the matrix Σij is the degree of
correlation between the ith state
variable and the jth state variable.
(You might be able to guess that
the covariance matrix is symmetric,
which means that it doesn’t matter
if you swap i and j). Covariance
matrices are often labelled “Σ”, so
we call their elements “Σij”.

Describing the problem with
matrices
We’re modeling our knowledge
about the state as a Gaussian blob,
so we need two pieces of informa-
tion at time k: We’ll call our best
estimate (the mean, elsewhere
named μ), and its covariance
matrix Pk.

(1)

(Of course we are using only
position and velocity here, but it’s
useful to remember that the state
can contain any number of variables
and represent anything you want).

Next, we need some way to look
at the current state (at time k-1)
and predict the next state at time k.
Remember, we don’t know which
state is the “real” one, but our pre-
diction function doesn’t care. It just
works on all of them and gives us a
new distribution:

 We can represent this prediction
step with a matrix, Fk:

 It takes every point in our origi-
nal estimate and moves it to a new
predicted location, which is where
the system would move if that
original estimate was the right one.

Let’s apply this. How would we
use a matrix to predict the position
and velocity at the next moment in
the future? We’ll use a really basic
kinematic formula:

In other words:

We now have a prediction
matrix which gives us our next
state, but we still don’t know how
to update the covariance matrix.

This is where we need another
formula. If we multiply every point
in a distribution by a matrix A,
then what happens to its covariance
matrix Σ?

Well, it’s easy. I’ll just give you
the identity:

So combining (4) with
equation (3):

External influence
We haven’t captured everything,
though. There might be some
changes that aren’t related to the
state itself — the outside world
could be affecting the system.

For example, if the state models
the motion of a train, the train
operator might push on the throt-
tle, causing the train to accelerate.
Similarly, in our robot example,
the navigation software might issue
a command to turn the wheels or
stop. If we know this additional
information about what’s going on
in the world, we could stuff it into
a vector called , do something
with it, and add it to our prediction
as a correction.

(2)

(3)

(4)

(5)

  21

Let’s say we know the expected
acceleration a due to the throttle
setting or control commands. From
basic kinematics we get:

In matrix form:

Bk is called the control
matrix and the control
vector. (For very simple systems
with no external influence, you
could omit these).

Let’s add one more detail. What
happens if our prediction is not
a 100% accurate model of what’s
actually going on?

External uncertainty
Everything is fine if the state
evolves based on its own properties.
Everything is still fine if the state
evolves based on external forces, so
long as we know what those exter-
nal forces are.

But what about forces that
we don’t know about? If we’re
tracking a quadcopter, for example,
it could be buffeted around by
wind. If we’re tracking a wheeled
robot, the wheels could slip, or
bumps on the ground could slow it
down. We can’t keep track of these
things, and if any of this happens,
our prediction could be off because
we didn’t account for those extra
forces.

We can model the uncertainty
associated with the “world” (i.e.,
things we aren’t keeping track of)
by adding some new uncertainty
after every prediction step:

Every state in our original
estimate could have moved to
a range of states. Because we like
Gaussian blobs so much, we’ll say
that each point in is moved
to somewhere inside a Gaussian
blob with covariance Qk. Another
way to say this is that we are
treating the untracked influences
as noise with covariance Qk.

 This produces a new Gaussian
blob, with a different covariance
(but the same mean):

 We get the expanded covariance
by simply adding Qk, giving our
complete expression for the predic-
tion step:

In other words, the new best
estimate is a prediction made
from previous best estimate, plus
a correction for known external
influences.

And the new uncertainty is pre-
dicted from the old uncertainty,
with some additional uncertainty
from the environment.

All right, so that’s easy enough.
We have a fuzzy estimate of where
our system might be, given by

and Pk. What happens when we
get some data from our sensors?

(6)

(7)

22  PROGRAMMING

Refining the estimate with measurements
We might have several sensors which give us informa-
tion about the state of our system. For the time being
it doesn’t matter what they measure. Perhaps one
reads position and the other reads velocity. Each sensor
tells us something indirect about the state — in other
words, the sensors operate on a state and produce a set
of readings.

 Notice that the units and scale of the reading might
not be the same as the units and scale of the state we’re
keeping track of. You might be able to guess where this
is going: We’ll model the sensors with a matrix, Hk.

 We can figure out the distribution of sensor readings
we’d expect to see in the usual way:

One thing that Kalman filters are great for is dealing
with sensor noise. In other words, our sensors are at
least somewhat unreliable, and every state in our origi-
nal estimate might result in a range of sensor readings.

From each reading we observe, we might guess
that our system was in a particular state. But because
there is uncertainty, some states are more likely than
others to have produced the reading we saw:

We’ll call the covariance of this uncertainty (i.e., of
the sensor noise) Rk. The distribution has a mean equal
to the reading we observed, which we’ll call . .

So now we have two Gaussian blobs: One surround-
ing the mean of our transformed prediction, and one
surrounding the actual sensor reading we got.

We must try to reconcile our guess about the read-
ings we’d see based on the predicted state(pink) with
a different guess based on our sensor readings (green)
that we actually observed.

So what’s our new most likely state? For any possible
reading (z1, z2), we have two associated probabili-
ties: (1) The probability that our sensor reading is a
(mis-)measurement of (z1, z2), and (2) the probability
that our previous estimate thinks (z1, z2) is the reading
we should see.

(8)

  23

If we have two probabilities and we want to know
the chance that both are true, we just multiply them
together. So, we take the two Gaussian blobs and mul-
tiply them:

 What we’re left with is the overlap, the region
where both blobs are bright/likely. And it’s a lot more
precise than either of our previous estimates. The mean
of this distribution is the configuration for which both
estimates are most likely, and is therefore the best
guess of the true configuration given all the informa-
tion we have.

Hmm. This looks like another Gaussian blob.

 As it turns out, when you multiply two Gaussian
blobs with separate means and covariance matrices, you
get a new Gaussian blob with its own mean and covari-
ance matrix! Maybe you can see where this is going:
there’s got to be a formula to get those new parameters
from the old ones!

Combining Gaussians
Let’s find that formula. It’s easiest to look at this first
in one dimension. A 1D Gaussian bell curve with vari-
ance σ2 and mean μ is defined as:

We want to know what happens when you multiply
two Gaussian curves together:

 You can substitute equation (9) into equation (10)
 and do some algebra (being careful to renormalize, so
that the total probability is 1) to obtain:

We can simplify by factoring out a little piece and
calling it k:

Take note of how you can take your previous esti-
mate and add something to make a new estimate. And
look at how simple that formula is!

But what about a matrix version? Well, let’s just
re-write equations (12) and (13) in matrix form. If Σ is
the covariance matrix of a Gaussian blob, and is its
mean along each axis, then:

K is a matrix called the Kalman gain, and we’ll use it
in just a moment.

Easy! We’re almost finished!

(9)

(11)

(12) (13)

(14)
(15)

(10)

24  PROGRAMMING

Putting it all together
We have two distributions: the predicted measurement
with , and the observed
measurement with . We can just plug
these into equation (15) to find their overlap:

And from (14), the Kalman gain is:

We can knock an Hk off the front of every term
in (16) and (17) (note that one is hiding inside K), and
an off the end of all terms in the equation for P’k.

…giving us the complete equations for the update step.
And that’s it! is our new best estimate, and

we can go on and feed it (along with P’k) back into
another round of predict or update as many times as
we like.

Wrapping up
Of all the math above, all you need to imple-
ment are equations (7), (18), and (19). (Or if you
forget those, you could re-derive everything from
equations (4) and (15).)

This will allow you to model any linear system
accurately. For nonlinear systems, we use the extended
Kalman filter, which works by simply linearizing the
predictions and measurements about their mean.

If I’ve done my job well, hopefully someone else out
there will realize how cool these things are and come
up with an unexpected new place to put them into
action. n

Some credit and referral should be given to this fine docu-
ment, [hn.my/kalman2] which uses a similar approach
involving overlapping Gaussians. More in-depth deriva-
tions can be found there, for the curious.

Tim Babb is a software engineer at Pixar Animation Studios,
where he works on feature films fixing things and building light
transport code. In his spare time, he builds projects relating to
computational geometry, atmospheric optics, poker, and sensor
fusion, and maintains a blog about math and technology.

(16)

(17)

(18)

(19)

Reprinted with permission of the original author.
First appeared in hn.my/kalman (bzarg.com)

http://hn.my/kalman2
http://hn.my/kalman

  25

By JEFF BRADBERRY

The subject of the game AI
generally begins with is
so-called perfect informa-

tion games. These are turn-based
games where the players have no
information hidden from each
other, and there is no element of
chance in the game mechanics
(such as by rolling dice or draw-
ing cards from a shuffled deck).
Tic-Tac-Toe, Connect 4, checkers,
Reversi, chess, and Go are all games
of this type. Because everything
in this type of game is fully deter-
mined, a tree can, in theory, be
constructed that contains all pos-
sible outcomes, and a value assigned
corresponding to a win or a loss
for one of the players. Finding the
best possible play, then, is a matter
of doing a search on the tree, with
the method of choice at each level
alternating between picking the
maximum value and picking the
minimum value, matching the dif-
ferent players’ conflicting goals as
the search proceeds down the tree.
This algorithm is called Minimax.
[hn.my/minimax]

The problem with Minimax,
though, is that it can take an
impractical amount of time to do a
full search of the game tree. This is
particularly true for games with a
high branching factor, or high aver-
age number of available moves per
turn. This is because the basic ver-
sion of Minimax needs to search all
of the nodes in the tree to find the
optimal solution, and the number
of nodes in the tree that must be
checked grows exponentially with
the branching factor. There are
methods of mitigating this problem,
such as searching only to a limited
number of moves ahead (or ply)
and then using an evaluation func-
tion to estimate the value of the
position, or by pruning branches to
be searched if they are unlikely to
be worthwhile. Many of these tech-
niques, though, require encoding
domain knowledge about the game,
which may be difficult to gather or
formulate. And while such meth-
ods have produced chess programs
capable of defeating grand masters,
similar success in Go has been
elusive, particularly for programs
playing on the full 19x19 board.

However, there is a game AI
technique that does do well for
games with a high branching factor,
and it has come to dominate the
field of Go playing programs. It is
easy to create a basic implemen-
tation of this algorithm that will
give good results for games with a
smaller branching factor, and rela-
tively simple adaptations can build
on it and improve it for games like
chess or Go. It can be configured
to stop after any desired amount of
time, with longer times resulting in
stronger game play. Since it doesn’t
necessarily require game-specific
knowledge, it can be used for gen-
eral game playing. It may even be
adaptable to games that incorporate
randomness in the rules. This tech-
nique is called Monte Carlo Tree
Search. In this article I will describe
how MCTS works, specifically a
variant called Upper Confidence
bound applied to Trees (UCT), and
then will show you how to build a
basic implementation in Python.

Imagine, if you will, that you are
faced with a row of slot machines,
each with different payout prob-
abilities and amounts. As a rational
person (if you are going to play

Introduction to Monte Carlo
Tree Search

http://hn.my/minimax

26  PROGRAMMING

them at all), you would prefer to
use a strategy that will allow you
to maximize your net gain. But
how can you do that? For whatever
reason, there is no one nearby, so
you can’t watch someone else play
for a while to gain information
about which is the best machine.
Clearly, your strategy is going to
have to balance playing all of the
machines to gather that information
yourself, with concentrating your
plays on the observed best machine.
One strategy, called UCB1, does
this by constructing statistical confi-
dence intervals for each machine.

where:

■■ : the mean payout for
machine i

■■ ni: the number of plays of
machine i

■■ n: the total number of plays

Then, your strategy is to pick
the machine with the highest
upper bound each time. As you
do so, the observed mean value
for that machine will shift, and its
confidence interval will become
narrower, but all of the other
machines’ intervals will widen.
Eventually, one of the other
machines will have an upper bound
that exceeds that of your current
one, and you will switch to that
one. This strategy has the prop-
erty that you regret the difference
between what you would have won
by playing solely on the actual best
slot machine and your expected
winnings under the strategy that
you do use -- grows only as .
This is the same big-O growth
rate as the theoretical best for this
problem (referred to as the multi-
armed bandit problem), and has the

additional benefit of being easy to
calculate.

And here’s how Monte Carlo
comes in. In a standard Monte
Carlo process, a large number of
random simulations are run, in this
case, from the board position that
you want to find the best move for.
Statistics are kept for each possible
move from this starting state, and
then the move with the best overall
results is returned. The downside
to this method, though, is that for
any given turn in the simulation,
there may be many possible moves,
but only one or two that are good.
If a random move is chosen each
turn, it becomes extremely unlikely
that the simulation will hit upon
the best path forward. So, UCT has
been proposed as an enhancement.
The idea is this: Any given board
position can be considered a multi-
armed bandit problem, if statistics
are available for all of the posi-
tions that are only one move away.
So instead of doing many purely
random simulations, UCT works by
doing many multi-phase playouts.

Selection
Here the positions and moves selected
by the UCB1 algorithm at each step are
marked in bold. Note that a number of
playouts have already been run to accu-
mulate the statistics shown. Each circle
contains the number of wins / number
of times played.

The first phase, selection, lasts
while you have the statistics
necessary to treat each position
you reach as a multi-armed bandit

problem. The move to use, then,
would be chosen by the UCB1
algorithm instead of randomly, and
applied to obtain the next position
to be considered. Selection would
then proceed until you reach a
position where not all of the child
positions have statistics recorded.

Expansion
The position marked 1/1 at the bottom
of the tree has no further statistics
records under it, so we choose a
random move and add a new record for
it (bold), initialized to 0/0.

The second phase, expansion,
occurs when you can no longer
apply UCB1. An unvisited child
position is randomly chosen, and
a new record node is added to the
tree of statistics.

Simulation
Once the new record is added, the
Monte Carlo simulation begins, here
depicted with a dashed arrow. Moves
in the simulation may be completely

  27

random, or may use calculations to weight the randomness in
favor of moves that may be better.

After expansion occurs, the remainder of the play-
out is in phase 3, simulation. This is done as a typical
Monte Carlo simulation, either purely random or with
some simple weighting heuristics if a light playout is
desired, or by using some computationally expensive
heuristics and evaluations for a heavy playout. For
games with a lower branching factor, a light playout
can give good results.

Back-Propagation
After the simulation
reaches an end, all of the
records in the path taken
are updated. Each has his
play count incremented by
one, and each that matches
the winner has its win
count incremented by one,
here shown by the bolded
numbers.

Finally, the fourth phase
is the update or back-

propagation phase. This occurs when the playout
reaches the end of the game. All of the positions visited
during this playout have their play count incremented,
and if the player for that position won the playout, the
win count is also incremented.

This algorithm may be configured to stop after any
desired length of time, or on some other condition. As
more and more playouts are run, the tree of statistics
grows in memory and the move that will finally be
chosen will converge towards the actual optimal play,
though that may take a very long time, depending on
the game.

For more details about the mathematics of UCB1
and UCT, see Finite-time Analysis of the Multi-
armed Bandit Problem and Bandit-based Monte Carlo
Planning.

Now let’s see some code. To separate concerns,
we’re going to need a Board class, whose purpose is to
encapsulate the rules of a game and which will care
nothing about the AI, and a Monte Carlo class, which
will only care about the AI algorithm and will query
into the Board object in order to obtain information
about the game. Let’s assume a Board class supporting
this interface:

class Board(object):
 def start(self):
 # Returns a representation of the
 # starting state of the game.
 pass

 def current_player(self, state):
 # Takes the game state and returns the
 # current player's number.
 pass

 def next_state(self, state, play):
 # Takes the game state, and the move to
 # be applied.
 # Returns the new game state.
 pass

 def legal_plays(self, state_history):
 # Takes a sequence of game states
 # representing the full game history,
 # and returns the full
 # list of moves that are legal plays for
 # the current player.
 pass

 def winner(self, state_history):
 # Takes a sequence of game states
 # representing the full game history.
 # If the game is now won, return the
 # player number. If the game is still
 # ongoing, return zero. If the game is
 # tied, return a different distinct
 # value, e.g. -1.
 pass

For the purposes of this article, I’m not going to flesh
this part out any further, but for example code, you can
find one of my implementations on github. However,
it is important to note that we will require that the
state data structure is hashable and equivalent states
hash to the same value. I personally use flat tuples as
my state data structures.

28  PROGRAMMING

The AI class we will be constructing will support this
interface:

class MonteCarlo(object):
 def __init__(self, board, **kwargs):
 # Takes an instance of a Board and
 # optionally some keyword arguments.
 # Initializes the list of game states @
 # and the statistics tables.
 pass

 def update(self, state):
 # Takes a game state, and appends it to
 # the history.
 pass

 def get_play(self):
 # Causes the AI to calculate the best
 # move from the
 # current game state and return it.
 pass

 def run_simulation(self):
 # Plays out a "random" game from the
 # current position, then updates the
 # statistics tables with the result.
 pass

Let’s begin with the initialization and bookkeeping.
The board object is what the AI will be using to obtain
information about where the game is going and what
the AI is allowed to do, so we need to store it. Addi-
tionally, we need to keep track of the state data as we
get it.

class MonteCarlo(object):
 def __init__(self, board, **kwargs):
 self.board = board
 self.states = []

 def update(self, state):
 self.states.append(state)

The UCT algorithm relies on playing out multiple
games from the current state, so let’s add that next.

Import datetime

class MonteCarlo(object):
 def __init__(self, board, **kwargs):
 # ...
 seconds = kwargs.get('time', 30)
 self.calculation_time = datetime.
timedelta(seconds=seconds)

 # ...

 def get_play(self):
 begin = datetime.datetime.utcnow()
 while datetime.datetime.utcnow() - begin
< self.calculation_time:
 self.run_simulation()

Here we’ve defined a configuration option for the
amount of time to spend on a calculation, and get_
play will repeatedly call run_simulation until that
amount of time has passed. This code won’t do any-
thing particularly useful yet because we still haven’t
defined run_simulation, so let’s do that now.

...
from random import choice

class MonteCarlo(object):
 def __init__(self, board, **kwargs):
 # ...
 self.max_moves = kwargs.get('max_moves',
100)

 # ...

 def run_simulation(self):
 states_copy = self.states[:]
 state = states_copy[-1]

 for t in xrange(self.max_moves):
 legal = self.board.legal_plays(states_
copy)

 play = choice(legal)
 state = self.board.next_state(state, play)
 states_copy.append(state)

 winner = self.board.winner(states_copy)
 if winner:
 break

  29

This adds the beginnings of the run_simula-
tion method, which either selects a move using UCB1
or chooses a random move from the set of legal moves
each turn until the end of the game. We have also
introduced a configuration option for limiting the
number of moves forward that the AI will play.

You may notice at this point that we are making a
copy of self.states and adding new states to it, instead
of adding directly to self.states. This is because self.
states is the authoritative record of what has happened
so far in the game, and we don’t want to mess it up
with these speculative moves from the simulations.

Now we need to start keeping statistics on the game
states that the AI hits during each run of run_simula-
tion. The AI should pick the first unknown game state
it reaches to add to the tables.

class MonteCarlo(object):
 def __init__(self, board, **kwargs):
 # ...
 self.wins = {}
 self.plays = {}

 # ...

 def run_simulation(self):
 visited_states = set()
 states_copy = self.states[:]
 state = states_copy[-1]
 player = self.board.current_
player(state)

 expand = True
 for t in xrange(self.max_moves):
 legal = self.board.legal_
plays(states_copy)

 play = choice(legal)
 state = self.board.next_state(state,
play)
 states_copy.append(state)

 # `player` here and below refers to
 # the player who moved into that
 # particular state.
 if expand and (player, state) not in
self.plays:
 expand = False
 self.plays[(player, state)] = 0

 self.wins[(player, state)] = 0

 visited_states.add((player, state))

 player = self.board.current_
player(state)
 winner = self.board.winner(states_
copy)
 if winner:
 break

 for player, state in visited_states:
 if (player, state) not in self.
plays:
 continue
 self.plays[(player, state)] += 1
 if player == winner:
 self.wins[(player, state)] += 1

Here we’ve added two dictionaries to the
AI, wins and plays, which will contain the counts for
every game state that is being tracked. The run_simu-
lation method now checks to see if the current state
is the first new one it has encountered this call, and,
if not, adds the state to both plays and wins, setting
both values to zero. This method also adds every game
state that it goes through to a set, and at the end
updates plays and wins with those states in the set that
are in the plays and wins dicts. We are now ready to
base the AI’s final decision on these statistics.

from __future__ import division
...

class MonteCarlo(object):
 # ...

 def get_play(self):
 self.max_depth = 0
 state = self.states[-1]
 player = self.board.current_
player(state)
 legal = self.board.legal_plays(self.
states[:])

 # Bail out early if there is no real
 # choice to be made.
 if not legal:
 return
 if len(legal) == 1:

30  PROGRAMMING

 return legal[0]

 games = 0
 begin = datetime.datetime.utcnow()
 while datetime.datetime.utcnow() - begin
< self.calculation_time:
 self.run_simulation()
 games += 1

 moves_states = [(p, self.board.next_
state(state, p)) for p in legal]

 # Display the number of calls of `run_
 # simulation` and the time elapsed.
 print games, datetime.datetime.utcnow()
- begin

 # Pick the move with the highest
 # percentage of wins.
 percent_wins, move = max(
 (self.wins.get((player, S), 0) /
 self.plays.get((player, S), 1),
 p)
 for p, S in moves_states
)

 # Display the stats for each possible
 # play.
 for x in sorted(
 ((100 * self.wins.get((player, S),
0) /
 self.plays.get((player, S), 1),
 self.wins.get((player, S), 0),
 self.plays.get((player, S), 0), p)
 for p, S in moves_states),
 reverse=True
):
 print "{3}: {0:.2f}% ({1} / {2})".
format(*x)

 print "Maximum depth searched:", self.
max_depth

 return move

We have added three things in this step. First, we
allow get_play to return early if there are no choices
or only one choice to make. Next, we’ve added output
of some debugging information, including the statistics

for the possible moves this turn and an attribute that
will keep track of the maximum depth searched in the
selection phase of the playouts. Finally, we’ve added
code that picks out the move with the highest win per-
centage out of the possible moves and returns it.

But we are not quite finished yet. Currently, our AI
is using pure randomness for its playouts. We need to
implement UCB1 for positions where the legal plays
are all in the stats tables, so the next trial play is based
on that information.

...
from math import log, sqrt

class MonteCarlo(object):
 def __init__(self, board, **kwargs):
 # ...
 self.C = kwargs.get('C', 1.4)

 # ...

 def run_simulation(self):
 # A bit of an optimization here, so we
 # have a local variable lookup instead
 # of an attribute access each loop.
 plays, wins = self.plays, self.wins

 visited_states = set()
 states_copy = self.states[:]
 state = states_copy[-1]
 player = self.board.current_
player(state)

 expand = True
 for t in xrange(1, self.max_moves + 1):
 legal = self.board.legal_
plays(states_copy)
 moves_states = [(p, self.board.next_
state(state, p)) for p in legal]

 if all(plays.get((player, S)) for p,
S in moves_states):
 # If we have stats on all of the
 # legal moves here, use them.
 log_total = log(
 sum(plays[(player, S)] for
p, S in moves_states))
 value, move, state = max(
 ((wins[(player, S)] /

  31

plays[(player, S)]) +
 self.C * sqrt(log_total /
plays[(player, S)]), p, S)
 for p, S in moves_states
)
 else:
 # Otherwise, just make an
 # arbitrary decision.
 move, state = choice(moves_
states)

 states_copy.append(state)

 # `player` here and below refers to
 # the player who moved into that
 # particular state.
 if expand and (player, state) not in
plays:
 expand = False
 plays[(player, state)] = 0
 wins[(player, state)] = 0
 if t > self.max_depth:
 self.max_depth = t

 visited_states.add((player, state))

 player = self.board.current_
player(state)
 winner = self.board.winner(states_
copy)
 if winner:
 break

 for player, state in visited_states:
 if (player, state) not in plays:
 continue
 plays[(player, state)] += 1
 if player == winner:
 wins[(player, state)] += 1

The main addition here is the check to see if all of
the results of the legal moves are in the plays diction-
ary. If they aren’t available, it defaults to the original
random choice. But if the statistics are all available,
the move with the highest value according to the
confidence interval formula is chosen. This formula
adds together two parts. The first part is just the win
ratio, but the second part is a term that grows slowly
as a particular move remains neglected. Eventually, if

a node with a poor win rate is neglected long enough,
it will begin to be chosen again. This term can be
tweaked using the configuration parameter C added
to__init__ above. Larger values of C will encourage
more exploration of the possibilities, and smaller values
will cause the AI to prefer concentrating on known
good moves. Also note that the self.max_depth attri-
bute from the previous code block is now updated
when a new node is added and its depth exceeds the
previous self.max_depth.

So there we have it. If there are no mistakes, you
should now have an AI that will make reasonable
decisions for a variety of board games. I’ve left a
suitable implementation of Board as an exercise for
the reader, but one thing I’ve left out here is a way
of actually allowing a user to play against the AI. A
toy framework for this can be found at github.com/
jbradberry/boardgame-socketserver and github.com/
jbradberry/boardgame-socketplayer. n

Jeff is a software engineer specializing in Python. He currently
works for Caktus Group [caktusgroup.com], a Django consulting
firm based in Durham, North Carolina. He has a degree in Applied
Mathematics, and occasionally gets the itch to mix math with
his programming.

Reprinted with permission of the original author.
First appeared in hn.my/montecarlo (jeffbradberry.com)

http://github.com/jbradberry/boardgame-socketserver
http://github.com/jbradberry/boardgame-socketserver
http://github.com/jbradberry/boardgame-socketplayer
http://github.com/jbradberry/boardgame-socketplayer
http://caktusgroup.com
http://hn.my/montecarlo (jeffbradberry.com)

32  STARTUP

STARTUP

We talk to lots of
founders who
underestimate how

hard it is to make money selling
consumer hardware, especially on
their first production run. If your
product costs $30 to produce, and
you sell it for $99, you’re turning a
profit, right?

Not so fast.
I’ll lay it out for you. First, let’s

manufacture a fictional pair of
bluetooth headphones, the Bolt-
o-Phones. We need to make a few
assumptions:

■■ Our Bolt-o-Phones will be sold
for $99 MSRP (the manufactur-
er’s suggested retail price)

■■ Our first production run will be
5,000 units

■■ Product development will take 9
months

■■ A small, 5-person team will
work full-time on shipping this
product

Getting Started
Most companies spend extensive
time — and money — on product
development. Simple products cost
$100k–500k to develop, and they
usually take roughly 6–9 months.
More complex products can cost
millions and take years.

In order to prepare our Bolt-
o-Phones for the manufacturing
process, we need to hire mechanical
and electrical engineers, an indus-
trial designer and an operations
person. These employees will spend
9 months talking to users, build-
ing prototypes and getting ready to
manufacture the product. Our costs
will look something like this:

Bill of Materials is Just the
Beginning
Once product development is
finished, we’ll have a final list of
parts used to make our headphones
(called a Bill of Materials, or BOM
for short). This is the most funda-
mental cost structure we have to
deal with as a hardware company.
We can’t raise money from inves-
tors or launch a crowdfunding
campaign until we have a solid
understanding of BOM costs.

The BOM includes all plastic
parts we need molded, printed
circuit board and other components
we need to buy, glue to assemble
the plastics, and the packaging in

By BEN EINSTEIN

Will Your Hardware Startup
Make Money?

Not for the first 5,000 units, but that’s okay.

***This estimate is highly variable depending on product complexity, team
makeup, etc. It will impact profitability more than any other cost.***

  33

which the Bolt-o-Phones are sold.
Each part is laid out on a table with
all the information required to make
a single pair of Bolt-o-Phones: part
number, quantity per unit, vendor,
lead times, costs and various notes.

Don’t Forget About COGS
The BOM leaves out some critical
costs associated with each unit. Each
pair of Bolt-o-Phones takes time for
workers in China to assemble. And
then we have to ship the product
all over the world. These costs, and
others, are reflected in the Cost of
Goods Sold (commonly known as
COGS). Financially, COGS are
calculated using inventory costs,
but for startups it’s easier to think
of COGS as an ‘extended BOM.’
I’ll include anything we pay for on
a per unit basis that we can’t order
more of, but that is required to get
the product out the door (such as
duties, scrap rates, and return rates,
all of which are calculated as a per-
centage of the BOM cost):

Everyone Has Fixed Costs
In addition, we have fixed costs
associated with our first produc-
tion run. When the company is
still young, and has yet to turn a
substantial profit, these fixed costs

make a significant impact on our
financials. Fixed costs are things
we pay for once for every design,
like tooling for plastic parts, FCC
fees for bluetooth radio certifica-
tion, UL/CE product certification
costs or value-added services from
the CM. It’s best to outline these
costs independently, as they can be
significant expenses, but it’s also
helpful to show the amortized cost
over the production run of 5,000
units, which is what I’ve done here:

After 9 months of development,
manufacturing and logistics, we
wind up with 5,000 units of our
product sitting in a warehouse
somewhere in the US. We’ve spent
around $690k ($360k for develop-

ment and $330k for
manufacturing) to get
here, and we are ready
to send our custom-
ers their gorgeous
Bolt-o-Phones.

Go Direct First
Originally, a BOM
cost of $32.16 would
imply that we can
make money selling
the product for $99
anywhere we want.
But once all the other
expenses are factored

into the equation, our distribution
options diminish significantly. The
three typical distribution options
companies have at their disposal are
as follows:

■■ Direct (sold through your own
website, where no margin is paid
but you must process payments
and pay for fulfillment)

■■ Online retail/e-tail (a third-party
seller with no physical store, and
that takes low margins)

■■ Traditional physical retail (a
physical store with a distribu-
tion network and standard retail
margins)

34  STARTUP

Our profit on each unit varies
hugely depending on the channel
into which we sell:

Notice that each unit sold via
physical retail actually LOSES
money. This is why it’s very difficult
for a small company with a lim-
ited amount of cash to go straight
to retail distribution on their first
production run.

Trends at Scale
A 5,000-unit production run may
be pretty daunting for first-time
founders, but it’s peanuts compared
to successful consumer products.
Real success comes from selling
lots of units, mainly due to mas-
sive economies of scale. At high
volumes:

■■ Amortized fixed costs go to zero,
due to the high number of units
that are produced

■■ Negotiation leverage increases
with retailers for better margins.
Retailers care about “walk-in
value” (in other words, how likely
a customer is to walk into a store
for your product), and as your
product becomes more popular/
well-known, your walk-in value
increases.

■■ Negotiation leverage increases
with suppliers for better prices

■■ CMs extend large lines of credit
to good customers, allowing you
to pay for your product after it’s
made (sometimes 90 or 120 days

after, which significantly reduces
cashflow problems.)

■■ Scrap and return rates go down as
manufacturing tolerances tighten
and customer support improves

The fully-loaded unit cost of
Bolt-o-Phones will change dramati-
cally as we manufacture more and
more units. Notice how most of our
costs decrease substantially, aside
from marketing, which tends to
increase over time:

The profitability of the company
also drastically changes, which is
driven by increased leverage from
margin negotiations and lower unit
costs:

Although shipping 5,000 units
of anything is an amazing accom-
plishment, this table illustrates just
how difficult it is to make money

in the early days of your hardware
business. Even the most successful
crowdfunding campaigns (think
Canary, Pebble, Oculus, Ouya, etc.)
struggled to make money on their
first production run. It takes a mas-
sive manufacturing scale like Fitbit
(with 10.9 million units sold in
2014) to build a venture-scale, prof-
itable business (Fitbit is currently
worth around $9B.) However, don’t
be discouraged! Selling 10.9M units
seemed like a pipe dream to James
and Eric when they started Fitbit in
2007. n

Ben Einstein is a founder and partner at
Bolt. A product vision and prototyping
expert, Ben is instrumental in bringing
many products to market ranging from
consumer electronics to clean energy for
everything from Fortune 500 companies
to small startups.

Reprinted with
permission of
the original
author.
First appeared in
hn.my/hardware
(bolt.io)

http://hn.my/hardware
http://hn.my/hardware

35  SPECIAL

SPECIAL

By IAN MURDOCK

I saw my first Sun workstation in
the winter of 1992, when I was
an undergraduate at Purdue

University. At the time, I was a
student in the Krannert School of
Management, and a childhood love
of computers had just been reawak-
ened by a mandatory computer
programming course I had taken
during the fall semester. (We were
given the choice between COBOL
and FORTRAN — which even in
1992 seemed highly dated — and
I had picked COBOL because it
seemed the more “business” of the
two.)

Ten years or so earlier, my father,
a professor of entomology at
Purdue, had replaced his typewriter
at work with an Apple II+. Think-
ing his nine-year-old son might get
a kick out of it, he brought it home
one weekend along with a Space
Invaders-like game he had bought
at the local ComputerLand. I spent
hours on the computer that week-
end. Before long, I was accompany-
ing Dad to the lab at every oppor-
tunity so I could spend as much
time on the computer as possible.

Being a nine-year-old boy, I was,
predictably, attracted by the games
at first, and my interest in games
led to my first exposure to pro-
gramming: computer magazines

that included code listings for
very simple games, which I would
laboriously key in to the Apple —
and, after hours of toil, hope that I
hadn’t made a mistake. (The Apple
II, at least out of the box, utilized a
simple line editor, so going back and
making changes was very tedious,
not to mention finding the errors in
the first place.)

Not long after, I met Lee Sudlow
while hanging around the lab on
weekends. Lee was one of Dad’s
graduate students and he had begun
to use the Apple to assist in his
experiments. Lee was always happy
to explain what he was doing as I
hovered over his shoulder watching,
his helpfulness no doubt motivated
— at least in part — by the fact
that the snot-nosed nine-year-old
scrutinizing his every move was his
faculty advisor’s son. Oblivious to
such things, I watched with fascina-
tion as he punched code into the
Apple — code that he thought up
himself, not code that he was read-
ing from a computer magazine.

Between learning by example
through studying the code in the
magazines and Lee’s occasional
tutelage, I was writing games and
other simple programs before
long, first in Applesoft BASIC and,
later, in 6502 assembly language.

To encourage my growing interest,
Dad eventually bought an Apple IIe
for home, and my love affair with
the computer continued for several
more years. However, as I entered
my teenage years, the computer
was gradually replaced with more
pressing things, like baseball, music,
and girls, and by the mid-1980s,
the Apple was gathering dust in
my bedroom closet alongside my
collection of Hardy Boys novels and
Star Wars action figures.

My obsession with the computer
lay dormant for the next half-dozen
years until it was fortuitously reacti-
vated during that COBOL course
in the fall of 1992. When the course
ended, I naturally lost my account
on the IBM 3090 mainframe where
we did our assignments and lab
work. Fortunately, as a student, I
was entitled to a personal account
on one of the university computing
center’s machines, either the IBM
or one of three Sequent Symmetry
minicomputers running DYNIX,
a variant of the UNIX operating
system. A friend convinced me that
UNIX was more interesting and
had a brighter future than IBM’s
VM/CMS, and I took his advice and
applied for an account on one of
the Sequent machines. The follow-
ing week, I was the proud owner

How I Came To Find Linux

36  SPECIAL

of an account on sage.cc, complete
with the princely allocation of 500
kilobytes of disk storage. (Yes, I’m
being sarcastic — 500 kilobytes
was a miserly sum, even for 1992.
I eventually found ways to circum-
vent it.)

My appetite for UNIX was
ravenous that winter. I spent most
evenings in the basement of the
MATH building basking in the
green phosphorescent glow of the
Z-29 terminals, exploring every
nook and cranny of the UNIX
system upstairs. It was eerily quiet
in those terminal rooms, the only
sound being the clack clack clack
of a few dozen keyboards and the
occasional whisper of, “Hey, look at
this….” Often, after an evening of
exploration, I would exit the build-
ing the long way, walking past the
plate-glass window where the com-
puting center housed its machines,
gazing in awe at the refrigerator-
sized Sequent Symmetry I had just
been using, watching the blinking
lights and knowing that hundreds
of people were still inside, if only
virtually, thanks to the magic of
time-sharing, a technique advanced
computers used to divide the
machine’s computational power
among many users, providing the
illusion that each user was the only

one. Above all, I looked with envy
at the system operators privileged
enough to sit on the other side of
that plate-glass window wielding
the almighty power of the “super-
user” at the system console.

Unsatisfied with the Z-29s, I
began prowling around campus
after dark with a friend, Jason
Balicki, to see what else could
be found. Jason had been in the
computer science program for a
few years, so he knew where to
look (though we did our share of
new exploration — that was part
of the fun — entering buildings at
night and trying the doorknobs of
rooms that looked like they might
hold computers to see if they were
unlocked).

The best labs, I learned, were
in the engineering administration
building (referred to around campus
by its unfortunate acronym, ENAD),
where several rooms of X terminals
offered a grayscale graphical inter-
face to the Sequent and other UNIX
machines around campus. Soon,
my preferred “hacking” spot (a term
Jason had introduced to me) was in
one of the X terminal labs, which
were technically only for engineer-
ing students, a restriction that was
not enforced by passwords — and
that we dutifully ignored.

But the mother lode of the
ENAD building was to be found in
its labs of Sun workstations. Unlike
the lowly Z-29s and even the com-
paratively advanced X terminals,
the Suns were things of beauty,
with sleek cases and high-resolution
color displays. Furthermore, Jason
explained that they ran the best
UNIX there was, SunOS, though
the Suns were considerably better
locked down than the X terminals,
requiring an account on the engi-
neering computer network to access
them, so I didn’t get a chance to
actually get my hands on SunOS
until much later.

I was also accessing UNIX from
home via my Intel 80286-based PC
and a 2400-baud modem, which
saved me the trek across campus
to the computer lab on particularly
cold days. Being able to get to the
Sequent from home was great, but I
wanted to replicate the experience
of the ENAD building’s X termi-
nals, so one day, in January 1993,
I set out to find an X server that
would run on my PC. As I searched
for such a thing on Usenet, I
stumbled across something called
“Linux.”

“I bought a box of thirty floppy diskettes
and began the slow process of download-
ing Linux to the floppies from a PC lab.”

  37

Linux wasn’t an X server, of
course, but it was something much
better: A complete UNIX-alike
operating system for PCs, some-
thing I hadn’t even contemplated
could exist. Unfortunately, it
required a 386 processor or better,
and my PC only had a 286. So,
I began to save my pennies for
a machine fast enough to run it,
and while I did that, I devoured
everything I could get my hands
on about the object of my desire. A
few weeks later, I posted a message
to Purdue’s computing interest
Usenet group asking if anyone on
campus was running Linux — and
got one response, from a com-
puter science student named Mike
Dickey, who happily invited me
over to show me his Linux setup.
Inspired, I bought a box of thirty
floppy diskettes and began the slow
process of downloading Linux to
the floppies from a PC lab in the
Krannert building, though it would
be another month before I could
afford an actual computer on which
to install it. Finally, I could wait no
longer, and Jason and I found an
unlocked computer lab in one of
the dorms containing a single PC,
and in the middle of the night one
evening in February, we proceeded
to install Linux on that lab PC. I
still occasionally wonder what the
unfortunate student first to the
lab the next morning must have
thought.

Linux had been created about
a year and a half before by Linus
Torvalds, a twenty-one-year-old
computer science undergraduate
at Helsinki University. A longtime
computer enthusiast, Torvalds had
followed a path roughly similar
to my own, though he began his
programming career on a Commo-
dore Vic-20, and he hadn’t gotten

distracted by the more traditional
interests of teenage boys as the ‘80s
progressed. Torvalds’ first exposure
to UNIX was in 1990 during a
course at the university and, like
me, it had been love at first sight.

In the fall of that same year,
Torvalds took a course in operat-
ing systems that used the textbook
Operating Systems: Design and
Implementation by Andrew Tanen-
baum, a professor of computer
science at Amsterdam’s Vrije Uni-
versiteit. Tanenbaum’s book taught
operating systems by example
through a UNIX clone for PCs he
had written called MINIX, and his
book included the complete source
code — the human readable (and
editable) programming code — for
MINIX along with a set of floppy
diskettes so that readers could
actually install, use, and modify the
operating system.

Intrigued, Torvalds bought a PC
in early 1991 and joined the bur-
geoning MINIX community, tens of
thousands strong and largely held
together by the Usenet newsgroup
comp.os.minix. He began experi-
menting not only with MINIX but
also with the new task-switching
capabilities of the Intel 80386
processor that powered his PC.
(Task-switching makes it easier to
run more than one program on the
processor at the same time, one of
the requirements of a time-sharing
system like the Sequent Symmetry
I would discover the following year
at Purdue.) By the summer of 1991,
Torvalds’ experiments with task-
switching were beginning to evolve
into a full-blown operating system
kernel, the basic piece of software
in an operating system that medi-
ates access to the CPU, memory,
disks and other devices in the
computer and provides a simpler

interface to these basic comput-
ing functions that allows complex
applications to be written more
easily.

MINIX was not the only “hobby-
ist-friendly” operating system proj-
ect that existed in 1991, though it
was one of only a handful that was
complete enough to be usable, and
one of only a few that would run
on the lowly PC. The best-known
operating system project by far was
GNU, presided over by Richard
Stallman. Stallman, who had been
programming since the mid-1960s
and had been a systems program-
mer at MIT from 1971 to 1983,
was an old-school “hacker,” someone
who engages in computing for its
own sake and believes, militantly in
some cases (including Stallman’s),
that all information should be freely
shared.

The GNU project’s goal was to
produce a free operating system
(free not only in price, but also free
in the sense that it could be freely
modified) that was compatible
with UNIX (GNU was a so-called
recursive acronym for “GNU’s
Not UNIX,” so-called because it
employed a powerful technique
often used by programmers called
recursion that involves a computa-
tion using itself as one of its inputs).
Stallman launched the GNU
project in 1983 in response to the
growing market for proprietary
software — software for which the
source code could not be modified
and was often not even available.

Proprietary software was a fairly
new development in the early
1980s and, to Stallman, a very dis-
turbing one. Up to that point, soft-
ware had largely been distributed
freely with hardware, and hackers
often shared copies of its source
code along with their own changes

38  SPECIAL

and improvements. Stallman con-
sidered the growing trend toward
proprietary software nothing short
of the first step toward a digital
1984 in which computer users, and
eventually all of society, would be
held captive by greedy corporate
interests, and he was determined to
stop it.

By mid-1991, Stallman and a
loosely-knit group of volunteers
had assembled most of the GNU
operating system — a compiler, a
debugger, an editor, a command
interpreter (or “shell”), and a vari-
ety of utilities and programming
libraries that were just like UNIX,
only better — the GNU versions
were almost universally held to be
superior to their namesakes. The
only piece that was missing was
the kernel, and a small team had
just been created at Stallman’s Free
Software Foundation, a non-profit
organization he had formed in 1985
to oversee development of GNU
and serve as a guardian of sorts for
free software, to write that final
piece. Hackers around the world
believed it would just be a matter
of time until GNU was finished and
available, and they would finally
have an operating system free of
corporate encumbrances.

Half a world away, Torvalds’ own
operating system kernel was becom-
ing complete enough to release to
the world. In a now-famous Usenet
posting to comp.os.minix on August
25, 1991, he wrote:

Hello everybody out there using
minix –

I’m doing a (free) operating system
(just a hobby, won’t be big and
professional like gnu) for 386(486)
AT clones. This has been brewing
since april, and is starting to get

ready. I’d like any feedback on
things people like/dislike in minix,
as my OS resembles it somewhat
(same physical layout of the file-
system (due to practical reasons)
among other things).

The response was immediate
and overwhelming. While everyone
expected GNU to be done immi-
nently, it was not available yet, at
least not in a form that could be
used without a UNIX scaffolding
underneath. And while MINIX was
popular, it was not free, though it
was certainly inexpensive compared
to the other UNIXes. Perhaps most
importantly, though, MINIX was
intended primarily as a teaching
aid, not production software, so
Tanenbaum was loathe to include
many of the patches, or changes to
the operating system, that extended
its capabilities which flowed in
daily from hordes of enthusiastic
users around the world, fearing
their addition would make MINIX
too complicated and, thus, harder
for his students to understand.

The lure of a UNIX-like operat-
ing system for PCs, no matter how
imperfect, that was free and could
evolve at the speed its community
wanted it to evolve was too much
for many MINIX users to resist,
and they began flocking in droves
to Torvalds’ new OS, which in
the fall of 1991 would be dubbed
“Linux.” But Linux was just a kernel
— it required a variety of tools and
applications be installed on top of
it to make it actually do anything
useful. Fortunately, most of these
already existed thanks to Stallman’s
GNU project.

By 1992, a few intrepid users
began to assemble sets of floppy
diskette images that combined
Linux with the GNU software tool

chain to make it easier for new
users to get up and running. These
collections (later called “distribu-
tions”) got progressively better, and
by the time I finally got my PC in
March of 1993, the Softlanding
Linux System (or SLS) distribution
had expanded to those thirty dis-
kettes and now included a wealth
of applications — and, yes, the very
same software that powered the X
terminals in the ENAD building.

I never did get around to trying to
connect the Linux-based X server
now on my PC to the Sequent,
which would have been painfully
slow at 2400 baud — several thou-
sand times slower than the speeds
of today. Now I had my very own
UNIX to explore right there on my
desk. And explore I did, in a verita-
ble UNIX crash course. Once I got
over the thrill of being the “super-
user,” the unspeakable power I had
previously seen only behind plate
glass, I became enraptured not so
much by Linux itself as by the pro-
cess in which it had been created —
hundreds of people hacking away at
their own little corner of the system
and using the Internet to swap code,
slowly but surely making the system
better with each change — and set
out to make my own contribution
to the growing community, a new
distribution called Debian that
would be easier to use and more
robust because it would be built
and maintained collaboratively by
its users, much like Linux. n

A longtime Linux user, developer, and
advocate, Ian Murdock founded the
Debian project in 1993. Today, Debian is
one of the most popular Linux distribu-
tions in the world, with millions of users
worldwide. Ian has also held positions with
the Linux Foundation, Sun Microsystems,
and Salesforce.

Reprinted with permission of the original author. First appeared in hn.my/debian (ianmurdock.com)

http://hn.my/debian

  39

http://www.hostedgraphite.com

http://pivotaltracker.com

	FEATURES
	The Time It Takes To Change The Time
	The Guide To Implementing 2D Platformers

	PROGRAMMING
	How a Kalman Filter Works, in Pictures
	Introduction to Monte Carlo Tree Search

	STARTUP
	Will Your Hardware Startup Make Money?

	SPECIAL
	How I Came To Find Linux

