
Issue 61  June 2015

The Days are Long
But the Decades are Short

Sam Altman

2  ﻿

Curator
Lim Cheng Soon

Contributors
Heidi Rozen
Sam Altman
Andrew Montalenti
Keegan McAllister
Greg Baugues
James Rowe
Evan Miller
Matthew Griffith

Proofreader
Emily Griffin

Illustrator
Alla Berlezova

Printer
Blurb

HACKER MONTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-61

Contents
FEATURES

04  How to Build a Unicorn From Scratch
— and Walk Away with Nothing

By HEIDI ROIZEN

10  The Days are Long But the Decades are Short
By SAM ALTMAN

PROGRAMMING

12  Lucene: The Good Parts
By ANDREW MONTALENTI

17  151-byte Static Linux Binary in Rust
By KEEGAN MCALLISTER

20  How I Taught My Dog to Text Me Selfies
By GREG BAUGUES

23  Main Is Usually a Function. So Then When Is It Not?
By JAMES ROWE

28  Four Days of Go
By EVAN MILLER

34  Becoming Productive in Haskell
By MATTHEW GRIFFITH

http://hackermonthly.com/issue-61

4  FEATURES

By HEIDI ROIZEN

FEATURES

How to Build a Unicorn
From Scratch — and Walk

Away with Nothing

Illustration by: Alla Berlezova [nightmarev.com]

http://nightmarev.com

  5

This is a grim fairy tale
about a mythical company
and its mythical founder.

While I concocted this story, I did
so by drawing upon my sixteen
years of experience as a venture
capitalist, plus the fourteen years
I spent before that as an entrepre-
neur. I’m going to use some pretty
simple math and some pretty basic
terms to create a really awful situa-
tion in the hopes that entrepreneurs
reading this might avoid doing the
same in the real world.

As I’ve seen over many years
and many deals, in all but the
most glorious outcomes, terms will
matter way more than valuations,
and way more than whatever your
cap table says. And yet entrepre-
neurs — often with the encourage-
ment of their stakeholders — opti-
mize for the wrong things when
they negotiate their financings.

This is my attempt to paint you
a picture of why this is such a bad
idea. The situation I present is
fake, but the outcome is remark-
ably similar to those I’ve witnessed.
Don’t let this happen to you.

Let’s start with our entrepreneur,
whom we’ll call Richard. He’s
founded a breakthrough company.
Let’s call it Pied Piper.

Richard attracts Peter, a newly-
wealthy budding angel investor,
who agrees to put in $1 million as
a note with a $5 million cap and a
20% discount.

With his $1 million, Richard
builds a small team of people, rents
an Eichler in Palo Alto, and gets to
work. Once he is able to demon-
strate his product, he heads to Sand
Hill Road. He’s in a hot space in a
hot market. He nails his pitch, and
the term sheets roll in.

Because Richard is extremely
sensitive to dilution (after all, he’s
seen The Social Network) he wants
the highest valuation possible.
(Early in my career, another venture
capitalist called valuation “the grade
at the top of the paper” — and I’ve
never forgotten that.) The highest
valuation, $40 million pre-money,
comes from an emerging venture
fund, let’s call them BreakThrough-
Vest (BTV). BTV is excited about
this deal, but has ‘ownership
requirements’ of at least 20%, so
they insist that to support that
valuation they need to invest $10
million. Plus, they want a senior
liquidity preference of 1x to protect
their downside since they feel the
valuation is rich given the stage of
the company.

Richard is thrilled with the valu-
ation and the fresh capital for only
20% dilution. The prior investor,
Peter, is stoked that he is getting his
$1 million investment converted
into roughly 20% of this super hot
company, and now with the valida-
tion of an external term sheet he
can mark his position up to $10
million, a 10X! This helps Peter
validate his position as a savvy angel
and solidify his syndicate following
on AngelList.

Term sheet signed. Champagne
popped. A few weeks later, funds
wired.

With the $10 million, Richard
rents space in SoMa on a seven-year
lease, hires lots more people, and
within a few months he is able to
roll out the minimally viable prod-
uct to test the market. Awash in
the buzz of his fundraise, a feature
in Re/code, and some early user
traction, Pied Piper is perceived as
the emerging leader in a nascent,
winner-take-all market. While they
are not yet monetizing their users,

the adoption metrics are off the
charts.

Pied Piper attracts the atten-
tion of a tech giant we’ll just call
Hooli. Hooli’s consumer group
wants access to Pied Piper’s data.
With Hooli dollars behind Pied
Piper, Pied Piper could inundate
the market with consumer facing
advertising to build their user
base and upend competitors given
the massive network effect of the
product. Hooli approaches Richard
with the idea of a large strategic
round. In the deal, Hooli would
invest $200 million for equity while
in return the two companies would
enter into a business development
agreement on the side in which
Pied Piper guarantees to spend
that money in a massive consumer
campaign on Hooli’s ad platform.
They float the magic “B” valuation.
Richard goes to sleep dreaming of
rainbows and unicorns.

Richard fantasizes about being
named a member of the Unicorn
Club by the press. His employees
calculate the huge paper gains on
their options — they will all be
instant millionaires — and since no
one is more than ¼ vested, they
are all highly motivated to stay in
spite of long, long work hours. BTV
is thrilled with the 20x markup on
Pied Piper, since they are about to
hit their LPs up for a new fund.
The original investor, Peter, has
achieved legendary status — his $1
million has turned into approxi-
mately $200 million on paper. He’s
on the YC VIP sneak preview list,
he’s been offered a spot on Shark
Tank, and Ashton just called to try
to get into his next deal.

6  FEATURES

Of course, that $200 million for
20% stake also comes in with a
senior 1x liquidation preference in
order for Hooli to create sufficient
downside protection and thereby
justify the $1 billion valuation to
their board.

Richard, Peter and BTV all agree
it is worth doing. With $200 million
to spend on the most massive con-
sumer-facing ad campaign in this
sector’s history, the $1 billion valua-
tion will seem low in retrospect.

Except, it doesn’t end up hap-
pening that way.

The ads start running, but the
conversion rate is low. Pied Piper
shows Hooli the atrocious metrics
and demands out of the advertis-
ing commitment, but Hooli won’t
budge: Performance metrics were
not pre-negotiated, and further-
more the ad group that recom-
mended the investment did so in
part to prop up their revenues with
Pied Piper’s money ‘round-tripping’
into their coffers. The ad group is
counting on that money to hit their
annual numbers.

Pied Piper is forced to run the
whole campaign, blowing through
all $200 million. The good news:
They increased their user base by
10x. The bad news: The resulting
business model those users end up
actually supporting equates to more
of a ‘market valuation’ of $200 mil-
lion. In more bad news, turns out
Richard incorrectly estimated the
cost of supporting those users, most
of whom are taking advantage of
the ‘free’ part of a freemium model.
Support costs skyrocket.

Word about the poor conversion
leaks out. The advertising stops
when the money runs out. Growth
slows to a trickle when the adver-
tising stops. New investors sniff
around, but with the preference

overhang of $211 million, they are
concerned about employees being
buried under that structure and
therefore being unmotivated to
continue. They ask prior investors
to recap, but the investors don’t
want to give up their preferences:
Pied Piper is now looking like it
might be worth far less than the
paper valuation, which means those
preferences are very valuable as
downside protection. Furthermore,
BTV is out raising their fund, and
the last thing they want to do is
write down their 10x markup on
the Pied Piper investment.

The board is now super unhappy
about the massive miscalculation
of support costs, awful user con-
version, gargantuan ad overspend,
the lack of growth the company is
experiencing, and the departure of
a few key employees who’ve seen
this movie before and have done
the ‘overhang math.’ Richard as
CEO is out of his element — the
problems are huge and the com-
pany needs more money, which he
is incapable of raising given his lack
of experience navigating waters like
these. Unfortunately, it is the CEO’s
job to fix problems and raise money,
and if he can’t do it, someone else
has to. So the board (which now
controls the company with 60% of
the stock) votes to remove Richard
as CEO. They recruit an interim
CEO (let’s call him George) to
quickly take the helm. George says
he’ll take the job on two conditions:
One, that they create a 5% carve-
out for him and the go-forward
employees (he’s done the over-
hang math, too) and two, that they
extend the runway so he has time
to either turn this thing around —
or sell it.

The company is not profitable
and the current investors are tapped
out. “Let’s extend the runway using
debt,” says BTV. Maybe things will
improve with time — or at least
perhaps they can get their fund
closed before they have to take the
write down.

They lean on their good friends
at PierLast Venture Bank who
cough up $15 million in debt, with
a senior preference and a 2x guar-
antee. Onerous terms to be sure,
but hard to get debt with a balance
sheet like this. Unfortunately, Pied
Piper is burning $2 million a month
on office space, cloud services,
customer support, and expensive
employees who are needed to build
the next generation of the product.
Without support they’d have to
shut down existing customers and
revenue, yet without development
of the new release that they hope
will save the company, they will
have nothing to sell. Since they
can’t cut their way to glory, they
have to simply hope they can grow
into their valuation.

Time ticks by while the com-
pany plods forward with very slow
growth. Market pressures force
them to lower prices, pushing prof-
itability off. A few key developers
leave. Once again, they are facing
the prospect of running out of
money in 90 days. Current investors
are worried. Not only do they not
have funds to put into the deal, but
once payroll is missed they could
be personally liable for the damage.
Not good.

  7

Luckily, WhiteKnight, a public
company with a complementary
product and plenty of cash, offers
to buy Pied Piper. The offer is $250
million. It’s not a billion — but
it’s still a big, impressive number.
It’s not that easy to create a com-
pany worth a quarter billion real
dollars to someone else. That’s huge!

The venture debt provider
PierLast is very nervous about Pied
Piper’s balance sheet and looks to
the VCs to either guarantee the
loan or get the sale done. They want
their $30 million. Hooli is likewise
pushing to sell, after all they are
guaranteed the first $200 million
of any proceeds, after repayment
of 2x debt to PierLast, while the
company would have to be worth
over a billion for them to see any
further upside given that they only
own 20%. Their calculus is that
this is about as unlikely as seeing
a real unicorn given the state of
the company. BTV, who no longer
has any capital left to invest from
their original fund, has recently
closed their shiny new $300 mil-
lion fund, so they decide it is time
to take their chips off the table.
They vote to sell too, getting their
$10 million back. Peter, while sad
about the outcome, has developed
a huge syndication following on
AngelList and has recently benefit-
ted from an early acquisition that
netted him $3 million on a $250k
investment. Can’t win them all,
but he’s at peace. Even Richard
votes yes to the sale: He still has a
board seat but given the company’s
lack of profitability and lack of any
other sources of capital, turning
down this deal would mean insol-
vency, missed payroll, and personal
liability. George (the interim CEO)
and the key go-forward employ-
ees demand their $12.5 million

carve-out. Tack on more money for
lawyers and ibankers, and…

Oh wait, that’s more than $250
million. Oops.

Ergo, Richard ends up with
nothing.

So what can we learn from Rich-
ard’s grim fairy tale?

Terms matter
Liquidation preferences, partici-
pation, ratchets — even the very
term preferred shares (they are
called ‘preferred’ for a reason) are
things every entrepreneur needs
to understand. Most terms are
there because venture capitalists
have created them, and they have
created them because over time
they have learned that terms are
valuable ways to recover capital in
downside outcomes and improve
their share of the returns in moder-
ate outcomes — which more than
half the deals they do in normal
markets will turn out to be.

There is nothing inherently evil
about terms, they are a negotiation
and part of standard procedure for
high risk investing. But, for you
the entrepreneur to be surprised
after the fact about what the terms
entitle the venture firm to is just
bad business — on your part.

Cap tables don’t tell the real
story
For any private company with dif-
ferent classes of stock, the capital-
ization table is not-at-all the full
picture of who gets what in an
outcome.

In the above example, each of
the three investors held 20% of
the stock and Richard and crew
held 40%, yet the outcome was
vastly different because of those
aforementioned pesky terms and
preferences.

Before you close on any round,
you should create a waterfall
spreadsheet that shows what
you and each other stakeholder
would get in a range of exits —
low, medium and high. What you
will generally find is that, in high,
everyone is happy. In low, no one
is happy, and in medium (which
is where most deals settle) you
can either be penniless or “life-
changingly” compensated, depend-
ing on how much money you raised
and what terms you agreed to. It
is simply foolish to sell part of the
company you founded without
understanding this fully.

This is why it is so crazy to me
that many entrepreneurs today are
focused on valuation — the grade
at the top of the paper. They are
willingly trading terms for a high
number. Before you do so, run the
math on the range of outcomes
over multiple term and valuation
scenarios, so you fully understand
the tradeoffs you are making.

8  FEATURES

Venture capital is not free
money. It’s debt. And then some
People mistakenly think of an
equity investment as ‘only’ equity
dilution. After all, if you lose every-
thing, your venture investor can’t
come after you for your house like
a bank lender could. However, most
all venture transactions are done for
preferred shares with a liquidation
preference, which means all that
venture money is guaranteed to be
paid back first out of any proceeds
before you get to make a dime. The
more money you raise, the higher
that ‘overhang’ becomes. And inter-
estingly, the higher the valuation,
the higher the delta of value you
need to create before the investor
would rather hold on to the end
instead of getting his or her money
back (or a multiple thereof, as some
terms dictate) in a premature sale
if things are looking iffy. And what
company doesn’t go through iffy
times?

Stacked preferences can create
massive problems down the line
This one is a hard to articulate in
a blog post. Plus, I am a venture
capitalist who on occasion puts
said senior preferences in my term
sheet. They exist for a reason —
again often to do with the valuation
and the risk/reward tradeoff the
investor needs to make using the
downside protection of a senior
preference against the minimization
of dilution the entrepreneur wants
to achieve with a sky high valua-
tion. They are not inherently bad.

But regardless of why they are
there, the more diversity of value
and terms in each round, the more
you will create a situation where
your investors (who are almost
always also your voting board
members) will have very different

return profiles on the same offer.
In the above example (and again I
apologize for simplified math but
it is directionally accurate) Hooli
is getting their $200 million back
on a $250 million acquisition. They
own only 20% because of the high
valuation they paid. So for them
to instead double their return, the
company would have to go public
for $2 billion! This is a case of the
bird in the hand being worth more
than the two in the very distant
bush.

Investors are portfolio manag-
ers: You are not
You are betting usually 10 years
of your life and all your available
assets on your startup. Your inves-
tor is likely investing out of a fund
where he or she will have 20-30
other positions. So in the simplest
of terms, the outcome matters
more to you than it does to them.
As I noted above, when you have
stacked preferences, each person at
the table may be facing a vastly dif-
ferent outcome. But now layer onto
that their fund or partner dynamics.
Ever heard the expression, “lose the
battle but win the war?” I’ve seen
behavior that would seem crazy,
until one considers what is going on
in the background. For example in
the above, BTV is out raising a fund
and depends on that 10X markup
to validate their abilities as inves-
tors. Facing a write down, a fire
sale — or an extension of runway
using debt (and not incurring any
accounting change) — which one
do you think least impacts the most
important thing they are doing right
now? For our angel Peter, whose
star has risen with this legendary
markup, what value is there to him
of taking a $1 million loss right now
instead of just leaving a walking

dead company out there and on
his books (although this company
is not technically walking dead
because, since it is not profitable, it
is not walking. But I digress.)

Most reputable investors do not
engage in this sort of optics, and
many of us who have been through
the dot com bust are actually rather
aggressive with our write downs
to accurately reflect a sense of
true value in our portfolios. Also,
most investors who are also board
members wear multiple hats and
take their fiduciary responsibilities
very seriously — I know I do. But,
I bring up these behaviors because
I’ve witnessed them more than
once out there in the real world. As
an entrepreneur, you should at least
think through the motivations of
others, both when you are structur-
ing investments as well as when you
are considering a sale. They will on
occasion matter… a lot.

What to do
Now that I’ve scared you, let me
reiterate that most investors I deal
with are great, ethical people. If
I didn’t think of venture capital
money as good for entrepreneurs on
the whole, I wouldn’t be a venture
capitalist. But we VCs do a lot
more deals than you entrepreneurs
do, and you need to go into them
with your eyes open to the down-
side consequences of the terms you
agree to.

Here’s what I recommend:

■■ Focus on terms, not just valu-
ation: Understand how they
work. Read this book. [hn.my/
vdeals] Use a lawyer that does
tech venture financings for a
living, not your uncle who is
a divorce attorney, so you are
getting the best advice. Don’t

http://hn.my/vdeals
http://hn.my/vdeals

  9

completely delegate this because
you need to understand it
yourself.

■■ Build a waterfall: Once you
understand the terms being
offered, build a waterfall spread-
sheet so you can see exactly how
each stakeholder will fare across
the range of potential exit values
(yes by stakeholder, not by class
of stock: Investors often end up
owning multiple classes, and like-
wise different people in the same
class may have very different
circumstances that will influence
their behavior even in the same
outcome.)

■■ Don’t do bad business deals
just to get investment capital: I
know, duh, right? But I’ve seen
otherwise brilliant entrepre-
neurs get entranced by these big
number deals with big corporates,
only to deeply regret them later
when they cannot be unwound.
My advice, separate the business
development contract from the
equity contract. Negotiate them
individually. If the business devel-
opment deal would not stand on
its own merits, don’t do it.

■■ Understand the motivations of
others: This can be quite tricky,
but I believe you should at least
think through what might be the
motivation of the others around
the table. Is that junior partner
going to get passed over for
promotion if he writes down this
deal? Is that other firm fundrais-
ing right now? If you don’t know,
ask. I always aim to be transpar-
ent with the entrepreneurs I
work with about what my and
DFJ’s goals and constraints are,
independent of my role as a
director.

And finally…

■■ Understand your own motiva-
tion: What are you doing this
for? So you can see your face on
the cover of Forbes? So you can
have thousands of employees
working for you? So you can be
a member of the billion dollar
Unicorn Club? Perhaps it is to
do something you are personally
excited about and in a reason-
able amount of time, maybe take
enough money off the table to
live in a nice home, pay for your
kid’s college and your retire-
ment. I’m not saying one is more
correct than the other, I’m just
saying that your own goals will
dictate whether you should even
raise venture at all, how much to
raise, and what to spend it on. If
you raise $5 million and sell your
company for $30 million, it will
likely be a life-changing return
for you. If you raise $30 million
and then sell your company for
$30 million, you’ll end up like
Richard. n

Heidi Roizen is a venture capitalist, corpo-
rate director, Stanford lecturer, recovering
entrepreneur and Mom. She co-founded
software company T/Maker and served
as its CEO for over a dozen years until its
acquisition by Deluxe Corporation. After
a year as VP of Worldwide Developer Rela-
tions at Apple, she became a venture capi-
talist, and is now the Operating Partner
at Silicon Valley-based venture firm DFJ.

Reprinted with permission of the original author.
First appeared in hn.my/unicorn (heidiroizen.tumblr.com)

http://hn.my/unicorn

10  FEATURES

By SAM ALTMAN

The Days are Long
But the Decades are Short

I turned 30 last week and a
friend asked me if I’d figured
out any life advice in the past

decade worth passing on. I’m
somewhat hesitant to publish this
because I think these lists usually
seem hollow, but here is a cleaned
up version of my answer:

1.	 Never put your family, friends,
or significant other low on your
priority list. Prefer a handful of
truly close friends to a hundred
acquaintances. Don’t lose touch
with old friends. Occasionally
stay up until the sun rises talk-
ing to people. Have parties.

2.	 Life is not a dress rehearsal
— this is probably it. Make it
count. Time is extremely lim-
ited and goes by fast. Do what
makes you happy and fulfilled
— few people get remembered
hundreds of years after they
die anyway. Don’t do stuff that
doesn’t make you happy (this
happens most often when other
people want you to do some-
thing). Don’t spend time trying
to maintain relationships with
people you don’t like, and cut
negative people out of your life.
Negativity is really bad. Don’t
let yourself make excuses for
not doing the things you want
to do.

3.	 How to succeed: pick the right
thing to do (this is critical and
usually ignored), focus, believe
in yourself (especially when
others tell you it’s not going

to work), develop personal
connections with people that
will help you, learn to identify
talented people, and work
hard. It’s hard to identify what
to work on because original
thought is hard.

4.	 On work: it’s difficult to do a
great job on work you don’t
care about. And it’s hard to
be totally happy/fulfilled in
life if you don’t like what you
do for your work. Work very
hard — a surprising number of
people will be offended that
you choose to work hard — but
not so hard that the rest of your
life passes you by. Aim to be the
best in the world at whatever
you do professionally. Even
if you miss, you’ll probably
end up in a pretty good place.
Figure out your own productiv-
ity system — don’t waste time
being unorganized, working at
suboptimal times, etc. Don’t be
afraid to take some career risks,
especially early on. Most people
pick their career fairly randomly
— really think hard about what
you like, what fields are going to
be successful, and try to talk to
people in those fields.

5.	 On money: Whether or not
money can buy happiness, it
can buy freedom, and that’s a
big deal. Also, lack of money is
very stressful. In almost all ways,
having enough money so that
you don’t stress about paying
rent does more to change your

wellbeing than having enough
money to buy your own jet.
Making money is often more
fun than spending it, though I
personally have never regretted
money I’ve spent on friends,
new experiences, saving time,
travel, and causes I believe in.

6.	 Talk to people more. Read more
long content and fewer tweets.
Watch less TV. Spend less time
on the Internet.

7.	 Don’t waste time. Most people
waste most of their time, espe-
cially in business.

8.	 Don’t let yourself get pushed
around. As Paul Graham once
said to me, “People can become
formidable, but it’s hard to
predict who.” (There is a big dif-
ference between confident and
arrogant. Aim for the former,
obviously.)

9.	 Have clear goals for yourself
every day, every year, and every
decade.

10.	However, as valuable as plan-
ning is, if a great opportunity
comes along you should take it.
Don’t be afraid to do something
slightly reckless. One of the
benefits of working hard is that
good opportunities will come
along, but it’s still up to you to
jump on them when they do.

11.	Go out of your way to be
around smart, interesting, ambi-
tious people. Work for them
and hire them (in fact, one of

  11

By SAM ALTMAN

the most satisfying parts of
work is forging deep relation-
ships with really good people).
Try to spend time with people
who are either among the best
in the world at what they do or
extremely promising but totally
unknown. It really is true that
you become an average of the
people you spend the most time
with.

12.	Minimize your own cognitive
load from distracting things
that don’t really matter. It’s
hard to overstate how impor-
tant this is, and how bad most
people are at it. Get rid of dis-
tractions in your life. Develop
very strong ways to avoid letting
crap you don’t like doing pile
up and take your mental cycles,
especially in your work life.

13.	Keep your personal burn rate
low. This alone will give you a
lot of opportunities in life.

14.	Summers are the best.

15.	Don’t worry so much. Things
in life are rarely as risky as they
seem. Most people are too
risk-averse, and so most advice
is biased too much towards
conservative paths.

16.	Ask for what you want.

17.	If you think you’re going to
regret not doing something,
you should probably do it.
Regret is the worst, and most
people regret far more things
they didn’t do than things they
did do. When in doubt, kiss the
boy/girl.

18.	Exercise. Eat well. Sleep. Get
out into nature with some
regularity.

19.	Go out of your way to help
people. Few things in life are as
satisfying. Be nice to strangers.
Be nice even when it doesn’t
matter.

20.	Youth is a really great thing.
Don’t waste it. In fact, in your
20s, I think it’s ok to take a
“Give me financial discipline,
but not just yet” attitude. All
the money in the world will
never get back time that passed
you by.

21.	Tell your parents you love them
more often. Go home and visit
as often as you can.

22.	This too shall pass.

23.	Learn voraciously.

24.	Do new things often. This
seems to be really important.
Not only does doing new things
seem to slow down the percep-
tion of time, increase happiness,
and keep life interesting, but it
seems to prevent people from
calcifying in the ways that they
think. Aim to do something big,
new, and risky every year in your
personal and professional life.

25.	Remember how intensely you
loved your boyfriend/girlfriend
when you were a teenager?
Love him/her that intensely
now. Remember how excited
and happy you got about stuff
as a kid? Get that excited and
happy now.

26.	Don’t screw people and don’t
burn bridges. Pick your battles
carefully.

27.	Forgive people.

28.	Don’t chase status. Status with-
out substance doesn’t work for
long and is unfulfilling.

29.	Most things are ok in modera-
tion. Almost nothing is ok in
extreme amounts.

30.	Existential angst is part of life.
It is particularly noticeable
around major life events or just
after major career milestones.
It seems to particularly affect
smart, ambitious people. I think
one of the reasons some people
work so hard is so they don’t
have to spend too much time
thinking about this. Nothing is
wrong with you for feeling this
way; you are not alone.

31.	Be grateful and keep problems
in perspective. Don’t complain
too much. Don’t hate other
people’s success (but remember
that some people will hate your
success, and you have to learn
to ignore it).

32.	Be a doer, not a talker.

33.	Given enough time, it is pos-
sible to adjust to almost any-
thing, good or bad. Humans are
remarkable at this.

34.	Think for a few seconds before
you act. Think for a few min-
utes if you’re angry.

35.	Don’t judge other people too
quickly. You never know their
whole story and why they did
or didn’t do something. Be
empathetic.

36.	The days are long but the
decades are short. n

Sam Altman is the President of Y Com-
binator. He was co-founder and CEO of
Loopt, which was funded by Y Combinator
in 2005 and acquired by banking com-
pany Green Dot in 2012. Mr. Altman also
founded Hydrazine Capital. He studied
computer science at Stanford University,
and while there worked in The Stanford
Artificial Intelligence Laboratory.Reprinted with permission of the original author. First appeared in hn.my/days (blog.samaltman.com)

12  PROGRAMMING

PROGRAMMING

By ANDREW MONTALENTI

Before MongoDB, before
Cassandra, before
“NoSQL”, there was

Lucene.

Did you know that Doug Cutting
wrote the first versions of Lucene
in 1999? To put things in context,
this was around the time Google
was more a research project than an
actual trusted application. Google’s
proof-of-concept search engine was
still a sprawling set of desktop com-
puters in Stanford’s research labs.

I worked on my first Lucene proj-
ect around 2005. It was a document
management system. It didn’t have
any real issues of scale — it was a
web application meant to be run on
premise and to provide a view of
data that could safely fit in a hard
drive or NAS.

But even though the total data-
set measured in the hundreds of
gigabytes, searching through all the
data efficiently was still a challenge.
SQL was not then, and is still not
now, a very good blob or document
storage system. Yet, there seemed
to be no alternative to SQL for
durability, short of relying directly

upon the file system. To boot, the
primary use case of the application
I was working on was actually docu-
ment search. People needed to find
things. All SQL databases stink at
unstructured search, so that’s why I
started researching Lucene.

Lucene was a Java library you
had to learn, and then manually
integrate into your app. Thankfully,
this wasn’t as hopeless as it sounds
now.

Among Java projects, Lucene
was exceptionally well-docu-
mented. Further, Lucene in Action
[hn.my/luceneaction] had been
published in 2004, and the book
went into a lot of depth on how
the library worked. I remember
purchasing my copy and devouring
the book in a weekend. I remem-
ber thinking at the time that it was
probably one of the best technical
books I had read — not just about
Lucene, but in general!

A couple of things struck me
about Lucene after my first proj-
ect working with it. First, Lucene
approaches problems of data explo-
ration from the vantage point of
“information retrieval,” not from the
vantage point of “database manage-
ment theory.” This meant Lucene

was less concerned with things
like MVCC, ACID, and 3-NF, and
was instead concerned with much
more practical concerns, like how to
build a fast and humane interface
for unstructured data.

Lucene’s creator pondered: How
do we support queries that normal
users will actually type? How do
we rapidly search all the data we
have, in one fell swoop? How do
we order the results when there is
more than one likely match? How
do we summarize the full result set,
even if we only have enough space
to display part of the result set?

At the time, Solr and Elastic-
search didn’t yet exist. Solr would
be released in one year by the team
at CNET. With that release would
come a very important applica-
tion of Lucene: faceted search.
Elasticsearch would take another
5 years to be released. With its
recent releases, it has brought
another important application of
Lucene to the world: aggregations.
Over the last decade, the Solr
and Elasticsearch packages have
brought Lucene to a much wider
community. Solr and Elasticsearch
are now being considered along-
side data stores like MongoDB and

Lucene: The Good Parts

http://hn.my/luceneaction

  13

Cassandra, and people are genu-
inely confused by the differences.

So, I thought it might be fun to
go back to basics. What’s so good
about Lucene? How does it work
under the hood? And why does that
give a system like Elasticsearch a
leg up on a system like Cassandra
in certain applications? Finally,
what can we learn from Lucene
even if we don’t care about full text
search?

Jargon terms
So, let’s start with a de-jargoning
exercise. Here are some terms you
see thrown around in the Lucene
and Information Retrieval com-
munities which are not nearly as
common in the SQL and database
communities. Lucene even rede-
fines the term “term” — so, please,
pay attention!

■■ document: a record; the unit
of search; the thing returned as
search results (“not a row”)

■■ field: a typed slot in a document
for storing and indexing values
(“not a column”)

■■ index: a collection of documents,
typically with the same schema
(“not a table”)

■■ corpus: the entire set of docu-
ments in an index

■■ inverted index: internal data
structure that maps terms to
documents by ID

■■ term: value extracted from source
document, used for building the
inverted index

■■ vocabulary: the full set of distinct
terms in a corpus

■■ uninverted index: aka “field data”:
array of all field values per field,
in document order

■■ doc values: alternative way of
storing the uninverted index on-
disk (Lucene-specific)

OK, that gets some jargon out of
the way.

Inverting our corpus
Let’s start with a simple corpus of
two documents, doc1 and doc2.
Both contain the field “tag”, type
“string”, with the text “big data”.
There is also doc3, same structure,
but its tag contains the text “small
data”.

With this small corpus, how can
we find things?

Instead of storing:

doc1={"tag": "big data"}
doc2={"tag": "big data"}
doc3={"tag": "small data"}

We can store the “inverted
index”. What’s that?

big=[doc1,doc2]
data=[doc1,doc2,doc3]
small=[doc3]

Ah, so it’s not an index of
documents to terms, it’s an index
of terms to documents. Clever.
If we organize the data this way,
we can find documents by value
more quickly. When I search for
“big”, I get back doc1 and doc2.
If I search for “small”, I get back
doc3. If I search for “data”, I get
back all documents. This is basically
the core data structure in Lucene
and in search in general. Yay for
the inverted index!

Not in my vocabulary
In the above documents, I have
3 “terms”, and the assumption is
that I generated them by doing
basic whitespace tokenization.
So, my original corpus had the
field values ["big data", "small
data"], but my generated terms
are ["big", "small","data"].

This already suggests something
interesting about terms. If informa-
tion is repeated in your field values,
it will be compressed by pulling out
the terms.

By the way, if I were to leave
those fields unanalyzed, I’d have
two terms: they’d be “big data” and
“small data”. If I decide not to ana-
lyze a field, but I decide to store it
(in Lucene “stored” field or in Elas-
ticsearch “_source” field), then I am
essentially storing the data twice.
Once, in the inverted index, and
once in the “field storage” (wherever
that is) as well.

Terms are interesting when you
have data that repeats frequently
among your documents. In this
small example, the term “data” is
repeated in both documents, but
only requires one entry in the
inverted index. Imagine the same
kind of corpus as above, but where
you have 1,000 total documents,
half tagged with “big data” and half
tagged with “small data”. In this
case you might have:

data=[1,2,3,...,1000]
big=[1,3,5,7,9,...,999]
small=[2,4,6,8,...,1000]

Here, the inverted index stores
one entry for “data”, even though
data appears in 1,000 documents.
It stores one entry for “big”, even
though it occurs in 500 documents.
Likewise for “small”.

14  PROGRAMMING

Big data concordance
You might do a quick back-of-
the-envelope calculation at how
much more efficient it is to store an
inverted index of this data than to
store a normal document-to-term
index.

Storing the document IDs repeat-
edly isn’t free, but it’s certainly
cheaper than storing the whole
document repeatedly. The vocabu-
lary of a large data set will tend to
be much smaller than the record
storage of that same data set, and we
can take advantage of this at scale.

By the way, this is a pretty
ancient technique of mining data.
The first complete vocabulary of
a complex text was constructed in
the year 1262, by 500 very patient
monks. The document in question
was, of course, the Bible, and the
vocabulary was called a concor-
dance. How does that proverb go?
“There is nothing new under the
sun.”

Discretely numerical
Have a lot of text data you need
to make sense of? You clearly have
a “search” problem. Have a lot of
numeric data you need to make
sense of? Well, now, of course, you
have an “analytics” problem. Differ-
ent problem, right?

Well, maybe. The benefits of the
inverted index, terms, and vocabu-
laries apply equally well to numeric
data. It just requires some lateral
thinking to get there.

The reason fields need to have
types is because the way we index
field values into terms can dramati-
cally affect how we can query those
fields. Text is not the only thing
that can be broken into terms —
numeric and date field values can as
well. This is a bit mind-bending, as
terms feel like a text-only concept.

Here’s a snippet from Lucene
in Action on the topic: “If you
indexed your field with Numer-
icField, you can efficiently search
a particular range for that field
using NumericRangeQuery. Under
the hood, Lucene translates the
requested range into the equivalent
set of brackets in the indexed trie
structure.”

The equivalent set of brackets in
the indexed trie structure? Sounds
fancy. To start with, what trie struc-
ture are we talking about?

Here’s an example. Let’s suppose
I add a new field to my documents
called “views”. It is a numeric
field that contains the number of
views each document received on
some website. The section above
explained how we might find docu-
ments that have certain ranges of
views, e.g., views between 50 and
100.

If I convert the “views” field into
terms, I’ll have something that looks
like this, perhaps:

49=[doc31]
50=[doc40,doc41]
51=[doc53]
...

This isn’t very helpful. To query
for a range of views from 50 to 100,
I’d have to construct 50-part query,
one for each discrete term:

50 OR 51 OR 52 ... OR 100

The solution, as mentioned
above, is a “trie structure of brack-
ets”. Lucene will automatically
generate terms that look more like
this:

49=[doc31]
50=[doc40,doc41]
50x75=[doc40,doc41,doc53,doc78,
doc99,...]
51=[doc53]
...

Notice that 50x75 is a special
term that encompasses a bracket of
25 discrete values, and thus points
to a lot of documents. This allows
for smaller queries to cover ranges,
and a quicker retrieval of docu-
ments over large ranges. The idea is
to reduce the discrete numeric data
set to a number of lumpier “term
ranges”. So now, we might be able
to cover our 50-100 range with a
query like this:

50x75 OR 76x99 OR 100

The key thing is to select these
term ranges automatically — and
Lucene has an algorithm for that
which ensures that there are
enough terms to cover all ranges
with good average speed.

Pretty magical, huh? Here’s the
other clever thing: because numeric
values can be converted to term
ranges, this same magic works on
dates. The dates are converted to
numbers, the numbers are then
converted into term ranges. Thus,
even though you might be search-
ing through 1 million “minutes” of
data, you would only be searching
through a few hundred “minute
ranges” in the inverted index. We
could even call these “minute
ranges”, well, “days”!

An example trie data structure storing
numeric data.

  15

The UNIX philosophy intro-
duced the abstraction that “every-
thing is a file”, and it certainly
required some lateral thinking to
make devices like printers and
network sockets feel like files. The
Lucene philosophy equivalent is,
“everything is a term”. Numbers,
dates, text, identifiers, all can be
mapped to behave like text terms,
with all the same benefits.

Just uninvert what you’ve
inverted
But, we’d still like to do something
with the values within this field. For
example, we might like to aggregate
up the total views across all of our
documents, what in SQL might be
a sum() aggregate. We might also
want to find the document with
the most views, that is, to sort our
documents by their number of
views.

To do this, our inverted index
is no help. We might have values
ranging from 0 to 100 million in
there, with each discrete value (or
synthetic range) pointing to the
right document IDs. We don’t want
to find the documents with certain
values; we want to instead calculate
summaries (aka “analytics”) over
our corpus or some subset thereof.

A new problem demands another
lateral thinking solution. Why don’t
we uninvert the inverted index?
Huh?

In other words, why don’t we
store, per field, an array of field
values, in document order? An
index, not of terms to document
IDs, but an index of field values
that we know (by their order) cor-
respond to specific documents.

views=[1,1000,5000,1000000,
 200,...]

When we need to do calculations
across the whole corpus, we can
slurp this array into memory (and,
perhaps, keep it there for later). We
can then run calculations as fast as
computationally possible. If you
need to execute a sum() on some
subset of this array, we can use
another trick, Bitsets, for filtering
down the array as we go.

The quickest bit
A quick detour. I first heard of Bit-
sets in one of my favorite program-
ming books, an oldie but goodie
passed down to me by my Dad. It’s
called Programming Pearls.

Its first problem, entitled “Crack-
ing the Oyster,” involves solving a
specific file sorting problem by rep-
resenting the lines of the file as an
array of bits, where each bit repre-
sents one of the possible line values.
As described in that chapter, the
Bitset is “a dense set over a finite
domain when each element occurs
at most once and no other data is
associated with the element.” The
author observes that programmers
should seek cases where “reducing a
program’s space requirements also
reduces its run time,” something he
refers to as “mutual improvement.”
Properly applying a Bitset to a sort-
ing problem is one such example.

Let’s return to our uninverted
index. Let’s say that you want to
only sum views from documents
that match a specific author. In this
case, the full array of views will
be compared against a Bitset that
might look as follows:

views=[1,1000,5000,1000000,
 200,...]
specific_author=[0,1,0,1,0,...]
filtered_views=[0,1000,0,
 1000000,0,...]

As you can see, the views array
was gated through the specific_
author Bitset, and the result was an
array of filtered_views. This might
even be a sparse array, where most
of the values are 0 and the only
actual values come from matching
documents, but you don’t need to
worry about that because Lucene
uses a compressed Bitset that
handles this case nicely.

In any case, this can be done
very efficiently in-memory, and the
result is a filtered set of field values
that matches what we need exactly.
Now all we need to do is sum those
filtered values.

This makes it clear why it’s valu-
able to have the uninverted index
in-memory. Speed. That’s why it’s
often called the field cache.

But in-memory isn’t an option
for truly big data sets. This leads us
to the final chapter.

The solution is obviously… flat
files
Storing every single field value in
memory is fast but prohibitive.
Lucene’s “doc values” is basically
a hack that takes advantage of
Cassandra-style “columnar” data
storage.

We store all the document values
in a simple format on-disk. Basi-
cally, in flat files. Oh, the humanity.

I know what you’re thinking. Flat
files, how pedestrian! But in this
case, we benefit from a few other
lateral thoughts. Let’s look back at
our views array. Rather than storing:

views=[1,1000,5000,1000000,
 200,...]

We now store the same kind of
data in a file that basically just has
the values splatted out in column-
stride format:

16  PROGRAMMING

1
1000
5000
1000000
200
...

We can also be smart and only
store binary representation so we
can quickly slurp this data into
arrays in memory. If the file format
on-disk is aligned with the docu-
ment IDs in our corpus, then we
achieve random access to any
specific document by seeking into
this file. This is the same trick that
all columnar, disk-backed key-value
stores utilize, for the most part.

When we need to perform
a sum() on this data, we can simply
do a straightforward sequential read
of the file. Though it won’t put all
the data in memory, this scan will
signal to the Linux kernel that the
disk data is hot, and Linux will start
caching.

To quote a kernel developer,
“when you read a 100-megabyte
file twice, once after the other,
the second access will be quicker,
because the file blocks come
directly from the page cache in
memory and do not have to be read
from the hard disk again.” Flat files,
for the win!

Of course, even if the whole
file doesn’t fit into memory, we
can still smartly load large chunks,
and know exactly what document
range our field values correspond to,
thanks to the strict order. This can
let us re-use the Bitsets from the
earlier section to filter these subsets
appropriately.

Lucene: Nice index, OK database
Lucene is not a database — as I
mentioned earlier, it’s just a Java
library. It’s coming from the world

of information retrieval, which
cares about finding and describ-
ing data, not the world of database
management, which cares about
keeping it.

That said, Lucene is an excellent
building block for high-perfor-
mance indices of your data. Solr
and Elasticsearch are essentially
wrappers on Lucene that use its
good parts for information retrieval,
and then try to build their own
layer atop for persistence. Solr takes
advantage of Lucene’s built-in “field
storage” for this, while Elasticsearch
stores JSON blobs inside a Lucene
field, called “_source”.

Lucene goes even deeper than
that, though: using Lucene’s API,
you can build your own index
format (see its Codecs API). Since
Lucene’s data model is so flexible,
when you squint, systems built with
Lucene often look like “NoSQL”
databases themselves.

With the rise of NoSQL, I’ve
noticed another trend: NIH. No, no,
not that NIH (“Not Inverted Here”)
— I’m talking about Not Indexed
Here. The rise of MongoDB and
Cassandra has also led developers to
“roll their own index,” mainly out
of necessity.

For example, Cassandra encour-
ages you to “determine exactly
what queries you need to support,”
and then store your data in a way
to support those queries. Cassandra
only really has one index: the parti-
tion index. So you have to map all
your problems into that one query
pattern. Bummer.

Before MongoDB added full text
search to its core, it encouraged
developers to “use keywords stored
in an array in the same document
as the text field.” Same deal. An
indexed keyword array lets you
leverage MongoDB’s one-trick

pony, the BTree index. What’s
worse, the actual implementation
of their built-in full-text search
support doesn’t introduce any new
indexing techniques. It just takes
care of generating that keyword’s
array for you, and then stuffing it in
the BTree.

In both of these cases, and in
many others, you’d be better off
using a Lucene index on your data.
Invert your thinking, invert your
index. Store your data where you
wish, but then build a corpus of
Lucene documents with fields cor-
responding to the data you actually
need to find. Anything you put in a
field will be indexed and queryable
in ad hoc ways. You just need to
come to terms with your terms. But,
as we’ve learned, anything can be a
term. Convert those into a vocabu-
lary you can actually understand.
Then defy comprehension by con-
verting it all into compressed Bitsets.
Impress your friends once more by
uninverting your inversion. When
your sysadmin complains of memory
usage, reveal that you’ve rebuilt the
fancy database using none other
than flat files. Marvel at how well
your OS optimizes for them.

Then, query your Lucene index
with pride — a decade-old technol-
ogy, built on a century of computer
science research, and a millennium
of monk-like wisdom.

In other words, cutting-edge stuff. n

Andrew Montalenti is the co-founder &
CTO of Parse.ly, a content measurement
firm. Parse.ly partners with digital pub-
lishers to provide clear audience insights
through an intuitive analytics platform.
Its engineering team works on time series
analytics problems at scale, which is what
led them to Lucene.

Reprinted with permission of the original author.
First appeared in hn.my/lucene (parsely.com)

http://hn.my/lucene

  17

By KEEGAN MCALLISTER

Part of the sales pitch for Rust [rust-lang.org] is
that it’s “as bare metal as C.”1 Rust can do any-
thing C can do, run anywhere C can run,2 with

code that’s just as efficient, and at least as safe (but
usually much safer).

I’d say this claim is about 95% true, which is pretty
good by the standards of marketing claims. A while
back I decided to put it to the test by making the
smallest, most self-contained Rust program possible.
After resolving a few issues along the way, I ended
up with a 151-byte, statically linked executable for
AMD64 Linux.

Here’s the Rust code:

#![crate_type="rlib"]
#![allow(unstable)]

#[macro_use] extern crate syscall;

use std::intrinsics;

fn exit(n: usize) -> ! {
 unsafe {
 syscall!(EXIT, n);
 intrinsics::unreachable()
 }
}

fn write(fd: usize, buf: &[u8]) {
 unsafe {
 syscall!(WRITE, fd, buf.as_ptr(), buf.
len());

 }
}

#[no_mangle]
pub fn main() {
 write(1, "Hello!\n".as_bytes());
 exit(0);
}

This uses my syscall library [hn.my/syscall], which
provides the syscall! macro. We wrap the underlying
system calls with Rust functions, each exposing a safe
interface to the unsafe syscall! macro. The main func-
tion uses these two safe functions and doesn’t need its
own unsafe annotation. Even in such a small program,
Rust allows us to isolate memory unsafety to a subset
of the code.

Because of crate_type="lib", rustc will build this as
a static library, from which we extract a single object
file tinyrust.o:

$ rustc tinyrust.rs \
 -O -C no-stack-check -C relocation-
model=static \
 -L syscall.rs/target
$ ar x libtinyrust.rlib tinyrust.o
$ objdump -dr tinyrust.o
0000000000000000 <main>:
 0: b8 01 00 00 00 mov $0x1,%eax
 5: bf 01 00 00 00 mov $0x1,%edi
 a: be 00 00 00 00 mov $0x0,%esi
 b: R_X86_64_32 .rodata.
str1625

151-byte Static Linux
Binary in Rust

http://rust-lang.org
http://hn.my/syscall

18  PROGRAMMING

 f: ba 07 00 00 00 mov $0x7,%edx
 14: 0f 05 syscall
 16: b8 3c 00 00 00 mov
$0x3c,%eax
 1b: 31 ff xor %edi,%edi
 1d: 0f 05 syscall

We disable stack exhaustion checking, as well as
position-independent code, in order to slim down the
output. After optimization, the only instructions that
survive come from inline assembly blocks in the syscall
library.

Note that main doesn’t end in a ret instruction.
The exit function (which gets inlined) is marked
with a “return type” of !, meaning “doesn’t return”.
We make good on this by invoking the unreach-
able intrinsic after syscall!. LLVM [llvm.org]will
optimize under the assumption that we can never
reach this point, making no guarantees about the
program behavior if it is reached. This represents the
fact that the kernel is actually going to kill the process
before syscall!(EXIT, n) can return.

Because we use inline assembly and intrinsics,
this code is not going to work on a stable-chan-
nel build of Rust 1.0. It will require an alpha or
nightly build until such time as inline assembly
and intrinsics::unreachable are added to the stable
language of Rust 1.x.

Note that I didn’t even use #![no_std]! This pro-
gram is so tiny that everything it pulls from libstd is
a type definition, macro, or fully inlined function. As
a result there’s nothing of libstd left in the compiler
output. In a larger program you may need #![no_
std], although its role is greatly reduced following
the removal of Rust’s runtime.

Linking
This is where things get weird.

Whether we compile from C or Rust,3 the standard
linker toolchain is going to include a bunch of junk
we don’t need. So I cooked up my own linker script
[hn.my/linker]:

SECTIONS {
 . = 0x400078;

 combined . : AT(0x400078) ALIGN(1) SUB-
ALIGN(1) {
 (.text)
 (.data)
 (.rodata)
 (.bss)
 }
}

We smash all the sections together, with no align-
ment padding, then extract that section as a headerless
binary blob:

$ ld --gc-sections -e main -T script.ld -o pay-
load tinyrust.o
$ objcopy -j combined -O binary payload payload.
bin

Finally we stick this on the end of a custom ELF
header. The header is written in NASM [nasm.us]
syntax but contains no instructions, only data fields.
The base address 0x400078 seen above is the end of
this header, when the whole file is loaded at 0x400000.
There’s no guarantee that ld will put main at the begin-
ning of the file, so we need to separately determine the
address of main and fill that in as the e_entry field in
the ELF file header.

$ ENTRY=$(nm -f posix payload | grep '^main ' |
awk '{print $3}')
$ nasm -f bin -o tinyrust -D entry=0x$ENTRY
elf.s
$ chmod +x ./tinyrust
$./tinyrust
Hello!

It works! And the size:

$ wc -c < tinyrust
158

Seven bytes too big!

http://llvm.org
http://hn.my/linker
http://nasm.us

  19

The Final Trick
To get down to 151 bytes, I took inspiration from this
classic article [hn.my/teensy], which observes that pad-
ding fields in the ELF header can be used to store other
data. Like, say, a string constant. The Rust code changes
to access this constant:

use std::{mem, raw};

#[no_mangle]
pub fn main() {
 let message: &'static [u8] = unsafe {
 mem::transmute(raw::Slice {
 data: 0x00400008 as *const u8,
 len: 7,
 })
 };

 write(1, message);
 exit(0);
}

A Rust slice like &[u8] consists of a pointer
to some memory, and a length indicating the
number of elements that may be found there. The
module std::raw exposes this as an ordinary struct
that we build, then transmute to the actual slice type.
The transmute function generates no code; it just
tells the type checker to treat our raw::Slice<u8> as
if it were a &[u8]. We return this value out of
the unsafe block, taking advantage of the “everything
is an expression” syntax, and then print the message as
before.

Trying out the new version:

$ rustc tinyrust.rs \
 -O -C no-stack-check -C relocation-
model=static \
 -L syscall.rs/target
$ ar x libtinyrust.rlib tinyrust.o
$ objdump -dr tinyrust.o
0000000000000000 <main>:
 0: b8 01 00 00 00 mov $0x1,%eax
 5: bf 01 00 00 00 mov $0x1,%edi
 a: be 08 00 40 00 mov
$0x400008,%esi
 f: ba 07 00 00 00 mov $0x7,%edx
 14: 0f 05 syscall
 16: b8 3c 00 00 00 mov
$0x3c,%eax

 1b: 31 ff xor %edi,%edi
 1d: 0f 05 syscall

...
$ wc -c < tinyrust
151
$./tinyrust
Hello!

The object code is the same as before, except that
the relocation for the string constant has become an
absolute address. The binary is smaller by 7 bytes (the
size of "Hello!\n") and it still works!

You can find the full code [hn.my/tinyrust] on
GitHub. The code in this article works on rustc 1.0.0-
dev (44a287e6e 2015-01-08). If I update the code on
GitHub, I will also update the version number printed
by the included build script.

I’d be curious to hear if anyone can make my pro-
gram smaller! n

Keegan is a research engineer at Mozilla, working on Rust and
Servo.

Reprinted with permission of the original author.
First appeared in hn.my/151rust (mainisusuallyafunction.blogspot.ca)

http://hn.my/teensy
http://hn.my/tinyrust
http://hn.my/151rust

20  PROGRAMMING

A few weeks after we got
our puppy, we taught
her how to turn on a

light.
Turns out Kaira will do just about

anything if you can clearly commu-
nicate your desires and have a treat
in your hand. There’s an Ikea lamp
in our bedroom that’s activated
by stepping on a floor switch. We
started her training by placing her
paw on the switch, saying “Light,”
and giving her a treat. Once she
got that, we’d press on her paw and
withhold the treat until she heard
a click. Eventually, we could say
“Light” from across the room and
Kaira would run over and do the
job: [hn.my/kairalights]

So then I started thinking, “I’ve
got a dog that can press a button.
What can I do with that?”

Doggy Selfies
A couple months after Twilio
launched MMS, I was reading
through Ricky Robinette’s post
on Training Your Dog with a Tessel
[hn.my/tessel] and started to
wonder if we could teach Kaira to
send selfies. I’m pleased to say that,
thanks to the Arduino Yun and
a big red button, the answer is a
resounding “Yes!” as you can see in
this short video: [hn.my/kairaselfie]

By GREG BAUGUES

How I Taught
My Dog to Text Me
Selfies

My dog texts me a selfie

http://hn.my/kairalights
http://hn.my/tessel
http://hn.my/kairaselfie

  21

By GREG BAUGUES What you’re seeing in the video is a cigar box
housing a massive arcade button and an Arduino Yun.
The second box serves as a stand for a webcam that’s
plugged into the Yun. (My local cigar shop sells emp-
ties for $2 which make for sturdy and stylish hardware
enclosures).

 The Wifi-enabled Arduino Yun has two micropro-
cessors: one does all the pin interaction you typically
associate with an Arduino. The second runs a stripped-
down version of Linux called OpenWRT which can
run programs in your favorite scripting language.
(Python comes pre-installed, but you could put Ruby
or Node on there if you so please.) This project has one
program running on each processor. Together, they are
less than 60 lines of code.

The Arduino sketch simply:

■■ Waits for a button press

■■ Runs a shell command to take a picture

■■ Runs a Python script to upload the picture to Drop-
box and send the MMS

#include <Bridge.h>
#include <Process.h>

const int BUTTON = 7;

void setup() {
 pinMode(BUTTON, INPUT);
 Bridge.begin();
}

void loop() {
 if (digitalRead(BUTTON) == HIGH) {
 takePicture();
 uploadAndSend();
 }
}

void takePicture() {
 Process p;
 p.begin("fswebcam");
 p.addParameter("/mnt/sda1/pic.jpg");
 p.addParameter("-r 640x480");
 p.run();
}

22  PROGRAMMING

void uploadAndSend() {
 Process p;
 p.begin("python");
 p.addParameter("/mnt/sda1/arduino/upload-and-
send.py");
 p.run();
}

The Python script uses the Dropbox SDK and Twilio
helper library to:

■■ Upload the picture to Dropbox

■■ Get a publicly accessible url for the picture

■■ Use that url to send an MMS via Twilio

import datetime
import dropbox
from twilio.rest import TwilioRestClient

dropbox_access_token = "YOURDROPBOXTOKEN"
twilio_phone_number = "YOURTWILIOPHONENUMBER"
twilio_account_sid = "YOURTWILIOACCOUNTSID"
twilio_auth_token = "YOURTWILIOAUTHTOKEN"
cellphone = 'YOURCELLPHONE'

timestamp = datetime.datetime.now().
strftime("%h-%m-%S")
filename = "kaira-" + timestamp + ".jpg"

f = open("/mnt/sda1/pic.jpg")
dropbox_client = dropbox.client.
DropboxClient(dropbox_access_token)
response = dropbox_client.put_file(filename, f)
url = dropbox_client.media(response['path'])
['url']

twilio_client = TwilioRestClient(twilio_account_
sid, twilio_auth_token)
twilio_client.messages.create(
 to = cellphone,
 from_ = twilio_phone_number,
 body = "Woof.",
 media_url = url)

If you’d like some more color on how we got here,
we’ve documented the entire process from Arduino
Yun unboxing to sending MMS in these three tutorials:

■■ Getting Started with the Arduino Yun
[hn.my/yunstart]

■■ Take a picture with a webcam and upload it to
Dropbox from the Yun [hn.my/yuncam]

■■ Send SMS and MMS from your Arduino Yun
[hn.my/yunsms]

Onward!
What’s most exciting to me about this project, aside
from the sheer novelty of my dog sending selfies, is
how simple each component is. The button press is lit-
erally the second example from Massimo Banzi’s Get-
ting Started with Arduino. [hn.my/banzi]

The Python script is practically cut-and-paste from
the Dropbox and Twilio getting started guides.

Hardware hacking can be intimidating if you’ve
never done it before, but remember that the most
impressive hacks are often just simple building blocks
stacked on top of one another. Wifi-enabled devices like
the Arduino Yun have drastically lowered the barrier
to entry for web developers to dip their toes into the
Internet of Things.

So let’s say you had a box that could interact with
both the physical world and any web-based API using
the programming language you already know. What
could you do with that? n

Greg Baugues serves as a developer evangelist at Twilio, a com-
pany that empowers developers to integrate text messaging,
phone calling, and video conferencing into their apps with just
a few lines of code. You can find him on Twitter at @greggyb

Reprinted with permission of the original author.
First appeared in hn.my/selfies (twilio.com)

http://hn.my/yunstart
http://hn.my/yuncam
http://hn.my/yunsms
http://hn.my/banzi
http://twitter.com/@greggyb
http://hn.my/selfies

23  PROGRAMMING

By JAMES ROWE

Main Is Usually a Function.
So Then When Is It Not?

It began when my coworker, despite already know-
ing how to program, was forced to take the intro
level Computer Science course at my university.

We joked with him about how he needs to make a
program that works, but the grading TAs wouldn’t be
able to figure out how it works. So that is the require-
ment, to make a functioning program that completes
an assignment while obfuscating it such that the grad-
ers think that it shouldn’t work. With this in mind,
I started to think through the arsenal of tricks in C
that I’ve seen used before and one thing in particular
stood out. The idea for this trick I will explain how to
accomplish came from a blog with the name main is
usually a function [mainisusuallyafunction.blogspot.ca]
which got me thinking about when would main not be
a function? Let’s find out then!

My problem-solving process is typically the same
thing I imagine most programmers go through.

■■ Step 1: Google search about the problem.

■■ Step 2: Click every link on the first page that seems
relevant. If not solved, try a different query and
repeat.

Thankfully, the answer to this question came on
the very first search on this Stack Overflow answer
[hn.my/somain]. Apparently in 1984, a strange pro-
gram won the IOCCC where main was declared as
a short main[] = {...} and somehow this did stuff
and printed to the screen! Too bad it was written for a
whole different architecture and compiler, so there is
really no easy way for me to find out what it did. But

judging from the fact that it is just a bunch of num-
bers, I can surmise that the numbers there are just the
compiled binary of some short function, and the linker,
when looking for the main function, just throws this in
its place.

With our hypothesis in place (that the code for the
program is just the compiled assembly of main func-
tion represented as an array), let’s see if we can repli-
cate this by making a small program.

char main[] = "Hello world!";
$ gcc -Wall main_char.c -o first
main_char.c:1:6: warning: 'main' is usually a
function [-Wmain]
 char main[] = "Hello world!";
 ^
$./first
Segmentation fault

All right! It worked! Kind of…. So our next goal is
to actually print something to the screen. Thinking
back to my limited ASM experience, I recalled that
there are different sections of the compiler which
determine where different things go. The two sections
that are most relevant to us are the .text section
and the .data section. .text contains all the execut-
able code, and it is read-only, whereas .data contains
readable and writable code, but isn’t executable. In
our case, we can only fill in code for the main func-
tion, so anything that gets placed in the data section is
a no-go. We need to find a way to get the string "Hello
world!" inside the main function and reference it.

http://mainisusuallyafunction.blogspot.ca
http://hn.my/somain

24  PROGRAMMING

I began by looking into how to print something with
as little code as possible. Since I knew the target system
is going to be 64bit Linux, I found that I could call the
system, write call, and it would write out to the screen.
Looking back at this now that I’m writing the code, I
don’t think that I needed to use Assembly for this, but
at the same time, I’m really glad I got to learn what I
did. Getting started writing inline GCC ASM was the
hardest part, but once I got the hang of it, it started to
become easier.

Getting started wasn’t easy though. It turns out
that most of the ASM knowledge I could find through
Google is all of the following: really old, Intel syntax,
and for 32 bit systems. Remember in our scenario,
we need the file to compile with a GCC on a 64
bit system, without any special modifications to the
compiler flags. That means there are no special com-
pile flags, nor can we include any custom linking
steps. Plus, we want to use GCC inline AT&T syntax.
Most of my time was spent trying to find information
about modern assembly for 64 bit systems! Maybe my
Google-foo is lacking.

This part was almost all trial and error. My goal was
just to use the write syscall to print “Hello world!” to
the screen using GCC inline ASM, so why was it so
hard? For the people that want to learn how to do
this, I recommend the following sites: Linux syscall
list [hn.my/syscalltable], Intro to Inline Asm [hn.my/
inlineasm], and Differences between Intel and AT&T
Syntax [hn.my/linasm].

Eventually my ASM code started to form, and I had
some code that seemed to work! Remember, my goal
is to produce a main that is an array of the ASM that
prints Hello World.

void main() {
 __asm__ (
 // print Hello World
 "movl $1, %eax;\n" /* 1 is the syscall
number for write on 64bit */
 "movl $1, %ebx;\n" /* 1 is stdout and
is the first argument */
 "movl $message, %esi;\n" /* load the
address of string into the second argument*/
 "movl $13, %edx;\n" /* third argument
is the length of the string to print*/
 "syscall;\n"
 // call exit (so it doesn't try to run
 // the string Hello World)

 // maybe I could have just used ret
 // instead?
 "movl $60,%eax;\n"
 "xorl %ebx,%ebx; \n"
 "syscall;\n"
 // Store the Hello World inside the main
 // function
 "message: .ascii \"Hello World!\\n\";"
);
}
$ gcc -Wall asm_main.c -o second
asm_main.c:1:6: warning: return type of 'main'
is not 'int' [-Wmain]
 void main() {
 ^
$./second
Hello World!

Hurray! It prints! Let’s take a look at the compiled
code in hex now, and it should match up 1 to 1 with
the ASM code we wrote. I went ahead and broke down
what’s going on in the comments to the side.

(gdb) disass main
Dump of assembler code for function main:
 0x00000000004004ed <+0>: push %rbp
; Compiler inserted
 0x00000000004004ee <+1>: mov %rsp,%rbp
 0x00000000004004f1 <+4>: mov $0x1,%eax
; It's our code!
 0x00000000004004f6 <+9>: mov $0x1,%ebx
 0x00000000004004fb <+14>: mov
$0x400510,%esi
 0x0000000000400500 <+19>: mov $0xd,%edx
 0x0000000000400505 <+24>: syscall
 0x0000000000400507 <+26>: mov
$0x3c,%eax
 0x000000000040050c <+31>: xor %ebx,%ebx
 0x000000000040050e <+33>: syscall
 0x0000000000400510 <+35>: rex.W
; String hello world
 0x0000000000400511 <+36>: gs
; it's garbled since
 0x0000000000400512 <+37>: insb
(%dx),%es:(%rdi) ; it's not real asm
 0x0000000000400513 <+38>: insb
(%dx),%es:(%rdi) ; so it couldn't be
 0x0000000000400514 <+39>: outsl
%ds:(%rsi),(%dx) ; disassembled
 0x0000000000400515 <+40>: and

http://hn.my/syscalltable
http://hn.my/inlineasm
http://hn.my/inlineasm
http://hn.my/linasm

  25

%dl,0x6f(%rdi)
 0x0000000000400518 <+43>: jb 0x400586
 0x000000000040051a <+45>: and
%ecx,%fs:(%rdx)
 0x000000000040051d <+48>: pop %rbp
; Compiler inserted
 0x000000000040051e <+49>: retq
End of assembler dump.

That looks like a functioning main to me! Now let’s
go and grab the hex contents of it, and dump it in as a
string and see if that works. We can get the hex from
main by using gdb again. I’m willing to guess that there
must be a better way. The way I did it was to load gdb
and print the hex at main, like so. Last time we disas-
sembled main, we saw that it was 49 bytes long, so we
can use the dump command to save the hex to a file.

example of how to print the hex
(gdb) x/49xb main
0x4004ed <main>: 0x55 0x48 0x89 0xe5
0xb8 0x01 0x00 0x00
0x4004f5 <main+8>: 0x00 0xbb 0x01 0x00
0x00 0x00 0xbe 0x10
0x4004fd <main+16>: 0x05 0x40 0x00 0xba
0x0d 0x00 0x00 0x00
0x400505 <main+24>: 0x0f 0x05 0xb8 0x3c
0x00 0x00 0x00 0x31
0x40050d <main+32>: 0xdb 0x0f 0x05 0x48
0x65 0x6c 0x6c 0x6f
0x400515 <main+40>: 0x20 0x57 0x6f 0x72
0x6c 0x64 0x21 0x0a
0x40051d <main+48>: 0x5d
example of how to save it to a file
(gdb) dump memory hex.out main main+49

Now that we have the hex dump, we can convert
them all to integers the easiest way that I know how:
using Python. In Python 2.6 and 2.7, you can just use
the following to convert it to a convenient array of ints
for us to use.

>>> import array
>>> hex_string = "554889E5B801000000BB-
01000000BE10054000BA0D0000000F05B83C00000031DB-
0F0548656C6C6F20576F726C64210A5D".decode("hex")
>>> array.array('B', hex_string)
array('B', [85, 72, 137, 229, 184, 1, 0, 0, 0,
187, 1, 0, 0, 0, 190, 16, 5, 64, 0, 186, 13, 0,
0, 0, 15, 5, 184, 60, 0, 0, 0, 49, 219, 15, 5,
72, 101, 108, 108, 111, 32, 87, 111, 114, 108,
100, 33, 10, 93])

I figure if my bash foo and Unix knowledge was
greater, I could find an easier way to do this, but
Googling things like “hex dump of compiled function”
returns several questions about how to print hex in
various languages. Regardless, we now have a comma-
separated array of our function, so let’s put that in a
new file and see if it works! I went ahead and com-
mented what each of the different values mean.

char main[] = {
 85, // push %rbp
 72, 137, 229, // mov %rsp,%rbp
 184, 1, 0, 0, 0, // mov $0x1,%eax
 187, 1, 0, 0, 0, // mov $0x1,%ebx
 190, 16, 5, 64, 0, // mov $0x400510,%esi
 186, 13, 0, 0, 0, // mov $0xd,%edx
 15, 5, // syscall
 184, 60, 0, 0, 0, // mov $0x3c,%eax
 49, 219, // xor %ebx,%ebx
 15, 5, // syscall
 // Hello world!\n
 72, 101, 108, 108, 111, 32, 87, 111, 114,
108, 100,
 33, 10, // pop %rbp
 93 // retq
};
$ gcc -Wall compiled_array_main.c -o third
compiled_array_main.c:1:6: warning: 'main' is
usually a function [-Wmain]
 char main[] = {
 ^
$./third
Segmentation fault

26  PROGRAMMING

Segfault! What am I doing wrong? Time to fire up
gdb again and try to see what the error is. Since main
is no longer a function, we can’t simply use break
main to set a break point there. Instead, we can
use break _start to get a breakpoint at the method
that calls the libc runtime startup (which in turn
calls main), and we can see what address we pass
to __libc_start_main.

$ gdb ./third
(gdb) break _start
(gdb) run
(gdb) layout asm

B+>|0x400400 <_start> xor %ebp,%ebp
 |0x400402 <_start+2> mov %rdx,%r9
 |0x400405 <_start+5> pop %rsi
 |0x400406 <_start+6> mov %rsp,%rdx
 |0x400409 <_start+9> and
$0xfffffffffffffff0,%rsp
 |0x40040d <_start+13> push %rax
 |0x40040e <_start+14> push %rsp
 |0x40040f <_start+15> mov $0x400560,%r8
 |0x400416 <_start+22> mov $0x4004f0,%rcx
 |0x40041d <_start+29> mov $0x601060,%rdi
 |0x400424 <_start+36> callq 0x4003e0 <__
libc_start_main@plt> |0x400424 <_start+36>
callq 0x4003e0 <__libc_start_main@plt> |

From testing, I found that the value pushed
on %rdi is the location of main, but something seems
off this time. Hang on, it put main in the .data sec-
tion! Earlier I mentioned how .text is where read-only
executable code goes and .data is where non-execut-
able read/write values go! The code is trying to run
memory that is marked as non-executable, which is the
cause of the segfault. How am I supposed to convince
the compiler that my “main” belongs in .text?! Well,
my searches turned up empty, and I was convinced
that was the end of the road. Time to call it a night and
deem my adventure a failure.

But I couldn’t sleep that night without finding a
solution. I continued to search and search some more
until I found a very obvious and simple solution on
a Stack Overflow post. All I have to do is declare the
main function as const. Changing it to const char
main[] = { was all I needed to do to get it in the right
section. Let’s try compiling again.

$ gcc -Wall const_array_main.c -o fourth
const_array_main.c:1:12: warning: 'main' is usu-
ally a function [-Wmain]
 const char main[] = {
 ^
$./fourth
SL)�1�H���H�

Ack! What is it doing now? Time to gdb again and
see what’s happening.

gdb ./fourth
(gdb) break _start
(gdb) run
(gdb) layout asm

So looking at the code, we can see the address for
main is in the ASM for _start in the instruction that
looks like this on my machine mov $0x4005a0,%rdi.
We can use this to set a break point on main by
doing break *0x4005a0 and then continue execution
with c.

(gdb) break *0x4005a0
(gdb) c
(gdb) x/49i $pc # $pc is the current
 # executing instruction
...
 0x4005a4 <main+4>: mov $0x1,%eax
 0x4005a9 <main+9>: mov $0x1,%ebx
 0x4005ae <main+14>: mov $0x400510,%esi
 0x4005b3 <main+19>: mov $0xd,%edx
 0x4005b8 <main+24>: syscall
...

I snipped some of the assembly that wasn’t impor-
tant. If you didn’t notice what went wrong, the address
pushed to print at (0x400510) is not the address we
stored the string “Hello world!\n” at (0x4005c3)! It’s
actually still pointing to the computed location in the
original compiled executable and isn’t using relative
addressing to print it. That means we need to modify
the assembly code in order to load the address of the
string relative to the current address. As it stands,
it’s fairly difficult to accomplish in 32 bit code, but
thankfully we are using 64bit ASM, so we can use
the lea instruction to make it easier.

  27

void main() {
 __asm__ (
 // print Hello World
 "movl $1, %eax;\n" /* 1 is the syscall
number for write */
 "movl $1, %ebx;\n" /* 1 is stdout and
is the first argument */
 // "movl $message, %esi;\n" /* load the
 // address of string into the second
 // argument*/ instead use this to load
 // the address of the string as 16 bytes
 // from the current instruction
 "leal 16(%eip), %esi;\n"
 "movl $13, %edx;\n" /* third argument
is the length of the string to print*/
 "syscall;\n"
 // call exit (so it doesn't try to run
 // the string Hello World maybe I could
 // have just used ret instead
 "movl $60,%eax;\n"
 "xorl %ebx,%ebx; \n"
 "syscall;\n"
 // Store the Hello World inside the main
 // function
 "message: .ascii \"Hello World!\\n\";"
);
}

The changed code is commented so you can see it.
Compiling the code and checking to see if it works:

$ gcc -Wall relative_str_asm.c -o fifth
relative_str_asm.c:1:6: warning: return type of
'main' is not 'int' [-Wmain]
 void main() {
 ^
$./fifth
Hello World!

And now we can use the same techniques discussed
earlier to extract the hex values as an integer array. But
this time, I want to make it a little bit more disguised
and tricky by using the full 4 bytes that ints give me
instead. We can do that by printing the information out
in gdb as an int instead of dumping the hex to a file
and then copy/pasting it into the program.

gdb ./fifth
(gdb) x/13dw main
0x4004ed <main>: -443987883 440 113408
-1922629632
0x4004fd <main+16>: 4149 899584 84869120
15544
0x40050d <main+32>: 266023168 1818576901
1461743468 1684828783
0x40051d <main+48>: -1017312735

I chose the number 13 since main was 49 bytes long,
and 49 / 4 rounds up to 13 just to be safe. Since we
exit from the function early, it shouldn’t make a differ-
ence. Now all that’s left is to copy and paste this back
into our compiled_array_main.c and run it.

const int main[] = {
 -443987883, 440, 113408, -1922629632,
 4149, 899584, 84869120, 15544,
 266023168, 1818576901, 1461743468,
1684828783,
 -1017312735
};
$ gcc -Wall final_array.c -o sixth
final_array.c:1:11: warning: 'main' is usually a
function [-Wmain]
 const int main[] = {
 ^
$./sixth
Hello World!

And all this time we’ve been ignoring the warning
message about main not being a function!

I’m guessing all that will happen when my coworker
turns in an assignment looking like this is they will take
off points for bad coding style and say nothing else
about it. n

James Rowe is a senior in Computer Science that loves to explore
his interests and doing whatever he thinks is cool. Hobbies include
gaming, game programming, web programming, and anything
in between. He is currently looking for a job to start after he
graduates.

Reprinted with permission of the original author.
First appeared in hn.my/main (jroweboy.github.io)

http://hn.my/main

28  PROGRAMMING

Part of my work involves the
mild reverse-engineering
of binary file formats. I say

“mild” because usually other people
do all of the actual work; I just have
to figure out what an extra flag
field or two means, and I then take
as much credit as possible for the
discovery on my blog.

To see what’s in the guts
of a binary file, I use a hex
editor, though even my favorite
one [synalysis.net] is a bit of a
chore to use. When I’m trying to
figure out a file format, I want to
mark it up with my hypotheses
about what various bytes may
mean, but currently there aren’t
any hex editors that will let me do
that. My workflow at present is to
print out the hex representation of
a binary file onto physical sheets
of paper, and then mark them up
with a ball-point pen that I received
last year at a conference about
technology.

To save a few trees, and to ensure
that my Conference Pen Collection
remains in pristine condition for a
future eBay auction, I decided to
write my own hex editor suited for
reverse-engineering tasks. I’ve had
a hex-editor name picked out for a
while now (Hecate: The Hex Editor
From Hell), as well as a color palette

and appropriate thematic iconog-
raphy (think Dante’s Inferno meets
Scorsese’s Taxi Driver).

I also had some visual ideas for
the program worked out, but before
I could get serious about tinker-
ing, I realized I needed to choose a
development platform. I use three
platforms on a regular basis (OS
X, a terminal, and the World Wide
Web), so I decided to organize a
three-way imaginary cage fight
between them, i.e., construct a list
of pros and cons for each.

I know OS X pretty well at this
point, and I thought about writing
the program in Swift. However, I
wanted to make Hecate cross-plat-
form and open-source, so that other
people could contribute to the proj-
ect without me having to pay them.
A browser version could make
sense, but I’d rather not spend my
time running a Hex Editing Web
Service, nor do I want my users
babysitting a local Node.js instance
or whatever on their computer.

I spent a few minutes consider-
ing a cross-platform C++ toolkit
such as Qt. Then the police arrived
and told me in a calming manner to
put down the hunting rifle, so that
left me with the last (and original)
computing platform: the terminal.

Apparently terminal applications
have been experiencing something
of a retro chic Renaissance, driven
by the California New Wave of
systems programming languages.
I still enjoy programming in old-
school, Jersey-style, scorched-
earth C, and gave some thought
to writing Hecate in it, but I was
assured by several GitHub pages
that the ncurses library is a horrible
macro-infested mess, and I decided
to explore other options.

There’s actually a new terminal
library written in C called termbox;
that was my first choice, but then
I saw the author mention that the
Go version of the library had more
features. More features, of course,
are always a good thing to have,
especially in a library you’ve never
used before, so I thought, what the
hay, let’s learn a new programming
language.

Hello, Go: First impressions
When I program I usually think in
C, that is, as I type I try to think
about the C code that’s actually
being executed when the program
runs. I tend to prefer languages
where I have a reasonable chance
of understanding what will be
executed; but I also appreciate
being able to throw caution to the

By EVAN MILLER

Four Days of Go

http://synalysis.net

  29

garbage collector and bang out code
in a hurry when the occasion calls
for it.

Go code will look at least a little
familiar to C programmers. It car-
ries over C’s primitive types, as
well as its semantics with regard to
values and pointers. From the start
I had a decent mental model of
how things are passed to functions
in Go, and under what circum-
stances the caller can expect data
to change. Like C, Go shuns classes
in favor of plain structs, but then
lets you make code more object-
oriented with interfaces, which I’ll
discuss in a minute.

First let’s talk about the basic
syntax. Go is statically typed with
type inference, which saves some
typing, and it splits out the declara-
tion/initialization and assignment
operators into := and =, like this:

my_counter := 1
// an exciting new variable

my_counter = 2
// update the variable

my_counter := 3
// this produces an error

Although when I started I wasn’t
accustomed to the = versus := dis-
tinction, I began to like it as a way
to catch editing errors. Functions
can have multiple return values, but
the rules for multiple assignment
feel a little odd; the left-hand side
of a multiple assignment is allowed
to have a mix of declared and
undeclared variables, but you need
to use := when there is at least one
undeclared variable on the left.
That is to say:

my_counter := 1
// an exciting new variable

my_counter, _ = update_
counter(my_counter)
// OK

my_counter, _ := update_
counter(my_counter)
// not OK

// The following line is OK.
// Even though my_counter
// already exists, error is a
// new variable, so := is
// appropriate
my_counter, error :=
update_counter(my_counter)

To me it seems a little arbitrary
that the := should somehow domi-
nate the =, and it also introduces
room for the very bugs that := was
supposed to prevent (e.g., I might
think I am declaring my_counter in
two places).

I think a more logical syntax
would be to have the number of
colons equal to the number of
new left-hand variables (::= for a
double declaration, :::= for a triple
declaration, etc.), but I guess the
language designers couldn’t find
my phone number at the critical
moment during Go’s research and
development phase.

Go has eliminated some tradi-
tional keywords in favor of over-
loading if and for. Go’s for can
be used in place of C’s for, while,
and while(1), and there is a two-
statement version of if that I just
found out about yesterday. I sup-
pose these consolidations techni-
cally make the language simpler,
but it also makes code slightly
harder to talk about. When looking
at someone’s C code, I can say “use
a while loop here instead of a for
loop,” but with Go I would have to
say “use a zero-statement for loop
instead of a three-statement for

loop”. It is possible, however, that
the Go team has developed a set of
secret signifiers to distinguish these
constructions in everyday conversa-
tion and not told me about them.
(Did you know that the $_ variable
in Perl is called “it”? I read that in a
book. If I remember correctly the
name comes from a Stephen King
novel.)

Go has also eliminated the
ternary operator, and, for reasons
that appear to be political, does not
have integer Min and integer Max
functions. From what I can gather
on the mailing list threads, the
language designers are against poly-
morphism, as well as adding letters
to function names, so unlike the
standard C library which operates
on float, double, and long double,
as well as int and long where
appropriate (e.g., absolute value),
the Go standard math library oper-
ates only on float64. Since there’s
no implicit casting to floats, this is
rather annoying if you’re using inte-
gers, such as when you are counting
things. It also makes Go somewhat
less useful for heavy number-
crunching where you might want
single- or extended-precision ver-
sions of floating-point functions.

(Incidentally, the only language
I know that gets polymorphism
right for dealing with multiple
kinds of mathematical objects
is Julia — though last time I
checked it was still lacking long
double / float80 support.)

By the way, if anyone who works
on the Go math library is read-
ing this, there are a few important
functions missing. [hn.my/gomath]

http://hn.my/gomath

30  PROGRAMMING

The rest of the standard library
looks good to me so far — I like
the design of the string-formatting
library, and the Unicode support
is excellent. rune is an odd way
to name your character type, but
I suppose they wanted to avoid
confusion with C’s 8-bit char. (In
English usage, rune refers specifi-
cally to a character from a medieval
Germanic alphabet, or a glyph
believed to have magical powers.
While some people might object to
the character type having mystical
connotations in Go, I fully support
all references to medieval texts
and/or the occult in programming
languages.)

Go is “OO-ish” with its use of
interfaces — interfaces are basically
duck typing for your structs (as
well as other types, because, well,
just because). I had some trouble
at first understanding how to get
going with interfaces and pointers.
You can write methods that act
on WhateverYouWant — and an
interface is just an assertion that
WhateverYouWant has methods for
X, Y, and Z. It wasn’t really clear
to me whether methods should be
acting on values or pointers. Go sort
of leaves you to your own devices
here.

At first I wrote my methods on
the values, which seemed like the
normal, American thing to do. The
problem of course is that when
passed to methods, values are
copies of the original data, so you
can’t do any OO-style mutations on
the data. So instead methods should
operate on the pointers, right?

This is where things get a little
bit tricky if you’re accustomed
to subclassing. If you operate
on pointers, then your interface
applies to the pointer, not to the
struct (value). So if in Java you had

a Car with RaceCar and Getaway-
Car as subclasses, in Go you’ll have
an interface Car — which is imple-
mented not by RaceCar and Get-
awayCar, but instead by their
pointers RaceCar* and GetawayCar*.

This creates some friction when
you’re trying to manage your car
collection. For example, if you want
an array with values of type Car,
you need an array of pointers,
which means you have to need
separate storage for the actual Race-
Car and GetawayCar values, either
on the stack with a temporary
variable or on the heap with calls
to new. The design of interfaces is
consistent, and I generally like it,
but it had me scratching my head
for a while as I got up to speed with
all the pointers to my expensive
and dangerous automobiles.

Go is garbage-collected. I person-
ally think Swift/Objective-C-style
Automatic Reference Counting
would have been a better choice for
a statically typed systems language,
since it gives you the brevity ben-
efits without the GC pauses. I’m
sure this has been argued to death
elsewhere, so I’ll save my GC rant
for a very boring dinner party.

One of Go’s major selling points
is its concurrency support. I have
not yet played with its concurrency
features, cutely called goroutines.
My impression from the descrip-
tion is that while goroutines are an
advancement over vanilla C and
C++, Go lacks a good story for
handling programmer errors in a
concurrent environment. Normal
errors are bubbled up as values, but
if there’s a programmer error (e.g.,
index out of range), the program
panics and shuts down.

For single-threaded programs,
this is a reasonable strategy, but it
doesn’t play very well with Go’s

concurrency model. If a goroutine
panics, either you take down the
whole program, or you recover
— but then your shared memory
may be left in an inconsistent state.
That is, Go assumes programmers
will not make any mistakes in the
recovery process — which is not a
very good assumption, since it was
programmer error that brought
about the panic in the first place. As
far as I know, the only language that
really gets this right is Erlang, which
is designed around shared-nothing
processes, and thus programmer
errors are properly contained inside
the processes where they occur.

(It’s also worth mentioning
that you can get Go-style M:N
concurrency model in C by using
Apple’s libdispatch [libdispatch.
macosforge.org]. In conjunction
with block syntax, it’s a fairly nice
solution, though like Go, it’s not
robust to programmer error.)

I had previously read about Go’s
refusal to compile programs with
unused import statements, but I
didn’t really believe it until, well,
I couldn’t compile a Go program
that contained an unused import
statement. (The same goes for
unused variables.) The Go FAQ
gets a bit pedantic on this point
— explaining to you why it’s for
your own good — but in practice,
it makes the language less fun to
tinker with. I prefer to try things
out and get them working, then go
back later and clean things up. Go
basically forces you to have clean
code all along, which is a bit like
forcing a scientist to wipe down the
workbench and rinse all the beakers
between every experiment, or forc-
ing a writer to run the spell checker
after every cigarette. It sounds like
good practice, but it comes with
a cost, and it’s a decision that’s

http://libdispatch.macosforge.org
http://libdispatch.macosforge.org

  31

probably best left to the person it
immediately affects, rather than to
the tool designers.

As an aside, I personally would
like to see a version of Go called
“Sloppy Go” that will only compile
programs that contain at least one
unused import and several unused
variables, and maybe an unmatched
parenthesis, just to ensure that the
programmer still knows how to
have fun.

I was trying to think of why the
Go designers thought it was such a
good idea to refuse to compile pro-
grams with unused variables. I have
a theory, and will take a detour here
into what I believe to be the psy-
chological foundations of the Go
programming language. I call it the
Autistic Gopher Hypothesis.

The Autistic Gopher Hypothesis
I didn’t mention the very first
impression I had of Go. On the Go
homepage, there is a gopher — the
language mascot — facing you. But
he’s looking to the left.

 Other times he’s looking to the
right.

 Even when he’s looking in your
direction, it’s like he’s looking
slightly upwards, perhaps at your
toupée.

 There was always something a
little unsettling to me about the Go
gopher. He’s always moving around
and never quite makes eye contact
with the viewer. Compared to the
Go gopher, a devil looks downright
approachable. Even a penguin looks
warm:

The Go gopher doesn’t look dan-
gerous per se, but doesn’t he seem a
little… odd? He faces you head-on
as if he wants your attention and
approval, but he’s not engaging
you, and certainly not listening to
you. If I had to guess, I’d say the Go
gopher suffers from a mild form of
autism.

I get the same feeling about
the Go language. It feels like it is
designed by an obsessive personal-
ity — obsessed with build times
in particular, but also having an
obsession with detail, someone who
rarely makes mistakes when writing
code, who generally will not run
code until it appears to be complete
and correct.

Normally I’d appreciate these
qualities in a compiler writer, but
I feel that the designer went too
far, to the point of being antisocial,
i.e., attempting to impose arbi-
trary rules on the language users. I
imagine that this person is tired of

dealing with warning-riddled code
produced by colleagues — code full
of unused variables and imports,
slow-building code that takes up
the designer’s precious time — and
has decided to exert control over
the type of code written by col-
leagues not by the normal organiza-
tional and political processes (e.g.,
lobbying for -Wall -Werror on the
build server), but by producing a
compiler that refuses any input
that doesn’t meet the designer’s
own exacting standards for com-
puter code. The designer realizes
that giving any ground, e.g., having
compiler warnings of any kind,
creates a potential political battle
within the designer’s organization.
Thus the designer has circumvented
the normal give-and-take over the
build server configuration simply by
eliminating flags from the compiler.

In other words, Go represents a
kind of Machiavellian power play,
orchestrated by slow-and-careful
programmers who are tired of suf-
fering for the sins of fast-and-loose
programmers. The Go documenta-
tion refers quite often to intolerable
45-minute build times suffered by
the original designers, and I can’t
help but imagine them sitting
around and seething about all those
unused imports from those “other”
programmers, that is, the “bad”
programmers. Their solution was
not to engage and educate those
programmers to change their habits,
but rather design a new language
that the bad programmers would be
compelled to use — and tie down
the language sufficiently so that
“bad” practices, such as a program
containing unused variables, were
impossible.

32  PROGRAMMING

Reading Go’s mailing list and
documentation, I get a similar sense
of refusal-to-engage — the authors
are communicative, to be sure,
but in a didactic way. They seem
tired of hearing people’s ideas, as if
they’ve already thought of every-
thing, and the relative success of Go
at Google and elsewhere has only
led them to turn the volume knob
down. Which is a shame, because
they’ll probably miss out on some
good ideas (including my highly
compelling, backwards-incompati-
ble, double-triple-colon-assignment
proposal mentioned above).

Under this theory, more of the
language choices start to make
sense. There is no ternary opera-
tor because the language designers
were tired of dealing with other
people’s use of ternary operators.
There is One True Way To Format
Code — embodied in gofmt —
because the designers were tired
of how other people formatted
their code. Rather than debate or
engage, it was easier to make a new
language and shove the new rules
onto everyone by coupling it with
Very Fast Build Times, a kind of
veto-proof Defense Spending Bill in
the Congress of computer program-
ming. In this telling, the story of Go
is really a tale of revenge, not just
against slow builds, but against all
kinds of sloppy programming.

Which in my opinion is too
bad, because I myself am a sloppy
programmer. I love writing sloppy
code. Not because I like having
sloppy code, or maintaining sloppy
code — but because I like to tinker
and play with code. I like trying
a bunch of different library calls
to see exactly what they do. I like
trying a bunch of interface ideas
and seeing which works best. The
faster I can get results from my

code, the faster I can understand
the problem at hand. For me, writ-
ing code is as much about acquiring
knowledge as it is about producing
something of lasting value. So in the
process of writing code, I’ll leave
behind a wasteland of fallow vari-
ables and futile imports, but I don’t
really care, because there’s a good
chance I’ll throw away the whole
file anyway. Frankly, my unused
variables are none of anyone’s damn
business but my own.

In that light, although Go is a
productive language compared to
C, the Go compiler’s overt ped-
antry is a significant hindrance to
trying out ideas with code, and
getting one of those errors can be a
real buzzkill. I still like writing Go
code, but overall I
fear that Go has sac-
rificed the values of
fun, exploration, and
knowledge-seeking in
favor of the language
designers’ perceived
political needs at
their current place of
employment.

Up From Below
Despite my misgivings over the
absence of Sloppy Go, and the
waking nightmares
I have about the Go
gopher wearing my
Peter Pan pajamas
and murdering me
in my sleep, on the
whole I’ve been
enjoying my initial
experiences with
the Go language. I
was surprised at how
idiot-proof it was to build things —
you just type “go build” and almost
instantly have a self-contained
executable. This does make me

wonder how things went so badly
with make, makemaker, autoconf,
aclocal, and the rest of the Texas
Toolchain Massacre.

Termbox, by the way, is a fun
library to work with. It gives you
a key press handler and an API for
putting colored characters at points;
that’s pretty much it. If you’re feel-
ing crushed beneath the twin behe-
moths of browser programming and
scrum meetings, termbox is a great
way to attempt to resuscitate your
dying sense of worldly wonder and
recapture your faded feelings of
youth. I highly recommend it.

To get my initial groove on with
termbox, I made a dumb program
that displays all 256 terminal colors.
It looks like this:

 Once I figured out how to read
a file, I had the beginnings of a hex
viewer:

  33

And check it out, responsive
terminal design:

Go is productive enough that I’ve
been enjoying implementing things
from scratch like collapsible widgets
and navigating a viewport. In order
to do evil things like convert raw
bytes to floats, I chose to use the
“unsafe” package, which made me
feel manly, powerful, and highly
supportive of private gun owner-
ship. Interfacing with C appears
to be straightforward, though I
feel like the compiler may want
a criminal-background check and
30-day waiting period before letting
me use it.

For my hex editor, the
only real costs compared
to C are the garbage col-

lector, which I don’t anticipate will
be even the slightest of problems,
and the periodic annoyance with

compiler’s draconian stance toward
unused variables, which I anticipate
will be a cosmic, eternally recurring
Groundhog Day of suffering, rue,
and lament.

Nonetheless, thus far I’m glad
I chose Go over C to imple-
ment Hecate: The Hex Editor From
Hell. The tradeoff has been worth it,
and I’m looking forward to continu-
ing development next weekend and
beyond. It’s been great fun to dis-
cover terminal programming, which
is a welcome relief from worrying
about embedded fonts and Retina
displays and Apple Watch WebKit
and whatnot. Who knows? Maybe
one day I’ll actually use Hecate to
reverse-engineer another flag field
in that binary file and proceed to
take complete credit for it on my
blog. n

Evan Miller is the creator of Wizard, a next-
generation statistics package for Mac.

Reprinted with permission of the original author.
First appeared in hn.my/fourgo (evanmiller.org)

http://hn.my/fourgo

34  PROGRAMMING

By MATTHEW GRIFFITH

Somtime recently I became
proficient enough in Haskell
to be productive, and I

wanted to capture some of my
thoughts on the learning experience
before it got too far away. I do most
of my web prototyping in Haskell
now, though I still regularly use and
enjoy Python.

Data First
This is more of a thought on
moving from a dynamic language
to a static language, but in Haskell
the structure of your data is mostly
stated in data declarations and type
signatures. In Python it’s mostly
implied by the code.

My first thought with a Haskell
function is “What does the data
look like? This function takes a
____ and returns a _____ ?”, while
in Python my first thought is “What
does the code say?”

Thinking ‘data first’ improved
my coding, even when coming back
to Python. I more often recognize
when the structure of my data
changes for no real reason other
than it was easy and I was very

‘zoomed in’ on the problem at the
time.

Limiting changes in data struc-
ture also makes the code less com-
plex and easier to understand.

The Readability
One of my main motivations for
using Python is readability of code.
Haskell originally looked ugly out-
side of what seemed to be carefully
crafted examples. Pieces of it looked
very clear, but were surrounded by
flotsam and jetsam of nonsense. But
it was also obviously powerful.

I definitely wanted to avoid
‘clever’ code that was powerful but
confusing.

However, my ability to assess
readability was in assessing other
imperative languages. It was a bit
like criticizing the readability of
Mandarin as an English reader.

I found that Haskell is not ‘clever
but deceptive.’ Of course you can
write ‘clever’ code in Haskell, just
like any language, but it’s not the
common case.

Actually, in Haskell that ‘clever
code’ can only do so many clever
things, as it’s constrained by the
type system. If it says it returns an
Int, it will return an Int or fail to
compile.

The more powerful and pre-
cise abstraction mechanisms that
Haskell supplies just sometimes
smell like the magic that I try to
avoid in Python.

No, Really, the Readability
In the beginning, though, you
kind of have to have faith that,
yes, people do read it without any
trouble and on a regular basis. Once
over the hump, Haskell became
very readable for me.

1.	 Type signatures. They’re like
getting a little summary at the
top of a chapter of a book. With
the added bonus that it’s guaran-
teed to be true. Wouldn’t that be
great to have next time you try
to learn another language?

This is the chapter where Tommy
goes to the market and buys a
duck.

Becoming Productive
in Haskell
Coming From Python

  35

chapter :: Tommy -> Market ->
Duck

2.	 Composing functions out of
other, smaller functions offers a
big reduction in complexity. If
they’re named well, this allows
you to write functions that are
easy to read.

3.	 It’s concise. You don’t need a ton
of code to express a powerful
idea.

Infix Symbols and Noise
I also wanted to mention something
about the infix functions that are
common in Haskell code, too. Infix
functions/operators are functions
that go between two arguments
instead of before. The classic
example is + for addition.

In Haskell, we have a few infix
symbols that are used regularly: $,
<$>, <-, ->, etc., and they can create
a sort of symbol-induced despair/
anger in newcomers.

Don’t despair! I know they
reek of deceptive cleverness, but
there are only a limited number
of common ones. Once you know
them you’ll see they’re useful and
simple. I think there are maybe 5
infix symbols that I use on a regular
basis.

That being said, I would say
ignore the lens library in the begin-
ning, as it has a ton of infix symbols.
It’s a very cool library, but you can
get by just fine without it. Wait
until you’re comfortable creating
medium-sized things in Haskell,
and then approach it at your
leisure.

A Whole New Vocabulary.
There are a lot of completely
new words to learn when
you learn Haskell. Things
like Functor and Monad.

These words are going to
feel heavier to learn for a few rea-
sons. When starting to learn impera-
tive programming, a lot of the
new vocabulary has at least some
familiarity. A loop brings to mind…
well, loops. Race tracks, roller coast-
ers, uhh….cereal.

We store memories by attaching
them to previously made memories,
so there is going to be a tendency
for your brain to just shut off if too
many of these new, heavy words
show up in a sentence or para-
graph. I had no associations with
the word Functor, so it was hard to
store.

My strategy in learning these
words was to come up with my
own name that made sense to me
and mentally substitute it every
time that heavy word came up.
After a while, these made-up syn-
onyms anchored me and I had no
problem with the ‘heavy word.’

For example: Functor.
In Haskell, this is something that

can be mapped over. For example,
a list is a Functor. This means there
is a mapping function that takes
another function and applies it to
everything in the list and creates a
list with the results.

map (+1) [1,2,3,4]
-- results in [2,3,4,5]

So, I started calling it Mappable.
Mappable was easy for me to
remember and was descriptive of
what it did. A list is a Functor. A list
is Mappable.

My Trusty Print Statement
In Python, my main development
tool is the print statement/function.

In Haskell, my main develop-
ment tool is the type system. It
checks what I’d normally use print
statements to check: what data a
function is actually receiving or
returning.

But! You can use Debug.
Trace [hn.my/debugtrace] as a
Python style print function without
having to bother with Haskell’s
IO type. This can be very useful to
get started. Though, once you get
moving in Haskell, you probably
won’t use it as much as you think
you would.

If you leave trace statements
in your code after you’re finished
debugging…well, you will feel
dirtier when you do that in Haskell
than when you do it in Python.

The Best Monad Tutorial
was a Parsec tutorial.

When you hear about someone
becoming productive in Haskell,
it mostly involves a description
of how they finally understood
Monads. Well, damn, here it goes.

I needed to write a parser. I had
something in Python, but due to
my inexperience in writing parsers,
the growing complexity of my code
was slowing me down considerably.

So, I had some extra time. I
thought maybe I should give it a go
in Haskell.

I found the Youtube video, Pars-
ing Stuff in Haskell, which explains
how to create a JSON parser in
Haskell using the Parsec library.
[hn.my/parsinghaskell]

http://hn.my/debugtrace
http://hn.my/parsinghaskell

36  PROGRAMMING

But it also inadvertently showed
me how to use Monads and Appli-
catives as tools to create something
I needed. It showed me how they
function (har, har) and how they
are related to each other.

After writing a parser with them,
I began to understand other code
that used them. I then started to
understand their abstract nature…
but that abstractness was a lesson
for another day, not for starting out.

Also, Parsec provided enough
structure that my inexperience
in writing parsers did not really
matter. In fact, as someone just
learning Haskell, I was able to write
a parser that was better in every
measure (lower complexity, faster
speed, better readability, easier
extensibility), compared to what I
could do as a programmer who has
worked with Python for years but
with no expertise in parsers.

The learning process was incred-
ibly rewarding
Haskell is my main web proto-
typing language now for several
reasons.

Well, reason 0 is I have the
opportunity to choose what tech-
nology I use. I know that’s a luxury.

1.	 I’m able to write a prototype
faster, and that prototype is usu-
ally my production version.

2.	 I don’t have to waste my time
on trivial bugs.

3.	 The bugs I do encounter are
generally more meaningful and
lead me to understanding the
problem more. Note: meaningful
doesn’t always mean harder.

4.	 Python taught me not to worry
about speed that much. Haskell
agreed with that but let me have
it anyway.

5.	 Refactoring is a breeze. In
Python, I always had a nagging
feeling that I forgot to change
some small part of your code
that will be important later.

6.	 Excellent libraries. I feel that the
basic guarantees of the Haskell
language make the standard
quality of libraries exceptionally
high. Then there are libraries
that were game-changers for me
(Parsec and QuickCheck imme-
diately come to mind, but there
are others).

7.	 A helpful community.

8.	 Easy to scale up code to using
many cores.

9.	 Haskell infrastructure is improv-
ing all the time. Last year, when
GHC (which is the Haskell
compiler) 7.8 came out, it dou-
bled the performance of Warp,
one of the prominent web serv-
ers that was already pretty fast.

And finally, I have to say that
writing Haskell code comes with a
deep level of satisfaction. It’s more
rewarding than most any coding
experience I’ve had.

Where to start?
It can be tough to find a good start-
ing point.

Here’s how I would do it if I had
to learn Haskell again.

First, reading at least Chap-
ters 1 through 8 in Learn you
a Haskell for Great Good.
[learnyouahaskell.com]

Then!

1.	 Write a small module that
doesn’t worry about IO. Some-
thing like a Sudoku module that
generates Sudoku puzzles. Don’t
worry about using a random
number as a seed. Use Debug.

Trace as your print statement to
see what’s going on. Generate a
puzzle and Debug.Trace it to the
screen. Create your own data
types, and just use functions
(i.e., no custom typeclasses).

2.	 Turn that into a Website using
either Scotty or Spock. Keep
it simple, a URL that shows a
Sudoku puzzle. Then, a URL
that produces JSON of a
Sudoku puzzle.

3.	 Mess around with real IO. Try
printing the puzzle to the ter-
minal without Debug.Trace.

4.	 Find incremental ways to add
to it. Design a file format for
Sudoku puzzles and write a
Parsec parser for it! Don’t have
the file format be JSON —
make something up.

Good luck! n

Matthew Griffith is a scientist, developer,
and designer. He currently works as an
Informatics Scientist at Evotec, handling
automatic curation for large amounts of
chemical data.

Reprinted with permission of the original author.
First appeared in hn.my/prohaskell
(mechanical-elephant.com)

http://learnyouahaskell.com

  37

http://www.hostedgraphite.com

38  PROGRAMMING

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

	FEATURES
	How to Build a Unicorn From Scratch — and Walk Away with Nothing

	The Days are Long
But the Decades are Short

	PROGRAMMING
	Lucene: The Good Parts
	151-byte Static Linux Binary in Rust
	How I Taught
My Dog to Text Me
Selfies
	Main Is Usually a Function. So Then When Is It Not?
	Four Days of Go
	Becoming Productive in Haskell

